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Multi-agent simultaneous formation-tracking and stabilization of

nonholonomic vehicles
Mohamed Maghenem Antonio Lorı́a Elena Panteley

Abstract

We solve the open problem of formation control for swarms of nonholonomic vehicles over a very wide class of reference
trajectories (vanishing, persistently exciting, and set-points). Our main result applies to the full unicycle model, consituted of
velocity kinematics and dynamics equations. Only a handful of works (see below) cover such generality, but in the one-leader-
one-follower scenario; none applies to swarms of vehicles. On technical grounds, we first establish uniform global asymptotic
stability (UGAS) and strong input-to-state stability for the kinematics equations; moreover, our proofs provide strict Lyapunov
functions. Our second statement is on UGAS for the full model under the action of any velocity controller guaranteeing that the
velocity errors are square integrable. Our third and main result, establishes UGAS for a swarm of vehicles and provides the first
solution to the above-mentioned problem. To the best of our knowledge, there does not exist in the literature similar stability and
stabilization statements on tracking, stabilization or formation control, under the relaxed hypotheses considered here.

I. INTRODUCTION

Leader-follower tracking and set-point stabilization control of nonholonomic systems are well-studied and documented
problems —see, e.g., [1]–[4]. In the first case, the control goal is to make the robot follow a (often non-converging) time-
varying reference trajectory. In the second case the aim is to stabilize the robot around a set-point. Somewhat in the middle,
the robust stabilization control problem consists in making the vehicle follow a trajectory whose derivative vanishes. All these
problems present different technical difficulties which often lead to the design of controllers that apply to either one problem
or the other. For instance, methods based on an assumption that the reference velocity does not vanish or that it is persistently
exciting, have been presented in [5] and [6], but such methods do not solve the set-point stabilization control problem.

Furthermore, some results in the literature apply only to the so-called simplified velocity-controlled model, in which only the
kinematics equations are considered —see, e.g., [7] and [8]. Others apply to the more general force-controlled model, which
includes the velocity dynamics —see [9], [10], [11].

Designing a universal controller that applies in both scenarios, of tracking and (robust) stabilization, even for the simplified
model, is a very challenging problem that has been little addressed in the literature. Indeed, to the best of our knowledge the
leader-follower tracking-stabilization problem for one leader and one follower nonholonomic vehicle has only been studied in
[7] and [12]–[15].

In [12] a saturated time-varying velocity controller is proposed which applies under fairly relaxed conditions on the leader’s
velocities. The seminal paper [13] introduced the transverse-functions approach which applies to a wide variety of nonholonomic
systems (unicycles, trailers, chained-form systems). A similar result is presented in [14] using an adaptive approach. In the last
two references convergence of the tracking errors, albeit in the practical sense, is established. In contrast to this, asymptotic
convergence to zero of the tracking errors is proved in [7] and [15] for the system in closed loop with a universal controller
that applies both to the tracking and parking scenarios. In [7], a keen idea is proposed: to combine a tracking controller and
a stabilization one via a weighing function that favors the action of one controller over the other, depending on the control
objective (converging vs persistently exciting reference velocities).

As already mentioned, the works cited above concern the one-leader-one-follower case, whereas designing a universal
controller guaranteeing asymptotic convergence, for the multi-agent formation case and in both scenarios, remains open. Indeed,
to the best of our knowledge the problem has been addressed only in [16] (via the transverse-function approach), but in this
reference only convergence of the tracking errors in a practical sense is established. It is assumed, moreover, that the robots
communicate over a directed graph and the reference velocities are available to all agents in the network.

Inspired by the clever idea introduced in [7], of combining two control laws, in this paper we propose a kinematics controller
that applies universally to the tracking and robust stabilization scenarios, under fairly relaxed conditions on the reference
trajectories. Our main results cover also those in [17] and [18] by showing that, when combined, the stabilization and the
tracking controller are robust with respect to the action of one another, as well as with respect to the converging velocity errors.
Hence, beyond the controller itself, our primary contribution lies in establishing strong stability and robustness properties, such
as integral input-to-state stability and small input-to-state stability —see [19]–[21] for definitions and statements.

The importance of establishing such input-to-state stability properties (that go well beyond convergence in a practical sense)
cannot be overestimated. Only these can lead to establishing uniform global asymptotic stability for swarms of vehicles with
full (kinematics-and-dynamics) models, which is another significant contribution of this paper. Moreover, our main results are
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general in the sense that they guarantee that the kinematics controller may be used along with any velocity controller that
ensures that the velocity errors converge and are square integrable. In addition, if the force-control loop is uniformly globally
asymptotically stable, so is the complete closed-loop system. Such statement leads to further interesting unprecedented results
such as uniform global asymptotic stability in the case in which the system’s lumped parameters are unknown (thereby implying
uniform parametric convergence).

Finally, we stress that our stability proofs are constructive as they rely on original constructions of strict Lyapunov functions
for classes of nonlinear time-varying systems with persistency of excitation, based on the intricate but powerful methods laid
in [22].

The rest of the paper is organized as follows. In next section we describe in detail the simultaneous tracking-and-robust-
stabilization problem statement and, to put our contributions in perspective, we give further account of the literature. In Section
III we present our main results. Firstly, we present a core stability result for the case of two systems, which is followed by a
generalization to the multi-agent case, to end with several interesting corollaries are also stated. For the sake of completeness,
we present a brief simulations case-study in Section IV and we conclude with some remarks in Section V. The paper is
completed with two appendices: the first one contains some of the proofs of our main results, the second one contains a simple
but original technical statement on stability of the origin for integral-input-to-state stable systems with decaying inputs as well
as some well-known definitions that are recalled for ease of reference.

II. MODEL AND PROBLEM FORMULATION

A. The model

Let us consider a swarm of N nonholonomic vehicles moving on the plane. For each i ∈ {1 . . . N} let xi ∈ R and yi ∈ R
correspond to the Cartesian coordinates of a point on the ith vehicle with respect to a fixed reference frame, and θi ∈ R denotes
the vehicle’s orientation. Now, denoting by ẋi and ẏi the velocities in the respective Cartesian directions, each vehicle’s motion
on the plane is subject to the nonholonomic constraint

ẋi sin(θi) = ẏi cos(θi).

That is, the vehicle moves about with forward velocity vi = [ẋi+ ẏi]
1/2 and unconstrained angular velocity ωi = θ̇i; this leads

to the velocity kinematics equations 
ẋi = vi cos(θi)
ẏi = vi sin(θi)

θ̇i = ωi.
(1)

Some times in the literature it is assumed that the vehicle’s motion is fully described by the so-called simplified model (1)
—see, e.g., [7] and [12]. That is, vi and ωi are considered to be control inputs. In a more realistic model, however, the control
inputs which we denote by ui ∈ R2 are functions of the input torques applied at the steering wheels. In this case, the equations
(1) are complemented by velocity-dynamics equations of the generic form

η̇i = Fi(t, ηi, zi) +Gi(t, ηi, zi)ui (2a)
ηi := [vi ωi]

>, zi := [xi yi θi]
>, (2b)

where the functions Fi : R≥0 × R2 × R3 and Gi : R≥0 × R2 × R3 may be defined in various ways. Most typically, (2a) are
determined by the Euler-Lagrange equations, as for instance in [2], or they are expressed in terms of the system’s Hamiltonian
—see, e.g., [11]. Our main statements in this paper are not restricted to either form; it is only assumed that Fi and Gi satisfy
Caratheodory’s conditions of local existence and uniqueness of solutions over compact intervals.

B. The control problems

Let the aforementioned group of N vehicles, modelled by (1)–(2), communicate according to a spanning-tree topology. That
is, for each i ≤ N , the ith robot receives the states of exactly one leader, labeled (i− 1). Generally speaking, for such swarm
of nonholonomic systems the leader-follower formation control problem consists in: (i) the vehicles acquiring and maintaining
a specified physical formation relative to one another and (ii) following reference trajectories generated by a fictitious robot
modelled by the equations:

ẋr = vr cos(θr) (3a)
ẏr = vr sin(θr) (3b)
θ̇r = ωr. (3c)

The vector zr := [xr, yr, θr]
> denotes the position and orientation reference coordinates and vr, ωr are given piecewise

continuous functions mapping R≥0 → R that represent the forward and angular reference velocities respectively.
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The aspect of acquiring and maintaing a formation may be formulated in function of the relative positions, orientations and
velocities of all the vehicles. For each i ≤ N , let dxi and dyi denote given positive numbers and let

pθi := θi−1 − θi,
pxi := xi−1 − xi − dxi,
pyi := yi−1 − yi − dyi.

