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Abstract—The functional test of millimeter-wave (mm-wave)
circuitry in the production line is a challenging task that requires
costly dedicated test equipment and long test times. Machine
learning indirect test offers an appealing alternative to standard
mm-wave functional test by replacing the direct measurement
of the circuit performances by a set of indirect measurements,
usually called signatures. Machine learning regression algorithms
are then used to map signatures and performances. In this work,
we present a generic and automated methodology for finding
an appropriate set of indirect measurements and assisting the
designer with the necessary Design-for-Test circuit modifications.
In order to avoid complex design modifications of mm-wave
circuitry, the proposed strategy is targeted at generating a set
of non-intrusive indirect measurements using process variation
sensors not connected to the Device Under Test (DUT). The pro-
posed methodology is demonstrated on a 60 GHz Power Amplifier
designed in STMicroelectronics 55 nm BiCMOS technology.

I. INTRODUCTION

Exploiting the millimeter-wave frequency band has been
proposed as an answer to the ever-increasing need of trans-
mitting large volumes of data. Nowadays, mm-wave devices
are present in high-end communication systems (e.g., military
communication systems) and are expanding into consumer
electronics (e.g., car radars for autonomous cars, future com-
munication standards such as 5G, etc.) [1]–[3]. However,
testing mm-wave circuitry in the production line is still based
on complex functional measurements at very high frequencies
that demand costly dedicated test equipment and represent a
bottleneck in the production.

Machine learning indirect test, first introduced as the so-
called alternate test strategy in [4], is a possible solution to
alleviate the complexity and cost associated to testing mm-
wave circuitry. The aim of machine learning indirect test is to
replace the measurement of complex functional specifications
by a set of simpler signatures. A machine learning regression
algorithm is used to map the signatures to the specifications.
The usual approach to machine learning indirect test is based
on supervised machine learning algorithms. The process is
developed in two stages: a learning stage, and a testing stage.
During the learning stage both performance parameters and
signatures are measured from a set of training devices. A
machine learning algorithm is then trained over the two sets of
measurements to build a mapping model. In the testing stage,
signatures are measured for each DUT, and performances are
inferred by using the mapping model obtained in the previous
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stage. This indirect test framework has the benefit of a simple
interpretation of the test outcome since the estimated specifica-
tions are directly compared to their test acceptance windows
in a conventional manner. Moreover, indirect measurements
are devised to be cheaper than the direct measurement of
functional specifications.

Furthermore, in the last few years an indirect test strategy
based on non-intrusive sensors has been proposed [5]–[7]. This
non-intrusive approach relies on process-aware sensors that are
not electrically connected to the DUT. Signatures are extracted
from these sensors without modifying the topology of the DUT
or perturbing its functionality. This approach is particularly
interesting for mm-wave circuits, since loading internal nodes
to extract a measurement requires a high design effort and may
have a significant impact on the DUT performance.

However, machine learning indirect tests are not free of
shortcomings. One of the key points that in our opinion
limits the adoption of the technique is the lack of a reliable
and automated tool for proposing appropriate signatures that
are strongly correlated to the specifications. Previous efforts
in this line include the optimization strategy in [8], where
a piece-wise linear stimulus is optimized to minimize the
prediction error of the regression model. While this is a
sound strategy, the choice and the parametrization of the
input stimulus are still ad hoc. Usually, the initial set of
signatures is proposed based on expert design knowledge
and may contain unreliable information, noisy signatures,
redundant data, or even signatures that are not correlated to
the target performances. Moreover, there is not a systematic
approach for generating an appropriate set of signatures for
non-intrusive indirect tests, and the process has to be repeated
for every different DUT. From the point of view of Electronic
Design Automation (EDA) tools, this is similar to developing
an Automatic Test Pattern Generator (ATPG) for a given test
campaign. Such a systematic approach would provide the set
of input measurements (i.e., signatures) that maximizes the
quality of the machine learning regression model.

In this work, we propose a generic strategy for finding
appropriate indirect measurements for the prediction of a
given set of performances in a machine learning non-intrusive
indirect test scenario. Moreover, the proposed strategy also
assists in the design of the specifically tailored non-intrusive
process variation sensors needed for the implementation of
the resulting indirect test program. As a key difference to
previously presented approaches for feature selection [9]–[12]
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and non-intrusive machine learning indirect tests, the proposed
strategy is targeted at test automation and it does not need
a priori design knowledge of the DUT, nor an initial set of
signatures based on expert knowledge.

