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Abstract — The presented work is a step towards designing a numerical strategy capable of assessing
the nocivity of a small defect in terms of its size and position in the structure with low computational
cost, using only a mesh of the defect-free reference structure. The proposed strategy would allow to
assess the criticality of defects by introducing trial micro-defects with varying positions, sizes and me-
chanical properties. The main focus of the this work is to present two computational scenarios allowing
to efficiently evaluate criticality considering the effect of either a fixed flaw on a region of interest or
varying flaws on a fixed evaluation point.
Key words — defect, asymptotic analysis, elastic moment tensor.

1 Introduction

The role played by defects in the initiation and development of rupture is crucial and has to be taken into
account in order to realistically describe the behavior till complete failure. The difficulties in that context
revolve around (i) the fact that the defect length scale is much smaller than the structure length scale,
and (ii) the random nature of their position and size. Even in a purely deterministic approach, taking
those defects into consideration by standard models imposes to resort to geometrical discretisations at
the defect scale, leading to very costly computations and hindering parametric studies in terms of defect
location and characteristics.

Our current goal is to design an efficient two-scale numerical strategy which can accurately predict
the perturbation in terms of stress caused by an inhomogeneity in elastic (background) material. To
make it computationally efficient, the analysis uses only a mesh for the defect-free structure, i.e. the
mesh size does not depend on the (small) defect scale. The latter is instead taken into account by means
of a multiscale asymptotic expansion (see e.g. [1, 2]), in which the concept of elastic moment tensor
(EMT) [3, 4] plays an important role. After this introduction we proceed by problem definition in Sec. 2,
and discuss the small-inhomogeneity solution asymptotics in Sec. 3 focusing on the outer expansion, and
Green’s tensor and EMT definition. The performance of the proposed approach is shown on numerical
examples (Sec. 4). Conclusions and perspectives are given in the last section. This work is a continuation
of [5], its main new contribution being the two alternative computational scenarios discussed in Sec. 3
and their numerical realisation.

2 Problem definition

We consider a linearly elastic body occupying a smooth bounded domain Ω⊂Rd (with d = 2 or 3 is the
spatial dimensionality), whose boundary Γ is partitioned as Γ = ΓD∪ΓN ; where ΓD and ΓN , respectively,
support a prescribed traction t̄ and a prescribed displacement ū, while a body force density f is applied
in Ω. Based on this fixed geometrical and loading configuration, we consider two domains, namely (i) a
reference solid characterized by a given elasticity tensor C , which defines the background solution, and
(ii) a perturbed solid Ωa corresponding to Ω where a small inhomogeneity Ba of size a and elasticity
tensor C ? is introduced at point z. As mentioned in the introduction, the aim of this work is to formulate
a computational approach allowing to treat case (ii) as a perturbation of the background solution (i), in
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Figure 1: Reference a) and perturbed b) solids. The inhomogeneity Ba located at z is the shaded subdomain in b).

particular avoiding any meshing at the small inhomogeneity scale. We further seek to apply known results
of the asymptotic expansion of the displacement perturbation with respect to the small characteristic size
a of the inhomogeneity to case (ii).

2.1 Background problem (case (i))

The background solution in terms of displacement field u arising in the reference solid Ω with elasticity
tensor C (Fig. 1a) due to prescribed loading (f, t̄, ū), corresponding to case (i) above, solves the problem

div(C : ε[u])+ f = 0 in Ω, t[u] = t̄ on ΓN , u = ū on ΓD, (1)

where the linearized strain tensor ε[w] and the traction vector t[w] associated with a given displacement
w are given by

(a) ε[w] = (∇w+∇
T w)/2, (b) t[w] = (C : ε[w]) ·n, (2)

with n denoting the unit outward normal to Γ. In (2b) and hereinafter, symbols ’·’ and ’:’ denote single
and double inner products.

2.2 Transmission problem for a small inhomogeneity (case (ii))

The elastic body Ωa occupies the same domain Ω but now contains a small defect, in the form of an
inhomogeneity located at z ∈ Ω, embedded in the background material (Fig. 1b). The inhomogeneity
occupies the domain Ba := z+aB , where the smooth fixed domain B ⊂Rd centered at the origin defines
the defect shape, and has elastic properties described by the tensor C ?. The elastic properties of the
whole perturbed solid are therefore defined as

C a := C (1−χBa)+C ?
χBa , (3)

where χD is the characteristic function of a domain D. For later reference, we also introduce the elasticity
tensor perturbation

∆C := C ?−C . (4)

The displacement field ua arising in the solid containing the small inhomogeneity Ba due to the same
prescribed loading (f, t̄, ū), solves the transmission problem

div(C a : ε[ua])+ f = 0 in Ba∪ (Ω\Ba), t[ua] = t̄ on ΓN , ua = ū on ΓD,

ua|− = ua|+ and t?[ua] |− = t[ua] |+ on ∂Ba,
(5)

where the traction operator t? is defined by (2b) with C replaced by C ? and the ± subscripts indicate
traces from inside Ba and outside of Ba, respectively.