That is, the distances dxi and dyi define the position of any leader vehicle with respect to any follower. Then, as it is customary,
we transform the error coordinates (pθ, px, py) of the leader vehicle from the global coordinate frame to local coordinates
fixed on the vehicle, that is, we define eθiexi

eyi

 :=

 1 0 0
0 cos(θi) sin(θi)
0 − sin(θi) cos(θi)

pθipxi
pyi

 . (4)

In these new coordinates the position errors,
ei := [eθi exi eyi]

>, (5)

satisfy

ėθi = ωi−1 − ωi (6a)
ėxi = ωieyi − vi + vi−1 cos(eθi) (6b)
ėyi = −ωiexi + vi−1 sin(eθi), (6c)

where vi−1 and ωi−1 are, respectively, the forward and angular velocities of the leader vehicle. By convention, in (6) we set
v0 := vr and ω0 := ωr where vr and ωr.

Thus, the leader-follower formation control problem reduces to steering the trajectories of (6) to zero, i.e., ensuring that

lim
t→∞

ei(t) = 0 ∀i ∈ {1 . . . N}. (7)

If the vehicle is considered to be velocity-controlled, this is tantamount to designing a control law η∗i := [v∗i ω
∗
i ]> such that,

setting [vi ωi]
> = [v∗i ω

∗
i ]> in (6), (7) follow. In the case that the vehicle is force-controlled the leader-follower control problem

consists in designing control inputs ui := [ui1 ui2]>, with i ∈ {1 . . . n}, such that (7) hold for the system (1)–(2).
The above-formulated problems have a clear practical meaning and have been addressed under different conditions imposed

on the reference trajectories (see the section below). From a control-theory perspective, however, it is significant to adress the
following, more challenging, open problem.

Definition 1 (UGAS leader-follower formation control): Let ηr := [vr ωr]
> be a piece-wise continuous function R≥0 → R2

that generates, through (3), feasible trajectories t 7→ zr. For the system (1)–(2), design a controller (t, zi−1, ηi−1, zi, ηi) 7→ ui
such that, defining

ṽi := vi − v∗i , ω̃i := ωi − ω∗i , and η̃i := [ṽi ω̃i]
>, (8)

the origin for the closed-loop system,
{

(ei, η̃i) = (0, 0)
}

is uniformly globally asymptotically stable. �
The UGAS leader-follower formation control problem in full generality, is probably impossible to solve even in the case

that N = 1 (one leader-one folower scenario). Indeed, it is established in [23], which generalizes the seminal results of [24],
that for nonholonomic systems arbitrary feasible trajectories are not stabilizable asymptotically. In the following section we
identify a wide calss of feasible reference trajectories that are stabilizable and we put our hypotheses in perspective relatively
to the literature.

C. On the reference trajectories

Generally speaking, the reference velocity trajectories ηr : R≥0 → R2, ηr := [vr ωr]
> may be null, in which case, we are

confronted to the set-point stabilization problem, or they may be time-vaying, in which case we are confronted to the tracking
control problem. Somewhat in middle ground, we find the robust stabilization probelm, in which case ηr → 0. In this paper,
we address the UGAS leader-follower formation control problem considering reference trajectories of all three types, via one
“universal” controller. To put our contributions in better perspective we describe these scenarios below.
Tracking. The control objective is (7) under the generic assumption that ηr 6≡ 0. At least since [25] this problem has been
thoroughly addressed in the literature —see e.g., [4]–[7], [26]–[29]. Of special interest here are approaches based on the
assumption that ηr is persistently exciting that is, that there exist positive constants µ and T such that∫ t+T

t

|ηr(τ)|2dτ ≥ µ ∀ t ≥ 0 (9)
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or, similarly, such that ηr does not vanish, that is,

lim
t→∞

|ηr(t)| 6= 0. (10)

For instance, in [5] it is established that the tracking errors converge to zero provided that condition (10) holds.
Starting with [6], controllers relying on persistency of excitation of the reference velocities as a mechanism of stabilization

have been used —see, e.g., [26]–[28]. Controllers requiring that the reference velocities be persistently exciting obviously fail
in the set-point stabilization case nor if the reference trajectories vanish.
Robust stabilization. In this case it is required to guarantee (7) under the generic assumption that

lim
t→∞

|ηr(t)| = 0 (11)

This case covers the set-point stabilization problem (i.e., ηr ≡ 0), which has been thoroughly studied, motivated by the well-
known fact that non-holonomic systems are not stabilizable to a point via smooth autonomous feedback [24]. It also covers
the so-called parking control problem, in which case the leader vehicle comes to a full stop at a desired point.

The robust stabilization problem is solved for instance, in [12], [18], [2] and [7] under the assumption that the reference
velocities converge sufficiently fast, in the sense that there exists β > 0 such that∫ ∞

0

|ηr(τ)|dτ ≤ β. (12)

It is clear that both scenarios, of tracking control under condition (9) and robust stabilization under condition (11), are
mutually exclusive. Therefore, designing a universal controller that applies indistinctly to both cases is a very challenging
and little studied problem. Indeed, as we already mentioned, to the best of our knowledge the leader-follower simultaneous
tracking-robust-stabilization problem, for one leader and one follower nonholonomic vehicle has only been studied in [7],
[12]–[15], and [17].

In [7] it is assumed that ηr is either persistently exciting (for tracking) or integrable (for robust stabilization) and in [12]
several scenarios of tracking control (circular paths, straight-line paths, vanishing trajectories) are covered. In both references,
however, it is assumed that the vehicles are velocit-controlled (the equations (2) are ignored). The framework laid in [13],
however, is very general in the sense that it applies to chain-form systems, a class that includes the unicycle model (1). Full
models, including Lagrangian dynamics for the equations (2), are considered in [14] and [15]. In the former the convergence
of the error positions e to a steady-state error, albeit under parametric uncertainty, is established. Convergence to zero of the
same errors is guaranteed by the controller reported in [15] provided that either vr is separated from zero (which implies that
ηr is persistently exciting) or ωr is separated from zero and vr is integrable. In [17] a robust controller that guarantees the
stronger properties of uniform global asymptotic stability and integral input to state stability for the kinematics closed-loop
equation is proposed. Note that all these are more restricitve conditions than (9) and (11).

In the case of multiple vehicles (N ≥ 2), to the best of our knowledge the only article in which the simultaneous tracking
and robust stabilization control problem has been addressed is [30]. The control design method in the latter reference follows
the framework of [16] and it is established that the formation-errors converge to an arbitrarily small compact ball centered at
the origin. Moreover, the controller from [30] is centralized hence, it is assumed that the leader’s velocities are accessible to
all the agents in the network.

This is far from the problem described in Definition 1 with ηr satisfying either (9) or (11). Our main result in this paper
solves this problem.

III. CASCADES-BASED LEADER-FOLLOWER CONTROL

Our control approach relies on the separation of two control loops: one involving the kinematics equations (1) and one
involving the dynamics equations (2), whence the term “cascades-based”. The controllers are decentralized; for each vehicle
we design a local controller that uses measurements of its own states zi and ηi as well as the states of its leader (zi−1 and
ηi−1). For clarity of presentation, we address first the simultaneous tracking and stabilization problems for the case of two
vehicles only. In Section III-B we address the general case of formation control for swarms of more than two vehicles.

A. One leader, one follower

Let i ≤ N be arbitrary, but fixed. It is required for the ith vehicle to follow its leader, indexed i − 1 or, equivalently, to
guarantee that (7) hold for the system (6). Inspired by the control method proposed in [7] we define

v∗i = vi−1 cos(eθi) + kxiexi (13a)
ω∗i = ωi−1 + kθieθi + kyieyivi−1φ(eθi)

+ρi(t)kyipi(t)|exyi|, (13b)
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in which we use exyi := [exi eyi]
> and the rest of the variables are defined as follows. The function pi : R≥0 → R≥0 is

once continuously differentiable, bounded, and with bounded derivative ṗi. The function φ : R≥0 → R≥0 corresponds to the
so-called sinc(·) function, which is defined by φ(x) = sin(x)/x, and kxi, kyi, kθi are positive constants. Furthermore, we
define

ρi(t) := exp

(
−
∫ t

0

F
(
ηi−1(τ)

)
dτ

)
(14)

where F : R2 → R≥0 is a piece-wise continuous function that satisfies the following conditions, by construction:
• if (9) holds then there exists T1 > 0 and µ1 > 0 such that∫ t+T1

t

F
(
ηr(s)

)2
ds ≥ µ1, ∀t ≥ 0; (15)

• if (11) holds then there exists β > 0 such that ∫ ∞
0

F
(
ηr(s)

)
ds ≤ β. (16)

The first three terms on the right-hand side of (13b) guarantee the achievement of the tracking control goal of persistently-
exciting trajectories, while the fourth is added to achieve the robust stabilization goal in the case that the leader’s velocities
converge. That is, the function ρi plays the role of a “weighing” function in the sense that if the reference velocities are
persistently exciting, ρ ≈ 0 and the action of the third term in (13b), kyieyivi−1φ(eθi), is enforced over that of the last. If,
on the contrary, the leader velocities converge, the third term is regarded as a vanishing perturbation to be compensated by
the term ρi(t)kyipi(t)|exyi|, in which ρi(t) remains separated from zero. In other words, the expression (13b) comprises two
appropriately weighted control laws that, as we shall prove, are robust with respect to one another.