This paper is structured as follows. Section II reviews
previous work on feature selection techniques and RF/mm-
wave indirect test, with a special focus on non-intrusive
approaches. Section III presents our strategy for automated
signature proposal and assisted non-intrusive sensor synthesis.
In Section IV we describe the application of the proposed
technique to the machine learning indirect test of a 60 GHz
PA in a 55 nm BiCMOS technology. The feasibility of the
proposed technique is verified by electrical Monte Carlo
(MC) simulations. Finally, Section V summarizes the main
contributions of this paper.

II. PREVIOUS WORK

Finding the appropriate set of input signatures to build a
reliable regression model is a classical problem in the field of
Statistics and a variety of feature selection strategies have been
proposed to deal with this issue. In this line, different feature
selection techniques have been adapted to machine learning
indirect test approaches to select the best subset of features
within an initial set of potential features [9], [12]–[15].

A direct approach to feature selection consists in preselect-
ing a subset of features based on some statistical observations,
before training any regression models. This approach, widely
used when the number of initial features is high, is known
as filtering. Some filtering techniques recently proposed in-
clude Principal Component Analysis (PCA) [13], multivariate
distance correlation [14], Kendall’s tau correlation metric
[12], etc. However, these filtering techniques only capture
the most significant variation components. In order to further
improve the selection algorithm, it is necessary to resort to
wrapper approaches. Basically, a wrapper algorithm uses the
machine learning prediction model as a black box within an
optimization loop, with the objective of finding the subset
of signatures of minimum cost that minimizes the prediction
error in an independent validation set [9], [10]. Finally, hybrid
filter-wrapper methodologies have been proposed to reduce
the computational burden of the wrapper approach. Hybrid
techniques guide the search in the input signature space based
on the dynamic evaluation of a correlation metric [15].

The main limitation of these feature selection techniques
for a fully automated indirect test generation is the lack of a
methodology for proposing the initial set of signatures. In this
line, some work has been presented for guiding the design of
new features based on the missing information in the initial
set of input signatures [9].

In this work, we aim at fully automating the proposal of
the initial set of signatures for the particular case of non-
intrusive machine learning indirect test. Non-intrusive indirect
test was first proposed in [5] for mixed-signal test applica-
tions, and later extended to the RF and mm-wave domain
in [7], [16]. These non-intrusive techniques propose to use
process variation sensors that mimic sensitive portions of the

DUT. Then, DC measurements on these sensors, that are not
electrically connected to the DUT, are used as test signatures
for training machine learning regression models. As it was
mentioned above, the technique has obvious advantages for
RF and mm-wave test, since the topology of the circuit is
not modified and no additional loads are added to the DUT
nodes. However, this technique is highly dependent on design
knowledge: sensors are proposed based on an expert analysis
on the circuit topology and no systematic approach for defining
the set of initial signatures is proposed.

III. PROPOSED APPROACH

Let us consider a generic non-intrusive machine learning
indirect test scenario in which we intend to regress a set
of performances of a given DUT from a set of signatures
measured from a set of non-intrusive process variation sensors.
The problem we address in this work is, given the netlist of
a particular DUT in a given technology and a set of target
performances, how to systematize the proposal of the set of
signatures and the design of the associated sensors.

The methodology that we propose is divided into two
interrelated steps. The first step is aimed at unveiling the root
causes of parametric performance variation in the simulation
environment. The second step is devised to find process
variation sensors that are sensitive to the identified set of root
causes. Let us describe these steps separately.

A. Step 1: Unveiling the root causes of parametric perfor-
mance variation

The key idea for finding the root causes of performance
variation at the design stage is to take advantage of the avail-
able information in the MC models included in the Process
Design Kit (PDK). Indeed, in a MC simulation environment,
we have direct access to the complete set of root causes
behind the DUT performance variation, that is, the set of
statistical model parameters generated for each MC iteration.
There are two sets of statistical parameters, describing global
parametric process variations and local random mismatch.
The non-intrusive machine learning indirect test approach
works under the assumption that the effect of mismatch
can be neglected with respect to process variations. Thus,
our methodology explores the space of MC global process
variation parameters to find the minimum subset that explains
the observed parametric performance variation within a given
accuracy threshold.

Exploring the space of process variation parameters can be
seen as a feature selection problem in which we consider the
MC parameters as candidate features to regress a given target
performance using a machine learning regression model. Thus,
we propose to adapt the Brownian distance correlation-directed
search, previously presented in [15], according to Algorithm 1.