3 Small-inhomogeneity solution asymptotics

Let the displacement perturbation va := ua−u be given as the difference of the total and unperturbed
displacement, where ua and u solve problems (5) and (1), respectively corresponding to the perturbed
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and background configurations. An asymptotic analysis of va with respect to the characteristic defect
size a provides two distinct expansions, namely inner and outer expansions [?]. Those expansions focus
on two distinct scales: (a) the structure scale, where points are described using "ordinary" coordinates
x ∈ Ω, and (b) the defect scale corresponding to the characteristic length a of the inhomogeneity, with
rescaled coordinates x̄ := (x− z)/a. This description is directly related to the slow and fast variables
used in [1, 2].

In this work we focus on the outer expansion given by [4, Thm. 11.4]

va(x) =−∇(1)G(z,x) : A(B,C ,∆C ) : ∇u(z)ad +o(ad), x 6= z. (6)

More precisely we focus on the computation of the asymptotic correction, i.e., the leading contribution
to the outer approximation (6) given as

ṽa(x) :=−∇(1)G(z,x) : A(B,C ,∆C ) : ∇u(z)ad . (7)

In the above equationsG is the elastostatic Green’s tensor, ∇(1)G denotes the gradient with respect to the
first argument of the two-variable functionG, and A is the elastic moment tensor (EMT) associated with
the inhomogeneity (Sec. 3.1). Expansion (6) is expressed in terms of the slow coordinates x and is valid
at any finite (independent of a) distance from the inhomogeneity, i.e. at the structure scale. The main
ingredients of (7) are (i) the gradient of the background solution at the inhomogeneity location ∇u(z)
(or, equivalently, its strain or stress at that point), (ii) the gradient of the Green’s tensor G, and (iii) the
elastic moment tensor (EMT) A . In the context of the proposed computational procedure (i) is given by
a FEM solution of the background problem (1). Thus, we focus further on the definition and numerical
evaluation of A and ∇(1)G(z,x) considering two scenarios of criticality assessment, namely
(a) fixed inclusion location z and varying evaluation point x, or
(b) fixed evaluation point x and varying inclusion location z.
The outer expansion given by (6) assumes a single defect, but can be extended, by additive superposition,
to a finite number of defects whose locations zi are fixed (i.e. are independent of a), as coupling between
defects occurs only at higher orders.

3.1 Elastic moment tensor

The EMT A associated with an inhomogeneity of shape B and stiffness C ? embedded in a background
medium of stiffness C is defined by

A :E =
∫

B
∆C : ∇uB [E]dV, ∀E ∈ Rd×d

sym , (8)

where uB [E] solves the free space transmission problem i.e. the auxiliary problem of a perfectly bonded
inhomogeneity B embedded in an infinite elastic medium and subjected to the constant remote stress
C : E for given E ∈ Rd×d

sym . Such solutions are known analytically for simple inhomogeneity shapes
[6], in terms of the solution to the famous Eshelby inclusion problem [7]. The EMT carries impor-
tant microstructural information, as it depends on the material properties C ,C ? and, through B , on the
inhomogeneity shape and orientation.

We note that for ellipsoidal inclusion B , ∇uB [E] is constant inside B [7, 6], allowing A to be ex-
pressed in closed form [8, 3]:

A = |B|C : (C +∆C : S)−1 : ∆C , (9)

where S = S(B,C ) denotes the (fourth-order) Eshelby tensor of the normalized inclusion B . The evalu-
ation of A then essentially rests on that of S . In this work we will treat the isotropic case (C isotropic),
and we are going to benefit from the fact that S can be evaluated analytically.

