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I. INTRODUCTION

T HE ever increasing integration capabilities in cur- rent nanometric technologies enables the fabrication of mixed-signal monolithic Systems-on-Chips (SoCs) and heterogenous Systems-in-Package (SiPs) containing subsystems of very different nature. Testing the digital blocks in these systems is a relatively straightforward task that relies in a variety of standardized Design-for-Test (DfT) strategies for accessing these blocks and assessing their functionality based on structural tests. On the other hand, testing mixed-signal subsystems, even if they are embedded in a complex SoC or SiP, still relies on a set of functional specification tests specifically tailored for each particular Device Under Test (DUT). Standard functional tests employ specialized Automated Test Equipment (ATE) for exciting the DUT with an appropriate test stimulus, acquiring the test response, and processing the test results. However, in a complex SoC/SiP -where the external access to the internal blocks is difficult, or even impossible-these operations may turn challenging to perform at a reasonable cost [START_REF] Barragan | Some) Open Problems to Incorporate BIST in Complex Heterogeneous Integrated Systems[END_REF]. Indeed, according to published data a large fraction of the total production cost of a mixed-signal SoC may be dedicated to test [START_REF] Poehl | Production test challenges for highly integrated mobile phone SOCs: A case study[END_REF].

A promising solution to the aforementioned issues is the development of mixed-signal Built-In Self-Test (BIST) techniques. The goal of BIST techniques is to move some of the functionality of the test instrumentation into the DUT, in such a way that generation and manipulation of test signals become internal. This approach eliminates the need of an external analog test access and has the potential of significantly reducing external test instrumentation requirements. Ideally, embedded test instruments would be included together with the DUT and only a low-performance digital tester would be needed to launch the self-test procedure and retrieve the test results. Thus, BIST may reduce the overall production cost of a complex system by taking into consideration the test of its constituent blocks at the design stage. Moreover, BIST solutions also open the door to enhanced reliability, on-line test, and diagnosis features along the complete life cycle of an integrated circuit. Indeed, reliability and quality enhancement is becoming one of the main drivers for the development of analog and mixed-signal BIST. For instance, in safety critical applications such as automotive, BIST is even becoming a design requirement in many integrated systems.

Static linearity test of Analog-to-Digital Converters (ADCs) is one of the most challenging and time consuming tests in the production test of a mixed-signal system. Standard approaches to characterize static linearity consist in applying a high-linearity stimulus to the ADC under test, retrieving and storing a high volume of ADC output samples, and processing these samples to estimate the Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) metrics [START_REF]IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters[END_REF]. Given that analog-to-digital conversion is one of the basic functions in a mixed-signal system, moving static ADC testing on chip in a full BIST framework can enable a huge reduction in the production cost of these complex systems. In this line, one of the key challenges for adapting standard ADC static tests to a full-BIST scheme is to provide an appropriate test stimulus to excite the converter. Indeed, providing an appropriate test stimulus generator for on-chip static test applications has been an open research problem for over a decade. As it is usually accepted by the industry, standard test techniques for static linearity characterization require a test stimulus whose linearity is 2 to 3 bits above the linearity of the ADC under test. Given that ADC resolutions are steadily increasing, this has become a major issue for the development of on-chip static linearity test solutions.

The main goals of this manuscript are the design and experimental validation of a novel on-chip ramp stimulus generator suitable for on-chip static linearity test applications of ADCs. The proposed generator is based on a simple Switched-Capacitor (SC) integrator whose input stage has been conveniently modified to produce a very small integration gain proportional to the difference of two capacitances. Thus, as response to a DC input reference, the integrator outputs a controlled step-wise ramp signal with a small step size. The rest of the paper is organized as follows. In Section II, we present some relevant previous work on ramp stimulus generation for on-chip static test applications. Then in Section III we outline the proposed ramp generation technique and the associated discrete-time static linearity measurement strategy. Section IV details the practical implementation of the ramp signal generator in STMicroelectronics 65 nm CMOS technology. In section V we present some relevant experimental results to demonstrate the performance of the proposed ramp generator and the feasibility of the presented test strategy. Section VI presents a discussion on the possible applications and trade-offs of the proposed on-chip ramp stimulus generator within a complete BIST scheme. Finally, in Section VII we summarize the main contributions of this work.

II. PREVIOUS WORK

The development of embedded test instruments for generating linear ramp stimuli in ADC static linearity test applications remains an open research topic and several works in this line have been presented in the last years. Mainly, two basic architectures of on-chip ramp signal generators have been explored in the literature: ramp generators based on analog integrators and ramp generators based on Digital-to-Analog Converters (DACs).

In essence, integrator-based ramp generators rely on a controlled current source that charges a capacitor in order to generate a ramp voltage signal [START_REF] Jansson | Linear, polynomial and exponential ramp generators with automatic slope adjustment[END_REF]- [START_REF] Ashwini | Design of linear ramp generator for adc[END_REF]. The classic work in [START_REF] Jansson | Linear, polynomial and exponential ramp generators with automatic slope adjustment[END_REF] presents a closed-loop ramp generator with a feedback circuitry that controls the slope of the generated ramp signal. However, the feedback circuitry only guarantees the correctness of the starting and ending voltages and not the linearity of the generated ramp. The work in [START_REF] Wang | Very linear rampgenerators for high resolution ADC BIST and calibration[END_REF] presents a quasi-static voltage ramp generator based on a cascode current source that charges a large capacitor with a small current. A voltage buffer is added at the output to prevent current leakage. Simulation results show a maximum DNL estimation error of 0.03 LSB in the static test of a 10-bit ADC.

