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ABSTRACT
The black-chinned tilapia Sarotherodon melanotheron heudelotii Rüppell 1852
(Teleostei, Cichlidae) displays remarkable acclimation capacities. When exposed
to drastic changes of salinity, which can be the case in its natural habitat, it develops
quick physiological responses and keeps reproducing. The present study focused
on the physiological impact of salinity on male reproductive capacities, using gene
expression as a proxy of acclimation process. Two series of experimental fish were
investigated: the first one was composed of fish maintained in freshwater for several
generations and newly acclimated to salinities of 35 and 70, whereas the second one
consisted of the descendants of the latter born and were raised under their native
salinity. Expression patterns of 43 candidate genes previously identified from the
testes of wild males was investigated in the three salinities and two generations.
Twenty of them showed significant expression differences between salinities, and
their predicted function revealed that most of them are involved in the osmotic
tolerance of sperm cells and/or in the maintenance of sperm motility. A high level
of expression variation was evidenced, especially for fish maintained in freshwater.
In spite of this, gene expression patterns allowed the differentiation between fish
raised in freshwater and those maintained in hypersaline water in both generations.
Altogether, the results presented here suggest that this high variability of expression is
likely to ensure the reproductive success of this species under varying salinities.

Subjects Aquaculture, Fisheries and Fish Science, Evolutionary Studies, Molecular Biology
Keywords Male reproduction, Salinity, Gene expression, Acclimation, Fish

INTRODUCTION
The black-chinned tilapia, Sarotherodon melanotheron heudelotii Rüppell 1852 (Teleostei,

Cichlidae), is a mouth-brooding fish that mainly occurs in estuarine and lagoon
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ecosystems of West Africa, but also sometimes in isolated, natural or artificial ponds. This

species is an important local fish resource, accounting for a large part of catches in this area.

Because of reduced freshwater input and the intense evaporation that has occurred over the

last years (Pagès & Citeau, 1990; Savenije & Pages, 1992), it is regularly exposed to changes

of salinity in its natural habitats. This led to physiological modifications of osmoregulation

(Lorin-Nebel et al., 2012; Tine et al., 2011) and reproductive strategies (Gueye et al., 2012;

Legendre et al., 2008; Panfili et al., 2004; Panfili et al., 2006).

Analysis of the gene expression patterns in the gills of this species evidenced a clear

differentiation of sub-populations along the Sine Saloum estuary (Senegal) linked to the

ambient salinity (Tine, Guinand & Durand, 2012). It was also demonstrated that salinity

induced phenotypic modifications of the mechanisms involved in the activation of sperm

cell motility, one of the major indicators of male fitness (Fauvel, Suquet & Cosson, 2010;

Lahnsteiner et al., 1998). Indeed, the osmolality that enabled sperm activation in the

black-chinned tilapia increased significantly with the salinity at which broodfish were

maintained (Legendre et al., 2008). This finding was also recently reported for another

estuarine species, Fundulus grandis (Tiersch & Yang, 2012), indicating that increased

knowledge in S. m. heudelotii could also benefit other euryhaline species.

Most of the studies focusing on the response of aquatic animals to alternative osmotic

(Evans & Somero, 2008; Larsen et al., 2007; Whitehead & Crawford, 2006; Whitehead et

al., 2011) or hypoxic (Gracey, 2007; Rathburn et al., 2013; Tiedke, Thiel & Burmester,

2014) environments addressed this question through functional genomics of the gills

and/or liver. Nevertheless, the fitness of individuals does not only rely on short-term,

direct physiological responses to environmental challenges, but also on their capacity to

produce viable gametes and offspring under a wide range of environmental conditions

(Breckels & Neff, 2013; Dorts et al., 2012). Salinity has been shown to significantly modify

some reproductive traits such as length at first sexual maturity, fecundity and oocyte size

in the wild (Diouf et al., 2009; Panfili et al., 2004; Panfili et al., 2006; Whiterod & Walker,

2006). However, very few studies attempted to investigate how gene expression in gonads

responded to salinity challenges, even though gametogenesis and gamete quality may be

highly influenced by salinity (Alavi & Cosson, 2006; Bobe & Labbé, 2010; Cosson, 2004).