3.2 Elastostatic Green’s tensor and computational scenarios

The elastostatic Green’s tensor is defined as G(ξ,x) = ek ⊗Gk(ξ,x), where the displacement field
Gk(ξ,x) is the response at ξ ∈ Ω of the background body subjected to (i) a unit point force applied
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at x ∈Ω along the coordinate direction ek and (ii) homogeneous boundary conditions, i.e.

div(C : ε[Gk(·,x)])+δ(·−x)ek = 0 in Ω,

t[Gk(·,x)] = 0 on ΓN (1≤ k ≤ d) (10)

Gk(·,x) = 0 on ΓD,

where δ denotes the unit Dirac mass at the coordinate origin. We introduce next the following additive
decomposition ofG:

G(·,x) =G∞(·−x)+Gc(·,x), (11)

whereG∞ is the (singular) full-space Green’s tensor (also called fundamental tensor), while the comple-
mentary (non-singular) correction Gc allows G to satisfy the homogeneous boundary conditions result-
ing from Ω being bounded. Decomposition (11) allows to take advantage of the fact that the fundamental
tensorG∞ = ek⊗Gk

∞ is known analytically.
Thus, evaluation of G and its gradients only resorts to evaluation of Gc which, by virtue of prob-

lem (10) (linear) and decomposition (11), solves the following elastostatic boundary-value problem
(BVP) with regular boundary data and vanishing zero body force density:

div(C : ε[Gk
c(·,x)]) = 0 in Ω,

Gk
c(·,x) =−Gk

∞(·−x) on ΓD,

t[Gk
c(·,x)] =−t[Gk

∞(·−x)] on ΓN .

(12)

whereGk
∞ and its derivatives on Γ are known analytically in closed form.

3.3 Two computational scenarios

To evaluate ∇(1)G(z,x) used in the asymptotic correction (7), it seems natural to solve numerically the
BVPs (12) for Gk

c (1 ≤ k ≤ d) and then compute ∇(1)G(z,x) = ∇G∞(z− x)+∇(1)Gc(z,x). However,
while ∇G∞ is known analytically, ∇Gc must in general be evaluated via numerical differentiation of the
computed solution for Gc, a step which is likely to entail loss of accuracy. Moreover, solving (12) for
given x allows to evaluate ṽa via (7) for a fixed evaluation point x and varying inhomogeneity locations z,
i.e. is convenient for scenario (b) but incurs significant computational cost for scenario (a). We therefore
propose two distinct strategies for the evaluation of ∇(1)G, depending on whether scenario (a) or (b) is
to be considered.

Scenario (a): fixed flaw location and varying evaluation point. To avoid solving problem (12) for
each evaluation point x, which would cause significant computational cost for the scenario of a fixed
flaw, we propose an alternative approach which consists in finding a governing elasticity problem for
∇(1)G(z, ·) with z fixed. We begin by using the symmetry relationship G(z,x) =GT (x,z) in (7), so as
to swap the roles of x and z, to obtain (in component form)

[ṽa]k (x) =−∂(1) jG
k
i (z,x)Ai jmnum,n(z)ad

=−∂(2) jG
i
k(x,z)Ai jmnum,n(z)ad (13)

with notations ∂(1) j and ∂(2) j, respectively, indicating partial differentiation with respect to the j-th coor-
dinate of the first and second argument ofG. Now, decomposition (11) implies

Gi
k(·,z) = [Gi

∞]k(·− z)+ [Gi
c]k(·,z), (14)

where Gi
c(·,z) is governed by problem (12) with x replaced by z and k by i. Moreover, ∇(2)Gc may

be defined by simply differentiating the BVP (12) with respect to the second argument of Gc, which
acts in (12) as a parameter, and solving the resulting derivative BVP for ∇(2)Gc. Accordingly, each
displacement fieldH i

j(·,z) := ∂(2) jG
i
c(·,z) (1≤ i, j ≤ d) solves the BVP

div(C : ε[H i
j(·,z)]) = 0 in Ω,

H i
j(·,z) = ∂(1) jG

i
∞(·,z) on ΓD,

t[H i
j(·,z)] = t[∂(1) jG

i
∞(·,z)] on ΓN .

(15)
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Then, the asymptotic correction ṽa can be evaluated using

ṽa(x) = ṽa,∞(x)+ ṽa,c(x) =:
(

∂(1) jG
i
∞(x− z)−H i

j(x,z)
)
Ai jmnum,n(z)ad (16)

(having introduced in (13) the Green’s tensor decomposition (14), and using ∇G∞(ξ−x) =−∇G∞(x−ξ)
for G∞). Due to the symmetry of the EMT, the evaluation of the above expression entails numerically
solving d(d +1)/2 problems (15), which are set on the unperturbed (defect-free) configuration.

Scenario (b): varying flaw location and fixed evaluation point. For this situation, it seems impos-
sible to derive a problem similar to (15) whose unknown is ∂(1) jGk

i (·,x) or ∂(2) jGi
k(x, ·), with x fixed,

because the partial derivative ∂(1) j or ∂(2) j now acts on the field point rather than the source point. Con-
sequently:

(i) For computing displacement corrections of the form (13), one may solve problems (12) and differ-
entiate the resulting FE solution.