The work in [START_REF] Azaïs | A lowcost adaptive ramp generator for analog BIST applications[END_REF]- [START_REF] Erdogan | An ADC-BiST Scheme Using Sequential Code Analysis[END_REF] further develops integrator-based generators by adding a calibration loop. Authors present a generation strategy based on integrating a constant current source in a large capacitor, while a calibration loop is proposed to compensate the effect of process variations in the generated ramp slope. In this line, the work in [START_REF] Provost | On-chip ramp generators for mixed-signal BIST and ADC self-test[END_REF] proposes three different ramp generator designs featuring an adaptive scheme to calibrate the linearity of the generated ramp. Experimental results on fabricated samples show a maximum linearity of 11 bits in a voltage range from 0.7 V to 1.3 V.

On the other hand, static stimulus generators based on a modified DAC design have been proposed in [START_REF] Jiang | Testing High-Resolution ADCs With Low-Resolution/Accuracy Deterministic Dynamic Element Matched DACs[END_REF]- [START_REF] Huang | Adc/dac loopback linearity testing by dac output offsetting and scaling[END_REF]. These works take advantage of a Deterministic Dynamic Element Matching (DDEM) technique for relaxing the linearity requirements of the DAC for static test applications of ADCs. Authors demonstrate that an 8-bit DAC with the proposed DDEM strategy can be used for testing a 12-bit ADC. The work in [START_REF] Huang | Adc/dac loopback linearity testing by dac output offsetting and scaling[END_REF], [START_REF] Zhuang | Cost-effective accurate dac-adc co-testing and dac linearization[END_REF] uses a DAC-ADC loopback configuration in which the effective resolution of DAC and ADC are raised by appropriately scaling and shifting the output of the DAC. The use of segmented resistor-string DACs as an on-chip static stimulus generator has been explored in [START_REF] Ting | A segmented resistor-string dac based stimulus generator for adc linearity testing[END_REF]. Digital Σ∆ encoding has been also proposed for generating triangular waves [START_REF] Dufort | On-chip analog signal generation for mixed-signal built-in self-test[END_REF], [START_REF] Wang | A low-cost BIST scheme for ADC testing[END_REF]. These works employ a digital Σ∆ bitstream encoding a high resolution triangular wave followed by a 1-bit DAC and a lowpass filter to remove the shaped quantization noise.

Recent works on static linearity test of ADCs focus on relaxing the stringent requirements of standard static test. Thus, the work in [START_REF] Jin | Accurate Testing of Analog-to-Digital Converters Using Low Linearity Signals With Stimulus Error Identification and Removal[END_REF]- [START_REF] Kook | Low-resolution dac-driven linearity testing of higher resolution adcs using polynomial fitting measurements[END_REF] present a Design-for-Test (DfT) strategy aimed at relaxing the linearity of the test stimulus, while the work in [START_REF] Laraba | Exploiting pipeline adc properties for a reduced-code linearity test technique[END_REF]- [START_REF] Chen | User-smile: Ultrafast stimulus error removal and segmented model identification of linearity errors for adc built-in self-test[END_REF] is targeted at reducing the number of necessary measurements for a complete static characterization, hence reducing static test time. Extending these DfT methodologies to a full-BIST scheme still requires the integration of a static test stimulus generator on-chip. Some of the authors of this paper presented recently a simple discrete-time integrator-based ramp stimulus generator based on a modified SC integrator. The proposed generation strategy was first outlined by the authors in [START_REF] Renaud | Design of an on-chip stepwise ramp generator for ADC static BIST applications[END_REF] and further developed in [START_REF] Renaud | A 65nm CMOS Ramp Generator Design and its Application Towards a BIST Implementation of the Reduced-Code Static Linearity Test Technique for Pipeline ADCs[END_REF], where the basis of the proposed generation technique is validated using behavioral and electrical simulations. In the present paper we extend our previous work in a number of ways. Firstly, we provide a comprehensive description of the proposed step-wise ramp signal generation technique and the associated discrete-time linearity measurement strategy. Secondly, we present a detailed design methodology for the proposed ramp generator including newly developed practical design equations based on an analytical study of the main non-idealities in the proposed circuitry. Thirdly, we present in detail the design of a prototype of the proposed generator using the described design methodology in a 65 nm CMOS technology. Fourthly, the developed prototype has been fabricated and experimentally characterized in the laboratory. Finally, we demonstrate the performance of the designed generator and the accuracy of the proposed discretetime static linearity measurement strategy in an actual test application, by characterizing the static linearity of an off-theshelf 11-bit ADC.

III. STEP-WISE RAMP GENERATION FOR ADC STATIC LINEARITY MEASUREMENTS

A. Proposed signal generation technique

Conceptually, the proposed ramp stimulus generation technique is based on the operation of a two-input SC integrator. Figure 1 shows a simplified schematic of the proposed ramp generator to illustrate the generation strategy (a single-ended schematic is shown for simplicity). As it is shown in Fig. 1, the core of the proposed generator is a SC integrator that operates with two non-overlapping clock phases φ 1 and φ 2 . Assuming that the integrator is excited by DC voltages V ref and -V ref , the output voltage of the integrator, neglecting second-order effects, is given by