Using a high-throughput transcriptomic approach, Avarre et al. (2014) validated a de

novo qPCR assay complying with the MIQE (Minimum Information for publication of

Quantitative real-time PCR Experiments) guidelines (Bustin et al., 2009) for 43 candidate

and 11 reference gene transcripts in the testes of mature males sampled in Senegal at

locations displaying salinities of 40 and 95. The aim of the present study was to examine

the putative involvement of the expression pattern of these 43 candidate genes in the

acclimation of male reproductive capacities to salinity changes over two generations. More

specifically, it investigated (i) how transfer from low salinities (0) to high salinities (35

and 70) induced specific changes of gene expression in testes within a single parental

generation, and (ii) if these variations persisted in the next generation (F1). Two series

of experimental fish were analyzed: the first one was composed of fish maintained in

freshwater and newly acclimated to salinities of 35 and 70 (“transferred fish”, T), whereas
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the second one consisted of the F1 descendants of T fish. These F1 individuals were born

and raised in each salinity condition (“born fish”, B). Levels of gene expression were

compared between the two generations in order to bring insights into the mechanisms

that allow S. melanotheron males to respond to salinity changes without compromising the

success of reproduction.

MATERIAL AND METHODS
Fish samples
The fish used in this study came from a single freshwater strain of Sarotherodon

melanotheron heudelotii. They originated from a population of ∼50 juveniles sampled

in the Niayes (natural freshwater ponds) of Dakar (Senegal) and transferred to our

facilities (Montpellier) nearly 15 years ago. Since then, fish have been reared in freshwater

recirculation systems (i.e., in the same salinity as that of their natural environment). In

order to minimize the loss of genetic diversity, 3–10 mate pairs were used to obtain a

new generation, and one generation corresponded to approximately 18 months. Twelve

mature males and twelve mature females (approximately 18 month old) from this pool

(hereafter referred to as T) were transferred to 3 independent water recirculation systems

dedicated to a specific salinity (i.e., 0, 35 and 70). These salinities mimic fresh, saline and

hypersaline waters in which S. melanotheron heudelotii may be frequently encountered

in the wild. Because of technical limitations, experiments with higher water salinities

were not implemented here. Each system comprised two breeding tanks (polyester

tanks of 2.5 m length × 0.53 m width × 0.30 m depth). Water salinity was gradually

increased at a rate of about 1 day−1 by the addition of synthetic sea salt (“Instant Ocean”,

Aquarium system, Sarrebourg, France) until the target salinities of 35 and 70 were reached.

Following a 5-week period of acclimation at the final salinities, fish were monitored

for their reproductive behaviour over 18 weeks. Specifically, male reproductive success

was assessed through the number of incubating males per tank (related to the number

of available couples), the effective fertilization of incubated eggs and the viability of

progenies. Finally, they were anaesthetized (Eugenol, 0.1 mL/L) and then killed by an

overdose of anaesthetic (Eugenol, 0.5 mL/L) in ice (in accordance with the EU Directive

2010/63/EU) for dissection and testis collection. The body weight (Wb), fork length (FL)

and gonad weight (Wg) were recorded for each fish, and the gonadosomatic index (GSI)

was calculated as follow: Wg/Wb × 100. Condition factor K was also calculated, according

to the standard formula 100 × Wb/FL3. During this period, about 50 hatchlings from 6–8

spawning events per salinity were transferred to another series of tanks. They were grown

at salinities of 0, 35 and 70 until they were 9–11 months old, i.e., about 3 months after they

became sexually mature. From these large pools of animals (referred to as B), 12 males

and 12 females per salinity condition were randomly selected and transferred to the same

breeding tanks used for T animals. Again, their reproductive activity was monitored for 18

consecutive weeks before they were processed for testis collection as indicated above. Testes

were placed in RNA later (Ambion) overnight at 4 ◦C and then stored at −20 ◦C until

use. In total, testes from 33 T and 35 B fish were collected (Fig. 1). All the experimental
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Figure 1 Origin of the 2 series of experimental animals considered in this study, which both orig-
inated from a single stock maintained in captivity in freshwater since ∼15 years. T animals result
from a transfer from fish of this stock to the same (0) or to different salinity conditions (35 and 70). B
animals represent first-generation male offspring from the reproduction of each category of T fish under
their respective salinity conditions (0, 35 or 70). Number of T and B males collected from each salinity
condition is reported in brackets.

procedures took place in our facilities in Montpellier, under the laboratory agreement for

animal experimentation number A-34-172-24 and the author’s personal authorization for

animal experimentation number 34-188, both provided by the French government.

RNA extraction and cDNA synthesis
RNA was extracted with the Nucleospin-8 total RNA isolation kit (Macherey-Nagel).

Fifteen to twenty mg of testis preserved in RNA later were weighed and transferred

into 2 ml tubes containing a 5 mm steel bead (Qiagen) as well as 360 µL lysis buffer

supplemented with 1% β-mercaptoethanol (Sigma-Aldrich). Tissues were homogenized

with a tissue lyzer (Qiagen) for 2 min at 50 Hz. Tubes were then centrifuged for 5 min at full

speed and the supernatants were transferred to new tubes and kept at −20 ◦C overnight.