(ii) For computing strain or stress corrections, requiring derivatives of (13), one notes that

∂` [ṽa]k (x) =−∂(2)`∂(1) jG
k
i (z,x)Ai jmnum,n(z)ad

=−∂(1) j[H
k
` (z,x)]iAi jmnum,n(z)ad

Such evaluations may therefore be performed by solving problem (15) with z = x (i.e. the source
point for problem (15) set equal to the fixed evaluation point x), and then differentiating the result-
ing numerical solution for Hk

` (·,x).

4 Numerical examples

The proposed approach is now illustrated on the example of the bending of a thick beam featuring a single
small elliptic inhomogeneity (Fig. 2). This example concerns the bending of a simply supported beam

Figure 2: Geometry and boundary conditions of the thick beam under bending load.

(of size 200× 50 mm2) loaded on its top side with uniformly distributed normal load t̄2 =−30 MPa.
The material properties are given as E = 380000 MPa, and ν = 0.18. The inhomogeneity is taken as an
elliptic hole located at z = (115,10), whose major semiaxis a1 has an inclination angle θ relatively to
the x1 direction (see Fig. 2b). The defect size is defined in terms of the semiaxes a1 = 4, a2 = 2, except
where stated differently. To compare the "brute force" solution uh

a of problem (5) which considers a

(a) Reference solid, coarse mesh MH (289 nodes) (b) Perturbed solid, fine mesh Mh (5062 nodes)

Figure 3: Finite element meshes.

discretisation of domain Ωa to its asymptotic approximation ũH
a , we introduce the fine mesh Mh (Fig.3b)

modelling the inhomogeneity (i.e. entailing mesh refinement at the defect scale in a neighbourhood of
Ba). All finite element solutions discussed in this section (such as ũH

a or uh
a) are labelled with the char-

acteristic element size H or h (with h≤ H) of the mesh used for the computation. The numerical results
to follow were obtained by means of the code FEAP [9], using meshes made of three-node triangulars
elements with continuous piecewise-linear displacement interpolation.
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4.1 Scenario (a): fixed flaw location and varying evaluation point

For the scenario (a) we will discuss the criticality of the inhomogeneity in terms of the stress perturbation,
which is usually taken as the quantity of interest for the design of structural components. Accordingly,
we present the comparison of the computed asymptotic correction ṽH

a versus the reference solution vh
a

(on the fine mesh Mh).
Remark 1. Computing ṽH

a entailed four FE solutions on MH (one for the background problem (1), three
for problems (15) with 1 ≤ i ≤ j ≤ 2), each requiring about .15s, while obtaining comparison solution
uh

a on the fine mesh Mh required about 6.6s. While these CPU timings are all very moderate, our ap-
proach applied to this example performs about ten times faster than straightforward analyses on meshes
involving the defect scale, and this relative advantage is expected to increase for similar analyses on
three-dimensional configurations.

Results in terms of evaluation of the asymptotic approximation σ̃H
a := C : ε[ṽH

a ] of the (linear elas-
tic) stress perturbation induced by the defect, and its comparison with the reference stress perturbation
σh

a := C a : ε[vh
a] are presented in Fig. 4 (for component σ11). We can note that the asymptotic stress per-

turbation σ̃H
a , computed on MH , compares well with its reference counterpart σh

a computed on Mh (note
that the scale and colormap are chosen so as to emphasize the far field character of the outer expansion,
based on (6)). We also note that in the close vicinity of the inhomogenity (see zoom on Fig. 4) the refer-

[σ̃a]11 on MH

−50

0

50

[σa]11 on Mh

−50

0

50

Figure 4: Contour plots of the asymptotic approximation σ̃H
a of the stress perturbation (upper plots) and the refer-

ence perturbation σh
a (lower plots). The plots on the right are zooms showing both fields in the vicinity

of z. The elliptic hole is located at z = (115,10), and its inclination is θ = 0.

ential solution is for sure a mixture of inner and outer expansion rather then pure outer. Having verified
our approach we proceed with criticality assessment by the evaluation of σ̃H

a for various inhomogeneity
orientations and shapes. The definition of the criticality naturally depends on the application. For the
perturbation in terms of stress (usual choice in engineering) the criticality would usually be related to
the ratio of perturbation with respect to the unperturbed stress. For the criticality study we are going to
benefit from the developed method and its main advantage. Namely, using the presented computational
procedure (denoted as scenario (a)) for the given background and inhomogeneity properties (both being
isotropic) and position z, we can compute stress perturbation distribution (∀x ∈ Ω\B) for various inho-
mogeneity orientations and shapes without any additional computational cost. More precisely, searching
for the critical defect then boils down to simple evaluation of EMT (analytical expression) for different
inhomogeneity orientations θ and shapes defined here through a1 and a2.