The role of the function F in the control design is highlighted by the following statement.
Proposition 1: Let1 η̄r ≥ |ηr|∞ and α ∈ K. Then, the functional

F (ηr) :=

{
0 if ηr ∈ (0, µ

2T η̄r
]

α(|ηr|) otherwise
(17)

is persistently exciting (i.e. (15) holds) if (9) holds and F (ηr) is integrable (i.e. (16) holds) if (11) holds. �
Proof. Note that F (ηr(t)) is integrable if ηr converges since F (ηr(t)) = 0 for all ηr ≤ µ

2T η̄r
and (11) holds by assumption.

To prove that F (ηr) is persistently exciting under (9) we use [31, Lemma 2], which states that if a function ηr is persistently
exciting then, for every t ≥ 0, there exists a non-null-measure interval

It := {τ ∈ [t, t+ T ] : |ηr(τ)| ≥ a := µ/(2T η̄r)} ,

such that meas(It) ≥ b := Tµ/(2T η̄2
r − µ). Therefore,∫ t+T

t

F (ηr(s))
2ds ≥

∫
It

α(|ηr(s)|)2ds ≥ α(a)2b > 0.

�
The idea of introducing a weighing function depending on the nature of the reference velocities is borrowed from [7]. The

controller (13) is reminiscent of the controller in [17], which is restricted to the case of one leader and one follower in the
particular scenarios of tracking and parking. In the robust stabilization scenario, the controller (13) may also be compared, to
some extent, to the controller in [18]. However, there are several important differences with respect to these references that
must be underlined.

Firstly, the definition of the “weighting” function ρi, in terms of F , gives extra degrees of freedom to the control design,
relatively to that in [7] and [17], as shown by Proposition 1 above. On the other hand, our conclusions are more general in the
sense that we show integral-input-to-state stability —see Proposition 2 below, and uniform global asymptotic stability (UGAS)
of the origin —see Corollary 1 and Proposition 3 farther down. The importance of these properties cannot be overestimated;
only uniform global asymptotic stability guarantees robustness with respect to small perturbations (total stability [32]); it is
therefore a much stronger property than (non-uniform) convergence of the tracking errors to a neighborhood of the origin —cf.
[30].

Furthermore, while total stability (also known as local input-to-state stability) comes for free from UGAS, constructive
Lyapunov-based proofs, as we provide, permit to establish global properties such as strong-integral-to-state stability which, in
turn, lead to establishing general statements for the full-dynamics model (1)–(2) —see Corollary 2 and Proposition 3; this is
not possible from weaker statements on non-uniform convergence. To the best of our knowledge results of this nature have
not been reported in the literature before.

We are ready to present our first statement whose proof, for clariy of exposition, is included in the Appendix.

1For a measurable function ϕ : R≥0 → Rp we use |ϕ|∞ := ess supt≥0|ϕ(t)|
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Proposition 2: Let i ≤ N be arbitrarily fixed and consider the system (6) with state ei, exogenous signal ηi−1 = [vi−1, ωi−1]
such that

max {|ηi−1|∞ , |η̇i−1|∞} ≤ η̄i−1, (18)

and inputs ωi and vi. Consider the virtual control laws (v∗i , ω
∗
i ) as given by (13), (14)–(16), with the functions pi and ṗi being

bounded and persistently exciting. Then, if ṽi and ω̃i are bounded, the trajectories are forward complete (i.e., they exist on
[t◦,∞) ). Moreover,

1) if (9) holds with ηr replaced by ηi−1, the system is integral input-to-state stable with respect to the input η̃i. Moreover,
if η̃i tends to zero and is square integrable, the limit in (7) holds.

2) If, alternatively, (11) holds with ηr replaced by ηi−1 the system is small input-to-state stable with respect to the input η̃i
and if η̃i converges to zero the limit in (7) holds.

�
Remark 1: The assumption that ṽi and ω̃i are bounded is imposed here for technical reasons and it is not restrictive in

the adequate context. For instance, it comes from the design of a stabilizing controller for the dynamics equations (2). The
inequality (18) imposes that the leader trajectories be bounded hence, this can also be considered to be met provided the leader
vehicle is adequately controlled. We explore a case-study in Section III-C. •
The following statements that cover others from the literature.

Corollary 1 (UGAS of the kinematics model): Under the conditions of Proposition 2, for the system (6) with η̃i = 0, the
origin is uniformly globally asymptotically stable. �

Corollary 2 (Robustness of the full model): Under the conditions of Proposition 2, for any bounded reference trajectories,
may they satisfy (9) or (11), the control goal (7) is achieved under the action of any controller ui guaranteeing that

lim
t→∞

|η̃i(t)| = 0 (19)

holds and η̃i ∈ L2. �
Finally, our strongest statement for the case of two vehicles in a leader-follower configuration motivates the qualifier

“cascades-based” of our control approach. To the best of our knowledge a statement on uniform global asymptotic stability
for the full model and under the assumptions considered here has no precedent in the literature.

Proposition 3 (UGAS of the full model): Consider the system (1), (2) under the action of any controller ui guaranteeing
uniform global asymptotic stability of {η̃i = 0} and that η̃i ∈ L2. Then, under the conditions of Proposition 2, the origin
(ẽi, η̃i) = (0, 0) is uniformly globally asymptotically stable. �
Proof. We use cascades-systems theory (in particular, [33, Lemma 2]) and Proposition 2. Let ui be a given controller for the
dynamics equations (2), depending on the leader and follower’s states, as well as on the virtual control laws (13). Then, by a
suitable change of variable the closed-loop equations take the generic form

˙̃ηi = Fηi(t, η̃i, ei), (20)

while (6) may be written in the compact form (using (8)),

ėi = Fei(t, ei) +Gei(t, ei)η̃i. (21)

Next, we replace ei in (20) by complete trajectories ei(t) so the overall closed-loop equations cover a cascaded form

ėi = Fei(t, ei) +Gei(t, ei)η̃i (22)
˙̃ηi = F̃ηi(t, η̃i) (23)

where F̃ηi(t, η̃i) := Fηi(t, η̃i, ei(t)) —cf. [34], [35, p. 627].
After [33, Lemma 2] the origin (ei, η̃i) = (0, 0) is uniformly globally asymptotically stable if so are the respective origins

for the systems (23) and ėi = Fei(t, ei) and if the solutions of (22) are uniformly globally bounded. UGAS for (23) holds
by assumption. Then, after Proposition 2, if (9) holds the system (22) is integral-input-to-state stable while, if (11) holds it
is small input-to-state stable. On the other hand, either of these conditions implies the so-called 0-UGAS property, that is,
uniform global asymptotic stability of the origin without input —this corresponds to the statement of Corollary 1.

Finally, uniform global boundedness follows, under condition (9), from the integral-input-to-state-stability property and the
assumption that η̃i ∈ L2. Under condition (11) it follows from the property of small input-to-state stability and forward
completeness (see Proposition 2).

This completes the proof of Proposition 3. �
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B. Leader-follower formation control

Now let us consider a swarm of autonomous vehicles (N ≥ 2) which are required to follow a reference vehicle that is
modeled by (3) and describes a trajectory that either converges, diverges or has both behaviours sequentially. The standing
assumption is that the vehicles communicate with each other over a spanning-tree-topology network hence, each vehicle has
only one leader but may have several followers.

Proposition 4: Consider the system (1), (2). Let ηr = [vr ωr]
> be a given piece-wise continuous function satisfying either

(9) or (11) and assume that there exists η̄r > 0 such that

max
{
|ηr|∞, |η̇r|∞

}
≤ η̄r. (24)

For each i ≤ N consider the expressions of v∗i and ω∗i as in (13) (with v0 := vr and ω0 := ωr) where:
(i) kxi, kyi, kθi are positive constants;

(ii) the functions pi and ṗi are bounded and persistently exciting.
Then, for any given control laws ui1 and ui2 guaranteeing that η̃i is square integrable and converges to zero, the control
objective (7) holds.

Furthermore, define η̃ := [η̃1 · · · η̃N ]>, η∗ := [η∗1 · · · η∗N ]>, and e := [e1 · · · eN ]>. If {η̃ = 0} for (23) is uniformly
globally asymptotically stable (UGAS) and η̃ ∈ L2 then, for the closed-loop system (22)-(23), {(e, η̃) = (0, 0)} is also
UGAS. Consequently, if η̃ ≡ 0 then {e = 0} for (1) in closed loop with η∗ is UGAS. �
Proof. The proof consists in applying recursively the statement of Proposition 2 for each i ≤ N that is, for each pair of
leader-follower vehicles. Indeed, Proposition 2 guarantees the asymptotic convergence of the formation errors whether the
leader velocities are persistently exciting or converging. Therefore, the properties of (i−1)th leader’s velocities are propagated
to the ith follower and, in turn, to the (i+ 1)th vehicle down to the leaf nodes in the graph.