RNA was extracted the following day according to the manufacturer’s instructions, using

a Janus automated workstation (Perkin Elmer), and eluted in 70 µL RNase-free H2O. In

order to remove any trace of contaminating genomic DNA, RNA eluates were subjected to

a second DNase treatment: a mix of 0.2 µL of RNase-free DNase and 2 µL of reaction buffer

(Macherey-Nagel) was added to 20 µL of each RNA eluate, and digestion was carried out

for 15 min at 37 ◦C. RNA quantity was measured by UV spectrophotometry (Nanodrop

1000; Thermoscientific), and its integrity was verified by capillary electrophoresis (Agilent

Bioanalyzer 2100). Each RNA sample was diluted to a concentration of 50 ng µL−1 in H2O

and stored at −80 ◦C.

Reverse transcription was performed with oligodT primers on 250 µg RNA, using the

transcriptor first strand cDNA synthesis kit (Roche). A template-primer mixture consist-

ing of 250 µg RNA and 2.5 µM oligodT was denatured at 65 ◦C for 10-min and immedi-
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ately cooled on ice. The reaction (in 20 µL final) was supplemented with reaction buffer

(1X), dNTPs (1 mM each), RNase inhibitor (20 U) and reverse transcriptase (10 U), incu-

bated for 1 h at 50 ◦C, then heated for 5 min at 85 ◦C and immediately cooled on ice. The

resulting cDNAs were diluted 10 times with 180 µL H2O and stored at −20 ◦C until use.

Gene sequence annotation
The candidate and reference genes investigated here were identified using a high-

throughput digital gene expression approach (Avarre et al., 2014). Their raw sequences

can be found under SRA study accession number SRP022935, whereas the assembled

sequences can be accessed through a freely accessible interactive database (http://

vmdiva-proto.ird.fr). Annotation of the corresponding sequences was therefore needed to

infer their putative functions. This was realized with Blast2GO v2.6.6 (Conesa et al., 2005).

Sequences were used as a query to search the non-redundant protein database available

at the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov) using the

BlastX algorithm with an E-value cutoff set at 10−6. Sequences were then functionally

annotated by mapping against gene ontology (GO) resources. Sequences that were not

assigned any GO term were checked for conserved domains using the CD-search tool

(Marchler-Bauer & Bryant, 2004). Likewise, sequences for which the number of BlastX hits

was <5 were re-aligned using the BlastN algorithm, and their description was corrected

when necessary.

Gene expression analysis
The expression of 43 candidate genes previously validated for their potential as being

involved in testis response to salinity was analyzed by qPCR at the 3 salinities and for

the 2 fish generations. PCR amplifications were carried out in 384-well plates with a

LightCycler 480 (Roche) in a final volume of 6 µL containing 3 µL of SYBR Green I

Master mix (Roche), 2 µL of cDNA and 0.5 µM of each primer (Avarre et al., 2014).

Amplifications were performed in duplicate with an initial denaturation step of 10 min

at 95 ◦C followed by 40 cycles of denaturation at 95 ◦C for 10 s, annealing at 60 ◦C for 10 s

and elongation at 72 ◦C for 10 s. Amplifications were followed by a melting procedure,

consisting of a brief denaturation at 95 ◦C for 5 s, a cooling step at 65 ◦C for 1 min

and a slow denaturation to 97 ◦C. Amplification products were validated by analyzing

the shape of their corresponding melting curve and by measuring their size on agarose

gel electrophoresis. For each given sample, all the genes were amplified simultaneously

in the same 384-well plate, and each plate contained a no-template control for every

primer pair. Cycle of quantification (Cq) values were calculated with the LightCycler

software, using the second derivative method. Results were expressed as changes in relative

expression according to the 2−ΔΔCq method (Pfaffl, 2001). Cq values were first corrected

with the amplification efficiency of each primer pair according to the following equation:

CqE=100% = CqE (log(1 + E)/log(2)), where E is the efficiency and CqE the uncorrected

Cq values. Then the corrected Cqs of each gene of interest were normalized (ΔCq) with the

mean Cq of 4 validated reference genes (Avarre et al., 2014), and ΔCq values were related to

the average ΔCq value of all samples.
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Statistical analyses
T and B animals maintained in freshwater were initially analyzed as 2 different groups;

however, because they belonged to the same salinity treatment and were kept in the

same conditions, they were also considered as one single group for statistical purposes.

Comparison of the two situations showed that variations in gene expression followed

the same trend, indicating that pooling did not mislead interpretation (not shown).

All statistical analyses were performed with the GenEx Pro package (MultiD analyses,

Sweden). The normality of data distribution was first verified for each series of samples

using the Kolmogorov–Smirnov test. Since more than 90% of series turned out to

be normally distributed, a one-way ANOVA test with a Tukey–Kramer’s post-test was

applied to infer significant differences between salinities, using a confidence level of 0.95

(p < 0.05). P-values were corrected for multiple testing using the false discovery rate

(Benjamini & Hochberg, 1995). Concurrently, expression levels were also compared by

salinity pairs with a t-test, using the same confidence level. Finally, a principal component

analysis (PCA) was also carried out on the two series of fish, according to the expression

pattern of the investigated genes.