V out (n) = V out (n -1) + C i2 -C i1 C F V ref , (1) 
at the end of the integration phase, that is, at time t = nT clk , where T clk is the integrator clock period, C F is the feedback capacitor, and C i1 and C i2 are the input capacitors. As it can be derived from (1), the integrator output voltage evolves, ideally, as a step-wise ramp signal with a constant step that depends on the capacitance difference between the two input capacitors. Assuming that C F C i2 -C i1 , this step can be made small, in such a way that in a given ADC static test scenario it could be made significantly smaller than the Least Significant Bit (LSB) of the ADC under test. In other words, the proposed technique offers a feasible and simple strategy for providing a high-resolution discrete-time ramp stimulus that can be suitable for ADC static test. However, it has to be taken into account that practical limitations of the proposed step-wise generation strategy may impact the accuracy of the test. On the one hand, the discrete nature of the proposed ramp generator introduces a quantization error in the measurements, and on the other hand, non-idealities in the practical implementation of the ramp generator may impact the resolution and linearity of the generated ramp, degrading the accuracy of the measurements.

B. Measuring ADC static linearity metrics using step-wise ramp stimuli

The static non-linearity of an n b -bit ADC is usually characterized in terms of the DNL and INL metrics of the set of its transition thresholds {t i }, for i = 1, . . . , 2 n b -1. In an ideally linear ADC, the code bin width, that is, the distance between two consecutive transition thresholds, t i and t i+1 , is a constant, usually called the LSB of the ADC. However, in a practical ADC the positions of the transition thresholds are affected by a number of error sources, such as component mismatch, parametric process variations, temperature dependent variations, etc. Thus, DNL measures the deviation in the code widths with respect to the ideal code width, while INL measures the deviation of the transition threshold positions from their ideal positions. In this manuscript, we define the ideal transition levels of an n b -bit ADC by the fit line passing through the first and last transition thresholds in the ADC static transfer curve, i.e., t 1 and t 2 n b -1 , respectively. The LSB, i.e., the ideal code width, is then defined by

LSB = t 2 n b -1 -t 1 2 n b -2 . ( 2 
)
The DNL and INL associated to the transition threshold t i , for i = 1, . . . , 2 n b -2, expressed in LSB units, can be evaluated as a function of the actual code widths as

DNL(i)=W i -1, (3) 
INL(i)= i j=1 DNL(j) = i j=1 W j -i, (4) 
where W i = (t i+1 -t i )/LSB are the actual code widths of the ADC, expressed in LSB units. It is clear from (3)-( 4) that characterizing the static linearity of an ADC is equivalent to accurately measuring the set of its code widths {W i }. In this paper, we propose a simple strategy for estimating the code widths of a converter based on exciting the ADC under test with a step-wise ramp signal such as the one generated by the described ramp signal generator. Let us consider an n b -bit ADC excited by a linear step-wise ramp signal, as the one in (1), and let us assume that the step size, S, of the ramp stimulus is smaller than the ideal LSB of the ADC under test, that is,

S = C i2 -C i1 C F V ref < LSB (5) 
with the same notation defined in [START_REF] Barragan | Some) Open Problems to Incorporate BIST in Complex Heterogeneous Integrated Systems[END_REF]. In this scenario, it is possible to estimate the code widths by simply counting, in the digital domain, the number of generator clock cycles (i.e., the number of steps of the step-wise ramp) between two consecutive code transitions at the converter output. Thus, the DNL for each transition threshold can be estimated as,

DNL * (i) = m i Ŝ -1 = DNL(i) + i , (6) 
where DNL(i) is the actual DNL associated to the transition threshold t i , m i is the number of steps of the step-wise ramp between transition thresholds t i and t i+1 , Ŝ is the step size of the ramp stimulus normalized to the LSB, and i ∈ (-Ŝ, + Ŝ) is a quantization error term due to the discrete nature of the measurement. Under the assumption in ( 5) that the ramp step size is smaller than the converter LSB, equation ( 6) provides a good estimation of the converter DNL(i) within the accuracy range (-Ŝ, + Ŝ). However, computing INL(i) from the DNL * (i) estimation using the definition in (4) leads to inaccurate estimations of the INL,

INL * (i) = i j=1 DNL * (j) = INL(i) + i j=1 j . (7) 
where INL(i) is the actual INL associated to the transition threshold t i . That is, INL * (i) is an estimation of INL(i) within the accuracy range (-i Ŝ, +i Ŝ). Notice that the accuracy of this estimation decreases linearly with the transition threshold index, i, due to the accumulation of the measurement quantization error. Indeed, for high values of i the contribution of the accumulated error term may dominate the estimation of the INL, which renders the estimation practically meaningless. In this manuscript, we propose a simple postprocessing correction that allows canceling the accumulation of the quantization error. Let us assume that the magnitude of the measurement quantization error is significantly smaller than the LSB of the ADC (i.e., assuming S LSB) and let us denote by the average value of i . Under these assumptions, the accumulation of the measurement error in the estimation of INL(i) can be approximated as,

INL * (i) INL(i) + i. (8) 
According to [START_REF] Erdogan | An ADC-BiST Scheme Using Sequential Code Analysis[END_REF], the accumulation of the error is approximately linear in the transition threshold index i, and hence it can be easily compensated by subtracting the best-fit line of the INL * (i) curve, adapting the classical best-fit technique proposed in [START_REF] Mahoney | DSP-Based Testing of Analog and Mixed-Signal Circuits[END_REF]. Thus, the compensated INL estimation, INL * comp (i), can be expressed as,

INL * comp (i)= i j=1 m j Ŝ (9) 
-INL * (1) - INL * (2 n b -1) -INL * (1) 2 n b -2 (i -1),
which, under our assumptions, can be approximated as

INL * comp (i) INL(i) + i , (10) 
where the quantization error term is contained in the interval i ∈ (-Ŝ, + Ŝ). Equations ( 6) and [START_REF] Ashwini | Design of linear ramp generator for adc[END_REF] show that the described measurement strategy provides estimations of the DNL and INL metrics of an ADC, respectively, as a function of the discrete number of steps between two consecutive code transitions at the converter output, within the accuracy limits of the step size of the stepwise ramp stimulus used for exciting the ADC.