Given a target performance, the proposed algorithm first
ranks the MC process parameters with respect to their distance
correlation to the target performance and trains an initial
regression model with the most correlated parameter. Then,
we compute the residues of the fit (i.e. the individual errors
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Algorithm 1 Exploring the space of MC process parameters
using a Brownian Distance Correlation-Directed Search

1: Compute the distance correlation of all the MC process
parameters with the performance and add the associated
most correlated process parameter to the input space

2: while continue do
3: Train a model mapping the input space onto the perfor-

mance
4: Compute the residues of the model
5: Compute the mean square of the residues (the mean

square error of the model fit)
6: if The mean square error is less than or equal to a given

threshold then
7: continue← 0
8: else
9: continue← 1

10: Compute the distance correlation of the remaining
MC process parameters with the residue

11: Add the most correlated MC process parameter to the
input space

12: end if
13: end while
14: return The input space (the most significant MC process

parameters) and the mean square error of the fit

for all the training samples). After that, the algorithm ranks
the remaining MC process parameters with respect to their
distance correlation to the residues of the fit and selects the
best candidate to be added to the set of the most significant MC
parameters. By iterating this procedure, the search is guided
so that each iteration of the algorithm should identify a MC
parameter that adds relevant information that was previously
missing.

A key point of the algorithm above is the concept of
correlation, that relies on the evaluation of the Brownian
Distance correlation [14], [17]. This non-linear correlation
metric is sensitive to multivariate non-linear dependencies.
The distance correlation is actually computed between the
augmented input space –that is, the matrix of previously
selected MC process parameters plus the new candidate– and
the vector of residues. The output of the algorithm is the set of
MC process parameters that best explains the variation of the
selected target performance. The process can then be iterated
to cover the rest of target performances of the considered DUT.

B. Step 2: Assisted design of non-intrusive process variation
sensors

The following step is to devise simple process variation
sensors that provide a signature sensitive to the set of the most
significant MC process parameters selected by the previous
algorithm. Again, we take advantage of the information con-
tained in the PDK of the technology to identify the underlying
physical meaning of the selected process parameters. This
way we can guide the design of appropriate non-intrusive
sensors to target the desired information. Ideally, a dedicated

sensor may be designed for each one of the selected process
parameters. However, signatures, in practice, may contain
contributions from several process parameters. The devised
sensors, and their associated signatures, are then stored in
a library for further reuse. Indeed, as the methodology is
applied to different DUTs in the same technology, sensors
may be reused if the same MC process parameters are deemed
significant for new DUTs. In fact, once this library covers
the complete set of MC parameters, the design of the test
protocol becomes a simple test selection problem within the
tests in the library. The methodology only calls for human
intervention if there is no sensor in the library associated
to a given process parameter. This simple strategy leads the
proposed methodology to capture the expert knowledge of the
designer for the generation of new tests and sensors. It is worth
noticing that, since the methodology guides the design of the
sensors towards a target MC process parameter, sensors are
actually independent of the topology of the DUT. In fact, no
expert design knowledge on the DUT is required for any of
the stages of the proposed methodology.

As a sanity check, we implement an automated validation
for each developed sensor consisting in applying a Brownian
distance correlation directed-search in the complete space of
MC process parameters to train a regression model toward the
sensor output signature. The goal of this validation is to ensure
that the proposed signature is actually sensitive to the desired
MC parameters.

The final output of the proposed test design algorithm for
indirect test is the set of non-intrusive sensors and the actual
set of measurements (i.e., the signatures associated to the
sensors) for the regression of the DUT performances in a
machine learning indirect test scenario.

IV. CASE STUDY

The selected DUT for our case study is a class A one-stage
mm-wave Power Amplifier designed in STMicroelectronics
55 nm BiCMOS technology. Despite the apparent simplicity
of the circuit, it is difficult to identify a priori the dominant
source of performance degradation of the PA, since it is af-
fected by variations of both the active and passive components.
This makes it an interesting case study for the proposed test
generation methodology. Figure 1 shows the transistor-level
schematic of the circuit. The PA input and output nodes are
matched to a 50 Ω impedance at 60 GHz using microstrip line
stubs. The main performance specifications of the designed
PA, obtained after post-layout simulation, under typical corner
operation conditions are listed in Table I.

The proposed test design methodology has been applied to
the selected DUT as a practical case study to illustrate the
technique. The goal of this case study is to generate a set
of appropriate non-intrusive sensors that provide meaningful
signatures for testing the DUT using a machine learning
indirect test strategy.