RESULTS
In spite of their age difference, average GSI for the two series of fish (T and B) were

comparable, with mean (± SD) values of 0.27 ± 0.13 and 0.26 ± 0.12 for T and B males,

respectively. Condition factor calculated for each salinity group showed similar values,

ranging between 1.99 ± 0.11 and 2.04 ± 0.14. Moreover, spermatozoa produced by the

fish investigated in this study led to successful fertilization with viable offspring in all

experimental conditions, indicating that salinity did not impair the ability of males to

successfully reproduce.

Differences in gene expression between salinities and generations
A collective analysis of raw Cq values for the 43 candidate and 4 reference genes in

the 33 T and 35 B fish with geNorm (Vandesompele et al., 2002) and NormFinder

(Andersen, Jensen & Ørntoft, 2004) software indicated that Contig Tilapia 90 13722 (R1),

Contig Tilapia 90 7452 (R2), Contig Tilapia 90 3058 (R3) and Transcript AVA3 453

(R4) were the most stably expressed genes. This confirmed that these four genes were

appropriate to use as reference in the present conditions, as was already demonstrated on

wild fish (Avarre et al., 2014).

Among the 43 tested candidate genes, 20 showed significant variations between fish kept

at different salinities in at least one of the 2 generations investigated in this study (Table 1).

The number of genes that showed significant variations in their expression levels between

salinities was higher in T (18) than in B (10) animals. The relative expression levels of these

genes are displayed in Figs. 2 and 3. Generally, fold-changes in relative expression between

the different salinity conditions were quite low, as the highest ratio was 3.86. Conversely,

inter-individual variations among salinity groups were rather high. Interestingly, these

variations were uppermost in fish kept in fresh water. Within each generation, the largest
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Table 1 List of genes showing significant differential expression between salinities in the two fish
generations (T and B) and corresponding statistical values.

Original sequence namea Gene #b Corrected ANOVA p-values

T animals B animals

Contig Tilapia 90 6346 1 1.34E–03 3.12E–05

Contig Tilapia 90 8891 2 8.76E–03 7.60E–02

Contig Tilapia 90 947 3 1.46E–01 6.70E–04

Contig Tilapia 90 6938 4 1.29E–02 1.97E–03

Contig Tilapia 90 21432 5 3.84E–01 3.17E–03

Contig Tilapia 90 1393 6 7.53E–05 7.67E–01

Contig Tilapia 90 10643 7 3.13E–02 1.06E–03

Transcript AVA3 33497 8 1.28E–05 1.60E–03

Transcript AVA1 24409 9 2.02E–04 1.75E–02

Contig Tilapia 90 26617 10 1.29E–02 1.03E–02

Contig Tilapia 90 2414 11 3.38E–02 3.35E–01

Contig Tilapia 90 2253 12 1.29E–02 1.08E–01

Contig Tilapia 90 2777 13 1.29E–02 9.62E–01

Contig Tilapia 90 8343 14 1.05E–02 9.73E–01

Transcript AVA1 58357 15 3.38E–02 5.67E–01

Contig Tilapia 90 26561 16 1.34E–03 1.07E–02

Contig Tilapia 90 27008 17 7.76E–04 1.08E–01

Contig Tilapia 90 1736 18 1.32E–02 1.08E–01

Contig Tilapia 90 7359 19 1.54E–04 2.65E–02

Contig Tilapia 90 2321 20 7.53E–05 3.35E–01

Notes.
a Names of the sequences as they appear at http://vmdiva-proto.ird.fr.
b This gene numbering is used in Table 2, Figs. 2 and 3 and throughout the text in order to facilitate reading.

differences were observed between the most extreme salinities, i.e., between 0 and 70, and

to a lesser extent between 0 and 35, as indicated by Tukey–Kramer pairwise comparisons.

In T fish, the number of genes showing significant differences was 11 between fresh and

seawater, 15 between fresh and hypersaline water and 2 between saline and hypersaline

water. In B fish, these numbers amounted to 5, 11 and 2, respectively. Likewise, the largest

fold-change differences were also observed between salinities 0 and 70 for the two series of

animals. Overall, directions of expression differences between salinities were comparable in

both generations.

Results of the PCA, based on the expression pattern of the 20 investigated genes, are

displayed in Fig. 4. The two first PC axes accounted for 87.20% and 5.40% of variation.