We use ωi = ω̃i + ω∗i and vi = ṽi + v∗i in (6), together with (13) to write the error-dynamics equations as

ėi =Avi−1
(t, ei)ei +B1i(t, ei)ρi(t) +B2i(ei)η̃i, (25)

where

Avi−1 :=

 −kθi 0 −vi−1(t)kyiφ(eθi)
0 −kxi ϕi(t, ei)

vi−1(t)φ(eθi) −ϕi(t, ei) 0

 ,
B1i :=

 −kyipi(t)|exyi|kyipi(t)|exyi|eyi
−kyipi(t)|exyi|exi

 , B2i :=

 0 −1
−1 eyi
0 −exi


and ϕi(t, ei) := ωi−1 + kθieθi + kyieyivi−1φ(eθi). We stress that these closed-loop equations have the convenient triangular
structure

ėN = AvN−1
(t, eN )eN +B1N (t, eN )ρN +B2N (eN )η̃N

(26a)...
ė2 = Av1(t, e2)e2 +B12(t, e2)ρ2 +B22(e2)η̃2 (26b)
ė1 = Avr (t, e1)e1 +B11(t, e1)ρ1 +B21(e1)η̃1 (26c)

Note that for the ith vehicle the dynamics equations depend on ei and, through ηi−1 = [vi−1 ωi−1]>, on the states of the
vehicles above in the graph, up to the reference vehicle. However, in view of forward completeness (which can be established
as in the proof of Proposition 2), for the purpose of analysis the velocities ηi−1 may be regarded as exogenous signals.
This allows us to consider the system as a multi-cascaded time-varying one —see [34]. Then, we may invoke Proposition 2
recursively. However, technically, such reasoning relies on distinct analyses corresponding to each scenario, of tracking and
robust stabilization.

Under the tracking scenario. Let (9) hold. Let i = 1 and consider the equation (26c) which corresponds to the dynamics of
the error trajectories between the virtual vehicle and the swarm leader. By Proposition 2 the system (26c) is integral input-to-
state stable with respect to the input η̃1 := [ṽ1 ω̃1]>. Moreover, since by assumption η̃1(t) is square-integrable and converges
to zero, it follows that e1 → 0 so, consequently, v∗1 → vr, ω∗1 → ωr and, in turn,

lim
t→∞

v1(t) = vr(t), lim
t→∞

ω1(t) = ωr(t). (27)

Furthermore, there exists c̄1 > 0 such that

max
{
|v1|∞, |v̇1|∞, |ω1|∞, |ω̇1|∞

}
≤ c̄1. (28)

For i = 2 we consider the equation (26b). We see that v1 and ω1, regarded as functions of complete solutions, have the
same properties as vr and ωr. Therefore, Av1 may be considered as a function of time and the state e2. Consequently, it has
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similar properties to those of Avr and, by Proposition 2, we conclude that (26b) is integral input-to-state stable with respect
to the input η̃2 := [ṽ2 ω̃2]>, provided that η1 is persistently exciting. The latter indeed follows from (9), (27) and (28) —see
[36]. Thus, after Proposition 2, the system (26b) is integral input-to-state stable with respect to η̃2. Next, in view of forward
completeness, the assumption that η̃2(t) = [ṽ2(t) ω̃2(t)]> is square integrable and converges, we conclude that

lim
t→∞

|e2(t)| = 0, lim
t→∞

v2(t) = v1(t), lim
t→∞

ω2(t) = ω1(t).

and, moreover, there exists c̄2 > 0 such that

max
{
|v2|∞, |v̇2|∞, |ω2|∞, |ω̇2|∞

}
≤ c̄2. (29)

The previous arguments apply for any i ≥ 2 so the statement of Proposition 4 under condition (9) follows by induction.
Under the robust-stabilization scenario. By assumption, (11) holds. As in the previous scenario, the proof follows using

Proposition 2 recursively. Indeed, for i = 1, we conclude that the error dynamics corresponding to the swarm leader and the
virtual reference vehicle is small-input-to-state stable with respect to η̃1 := [ṽ1 ω̃1]>. Consequently, after forward completeness
of trajectories, we have

η̃1 → 0 =⇒ e1 → 0 =⇒ v1 → 0, ω1 → 0.

The last inequality follows from (11). In turn, in view of the convergence of v1 and ω1, it follows that for i = 2 the closed-
loop (26b) is small-input-to-state stable with respect to the input η̃2 := [ṽ2 ω̃2]>. Consequently, after forward completeness of
trajectories, we have

η̃2 → 0 =⇒ e2 → 0 =⇒ v2 → 0, ω2 → 0.

The statement that (7) holds, follows by induction.
The proof of UGAS follows by applying, recursively, the same cascades argument as in the proof of Proposition 3. �
Remark 2: As the proof of Proposition 3 shows it is the statement of Proposition 2 (integral input-to-state stability and

small-input-to-state stability) which may be generalized to the multi-agent case under a spanning tree communication topology,
but such extension is not possible for the main results in [7] and [17] which rely on the assumption that the leader velocities
are integrable. Indeed, while the convergence of the velocities (in the parking scenario) may be asserted for the swarm leader
(first follower in the tree) integrability remains unproved without a Lyapunov function. This poses a fundamental technical
obstacle to use recursively the main results of the mentioned references to extend them to the multi-agent setting. •

C. Further results

With the purpose of emphasizing our main statements we wrap up this section by addressing a brief case-study of velocity
control using classical passivity-based tracking control, with and without knowledge of the system’s physical parameters. Even
though they are simply stated the following results are, to the best of our knowledge, other original contributions of this paper.
In particular, in contrast to other articles where adaptive controllers are presented, we establish uniform global asymptotic
stability of the origin, which implies the uniform convergence of the parameter estimation errors.

Let (2) be in the Lagrangian form —cf. [2]; that is, let Mi = M>i > 0 denote the inertia matrix and Ci(ηi) denote the
Coriolis and centrifugal forces matrix, which is skew-symmetric. Then, let the dynamics equations (2) correspond to

Miη̇i + Ci(ηi)ηi = ui, i ≤ N, (30)

where ui := Biτi, Bi ∈ R2×2 is a full rank constant matrix of known coefficients, and τi is the vector of input torques at the
wheels. See [2] for details.

Note that a variety of tracking controllers for (30), ensuring the convergence of η̃i, are available from the literature, e.g., on
robot control. For instance, an elementary passivity-based state-feedback control law is

ui = Miη̇
∗
i + Ci(ηi)η

∗
i − kdiη̃i, kdi > 0. (31)

Proposition 5: Consider the the system (1), (30) in closed-loop with (13) and (31). Let condition (24) as well as items (i)
and (ii) of Proposition 4 hold. Then, the origin in the state space of the closed-loop system is uniformly globally asymptotically
stable. �
Proof. The closed-loop dynamics (20) is

Mi
˙̃ηi + Ci(η̃i + η∗i (t, ei))η̃i + kdiη̃i = 0, i ≤ N (32)

which may be rewritten along complete solutions ei(t) in the form (23). Then, a direct computation, using the skew-symmetry
of Ci(·), shows that

V (η̃i) := η̃>i Mη̃i =⇒ V̇ (η̃i) = −2kdi|η̃i|2

hence, {η̃ = 0} is a uniformly (in the initial times t◦ and in the trajectories ei(t)) globally exponentially stable equilibrium of
(32). The result follows from Proposition 4. �
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Let us now assume that the constant lumped parameters in Mi and Ci(ηi), denoted Θi ∈ Rm, are unknown and let M̂i and
Ĉi denote the estimates of the inertia and Coriolis matrices respectively. Let Θ̂i correspond to an estimate of Θi and consider
the controller

ui = M̂iη̇
∗
i + Ĉi(ηi)η

∗
i − kdiη̃i, kdi > 0 (33a)

˙̂
Θi = −γΦi(t, η̇

∗
i , η
∗
i , η̃i)

>η̃i, γ > 0 (33b)

where, for any i ≤ N , Φi is a smooth function implicitly defined by the expression

Φi(t, η̇
∗
i , η
∗
i , η̃i)Θ̃i := [Ĉi − Ci]η∗i + [M̂i −Mi]η̇

∗
i , (34)

where Θ̃i := Θ̂i −Θi and [Ĉi − Ci] is a function of ηi = η̃i + η∗i .
Proposition 6: Consider the system (1), (30) in closed loop with (13) and (33). Then, the origin {(ei, η̃i, Θ̃i) = (0, 0, 0)},

for all i ≤ N , is a uniformly globally asymptotically stable equilibrium point if Φ1(t, η̇r, ηr, 0) is persistently exciting. �
Proof. The closed-loop system corresponding to the force equations (2) is

Mi
˙̃ηi + Ci(ηi)η̃i + kdiη̃i = Φi(t, η̇

∗
i , η
∗
i , η̃i)Θ̃i (35a)

˙̃Θi = −γΦi(t, η̇
∗
i , η
∗
i , η̃i)

>η̃i. (35b)

In view of (the proof of) Proposition 5, uniform global asymptotic stability of the origin (η̃i, Θ̃i) for (35) follows directly from
[37, Theorem 3], provided that Φi(t, η̇

∗
i , η
∗
i , 0) is persistently exciting. Now, for i = 1, this means that Φ1(t, η̇r, ηr, 0) must

be persistently exciting, which holds by assumption. We conclude that η1 → ηr and η̇1 → η̇r hence, Φ2(t, η̇1, η1, 0) is also
persistently exciting. The result follows by induction. �

Remark 3: We stress that:
• the controllers (31) (resp. (33)) are implemented using the leader velocities ηi−1, and the relative errors ei.
• In Proposition 5 the reference trajectory ηr is only required to be bounded and of bounded derivative. In particular, it

may converge at any rate, be a set-point or be persistently exciting. In Proposition 6, however, the reference trajectories
are restricted to those rendering the regressor Φ1(t, η̇r, ηr, 0) persistently exciting —typically, this excludes vanishing
trajectories ηr → 0.