A set of 2000 instances of the selected PA has been
generated using the MC models provided in the PDK of
the technology. A total of 300 instances of the PA are set
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Fig. 1. Transistor level schematic of the Power Amplifier under test

TABLE I
PERFORMANCE AND DESIGN PARAMETERS OF THE PA UNDER TEST

Operating frequency range 59 to 61 GHz
DC current, IDC 28.2 mA
Power supply, VDD 1.2 V
Gain (S21) 5.6 dB @ 60 GHz
Power Added Efficiency, PAE 11%
S11 < −20 dB
S22 < −20 dB
S12 < −13 dB
Input referred 1dB-Compression Point, CP1dB 0.7 dBm
Saturation output power, Psat 10.5 dBm
Input referred third-order intercept point, IIP3 11 dBm

apart to be used as an independent verification set and the
remaining instances are used for training. The first step of the
proposed methodology, as described above, is to find the root-
causes of parametric variation within the set of MC parameters
defined in the technology. The MC simulation of the PA in the
selected 55 nm BiCMOS technology includes 154 independent
process parameters {MC1, . . . ,MC154} that define the search
space. The exploration of the MC parameter space uses the
proposed Brownian distance correlation-directed search for
regressing the PA specifications. A perceptron Neural Network
is used as machine learning regression algorithm. Due to space
limitations, the complete procedure is illustrated for only one
of the specifications, i.e. the small signal gain of the PA at
60 GHz. The process has to be iterated for the rest of the
specifications.

Figure 2 presents the Root-Mean-Square (RMS) error in
the regression as a function of the number of MC param-
eters selected by the search algorithm, for the complete set
of training instances (marked with blue diamonds), and the
samples in the independent verification set (marked with red
circles). For illustration purposes, instead of setting a target
prediction error as stopping condition for the algorithm, the
search has been set to find and rank the 20 most relevant MC
parameters, as shown in Fig. 2. It is interesting to notice that
the proposed algorithm guides the selection of MC parameters
in such a way that it yields a monotonic improvement of
the prediction error. Moreover, it is clear to see that this
improvement of the prediction error tends to slow down around
the fifteenth iteration of the search. In this line, the 15 most
significant parameters have been selected and are labelled to
the corresponding data points in the figure. Figure 3 shows the
scatterplot of the predicted versus actual gain of the PA when
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Fig. 2. Exploration of the MC process parameter space for finding the root
causes of gain parametric variation for the DUT. Data point labels indicate the
MC process parameter MCi selected in each iteration of the search algorithm.
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Fig. 3. Scatterplot of predicted versus actual gain of the PA using the 15
most relevant MC parameters as signatures.

we train a Neural Network regression model using these 15
selected MC parameters as input features. Blue dots represent
the training data set, while red circles mark the samples in
the independent verification set. It is clear that the selected
MC parameters have a very strong correlation to the target
performance.

Once the most relevant MC parameters for the prediction
of the targeted performance have been identified, the second
step in the presented test design methodology is to propose
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appropriate non-intrusive sensors that yield signatures strongly
correlated to these parameters. The design of these sensors
and their associated measurements is guided by the physical
meaning of the selected MC parameters. Although it has to
be noted that for confidentiality reasons we cannot disclose
the actual Monte Carlo models in the PDK of the technology,
for illustration purposes we can detail that parameters MC46,
MC48, MC49, MC60, MC69, MC150 and MC154 are linked
to the electrical properties of transmission lines, parameters
MC12, and MC23 point to MOM capacitor variations, and
the rest of identified MC parameters (MC77, MC78, MC80,
MC85, MC86, and MC111) are related to variations of the
NMOS transistor.

Taking into account the physical meaning of the parameters,
Table II details the schematics of the developed sensors and
the associated measurements (i.e. signatures). In order to
verify that the 15 selected MC parameters are covered by
the proposed signatures, we perform our Brownian distance
correlation-directed search in the space of process parameters
for regressing each one of the proposed signatures. In this line,
Table II also includes the list of most significant MC param-
eters that explain the variation of each proposed signature for
validation. As it can be seen, all 15 relevant MC parameters
are covered by the devised signatures.

In total, for covering the identified 15 most significant MC
parameters we have developed 5 non-intrusive sensors and
9 signatures labelled as {S1, . . . , S9}. Notice that signatures
are sensitive to multiple MC parameters, which reduces the
number of necessary measurements. The proposed set of
signatures contains DC measurements and low frequency AC
measurements extracted at 100 MHz. These low frequency
measurements are simpler and cheaper to extract than at-speed
60 GHz measurements on the PA under test. From an electrical
point of view, the proposed signatures contain information
about phase-shifts in the elements of the PA (S1, S2, S4),
capacitive behavior (S6, and S7), electrical losses (S3, S5,
and S8) and the operation point of the NMOS transistor (S9).