Because the variation explained by the second axis accounted for approximately 17 times

less than the first one, an ANOVA with a Tukey–Kramer’s pairwise comparison was

performed on the PC scores of the first axis only. It revealed that freshwater males could be

significantly differentiated from T35 (P = 0.024), T70 (P = 0.0015) and B70 (P = 0.0004)

animals, but not from B35 ones (P > 0.05). Moreover, there were no significant differences

between T35 and B35 animals or between T70 and B70 animals (P > 0.05).
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Figure 2 Expression variations according to salinity of the 20 significant genes for T animals. Values
are expressed as relative expression ± SD. Original sequence names may be found in Table 1. Bars are
colored according to the salinity condition (red, freshwater; green, seawater; blue, hypersaline water).
Identical letters indicate no significant differences (according to a Tukey–Kramer’s post-ANOVA test)
between salinities.

Figure 3 Expression variations according to salinity of the 20 significant genes for B animals. Values
are expressed as relative expression ± SD. Original sequence names may be found in Table 1. Bars are
colored according to the salinity condition (red, freshwater; green, seawater; blue, hypersaline water).
Identical letters indicate no significant differences (according to a Tukey–Kramer’s post-ANOVA test)
between salinities.
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Figure 4 Principal component analysis of the fish groups according to their gene expression pat-
tern. The first axis accounted for 87.20% of the total variance and the second axis for 5.40%. The ellipses
include 95% of the variance within each group, and the stars represent the gravity center of each ellipse.
According to a Tukey–Kramer’s pairwise comparison test performed on the principal component scores
of the first axis, freshwater animals (group 0) are significantly differentiated from those of groups T35
(P = 0.024), T70 (P = 0.0015) and B70 (P = 0.0004).

Predicted function of the differentially expressed and reference
genes
Except for Contig Tilapia 90 2321 which returned no significant blastX hit and Tran-

script AVA3 33497 which matched a hypothetical protein, all 24 genes could be attributed

to either a known or a predicted function with rather low E-values. Among these, 21 could

be assigned at least one GO description (Table 2). The list contains proteins for which

a putative role in spermatogenesis has already been proven in other organisms (MORC

family CW-type zinc finger 2 protein, 28 kDa heat- and acid-stable phosphoprotein,

seminal plasma glycoprotein), as well as proteins involved in energy metabolism (NADH

dehydrogenases, phosphatase), in stress response and osmoregulation (heat shock

proteins, sodium potassium ATPase), or in axonemal activity (calcium-binding protein,

beta-tubulin). The predicted function of the 23 remaining genes, which did not show any

significant variations according to salinity, is displayed in Table S1.

DISCUSSION
This study aimed to analyze how mature males originating from a single freshwater

population responded to transfer in saline (salinity 35) or hypersaline (salinity 70) water,

and how F1 individuals born in these new environments expressed the same genes. Salinity

changes were shown to noticeably modify the life-histories and reproductive strategies of

populations (Gueye et al., 2012; Legendre et al., 2008; Panfili et al., 2004; Panfili et al., 2006),
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Table 2 Annotation features of the 20 responsive and 4 reference genes.

Gene # Sequence
length (nt)

#BlastX
hitsa

Protein
descriptionb

Best hit
accession

E-Value #GO
terms

Differentially expressed genes

1 353 16 PREDICTED: type-4 ice-structuring
protein-like

XP 004549213 1.06533E–61 2

2 584 20 PREDICTED: tubulin-specific
chaperone A-like

XP 003455155 4.68328E–50 5

3 524 20 sodium/potassium-transporting
ATPase alpha-1 subunit

AGO02179 4.12826E–87 20

4 289 20 Serine/threonine-protein
phosphatase 6 catalytic subunit

ELW48549 1.44788E–46 6

5 164 20 PREDICTED: sperm plasma
glycoprotein 120

XP 004574936 4.12231E–23 0

6 849 20 PREDICTED: proteasome
subunit alpha type-5-like

XP 003441568 8.42686E–175 19

7 459 20 PREDICTED: neuroserpin-like XP 004561427 1.13288E–76 4

8 177 1 Hypothetical protein XP 004563130 5.19086E–18 0

9 260 20 PREDICTED: NADH dehydrogenase
[ubiquinone] 1 beta subcomplex
subunit 3-like