Thus, we obtain the evolution of the most significant in plane component of the stress perturbation
distribution along the crossection A− A (measured with x2) in Figure 2. Here the inhomogeneity is
taken as an elliptic hole which orientation θ and principal axes ratio a1/a2 are taken as denoted in
the Fig. 5 It can be noted that the orientation of θ = 90◦ yields the highest peak in stress perturbation
along the crossection (see yellow curve in Figure 5). Moreover, we can note that when changing the
inhomogeneity shape, that is, increasing principal axes ratio and keeping the surface of the elliptical
defect fixed, we recover the intuitive results giving that sharper elliptical defects are more critical (in
terms of stress perturbation).
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Figure 5: Distribution of the asymptotic approximation in terms of von Mises stress perturbation [σ̃H
a ]M along

the crossection A− A given as x2. The elliptic hole is located at z = (115,10). Its principal axes
are rotated with respect to global coordinate system for θ (shown as parameter on a)). Following the
peak perturbation from a) the angle θ = 90◦ is fixed on plot b) with the semiaxes ratio (a1/a2) =
{(4/2),(4

√
2,
√

2),(8,1)}, for the curves 1, 2 and 3, respectively.

4.2 Scenario (b): varying flaw location and fixed evaluation point

In order to complete the criticality definition and analysis introduced above, we turn to scenario (b) where
the flaw (i.e. z) varies while the evaluation point x is fixed, as described in Sec. 3.2. In this case, we
are aiming at defining the most critical position of a defect (with respect to a given criterion) evaluated
at a fixed point of interest (given as e.g. xZOI in Fig. 2). Remember that we solve first the BVP (15)
with the source point for problem (15) set equal to the fixed evaluation point, and then differentiating the
resulting numerical solution for Hk

` (·,x). For the scenario (b), the stress corrections are given in terms of
the contour plot (the three in plane components are computed and an equivalent Mises stress is plotted),
as shown in Figure 6. The interpretation of the given diagrams is the following: on the chosen point
z ∈Ω, z 6= x from the contour plots, we read the stress correction appearing on the fixed evaluation point
x, given that the flaw is located at z. Following the above discussion related to the criticality, we can
note that for scenario (b) with fixed evaluation point and varying flaw a "criticality map" is obtained.
As mentioned above, the specific application imposes the real criticality criteria. Taking for instance
the stress measure (component, equivalent, . . . ) as criteria, the contour plot (with proper contour limits)
gives directly a map of criticality, that is, the region where a chosen defect (chosen type, shape, and
orientation) is critical.

0 50 100 150 200
0

50

[σ̃a]M

0

50

Figure 6: Contour plot of the asymptotic approximation in terms of equivalent (Mises) stress perturbation [σ̃a]M
with the varying flaw z, and fixed evaluation point x = (100,5) denoted with +. The flaw is taken
as elliptic hole with the semi-axes ratio a1/a2 = 8, and principal axes rotated with respect to global
coordinate system for θ = 45◦. The stress perturbation is given in MPa.

Analogously as for the fixed flaw and varying evaluation point, in this approach we benefit from
the main advantage of the proposed method related to the fact that the only "ingredient" carrying the
information about the defect shape and properties is the EMT. Therefore, for the given background and
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inhomogeneity properties (both being isotropic) and position x, we can compute stress perturbation in
that point for various inhomogeneity positions and shapes/orientations without any additional computa-
tional cost.

5 Conclusion

A numerical strategy for predicting the perturbation caused by the local, small inhomogeneity in an elas-
tic solid is outlined. The strategy lies on the multiscale asymptotic expansion which separates defect
and structure scale through the inner and outer expansions, respectively. In this paper we focus on the
structure scale which boils down to the presented computation of the outer expansion in terms of dis-
placement correction. The biggest gain and the main feature of the presented approach is that the local
inhomogeneity is not meshed, all the computations are carried out on a coarse mesh of the unperturbed
domain. Key "ingredients" of the far field correction which enable us to avoid fine scale meshing are
Green’s and elastic moment tensors. Both of them are presented and the details about their computation
is given. Special attention is given to the choice of the strategy to compute Green’s tensor which fur-
ther enables two interesting computational scenarios that are shown to be useful in the defect criticality
assessment. A very good performance is presented on the academic example.
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