•

IV. EXAMPLE

For the sake of illustration, we have performed some numerical simulations using Simulink of Matlab. The simulation
scenario is as follows. We consider a group of four mobile robots required to follow a virtual leader while assuming a
diamond-shape formation, which is designed by imposing desired distances between the robots as follows: [dxr,1 , dyr,1 ] = [0, 0],
[dx1,2 , dy1,2 ] = [−1, 0] and [dx2,3 , dy2,3 ] = [1/2,−1/2] and [dx3,4 , dy3,4 ] = [0, 1] –see Figure 1 below.

-1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

REFERENCE
VEHICLE

Fig. 1. Path followed by the formation with velocity vanishing slowly to full stop

The reference vehicle trajectories are generated by (3) with vr(t) and ωr(t) such that |ηr(t)| is persistently exciting “up
to” t = 62s. At this instant, the reference velocities abruptly change to asymptotically-converging functions generated by the
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solutions of v̇r = −50v3
r and ω̇r = −100ω3

r with initial conditions vr(62) = ωr(62) = 1 —see Figure 2. That is, in a first
stage of the simulation test, the reference trajectories satisfy Inequality (9) (for all t . 50) and in a second stage they satisfy
(11), but not (12). On the other hand, (15) and (16) hold with

F (ηr) :=

{
0 if ηr ∈ (0, 0.1]
|ηr| otherwise.

0 10 20 30 40 50 60 70 80 90 100
-0.55

-0.35

-0.15

0.05

0.25

0.45

Fig. 2. Reference velocity trajectories vr(t) and ωr(t)

Each vehicle is considered to be modeled by (1), (30) with

M =

[
m1 m2

m2 m1

]
, C(ηi) =

[
0 cωi
−cωi 0

]
,

m1 = 0.6227, m2 = −0.2577, and c = 0.2025 –cf. [38] .
Then, we use the adaptive velocity-tracking controller (33) with Θ := [m1 m2 c]

>. The initial values for Θ̂ are set to zero.
The control gains are set to kxi

= kyi = kθi = 1, γ = 10, and kd = 15 while p(t) := 20 sin(0.5t), which has a persistently
exciting time-derivative.

0 5 10 15 20 25 30 35 40

0
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8

10

50 60 70

-1

-0.5

0

0.5

1

Fig. 3. Normed relative errors for each pair leader-follower

The numerical results are illustrated in Figures 3–5. In Figures 3 and 4 are showed the relative-position errors ei(t) in norm
and the relative velocity errors ηi − ηi−1. In Figure 5 are depicted the norms of the parameter-estimation errors for each of
the four vehicles. It may be appreciated that in view of the oscillatory behavior of ηr(t) during the first 62s, the estimation
errors converge to zero; indeed, the regressor evaluated along the reference trajectories,

Φ1(t, η̇r, ηr, 0) :=

[
v̇r ω̇r ω2

r

ω̇r v̇r −vrωr

]
,

is persistently exciting. Although the parameters are taken equal for all vehicles, the convergence rates are clearly different
and, not surprisingly, the slowest rate corresponds to the parameters of the leaf-node vehicle —see right plot in Figure 5.

In addition, to illustrate the robustness of the closed-loop system, in the simulation setup the communication between the
virtual leader and the swarm leader is assumed to be lost in the interval t ∈ [47, 51.4] —see the shadowed region in Figure 2.
The effect of the perturbation that this, and the sudden change in the reference trajectories at t = 62s, entail in the system’s
response is appreciated in the zoomed windows in Figures 3 and 4. See also the terminal stage of the test in Figure 1.
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Fig. 4. Normed relative velocities for each pair leader-follower
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Fig. 5. Normed parameter estimation errors for each of the four vehicles

V. CONCLUSION

We have established the stability and robustness of a universal controller for tracking and stabilization of swarms of
autonomous nonholonomic vehicles interconnected under a spanning-tree configuration topology. Our contributions reside
principally in the strength of the properties that are established, such as uniform global asymptotic stability and (integral)
input-to-state stability, but also in the methods of proof which, mostly, appeal to Lyapunov’s direct method.

Our results are fairly general since they are not bound even to a particular choice of dynamic model. In that regard, we
believe that they may contribute to pave the way to generalizations and relaxations of certain hypotheses, in orther to incorporate
realistic scenarios, such as output-feedback control, more general interconnection topologies, and time-varying graphs. Indeed,
such problems may be addressed on the solid basis provided by the construction of Lyapunov functions. Research in such
directions is being carried out.
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[32] I. Malkin, “ Ob ustŏıqivosti pri posto�nno dĕıstvu�sqih vozmysqeni�h,” Prikl. Mat. i Mekh., vol. Tom. VIII, pp. 241–245, 1944. In

Russian. Engl. translation: On stability under constantly acting disturbances.
[33] E. Panteley and A. Loria, “Growth rate conditions for stability of cascaded time-varying systems,” Automatica, vol. 37, no. 3, pp. 453–460, 2001.
[34] A. Loria, “From feedback to cascade-interconnected systems: Breaking the loop,” in Proc. of the 47th. IEEE Conf. on Decision Control, (Cancun, Mex.),

pp. 4109–4114, 2008.
[35] H. Khalil, Nonlinear systems. New York: Macmillan Publishing Co., 2nd ed., 1996.
[36] K. S. Narendra and A. M. Annaswamy, “Persistent excitation in adaptive systems,” Int. J. of Contr., vol. 45, no. 1, pp. 127–160, 1987.
[37] A. Loria E. Panteley, D. Popovic, and A. Teel, “δ-persistency of excitation: a necessary and sufficient condition for uniform attractivity,” in Proc. of the

41st. IEEE Conf. on Decision Control, (Las Vegas, CA, USA), pp. 3506–3511, 2002. Paper no. REG0623 .
[38] T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Trans. on Robotics Automat., vol. 16, no. 5,

pp. 609–615, 2000.
[39] M. Maghenem, A. Loria, and E. Panteley, “iISS formation tracking control of autonomous vehicles,” tech. rep., CentraleSupelec, 2016. Available online:

https://hal.archives-ouvertes.fr/hal-01364791.
[40] H. Ito, “A Lyapunov approach to cascade interconnection of integral input-to-state stable systems,” IEEE Trans. on Automatic Control, vol. 55, no. 3,

pp. 702–708, 2010.
[41] S. Srikant and M. R. Akella, “Persistence filter-based control for systems with time-varying control gains,” Syst. & Contr. Letters, vol. 58, no. 6,

pp. 413–420, 2009.
[42] P. Ioannou and J. Sun, Robust adaptive control. New Jersey, USA: Prentice Hall, 1996.
[43] E. Sontag, “Input to state stability: Basic concepts and results,” in Nonlinear and optimal control theory, pp. 163–220, Springer Berlin Heidelberg, 2008.

APPENDIX

A. Proof of Proposition 2
Forward completenss may be established by evaluating the total derivative of the positive-definite function

V1i(t, ei) :=
1

2

[
e2
xi + e2

yi +
1

kyi
e2
θi

]
, i ∈ {1, . . . , N}

to obtain

V̇1i =− kxie2
xi −

kθi
kyi

e2
θi − piρieθi|exyi| −

1

kyi
eθiω̃i − exiṽi.

After the uniform boundedness of pi, ρi, ω̃i, and ṽi and the triangle inequality, it follows that there exist positive constants ai
and bi such that

V̇1i(t, ei(t)) ≤ aiV1i(t, ei(t)) + bi

which, upon integration from any t◦ to ∞ leads to the conclusion that the solutions have no finite escape-time.
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1) In the tracking scenario: Let i be arbitrarily fixed. By assumption, (9), and consequently (15), hold with ηr replaced
by2 ηi−1. The analysis of the closed-loop equation (25) follows the following steps:

1) to design a strict Lyapunov function Vi(t, ei) for ėi = Avi−1
(t, ei)ei;

2) based on the latter, to construct a strict Lyapunov function Wi(t, ei) for

ėi = Avi−1
(t, ei)ei +B1i(t, ei)ρi; (36)

3) in turn, to use Wi(t, e) to construct a Lyapunov function W1i to establish integral ISS of (25) with respect to η̃i, as well
as the boundedness of the trajectories of (25) under the assumption that η̃i ∈ L2.