XP 003457472 8.68852E–26 2

10 179 20 NADH dehydrogenase subunit 1 ADR10264 3.32857E–21 4

11 604 20 PREDICTED: hypoxia-induced gene
domain family member 1A-like

XP 003438136 4.44514E–47 1

12 545 20 Heat shock protein 90 CAX33858 8.51839E–92 34

13 1,010 20 Heat shock protein 70 ACI42865 0.0 3

14 506 20 PREDICTED: glutathione
S-transferase theta-1-like

XP 004572434 1.57519E–28 1

15 321 20 PREDICTED: calcium-binding
protein 39-like isoform X1

XP 004573664 6.54477E–61 8

16 230 20 Beta tubulin BAD11697 7.71535E–48 7

17 313 20 PREDICTED: MORC family CW-type
zinc finger protein 2A-like

XP 004544577 5.08988E–31 2

18 1,105 20 PREDICTED: nucleolar protein 56-like XP 004545283 3.59979E–151 8

19 465 20 PREDICTED: 28 kDa heat- and
acid-stable phosphoprotein-like

XP 003443172 4.92124E–54 4

20 512 0 – – – 0

Reference genes

R1 291 20 PREDICTED: NADH dehydrogenase
[ubiquinone] flavoprotein 1,
mitochondrial-like

XP 003452502 5.14723E–58 8

R2 299 20 PREDICTED: NADH dehydrogenase
[ubiquinone] 1 alpha subcomplex
subunit 10, mitochondrial-like

XP 004571622 7.27748E–52 6

R3 265 20 PREDICTED: tubulin beta-4B chain XP 004005609 1.57111E–59 21

R4 323 20 PREDICTED: cytochrome
c oxidase subunit 6C-1-like

XP 003451899 3.40807E–36 6

Notes.
a The number of BlastX hits was limited to 20.
b According to the best blast hit.
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and to impact their osmoregulatory capacities (Lorin-Nebel et al., 2012; Tine, Guinand &

Durand, 2012) and their stress response (Tine et al., 2010). Nevertheless, gene expression

variation in reproductive organs like testes was never investigated, although they are

necessary to the preservation of male fitness and contribute to the demographic features

of populations. Previous results have shown that the salinity of the water under which

fish were raised had a major effect on sperm characteristics and on the conditions

for the activation of spermatozoa motility. Particularly, higher osmolality and higher

concentrations of extracellular calcium were required for the activation of spermatozoa

in fish maintained in saline/hypersaline water (Legendre et al., 2008 and M Legendre,

2014, unpublished data). The precise mechanisms, and especially the molecular basis

behind these physiological adaptations, still need further investigations. However, as

intra-testicular spermatozoa and other testicular cell types are particularly difficult to

separate, and the quantification of gene expression for each single cell type difficult

to reach, studying gene expression variation at the testis level is a necessary step for

deciphering the genes involved in salinity acclimation. Physiological changes related

to environmental salinity were observed not only at the spermatozoa level (motility

activation), but also at the gonad level (e.g., ionic content and osmolarity of the seminal

fluid involved in the protection of spermatozoa during storage in the reproductive system)

(M Legendre, 2014, unpublished data), indicating that a tissue level approach is necessary.

Global expression patterns of the 20 genes distinguished fish that only experienced

freshwater from their counterparts acclimated to saline and hypersaline conditions (T35

and T70). This reflected a shift—i.e., a plastic response—in mean levels of gene expression

from a standard freshwater environment to a new environment, with no significant

differences in global gene expression patterns between T35 and T70 males. Among B

animals (i.e., born in a specific salinity), gene expression patterns were found significantly

different only between freshwater and B70 males. Inter-individual variation in mRNA

levels was found highest for T and B fish maintained in freshwater, i.e., the only animals

that did not undergo any environmental change for many generations. Concurrently,

inter-individual variation in gene expression was around twice lower in T35, B35 and T70

males, and 3 times lower in B70 fish. Elevated inter-individual variations in mRNA levels

have been proposed as a possible source of variation to enable future evolution in reaction

to rapid environmental changes (Aubin-Horth et al., 2005; Oleksiak, Churchill & Crawford,

2002; Whitehead & Crawford, 2005; Whitehead & Crawford, 2006), since production of

better adapted protein orthologs does not fit such short time-scales (Hofmann & Todgham,

2010). By contrast with gene expression levels, no differences in fertilization capabilities

were observed between all investigated fish. If the salinity increase induced a shift in the

osmolarity at which sperm cells were activated (not shown), it did not yet affect sperm

motility itself, and spermatozoa produced by all the fish led to successful fertilization

with viable offspring in all experimental situations. This indicates that salinity changes

and salinity itself did not impair the ability of males to reproduce successfully. Combined

these findings suggest that the genes investigated here are involved in the mechanisms

of acclimation to salinity. They also support the hypothesis that naturally-occurring
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expression variation contributes to the phenotypic plasticity of male black-chinned

tilapia, which ensures its reproductive success under varying salinities. Nevertheless,

this plasticity may differ between T and B fish. Indeed, T fish demonstrated an ability to

respond to a punctual, context-dependent change in environmental conditions after being

raised in a common environment, a process known as phenotypic flexibility (Piersma &

Drent, 2003). In contrast, B fish ‘accomodated’ their respective saline environment since

hatching, and differences in gene expression across treatments might partly originate from

the developmental component of gene expression plasticity (West-Eberhard, 2003). The

present experimental design does not permit us to conclude whether the differences found

between T and B animals (in terms of gene expression) are due to phenotypic flexibility

itself or to the co-occurrence of both types of plasticity. Detailed studies of these two

components of plasticity warrant further investigations into the black-chinned tilapia.