C. Performance limits of the proposed signal generation technique

As it is shown in the previous subsection, a small step size is critical for the accuracy of the proposed discrete measurement strategy. The proposed step-wise ramp generation strategy is based on introducing a small difference between two capacitors in order to achieve a small step size. However, this technique, despite being simple, is prone to variations of the step size due to random mismatch in the capacitors and, moreover, non-idealities such as integrator leakage, amplifier offset, settling errors, noise, etc., may have also an impact in the quality of the generated ramp stimulus in terms of resolution and linearity.

Throughout this paper we will refer to the resolution of the generated step-wise ramp signal to denote the number of step levels defined by the ramp signal in a given Full-Scale voltage range. Thus, in this paper we define the resolution, N , of the generated step-wise ramp, measured in bits, as N = log 2 n steps [START_REF] Jiang | Testing High-Resolution ADCs With Low-Resolution/Accuracy Deterministic Dynamic Element Matched DACs[END_REF] where n steps is the number of step levels in the step-wise ramp in the complete Full Scale (FS) range. Under ideal operation conditions, n steps can be expressed as

Worst-case resolution (bits) Fig. 2. Worst-case resolution of the generated step-wise ramp stimulus as a function of the input capacitor mismatch, for a ramp signal generator with an ideal resolution of 15 bit.

n steps = F S Ci2-Ci1 C F V ref . ( 12 
)
On the other hand, the linearity of the generated step-wise ramp will be evaluated in terms of its Integral Non-Linearity, INL ramp , defined as the maximum absolute deviation from the best linear fit of the generated ramp (in a least squares sense) and expressed as an equivalent number of bits, ENOB static , as defined in [START_REF] Azaïs | A lowcost adaptive ramp generator for analog BIST applications[END_REF],

ENOB static = log 2 FS INL ramp . (13) 
1) Capacitor mismatch: Capacitor mismatch is undoubtedly one of the key limiting factors for the resolution of the proposed ramp generator. As it is easily derived from equation (1), random variations of the capacitance value of capacitors C i1 , C i2 and C F have a direct impact on the size of the step in the step-wise ramp. The output voltage of the integrator in Fig. 1 at time t = nT clk including the effect of mismatch can be modeled as

V out (n) ∼ = V out (n-1)+ C i2 -C i1 C F + √ 2∆C i C F V ref (14)
where ∆C i is the random variation of capacitance due to mismatch of the input capacitors. It is assumed that

∆C i1 ∼ = ∆C i2 , C i1 ∼ = C i2 , and C F C i2 -C i1 .
As it is clear from equation ( 14), the linearity of the ramp is not affected by capacitor mismatch: the size of the step deviates from the nominal, but it remains constant throughout the complete FS of the ramp.

It is important to notice that |∆C i /C F | should be minimized in order to ensure that the nominal step size of the ramp is larger than the contribution of the mismatch in [START_REF] Zhuang | Cost-effective accurate dac-adc co-testing and dac linearization[END_REF]. That is, for a practical ramp generator it has to be verified that

C i2 -C i1 C F √ 2 ∆C i C F . ( 15 
)
Fulfilling the condition in (15) represents a feasibility limit for the practical implementation of the proposed ramp generator in a given technology. Under this feasibility condition, Fig. 2 shows the evolution of the worst-case resolution for the generated ramp stimulus as a function of the maximum relative mismatch, ∆C i /C i , affecting the input capacitors, for a ramp generator with a 15-bit ideal resolution. These results were obtained by simulating a Matlab behavioral model of the generator in Fig. 1 under capacitor mismatch conditions, based on the analytical behavior in equation ( 14). As it is clearly shown in Fig. 2, an increase in the relative mismatch level results in a significant degradation of the resolution of the generated ramp.

2) Integrator leakage: Integrator leakage is a direct consequence of the finite gain of the operational amplifier in the SC integrator. As a result, instead of the ideal behavior in (1), only a fraction α of the previous integrator output sample is added in each integration cycle. The output voltage of the integrator in Fig. 1 including the effect of leakage at time t = nT clk is given by

V out (n) = αV out (n -1) + gV ref ( 16 
)
where α and g are given by

g ∼ = C i2 -C i1 C F 1 - 1 + Ci2-Ci1 C F A 0 , (17) 
α ∼ = 1 - C i2 -C i1 C F A 0 , (18) 
where A 0 is the finite open-loop gain of the amplifier in the integrator. It is clear that the cumulative effect of the integrator leakage has a direct impact in the linearity of the generated ramp stimulus. Thus, Figure 3 shows the evolution of the static ENOB of the generated ramp stimulus as a function of the amplifier gain, for a ramp generator with a 15-bit ideal resolution. These results were obtained by simulating in Matlab a behavioral model of the generator in Fig. 1 under finite gain conditions, based on the analytical behavior in equations ( 16)- [START_REF] Jin | Accurate Testing of Analog-to-Digital Converters Using Low Linearity Signals With Stimulus Error Identification and Removal[END_REF]. As it can be seen, reducing the gain of the amplifier in the integrator yields a significant degradation of the linearity of the generated ramp.