Step 1. Uniform global asymptotic stability for

ėi = Avi−1
(t, ei)ei (37)

is established in [39] via Lyapunov’s direct method. Indeed, after [39, Proposition 1], there exists a positive definite radially
unbounded function Vi : R≥0 × R3 → R≥0,

Vi(t, ei) := P[2](t, V1i)V1i(ei)− ωi−1(t)exieyi

+vi−1(t)P[1](t, V1i)eθieyi, (38)

satisfying
F[3](V1i(ei)) ≤ Vi(t, ei) ≤ S[3](V1i(ei)), (39)

where
V1i(ei) :=

1

2

[
e2
xi + e2

yi +
1

kyi
e2
θi

]
, (40)

F[k], S[k], and P[k](t, ·) are smooth polynomials in V1i with strictly positive coefficients of degree k, and P[k](·, V1i) is uniformly
bounded. Furthermore, a direct computation shows that the total derivative of V1i along the trajectories of (37) satisfies

V̇1i(ei) = −kxie2
xi −

kθi
kyi

e2
θi. (41)

Hence, mimicking [39] one finds that the total derivative of Vi(t, ei) along the trajectories of (37) satisfies

V̇i(t, ei) ≤ −σV1i(ei)− kxie2
xi −

kθi
kyi

e2
θi (42)

where σ > 0 is a design parameter that depends on µ and T introduced in (9). Uniform global asymptotic stability follows.
Remark 4: This establishes Corollary 1 •

Step 2. Let Q[3] : R≥0 → R≥0 be another third order polynomial in V1i with strictly positive coefficients and define

Zi(t, ei) := Q[3](V1i)V1i(ei) + Vi(t, ei). (43)

In view of the fact that ∂Q[3]/∂V1i ≥ 0, and after (41), the total derivative of Zi along the trajectories of (37) yields

Żi(t, ei) ≤ −Yi(ei) (44)
Yi(ei) := σV1i(ei) +Q[3](V1i(ei))

[
kxie

2
xi + kθie

2
θi

]
. (45)

Note that Yi is positive definite and radially unbounded.
On the other hand, from (14) we see that ρ̇i = −F (ηi−1(t))ρi. From this and (15) (in which we replace ηr with ηi−1) it

follows that ρi → 0 exponentially fast (and is uniformly integrable). Therefore, for any γ > 0, the function

Gi(t) := exp

(
−γ
∫ t

0

ρi(s)ds

)
∀t ≥ 0 (46)

is bounded from above and below. Indeed, defining Gm := limt→∞Gi(t) > 0 and we have G(t) ∈ [Gm, 1] for all t ≥ 0. In
addition, since Zi(t, ei) and Vi(t, ei) are positive definite radially unbounded —see (39) and (43), so is the function

Wi(t, ei) := Gi(t)Zi(t, ei), (47)

whose total derivative along the trajectories of (36) verifies

Ẇi(t, ei) ≤−Gi(t)Yi(ei) + Ġi(t)Zi(t, ei) (48)

+Gi(t)
∂Zi(t, ei)

∂ei
B1i(t, ei)ρi(t). (49)

2Recall that in this proof ηi−1 is an exogenous signal.
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Next, we develop

∂Zi(t, ei)

∂ei
B1i(t, ei) =

∂
[
Q[3](V1i)V1i + Vi

]
∂V1i

∂V1i

∂ei
B1i(t, ei)

+ ωi−1kyipi(t)|exyi|
[
e2
xi − e2

yi

]
− vi−1P[1](t, V1i)kyipi(t)|exyi| [eθiexi + eyi] (50)

and we decompose B1i(t, ei) into

B1i(t, ei) = kyip(t)|exyi|

−1
0
0

+

0 0 0
0 0 1
0 −1 0

 ei
 .

Then, since

∂V1i

∂ei

0 0 0
0 0 kyip(t)|exyi|
0 −kyip(t)|exyi| 0

 ei = 0,

it follows that
∂V1i

∂ei
B1i(t, ei) = −∂V1i

∂eθi
kyipi(t)|exyi| = −eθipi(t)|exyi|.

Therefore, in view of the boundedness of vi−1, ωi−1, pi, and P[1](·, V1i) there exists a polynomial R[3](V1i) with non-negative
coefficients, such that

∂Zi(t, ei)

∂ei
B1i(t, ei) ≤ R[3](V1i)V1i (51)

and, since the coefficients of F[3](V1i) are strictly positive there exists γ > 0 such that

γQ[3](V1i) ≥ R[3](V1i).

Consider now (46) with such γ; we have Ġi(t) = −γGi(t)ρi(t) ≤ 0. Therefore, since Zi(t, ei) ≥ Q[3](V1i)V1i —see (43), it
follows that the last two terms on the right-hand side of (48) are bounded from above by

−γGi(t)ρi(t)Q[3](V1i)V1i +G(t)ρi(t)R[3](V1i)V1i ≤ 0.

Consequently, Ẇ (t, ei) ≤ −GmYi(ei) for all t ≥ 0 and all ei ∈ R3. Uniform global asymptotic stability of the null solution
of (36) follows.

Remark 5: In words, we have established UGAS for the kinematics closed-loop system, even in the presence of vanishing
persturbations ρi. •
Step 3. In order to establish iISS with respect to η̃i we introduce the positive definite radially unbounded function W1i :
R≥0 × R3 → R≥0, defined by

W1i(t, ei) := ln (1 +Wi(t, ei)) . (52)

The derivative of W1i along trajectories of (25) satisfies

Ẇ1i ≤ −
1

1 +Wi(t, ei)

[
GmYi(ei)−

∣∣∣∣∂Wi

∂ei
B2iη̃i

∣∣∣∣ ] . (53)

We proceed to evaluate and bound the last term on the right-hand side of (53). To that end, let us introduce

ζi :=

[ eθi
kyi
exi

]
,

Hi(t, ei) := Q[3] + P[3] +
∂Q[3]

∂V1i
V1i +

∂P[3]

∂V1i
V1i

+vi−1eθieyi
∂P[1]

∂V1i
,

and let us decompose B2i(ei)η̃i from (25) into

B2i(ei)η̃i := B21i(η̃i) +B22i(η̃i)ei

where

B21i(η̃i) :=

−ω̃i−ṽi
0

 , B22i(η̃i) :=

0 0 0
0 0 ω̃i
0 −ω̃i 0

 .
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Then, we see that
∂V1i

∂ei
B21i = ζ>i η̃i,

∂V1i

∂ei
B22iei = 0

and, therefore,

1

Gi

∂Wi

∂ei
B21i = −Hi(t, ei)ζ

>
i η̃i + eyi

[
vi−1P[1]ω̃i − ωi−1ṽi

]
1

Gi

∂Wi

∂ei
= ωi−1[0 eyi exi] + vi−1P[1][eyi 0 eθi].

Hence, using |Gi(t)| ≤ 1 and |ηi−1| ≤ η̄i−1 it follows that∣∣∣∂Wi

∂ei
B2iη̃i

∣∣∣ ≤ |η̃i|
[
|Hi||ζi|+ η̄i−1|eyi|+ η̄i−1P[1]|eyi|

+η̄i−1V1i + η̄i−1P[1]|eθi||eyi|
]

≤ |Hi|
[ 1

2ε
|ζi|2 +

ε

2
|η̃i|2

]
+ η̄i−1

[ 1

2ε
V1i +

ε

2
|η̃i|2

]
+
η̄i−1

2

[[1

ε
V1i + εP 2

[1]|η̃i|
2
]

+
[1

ε
V1i + εV1i|η̃i|2

]]
+ η̄i−1P[1]

[ 1

2ε
V1i|eθ|2 +

ε

2
|η̃i|2

]
≤
[
|Hi|+ η̄i−1P[1]k

2
yV1i

] 1

2ε
|ζi|2 +

3η̄i−1

2ε
V1i

+
ε

2
|η̃i|2

[
|Hi|+ η̄i−1

[
V1i + 1 + P 2

[1] + P[1]

] ]
.

Next, we introduce a third-order polynomial D[3](V1i) satisfying

|Hi|+ η̄i−1

[
V1i + 1 + P 2

[1] + P[1]

]
≤ D[3]

and we choose ε > 0 such that 3η̄i−1 ≤ εσGm and[
|Hi|+ η̄i−1P[1]k

2
yV1i

] |ζi|2
ε
≤ GmQ[3]

[
kxie

2
xi + kθie

2
θi

]
.