The developed non-intrusive sensors and their correspond-
ing signatures are then stored in a library for reuse in future
indirect test programs. As it was mentioned above, the de-
veloped sensors are independent of the DUT topology, since
they are devised to target specific root causes of parametric
variation in a given technology. The reuse of the library of non-
intrusive sensors for other DUTs offers an additional layer of
automation to the proposed test design strategy.

As a final validation of the performance of the proposed
assisted test design strategy, we applied the resulting non-
intrusive machine learning indirect test to the PA. A perceptron
Neural Network is trained to regress the gain of the PA
under test from the identified 9 input signatures {S1, . . . , S9}
extracted from the generated non-intrusive sensors. Figure 4
shows the scatterplot of the predicted versus actual gain over
the 2000 generated instances of the PA under test. Blue dots
mark the training data set, while red circles represent the
samples in the independent verification set. As it can be seen,
the proposed test program offers a good estimation of the
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Fig. 4. Scatterplot of predicted versus actual gain of the PA using the
generated indirect test program with 9 non-intrusive signatures.

gain performance across the complete variation range. The
RMS error of the prediction for samples in the independent
verification set is of only 0.08 dB, which is comparable to
the regression in Fig. 3 that employed the 15 most significant
MC process parameters as input signatures and yields an RMS
prediction error of 0.07 dB. This result is a good indicator of
the relevance of the proposed set of signatures to capture the
variation of the target performance.

Finally, the complete test design process can be repeated for
the rest of the specifications of the PA under test. Interestingly,
if we consider the complete set of PA performances in Table
I, the described assisted test design algorithm leads to an
additional measurement on one of the already proposed non-
intrusive sensors. This new signature, S10 using the previous
notation, is the imaginary part of scattering parameter S11

measured at 100 MHz for the MOS transistor sensor described
in Table II. In order to validate the resulting non-intrusive
indirect tests, perceptron Neural Network models have been
trained for regressing the complete set of PA specifications
using the identified set of signatures {S1, . . . , S10}. Table III
lists the RMS prediction error for samples in the independent
verification set for each specification. In order to evaluate
the quality of the regression models, Table III compares
the obtained RMS errors with the standard variation of the
specification in MC simulations. It is clear to see that the
obtained models trained with the automatically identified set
of signatures offer significant predictions for all the considered
specifications.

V. CONCLUSIONS

We have presented a systematic methodology for generating
a non-intrusive indirect test program for mm-wave circuits.
The proposed strategy represents a promising step towards the
fully automation of test generation for non-intrusive machine
learning test. The proposed methodology is illustrated using
a 60 GHz PA case study designed in STMicroelectronics 55
nm BiCMOS technology. We have shown that the presented
assisted test design algorithm enables us to find the root
causes of parametric performance degradation and guides the
design of appropriate non-intrusive sensors and signatures for
accurate performance prediction.
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TABLE II
DEVELOPED NON-INTRUSIVE SENSORS AND ASSOCIATED SIGNATURES FOR GAIN PREDICTION

Process variation sensor schematic Signature description MC parameters covered

Input

L=500μm

W=0.6μm

Output

Thin microstrip line
• S1: Imaginary part of S11 @ 100 MHz
• S2: Imaginary part of S21 @ 100 MHz
• S3: Resistance

• MC46, MC48, MC49, MC69, MC150

• MC46, MC48, MC69, MC150, MC154

• MC48

Input

L=500μm

W=18.6μm

Output

Wide microstrip line

• S4: Imaginary part of S11 @ 100 MHz • MC69, MC150, MC154, MC60, MC46

Input

C=3,65pF

Output

MOM Capacitor

• S5: Real part of Y11 @ 100 MHz
• S6: Imaginary part of S21 @ 100 MHz

• MC12, MC31

• MC23, MC31

Input
W=280μm

L=0.06μm

Junction capacitance sensor

• S7: Imaginary part of S11 @ 100 MHz • MC86, MC85, MC111, MC91

1V 1.2V

Output

Input
W=72μm

L=0.06μm

1V 1.2V

NMOS transistor

• S8: Gate resistance
• S9: Bias current

• MC80, MC111, MC4, MC77, MC78

• MC11, MC91, MC35

TABLE III
PREDICTION OF PA PERFORMANCES USING THE GENERATED INDIRECT

TEST PROGRAM

Specification Unit σspec RMS prediction error
Gain (S21) dB 0.69 0.08
PAE % 1.98 0.17
S11 dB 4.46 0.5
S22 dB 4.92 0.7
S12 dB 0.75 0.13
CP1dB dBm 0.58 0.075
Psat dBm 0.17 0.025
IIP3 dBm 0.67 0.11
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