3) Amplifier input offset: In the proposed generator architecture depicted in Fig. 1, an uncompensated offset V off at the input of the amplifier would be integrated together with the reference voltage, in such a way that the output of the integrator at time t = nT clk would be given by

V out (n) = V out (n-1)+ C i2 -C i1 C F V ref + 1 + C i2 + C i1 C F V off (19)
The integration of the offset can significantly affect the step size of the generated ramp signal. Similarly to the effect of capacitor mismatch, the offset of the amplifier affects the resolution of the generated ramp, but not its linearity. Nevertheless, taking into account that C i1 and C i2 would be approximately equal to assure a small step size under nominal conditions, an uncompensated input offset may even become the dominant contribution to the evolution of the output. In order to avoid this issue, for a practical implementation of the proposed generator it has to be verified that,

C i2 -C i1 C F V ref 1 + C i2 + C i1 C F |V off | . ( 20 
)
Figure 4 shows the results of a Matlab behavioral simulation of the proposed generator taking into account the effect of a positive input offset, for a generator with a 15-bit ideal resolution and assuming

Ci1 C F ∼ = Ci2 C F = 0.1.
As it can be seen, a positive input offset can degrade significantly the resolution of the generated ramp stimulus.

An uncompensated negative offset can be even more harmful if the feasibility condition in [START_REF] Kook | Low-resolution dac-driven linearity testing of higher resolution adcs using polynomial fitting measurements[END_REF] does not hold. In that case, the contribution of a negative offset in [START_REF] Jalón | Enhanced double-histogram test[END_REF] could cancel the ideal integration step produced by the capacitance difference between the input capacitors, hence destroying the functionality of the generator.

4) Settling error: Ideally, the discrete-time integrator in Fig. 1 performs the cumulative sum in equation ( 1) that defines the desired ramp stimulus. However, a non-ideal dynamic behavior of the integrator may introduce a settling error in the evolution of the output, hence deviating from this ideal behavior. Neglecting second-order dynamic effects due to the parasitic resistances and capacitors associated to the switchedcapacitor network, the dynamic behavior of an integrator with non-ideal settling can be easily modeled using a one-pole approximation for the dynamics of the amplifier, together with a maximum current limitation. In such a model, the settling of the integrator output is defined by two parameters: the Gain-Bandwidth product, GBW, and the Slew-Rate, SR, of the amplifier. For the sake of readability, in the following analysis we will consider a time and frequency normalization to a sampling frequency of one, that is,

T clk = 1, (21) SR = SR * × f clk GBW = GBW * × f clk
where SR and GBW are the conventional slew-rate and gain-bandwidth product, and f clk = 1/T clk is the sampling frequency. Parameters SR * and GBW * are time-normalized versions of the slew-rate and gain-bandwidth product, respectively. Different regions of operation can be considered, depending on parameter t 0 defined as,

t 0 = bV ref SR * - 1 2πGBW * , ( 22 
)
where b = Ci2-Ci1 C F
is the integrator gain. Phenomenologically, t 0 indicates the time at which the amplifier stops slewing. If t 0 0, the amplifier output slews during its dynamic evolution, introducing this way a non-linear contribution to the generated ramp signal. On the other hand, if t 0 < 0, the amplifier does not slew, the settling is then determined only by the GBW and is exponentially shaped. At the end of the integration phase, the output voltage can be expressed as,

V out (n) = V out (n -1) + bV ref (1 -e -πGBW * ). (23) 
It is easily seen that in this operation region the ideal integration gain, b, is decreased by a constant factor that depends on the GBW and the sampling frequency.

In order to guarantee the linearity of the proposed ramp stimulus generator, the operation of the integrator has to be kept in the t 0 < 0 region to avoid non-linear settling errors. Additionally, the contribution of the linear settling error in [START_REF] Peralías | INL systematic reduced-test technique for Pipeline ADCs[END_REF] has to be minimized. In a practical implementation and for a given clock frequency for the integrator, these design conditions can be assured by making t 0 0, that is,

bV ref SR * 1 2πGBW * . ( 24 
)
5) Noise: Assuming a clean input voltage reference, the main noise contributions in the integrator in Fig. 1 are the thermal noise due to the switches and the noise due to the amplifier. These noise sources are sampled by the input capacitors C i1 and C i2 during phases φ 1 and φ 2 together with the reference voltage V ref . The output voltage of the integrator in Fig. 1 at time t = nT clk including noise contributions is given by

V out (n) = V out (n -1) + C i2 C F [V ref + N 2φ1 (n -1) -N 2φ2 (n)] + C i1 C F [-V ref + N 1φ1 (n -1) -N 1φ2 (n)] , (25) 
where N 2φ1 , N 2φ2 , N 1φ1 and N 1φ2 represent the noise voltages sampled by capacitors C i2 and C i1 during clock phases φ 1 and φ 2 , respectively. Notice that noise voltages associated to phase φ 1 are due to thermal noise from switches in on state, while noise voltages associated to phase φ 2 have contributions from the thermal noise of on switches and from the amplifier noise. The interested reader is referred to [START_REF] Toth | Noise analysis of ideal switchedcapacitor networks[END_REF], [START_REF] Oliaei | Thermal noise analysis of multi-input sc-integrators for delta-sigma modulator design[END_REF] for a detailed analysis of noise contributions in a multiinput switched-capacitor integrator. Regarding the proposed ramp generation strategy, equation (25) imposes a lower limit on the magnitude of the reference voltage V ref .