Such ε > 0 exists because Q[3] is and |Hi| is bounded by third-order polynomials of V1i with strictly positive coefficients.
Thus, (53) becomes

Ẇ1 ≤ −
1

2

1

1 +Wi(t, ei)

[
GmYi(ei)− εD[3](V1i)|η̃i|2

]
(54)

On the other hand, from (43) and (47) it follows that

GmQ[3](V1i)V1i ≤Wi(t, ei) ≤ Q[3](V1i)V1i (55)

hence,

Ẇ1i ≤ −Gm
2

Yi(ei)

1 +Q[3](V1i(ei))V1i(ei)

+
ε

2

D[3](V1i)

1 +GmQ[3](V1i)V1i
|η̃i|2

and we conclude that there exist a constant c > 0 and a positive definite function α : R3 → R≥0 such that

Ẇ1i ≤ −α(ei) + c |η̃i|2 (56)

The statement follows from [40].
2) In the stabilization scenario: For any fixed i we rewrite the closed-loop equation (25) in the form

ėi = Ai(t, ei)ei +Bi(ei)ξi (57)

where ξ>i = [η>i−1 η̃>i ],

Ai :=

−kθi −kyiqi(t) |exyi|
exi

−kyiqi(t) |exyi|
eyi

0 −kxi πi(t, ei)
0 −πi(t, ei) 0

 ,
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Bi :=

 −kyieyiφ(eθi) 0 0 −1
kyie

2
yiφ(eθi) eyi −1 eyi

sin(eθi)− kyiexieyiφ(eθi) −exi 0 −exi

 ,
qi(t) := ρi(t)pi(t), ρi is defined in (14), πi := kθieθi + kyiqi(t)|exyi|, and exyi = [exi eyi]

>. Then, we shall establish the
following:

Claim 1: The system (57) is small-input-to-state stable respect to ξi.
Claim 2: The system (57) is integral-input-to-state stable with respect to ξi.

If these claims hold the system (57) is strong integral-input-to-state stable with respect to the input ξi, hence the property also
holds with respect to the input ξ◦i := [η>i−1 0]>. By virtue of Lemma 3 (see farther below) and the condition that ηi−1 → 0,
which holds by assumption, it follows that the system subject to η̃i = 0 is uniformly globally asymptotically stable. Then, to
establish small-input-to-state stability of the system (57) with respect to η̃i, it is left to show that it possesses the so-called
small-input-bounded-state property with respect to η̃i , for any converging t 7→ ηi−1. To that end, pick any small ε > 0 and let
|η̃i| ≤ ε/2. Since the system is forward complete and ηi−1(t)→ 0 it follows that there exists a sufficiently large Tε > 0 such
that |ηi−1(t)| ≤ ε/2 for all t ≥ t◦ + Tε and |ξi(t)| ≤ ε. On the other hand, the system (57) is small-input-to-state stable with
respect to ξi hence, the solutions are bounded. This concludes the proof of small-input-to-state stability with respect to η̃i.

We proceed now to prove Claims 1 and 2 above. To that end, we first construct a strict Lyapunov function for the nominal
closed-loop system ėi = Ai(t, ei) —cf. Eq. (57).

Let ψi : R≥0 → R≥0 be a twice-continuously-differentiable function, satisfying the differential equation

ψ̇i = −kθiψi + kyiqi(t) (58)

and let ezi := eθi + ψi(t)|exyi|. Then, the nominal system ėi = Ai(t, ei)ei becomes[
ėxi
ėyi

]
=

[
−kxi ψ̇i|exyi|
−ψ̇i|exyi| 0

][
exi
eyi

]
+ ezi

[
0 kθi
−kθi 0

][
exi
eyi

]
(59a)

ėzi =−kθiezi − ψikxi
e2
xi

|exyi|
(59b)

We stress that, by construction, ρi and ρ̇i are bounded and, by assumption, so are pi and ṗi. It follows that qi and q̇i, and in
turn ψi and ψ̇i, are also bounded. Moreover, since pi and ṗi are persistently exciting, so is q̇i —cf. [36] and, consequently,
there exist ψM > ψm > 0 such that ψi(t) ∈ [ψm, ψM ] for all t ≥ 0 —see [41]. Furthermore, since q̇i is persistently exciting
and ψ̇i satisfies

ψ̈i = −kθiψ̇i + q̇i, (60)

it follows that ψ̇i is also persistently exciting —see [42, Lemma 4.8.3]. Thus, one can show that the following is a strict
Lyapunov function for (59):

V2i :=P[1](V1i)V1i + Υ(t)V 2
1i − ψ̇i

√
V1iexieyi +Q[1](V1i)e

2
zi (61)

where V1i := e2
xi + e2

yi,

Υ(t) :=1 + ψ̄2
i T −

1

T

∫ t+T

t

∫ m

t

ψ̇i(s)
2dsdm, (62)

ψ̄i ≥ max
{
|ψi|∞, |ψ̇i|∞, |ψ̈i|∞

}
, and P[1] and Q[1] : R≥0 → R≥0 are first-order polynomials of V1i. Indeed, let

P[1](V1i) := ψ̄i
[
V1i + 1

]
(63)

Q[1](V1i) :=
P[1](V1i)

2
+ V1i (64)

then, since −ψ̇i
√
V1iexieyi ≥ −(ψ̄i/2)V1i[V1i + 1] and Υ(t) ≥ 1, we obtain

V2i(t, ei) ≥ Q[1](V1i)
[
V1i + e2

zi

]
(65)

so V2i is positive definite and radially unbounded. Furthermore, mimicking the proof of [18, Proposition 2], one finds that
there exists σ > 0 such that the derivative of V2i satisfies

V̇2i(t, ei) ≤ −
1

2
kθiQ[1](V1i)e

2
zi − σV 2

1i. (66)
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Proof of Claim 1. The proof of small ISS for the system (57) with respect to ξi relies on the function V2i above; specifically
on its (second) order of growth in V1i. We proceed to evaluate the total derivative of V2i along trajectories of (57) to obtain,
from (66),

V̇2i(t, ei) ≤ −
1

2
kθiQ[1](V1i)e

2
zi − σV 2

1i +
∂V2i

∂ei
Bi(ei)ξi.

Then, we decompose Bi(e)ξi into

Bi(ei)ξi := B1i(ξi, ei)ei +B2i(ξi, ei), (67)

where

B1i(ξi, ei) :=
[
ω̃i + ωi−1 + kyivi−1eyiφ(eθi)

] 0 0 0
0 0 1
0 −1 0


and

B2i(ξi, ei) =

−ω̃i − kyivi−1eyiφ(eθi)
ṽi

vi−1 sin(eθi)

 .
so, using

∂V1i

∂ei
B1iei = 0, (68)

we obtain

V̇2i ≤− σV 2
1i −

1

2
kθiQ[1](V1i)e

2
zi

− 2ψ̇i[ωi−1 + ω̃i]
√
V1i

[
e2
yi − e2

xi

]
− ψ̇i

√
V1ieyivi−1

[
e2
yi − e2

xi

]
+
∂V2i

∂ei
B2i

≤− σV 2
1i −

1

2
kθiQ[1](V1i)e

2
zi + 2ψ̄ |ωi−1 + ω̃|

√
V1iV1i

+ ψ̄i
√
V1i |eyi| |vi−1|V1i +

∂V2i

∂ei
B2i. (69)

Moreover, the last term satisfies∣∣∣∣∂V2i

∂ei
B2i

∣∣∣∣ ≤[
P[1](V1i) +

∂P[1]

∂V1i
V1i + 2ψ̄i

√
V1i

]
|exyi| |[ṽ vi−1]|

+

[
∂Q[1]

∂V1i
e2
zi |exyi|+Q[1](V1i) |ψiezi|

]
|[ṽ vi−1]|

+Q[1](V1i) |ezi| |eyi| |vi−1|+Q[1](V1i) |ezi| |ω̃i| (70)

so, using the latter in (69), we obtain

V̇2i ≤− σV 2
1i −

1

2
kθiQ[1](V1i)e

2
zi + 4ψ̄i |ξi|V 3/2

1i + ψ̄i |ξi|V 2
1i

+

[
P[1](V1i) +

∂P[1]

∂V1i
V1i + 2ψ̄i

√
V1i

]√
V1i |ξi|

+

[
∂Q[1]

∂V1i

√
V1ie

2
zi +Q[1](V1i)ψ̄

2 +Q[1](V1i)e
2
zi

]
|ξi|

+Q[1](V1i)[2e
2
zi + V1i + 1]|ξi| (71)

Now, since Q[1] and P[1] are polynomials of first order we have

Q[1](V1i) := Q11V1i +Q12, P[1](V1i) := P11V1i + P12

where Q11, Q12, P11, and P12 are positive constants. Therefore,

V̇2i ≤− V 2
1i

[σ
2
−
(
ψ̄i +Q11

)
|ξi|
]

+ 2P11V1i

√
V1i |ξi|

+ 4ψ̄i |ξi|
√
V1iV1i + 2ψ̄i |ξi|V1i + P12

√
V1i |ξi|
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+Q[1](V1i)
[
ψ̄2
i + 1

]
|ξi|+Q12V1i |ξi|

−Q[1](V1i)e
2
zi

[
kθi
2
− 5 |ξi|

]
. (72)

Let ci with i ≤ 5 be positive constants satisfying the following:

c1 :=
1

5
min

{
kθi
2
,

σ

ψ̄i +Q11

}
σ

8
≥ 2[P11 + 2ψ̄i]c2 + [2ψ̄i +Q12]c2 + c4P12

+c5Q12[1 + ψ̄i]

and let
χ(|ei|) := min

{
c2V1i(ei)

1/2, c3V1i(ei), c4V1i(ei)
3/2
}
.