Among the 20 genes showing differential expression in the testes, many encode

proteins that have a link with the general oxidation–reduction level of sperm cells, and/or

participate to plasma membrane channel activity through differential regulation of ion

content. Both activities play an important role in the osmotic tolerance of sperm cells

(Morita et al., 2011) and in the maintenance of sperm motility in fish (Alavi & Cosson,

2006). The potential involvement of some of these genes is discussed below.

Among the largest variations in gene expression that were observed, gene 1 encodes

a protein homologous to type-IV ice-structuring protein, also known as antifreeze

protein type-IV (AFPIV). The AFPIV has already been reported in many fishes from

cold, temperate and warm waters (Lee et al., 2011), and its role is still subject to question. It

was indeed shown to have actual antifreeze ability. However, its low plasma level measured

in the longhorn sculpin (Myoxocephalus octodecimspinosis) suggests another function for

this protein, such as a role in lipid transport due to its close structure relatedness with

that of fish apolipoproteins (Gauthier et al., 2008). Recently, AFPIV was shown to be

abundantly synthesized in ovaries of the Atlantic cod (Gadus morhua), especially during

late stages of vitellogenesis, and was proposed to be involved in lipid transport and/or

metabolism (Breton et al., 2012), in spite of a proven low concentration in the blood

of adults (Gauthier et al., 2008). Finally, expression of AFPIV was also demonstrated in

embryos of the gibel carp (Carassius auratus gibelio), and the authors proposed a potential

role in the embryonic patterning (Liu, Zhai & Gui, 2009). Beyond their role in fish, it is

known that antifreeze proteins participate to the osmotic resistance of spermatozoa by

reducing mechanical stress to the cell membrane. They are hence often used in sperm

cryopreservation (Prathalingam et al., 2006). Genes or more general factors regulating

osmolality and ion content are central to sperm motility (Cosson et al., 2008). In both T

and B fish, expression of gene 1 significantly decreased with the salinity to which tilapia fish

specimens were exposed. Experimental evidence is now required to elucidate the potential

role of an antifreeze type IV-related protein in the adaptation to salinity, especially with

regard to male gonadic activity and fertility. This is the first time that expression of an

AFPIV is reported to occur in testes.
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If the expression of the Na+/K+ ATPase (NKA) gene has been extensively studied in

the gills of fish exposed to different salinities (Havird, Henry & Wilson, 2013), including S.

melanotheron (Lorin-Nebel et al., 2012; Tine et al., 2008; Tine, Guinand & Durand, 2012),

this is only the first report of its expression in the testes (gene 3). In gills, NKA plays an

essential role in osmoregulation through branchial ionocytes to actively uptake/excrete

ions from/to environmental water, respectively. Since testes have no ionocytes, it is likely

that NKA plays other roles in the male gonads, and this requires further investigation.

Sequence 4 matches a portion of the catalytic subunit of a serine-threonine protein phos-

phatase. A modulatory role of serine-threonine protein phosphatase in osmoregulation

has been demonstrated in fish (Marshall, Ossum & Hoffmann, 2005), but details are scarce

and the mechanisms still poorly explained, most likely because of the myriad reactions

controlled by serine-threonine protein phosphatases (Shi, 2009). The involvement of

several serine-threonine protein phosphatases in the regulation of sperm motility was

recently demonstrated in humans (Fardilha et al., 2013); this research has to be extended

to fish. Sequence 5 is similar to that of a seminal plasma glycoprotein that contains both

a partial von Willebrand factor type D domain and a zona pellucida (ZP) domain. This

high molecular weight glyco-protein was shown to have a sperm-binding activity and a

sperm-immobilizing activity (Mochida et al., 2002).

The predicted function of gene 15 points to a possible calcium-binding activity. A

significant raise of its abundance was observed with salinity in T animals, suggesting an

increase of Ca2+ metabolism in the testes of fish exposed to higher salinities. Earlier studies

on another euryhaline tilapia, Oreochromis mossambicus, suggested that acclimation of

sperm motility to salinity was associated with a modulation of the Ca2+ flow in order to

increase its intracellular concentration (Morita, Takemura & Okuno, 2004). More recent

studies on the black-chinned tilapia showed that the osmolality that enabled sperm

activation increased significantly with the salinity at which broodfish were maintained.

It was also found that increasing amounts of calcium in the sperm activation medium were

needed to initiate sperm motility as a function of fish rearing salinity (Legendre et al., 2008).