In order to avoid a degradation of the generated ramp due to noise, the reference voltage has to be significantly larger than the sampled noise in the input capacitors. In a practical ADC BIST implementation, this condition can be easily ensured by codesigning the reference voltage of the ADC under test to drive both the ADC and the ramp stimulus generator.

IV. PRACTICAL IMPLEMENTATION

In order to demonstrate the feasibility of the proposed ramp stimulus generator, a proof-of-concept prototype was implemented in STMicroelectronics 2.5V 65nm CMOS technology. Figure 5 shows a block diagram of the proposed fully-differential implementation. The generator in Fig. 5 is a fully differential version of the basic generator in Fig. 1. The choice of a fully-differential architecture minimizes the effect of parasitics in the SC network, as they naturally tend to compensate between the positive and negative signal paths, and greatly reduces other second-order effects in SC circuits, such as charge injection and clock feedthrough in the switches.

The proposed architecture includes a classical auto-zero to reduce the influence of the amplifier offset on the generated ramp step size [START_REF] Enz | Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization[END_REF]. A switching scheme controlled by digital signal φ up/down has been added at the input in order to control the slope (positive or negative) of the generated ramp, and the feedback capacitor can be reset by activating control signal φ reset in order to initialize the output ramp. Additionally, as it can be seen in the timing diagram, clock phases φ 1a and φ 2a are advanced versions of clock phases φ 1 and φ 2 that have been added to reduce charge injection during the operation of the sampling switches. The design goal for this ramp generator is to generate a quasi-static step-wise ramp with a step size around 100 µV in a differential Full-Scale range of ±2 V, which, under ideal conditions, represents a nominal resolution around N = 15.3 bits. We target a linearity around ENOB static = 14 bits, which in a practical test scenario would be enough for the static test of 11 bit ADCs. Table I summarizes the design goals of the ramp stimulus generator prototype.

To achieve the design goals in Table I, we take advantage of the analytical results in the previous section to evaluate the required performance for each of the blocks composing the step-wise ramp generator in Fig. 5. The analysis in section III imposes practical limits for the implementation of the proposed step-wise ramp generator concerning technological and design parameters, i.e., the relative mismatch level affecting the input capacitors, the input offset in the integrator, the openloop gain of the amplifier in the integrator, and the dynamic performance of the amplifier. Table II summarizes the main design parameters for the building blocks of the step-wise ramp generator to achieve the desired performance, according to the analytical results in ( 14)- [START_REF] Jin | Code-Density Test of Analog-to-Digital Converters Using Single Low-Linearity Stimulus Signal[END_REF]. Since the problem has multiple degrees of freedom within the constrains of the feasibility conditions in [START_REF] Ting | A segmented resistor-string dac based stimulus generator for adc linearity testing[END_REF], [START_REF] Kook | Low-resolution dac-driven linearity testing of higher resolution adcs using polynomial fitting measurements[END_REF], and (24), conservative goals have been set to make the contributions of amplifier nonidealities negligible, while the requirements on mismatch have been relaxed to reduce the area of the capacitors. As it will be shown in the following sections, this choice makes capacitor mismatch the main limiting factor for the resolution of the described implementation of the step-wise ramp generator. The following subsections detail the implementation of the different blocks composing the ramp stimulus generator, that is, the operational amplifier, the capacitors, and the switches.

A. Operational amplifier

Figure 6 shows a transistor level schematic of the designed amplifier. The selected design is a standard fully-differential two-stage folded-cascode topology with a Miller compensation using a nulling resistor (the bias voltage circuitry and common-mode feedback networks are not shown for simplicity). The selected topology offers a good trade-off between the amplifier performance (in terms of static gain and dynamic behavior) and simplicity of design.

Two dynamic common-mode feedback networks were designed to independently compensate output common mode deviations of both the first and second stages of the amplifier. Fig. 7 shows the schematic of the common-mode feedback networks [START_REF] Choksi | Analysis of switched-capacitor commonmode feedback circuit[END_REF]. They consist in a dynamic switched-capacitor network clocked at non-overlapping clock phases φ 1 and φ 2 . The output common mode of each stage is sampled and compared to references V cmref1 and V cmref2 for the first and second stage, respectively. Then, compensation signals are fed back to the amplifier to compensate deviations of the output common mode of each stage. Common-mode compensation signal V cmfb1 controls the biasing of transistors M 2 and M 2 , while the compensation of the second stage is applied in current mode, through auxiliary transistors M 7FB and M 7FB .

Transistors were sized using the g m /I D methodology [START_REF] Jespers | The gm/I D Methodology, A Sizing Tool for Low-voltage Analog CMOS Circuits[END_REF] with the design goals in Table II in the selected 2.5V 65nm CMOS technology. Transistors M 2 , M 2 , M 7 and M 7 were biased in strong inversion to minimize the amplifier noise, while the rest of transistors were biased in moderate inversion as it offers the best area-to-performance trade-off solution for IV shows the main performance figures of the designed amplifier obtained by electrical post-layout simulation. All the obtained performance parameters comply with the design goals for the step-wise ramp generator listed in Table II.

B. Amplifier offset autozeroing

Electrical Monte Carlo simulations of the amplifier described in the previous subsection were performed using the Monte Carlo process and mismatch models provided in the Process Design Kit of the selected 65 nm CMOS technology. These simulations show an equivalent input offset that varies with a standard σ Voff 1 mV. According to the analysis section III, this input offset would not comply with the feasibility condition in equation [START_REF] Kook | Low-resolution dac-driven linearity testing of higher resolution adcs using polynomial fitting measurements[END_REF]. That is, in this scenario, the size of the step in the generated step-wise ramp would be dominated by the contribution of this random offset, and not by the difference of the input capacitors as intended by design.