Then, we conclude that
|ξi| ≤ min{c4, c5, χ(|ei|)} =⇒ V̇2i ≤ −

σ

4
V1i(ei)

2

so small-input-to-state stability with respect to ξ follows.
Proof of Claim 2. Consider the positive-definite radially unbounded function W2i : R≥0 × R3 → R≥0, defined as

W2i(t, ei) = ln (1 + V2i(t, ei)) . (73)

Let Π(|ξi|, V1i) correspond to the positive terms on the right-hand side of (71) hence, the total derivative along trajectories of
(57) satisfies

Ẇ2i ≤−
1

2

[
σV 2

1i + kθiQ[1](V1i)e
2
zi −Π(V1i, e

2
zi)|ξi|

]
1 + V2i

(74)

and further straight-forward computations, for which we use V 1/2
1i ≤ V1i + 1, (63), and (64), show that

Π(|ξi|, V1i) ≤ P ′[2](V1i) +Q′[1](V1i)e
2
zi

where P ′[2] and Q′[1] are second and first-order polynomials defined as

P ′[2](V1i) := ψ̄i[6V
2
1i + 8V1i + 1]

Q′[1](V1i) := 3Q[1](V1i) +
[ ψ̄i

2
+ 1
][
V1i + 1

]
Thus, in view of (65), on one hand there exists α ∈ K such that

α(|ei|) ≤
1

2

σV 2
1i + kθiQ[1](V1i)e

2
zi

Q[1](V1i(ei))
[
V1i(ei) + e2

zi

] (75)

and, on the other hand, there exists a constant c > 0 such that

P ′[2](V1i) +Q′[1](V1i)e
2
zi

Q[1](V1i(ei))
[
V1i(ei) + e2

zi

] ≤ c ∀ei ∈ R3.

Thus,

Ẇ2 ≤− α(|ei|) + c |ξi| (76)

so the result follows invoking Lemma 2. �

B. Technical statements

For the sake of completeness and clarity of presentation we recall some well-known concepts and results related to input-
to-state stability. To the best of our knowledge, however, Lemma 3 below is original.

Definition 2: ( ISS [43] ) The dynamical system
ẋ = f(x, u) (77)

is input-to-state stable (ISS) with respect to the input u if there exists a class KL function β(·, ·), and a class K∞ function
γ(·), such that

|x(t)| ≤ β(|x(t0)| , t− t0) + γ

(
sup

t0≤s≤∞
|u(s)|

)
(78)
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Furthermore, (77) is small-input-to-state stable (sISS), with respect to the input u if there exists r > 0, such that (78) holds
for all |u| ≤ r. �

Definition 3: ( integral ISS [43] ) The dynamical system (77) is integral-input-to-state stable (iISS) with respect to the input
u if there exists a class KL function β(·, ·), and a class K∞ function γ(·), such that

|x(t)| ≤ β(|x0| , t− t0) +

∫ t

t0

γ (|u(s)|) ds. (79)

�
Definition 4: ( strong iISS [20] ) The system (77) is said to be strongly iISS with respect to u if it is iISS and sISS. �
Lemma 1: ( characterization of ISS and sISS ) The system

ẋ = f(t, x, u) (80)

is input-to-state stable if and only if there exist: a continuously differentiable Lyapunov function V : [0,∞)×Rn → R, class
K∞ functions α and α, a class K function ρ, and a continous positive definite function W such that

α (|x|) ≤ V (t, x) ≤ α (|x|) ∀(t, x) ∈ R≥0 × Rn (81)
∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −W (x), ∀ |x| ≥ ρ (|u|) > 0. (82)

Moreover, if there exists r > 0 such that (82) holds for all |u| ≤ r then the system (80) is small ISS with respect to the input
u. �

Lemma 2: ( characterization of iISS —[40] ) The system (80) is integral-input-to-state stable with respect to the input u if
there exist: a continuously differentiable Lyapunov function V : [0,∞) × Rn → R, class K∞ functions α, α, and ρ, and a
positive definite K function α such that (81) and

∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −α1(|x|) + ρ(|u|) (83)

hold. �
Lemma 3: Consider the dynamical system

ẋ =f(x, u(t)), x ∈ Rn (84)
0 =f(0, v), ∀ v ∈ D ⊂ Rm, (85)

where u : R≥0 → D ⊂ Rm is locally integrable and the function f : Rn ×Rm → Rn is locally Lipschitz in x uniformly in v
for all v ∈ D.

Assume that ẋ = f(x, u) is strong iISS with respect to u. Then, if in addition u(t)→ 0 as t→∞ then the origin of (84)
is uniformly globally asymptotically stable. �
Proof. The system is small input-to-state stable and integral-input-to-state stable hence, in view of Lemma 2, (83) holds. Let
t 7→ u be arbitrary but fixed and satisfy u(t) → 0 as t → ∞. Integrating on both sides of the latter along trajectories, from
t0 to (any) t, invoking (81), and the uniform local integrability property of u which is due to its global boundedness, uniform
forward completeness follows.

In addition, the system is small-input to state stable and u(t)→ 0 so for any r > 0 there exists T > 0 such that |u(t)| ≤ r
for all t ≥ T . Next, assume that |x(t)| → ∞ then, there exists T ′ ≥ T such that |x(t0 + T ′)| ≥ ρ(r) ≥ ρ(|u(t0 + T ′)|).
It follows from (82) that V̇ (x(t)) ≤ −W (x(t)) ≤ 0 for all t ≥ t0 + T ′ and all t0 ≥ 0, so the solutions are, under uniform
forward completeness, uniformly globally bounded and the origin is uniformly globally attractive under the convergence of
u(t).

It is left to show that the origin is uniformly stable. This follows from the following properties:
P1) The continuity of the flow uniformly in t0 under a locally-Lipschitz in x uniformly in u, for all u ∈ D, nonlinear vector
field. Indeed, since the origin is an equilibrium —see Eq. (85), it follows that for any γ > 0 and T > 0, there exists δ(T, γ) > 0
such that, for all t0 ≥ 0,

|x0| ≤ δ(T, γ)⇒ |x(t, x0, t0)| ≤ γ, ∀t ∈ [t0, t0 + T ]. (86)

P2) The small ISS property with respect to the input u(t). Indeed, there exist r > 0, a C1 ISS-Lyapunov function V : Rn → R+,
and class K∞ functions α, ᾱ, α, and χ such that

α(|x|) ≤V (x) ≤ ᾱ(|x|) (87)
∂V

∂x
(x)f(x, u) ≤− α(|x|), ∀ |u| ≤ min {r, χ(|x|)} . (88)
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Now, let the strong iISS property generate r > 0 —see Defs. 2–4. Since u(t) → 0, for any given ε > 0, there exists Tε > 0
such that

|u(t)| ≤ min
{
r, χ ◦ ᾱ−1 ◦ α(ε/2)

}
∀ t ≥ t0 + Tε, ∀ t0 ≥ 0. (89)

Then, by virtue of P1 above, let γ(ε) := ᾱ−1 ◦ α(ε) and Tε generate δ(Tε, γ) > 0 such that

∀ |x0| ≤ δ ⇒ x(t, t0, x0) ∈ Dε, ∀t ∈ [t0, t0 + Tε] (90)

where
Dε := {x ∈ Rn : V (x) < α(ε)} .

Suppose that x(t0 + Tε) /∈ Dε/2. Then, |x(t0 + Tε)| ≥ ᾱ−1 ◦ α(ε/2) and χ(|x(t0 + Tε)|) ≥ χ ◦ ᾱ−1 ◦ α(ε/2) ≥ |u(t)| for all
t ≥ t0 + Tε, t0 ≥ 0 (from Eq. (89)). Furthermore, in view of (88), V̇ (x(t0 + Tε)) < 0 therefore x(t) ∈ Dε for all t ≥ t0 + Tε.
The latter and (90) lead to concluding that

∀ |x0| ≤ δ(Tε, γ(ε))⇒ |x(t, t0, x0)| ≤ ε, ∀t ≥ t0 (91)

so the result follows. �
Remark 6: It is worth to point out the importance of the robustness properties used in the lemma. In general, global asymptotic

stability for a given bounded and converging function t 7→ u does not imply uniform global asymptotic stability. Indeed, for
the system

ẋ = −u(t)x, u(t) =
1

(1 + t)

the origin is globally asymptotically stable, uniformly globally stable, not uniformly globally attractive. On the other hand, a
system of the form (84) with a fixed bounded and converging function t 7→ u and such that the origin is globally stable, but
not uniformly, is given by

ẋ = −u(t)x

with

u(t) =

{ 1
1+k if t ∈ [22k − 1, 22(k+1) − 1],

− 1
1+k if t ∈ [22(k+1) − 1, 22(k+2) − 1].

Indeed, defining t0 = (2k), at t1 = 22(k+1) − 1 we have

x(t1) = e
2(2k)

(k+1)x(t0) = e
2t0

(t0/2+1)x(t0),

so the origin is not uniformly globally stable •