Sequence 16 matches a beta-tubulin, which involvement in the flagellar motility,

especially through post-translational modifications, has been shown for a wide range of

organisms (Huitorel et al., 1999). The description of gene 17 matches a MORC family

CW-type zinc (Zn) finger protein, which absence was first shown to trigger the stop

of spermatogenesis in mice (Watson et al., 1998). Zinc is a trace element essential to

reproduction in both sexes of numerous mammalian species including humans (Bedwal &

Bahuguna, 1994). Its involvement in spermatogenesis was recently shown in the Japanese

eel (Anguilla japonica) by activating Zn-finger proteins and modulating transcription

factor genes containing Zn-finger motifs (Yamaguchi et al., 2009). It allows for the

regulation of mitotic cell proliferation and meiosis, the activation/inactivation of sperm

motility, and may also affect the regulation of steroid hormone receptors including

androgens (Yamaguchi et al., 2009).

Among the 24 (reference and differentially expressed) genes analyzed in this study,

four encode predicted NADH dehydrogenase subunits: two of them showed differential
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expression between salinities (genes 9 and 10), whereas the other two were used as

reference (R1 and R2). Expression of NADH dehydrogenase was already demonstrated

to significantly vary with salinity in the gills of the black-chinned tilapia (Tine et al.,

2010; Tine et al., 2008; Tine, Guinand & Durand, 2012), but transcripts were not annotated

precisely at that time. The two differentially regulated transcripts found in this study

correspond to subunits ND1 and NDUFB3/B12, whereas the two sequences used as

reference correspond to subunits NDUFV1 and NDUFA10. All of these NADH dehy-

drogenase subunits are part of a complicated multiprotein complex located in the inner

mitochondrial membrane, the NADH:ubiquinone oxidoreductase (complex I). It plays a

central role in oxidative phosphorylation and its main function is the transport of electrons

by oxidation of NADH followed by reduction of ubiquinone, which is accompanied by

the translocation of protons from the mitochondrial matrix to the inter-membrane space

(Loeffen et al., 1998). In humans, correlations between sperm quality or sperm motility and

mitochondrial activities including oxidative phosphorylation have been known for some

time (Piomboni et al., 2012; Ruiz-Pesini et al., 1998). Complex I is composed of 45 different

subunits, regulated by both nuclear and mitochondrial genomes (Lazarou et al., 2009). It

is therefore not surprising that different subunits may be subjected to differing regulation

pathways, depending on available substrates and on the physico-chemical conditions in

which they operate, as reported in humans (Piomboni et al., 2012). This was recently shown

in fish by a study analyzing the transcriptional regulation during the ovarian development

of the Senegalese sole (Solea senegalensis) (Tingaud-Sequeira et al., 2009), but data on

male-specific tissues such as testes are lacking. Variations in complex I activity have been

reported in many species, especially in the case of altered environments, and a reduction

of its activity with water temperature was recently shown in Fundulus heteroclitus (Loftus

& Crawford, 2013). In the present study, expression of the two above-mentioned subunits

significantly decreased with salinity. This differential expression could be related to the

link of complex I with reactive oxygen species (ROS) (Maranzana et al., 2013), which are

known to be involved in the control of sperm motility, both in mammals (de Lamirande et

al., 1997) and fish (Shaliutina et al., 2014). Indeed, a recent study pointed out a relationship

between the oxidation–reduction level and the phosphorylation status of an 18-kDa

superoxide anion scavenger protein in the sperm cells of Oreochromis mossambicus, and

showed that ROS-dependent mechanisms contributed to the osmotic tolerance of this

other euryhaline tilapia (Morita et al., 2011).

CONCLUSION
The present study enabled the identification of 20 candidate genes likely involved in

the acclimation to salinity changes of the reproductive physiology of Sarotherodon

melanotheron heudelotii. It evidenced the potential role of unexpected transcripts (such

as that encoding an antifreeze protein type-IV), and supported the hypothesis that elevated

variations in gene expression may contribute to the remarkable plasticity of this species.

The relative contribution of phenotypic flexibility and developmental plasticity needs
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to be investigated in more detail, in order to gain further understanding on the fitness

consequences of such changes in testis gene expression.
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EC2CO (Ecosphère Continentale et Côtière) grant (2010-2012). Jean-Christophe Avarre

received funding from GACR P502/12/1973, LD14119, CENAKVA CZ.1.05/2.1.00/01.0024

and LO1205 and also from the national CZ COST project as part of the International

COST action “Aquagamete”, number LD14119. The results of the project LO1205 were

obtained with financial support from the MEYS of the CR under the NPU I program. The

funders had no role in study design, data collection and analysis, decision to publish, or

preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

INSU (Institut National des Sciences de l’Univers)—EC2CO (Ecosphère Continentale et
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