In order to compensate this offset, we have implemented a classical closed-loop autozeroing technique adapted from [START_REF] Enz | Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization[END_REF], as it is shown in Fig. 5. Capacitor C AZ is used to store the amplifier offset during the sampling phase of the integrator and to subtract this offset in the integration phase. The equivalent input-referred residual offset V res,off can be roughly approximated by

V res,off ∼ V off A 0 + ∆q inj C AZ ( 26 
)
where V off is the uncompensated input-referred offset of the amplifier, and ∆q inj is the difference of charge injection between the positive and negative paths in capacitors C AZ due to mismatch. Capacitors C AZ were designed as ∼ 1 pF MOM capacitors in the selected CMOS technology. Using this simple configuration, the residual offset is below 100 nV. Both our theoretical analysis in section III and extensive electrical simulations show that this residual offset does not have a significant effect on the resolution of the step-wise ramp generator prototype.

C. Capacitors

The sizing of the sampling and feedback capacitors, C i1 , C i2 , and C F , respectively, is a key point in the design of the generator given that it defines the nominal size of the step in the generated step-wise ramp signal. According to the design goals in Table I, achieving the target resolution in the desired output swing requires to set the step of the ramp to ∼ 100 µV. In order to realize this design goal for the step-wise ramp generator prototype, we propose to make

C i2 -C i1 C F V ref = 100 µV. ( 27 
)
This capacitance ratio is feasible in the selected 65 nm CMOS technology by making C F = 10 pF and C i2 -C i1 = 1 fF. Then, according to the choice of design parameters in Table II, we can size the input capacitors C i1 and C i2 to comply with the mismatch requirement ∆C i 0.1 fF. According to the mismatch model provided in the Process Design Kit of the selected technology, if we implement the input capacitors as ∼ 1 pF MOM capacitors (i.e., C i1 ∼ 1 pF and C i2 = C i1 + 1 fF), with a geometry of about 100 by 100 metal 2 to metal 5 fingers, the capacitance value of the input capacitors will vary with a standard deviation σ C = 0.04 fF, which, considering a ±3σ variation, would limit the resolution of the step-wise ramp generator in the range from N = 14.8 bits to N = 15.7 bits. This is an acceptable trade-off between the area of the capacitors and the expected variation of the generator resolution for our design goals. Additionally, this implementation allows for an easy realization of the desired capacitance difference between C i1 and C i2 simply by adjusting properly the number of fingers. Electrical simulations also show that other second-order effects in the selected MOM capacitors, such as capacitance non-linearity, do not have a significant contribution to the linearity and resolution of the generated step-wise ramp in the proposed implementation. Additionally, the effect of parasitic capacitances due to interconnections and switches in the SC network are minimized by a careful symmetrical layout of the proposed fully-differential architecture.

D. Switches

Switches in the integrator were designed as CMOS switches to reduce its equivalent on resistance along the complete signal range considered. Charge injection due to the switches turning off may degrade the performance of the proposed step-wise ramp generator strategy. Indeed, in a single-ended implementation such as the simplified generator in Fig. 1, the effect of charge injection in the sampling capacitors would appear as an uncompensated signal-dependent offset that would be integrated together with the desired ramp steps limiting the resolution and linearity of the ramp generator. In a fully differential implementation, such as the proposed stepwise ramp generator prototype, the effect of charge injection is greatly reduced since charge injection in the positive and negative paths tend to compensate. To further reduce the effect of charge injection in the input sampling switches, they are with two added dummy PMOS transistors shown in Fig. 8. These dummy transistors are intended to acquire the charge stored in the channel of the PMOS transistor in the switch when it turns off when sampling the reference voltage. Additionally, two advanced phases φ 1a and φ 2a (see Fig. 5b) have been introduced to enable bottom plate sampling. The switch at the bottom plate of the capacitor opens before the top plate switch does. When the top plate switch opens, the bottom plate is floating and no charge is injected on the capacitor, further reducing charge injection issues.

An additional concern in the design of the switches is the eventual discharge of the capacitors through its equivalent off resistance. Given that the ramp signal generator is aimed at static test applications, this effect has to be carefully considered to ensure a correct charge transfer in the SC integrator at the desired clock frequency. Transistors in the CMOS switch were sized to ensure a correct operation for clock frequencies above 10 kHz.

V. EXPERIMENTAL RESULTS

The described step-wise ramp generator prototype was fabricated in the selected STMicroelectronics 2.5 V 65 nm CMOS technology. Figure 9a shows the layout and floorplan of the ramp signal generator prototype. Positive and negative signal paths have been carefully drawn to respect the symmetry of the fully-differential architecture, while the analog section is separated from the switched-capacitor network and digital clock generation circuitry to minimize noise injection due to the switching activity. Figure 9b shows a microphotograph of one of the fabricated chip samples. It occupies an active area of 0.06 mm 2 , including dedicated bias and clock phase generation circuitry. A total of 15 samples were fabricated, packaged and fully characterized in the laboratory in order to validate the feasibility and performance of the developed ramp signal generator prototype.

Our test setup is depicted in Fig. 10. It makes use of two National Instrument USB-6361 Data Acquisition Cards (DAQs) controlled by a conventional computer. Two sets of experiments are carried out to validate the functionality and performance of the fabricated ramp generator. The first set of experiments is aimed at characterizing the linearity performance of the fabricated ramp generator as a stand-alone circuit. The second set of experiments is aimed at validating the functionality of the fabricated ramp generator in a proofof-concept static test scenario. In this proof-of-concept we characterize the linearity of an 11-bit ADC by using the proposed step-wise ramp generator and the static linearity measurement strategy described in section III.B.

A. Performance of the on-chip step-wise ramp generator

Our first set of experiments is focused on validating the performance of the proposed ramp signal generator as a standalone device, for the 15 fabricated samples. The instrumentation cards provide the master clock signal for the generator and capture the generated differential analog ramp at the output of the generator with a 16-bit quantizer. The captured signals are then processed in Matlab to evaluate the resolution and linearity of the generated step-wise ramp signals.

Figures 11 and12 show the histograms of the measured resolution and static ENOB, respectively, for the 15 fabricated ramp signal generator samples. These performance metrics were evaluated considering a ±2 V differential output range for the generated ramp signal, while the generator operates at a clock frequency f clk = 200 kHz and with a reference input voltage V ref = 1 V. As it can be observed in Fig. 11, the histogram of the measured resolution of the generated 
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Resolution (bits) ramp signal across the 15 fabricated samples is contained in the range of N = 14.5 bits to N = 15.5 bits, which matches very well with the predicted resolution range -that is, N = 14.8 bits to N = 15.7 bits-due to capacitor mismatch limitations discussed in section IV.C. The measured linearity of the generated ramp signal is contained in the range of ENOB static = 13.3 bits to ENOB static = 15.1 bits, as it can be observed in Fig. 12, with an average static ENOB of 14.5 bits, in agreement with our target design specifications.

The measured non-linearity of the fabricated ramp generators can be explained by uncompensated second-order effects such the non-linearity of the amplifier gain and the non-linear behavior of capacitors for large signal values. swing figures among the considered references.

B. Static linearity measurements using step-wise ramp stimuli

Our second set of experiments is focused on validating the functionality of the generator in a static test scenario, using the proposed static linearity measurement strategy described in section III.B. For that purpose, we employ the fabricated step-wise ramp generator to provide the test stimulus for characterizing the static linearity of an off-the-shelf 11-bit ADC. The selected ADC under test is a 10 MSamples/s 11bit ADC with a differential input range of ±1 V. In this set of experiments, the generated ramp stimulus is fed to an evaluation board containing the ADC under test, while the output codes generated by the ADC are captured by a Data Acquisition Card. The ramp stimulus generator works in the same operating conditions as in the previous set of experiments. The captured output codes are then processed in Matlab using the classical histogram test algorithm to extract the INL of the ADC under test [START_REF]IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters[END_REF]. For validating the obtained results, the ADC is also characterized by using the arbitrary waveform generator in one Data Acquisition Card to excite the ADC with a slow 16-bit analog ramp as test stimulus. The INL is then extracted for each ADC output code using the histogram test algorithm and the obtained values are stored as a reference for comparison. It is important to remark that this is a proof-of-concept experiment devised to show the equivalence between the proposed on-chip ramp stimulus generator and dedicated external test equipment. In an actual on-chip test application, both the ramp stimulus generator and the ADC under test would be integrated in the same die.

Figure 13 shows the obtained INL per code across the complete output range of the ADC, obtained by exciting the ADC under test with one of the samples of the fabricated ramp signal generator. In this experiment, we selected one representative sample of the generator with N = 14.5 bits and ENOB static = 14.1 bits. Results are compared to the measurements obtained by using the high-precision ramp generated by the instrumentation card. As it can be seen, differences in the estimation of INL are well contained in the ±0.25 LSB band. It is interesting to notice that, as predicted by equation ( 10), the magnitude of the observed INL estimation error agrees very well with the step-wise nature of the generated ramp stimulus, which, for the selected ramp generator sample, has a step size of ∼ 0.2 LSB.

In order to further show the equivalence between our ramp signal generator and the external high-precision test equipment, we measured the maximum INL, INL max , of the ADC under test using the 15 fabricated ramp generator samples. Fig. 14 shows the histogram of the INL max estimation error in the characterization of the ADC static linearity, for the 15 fabricated ramp generator samples. This INL max estimation error is defined as the difference between the INL max estimation obtained by using the fabricated ramp signal generator, and the INL max measurement obtained by using the high-precision 16-bit ramp provided by the external equipment. As it can be observed, for the 15 fabricated samples, the measured INL max estimation error is contained between 0.2 LSB and 0.6 LSB, with an average INL estimation error of 0.33 LSB, again in agreement with the expected error due to the discrete nature of the step-wise ramp stimulus.

To put the obtained results into perspective, Table VI shows a comparison between different static linearity measurement techniques recently presented in the literature. For a fair comparison, it has to be noted that each of the measurement techniques in Table VI is aimed at a different target application. Thus, the works in [START_REF] Wang | Very linear rampgenerators for high resolution ADC BIST and calibration[END_REF], [START_REF] Jiang | Testing High-Resolution ADCs With Low-Resolution/Accuracy Deterministic Dynamic Element Matched DACs[END_REF], [START_REF] Huang | Adc/dac loopback linearity testing by dac output offsetting and scaling[END_REF] are aimed at static linearity BIST applications of ADCs using embedded signal generators, while the measurement strategies in [START_REF] Jin | Accurate Testing of Analog-to-Digital Converters Using Low Linearity Signals With Stimulus Error Identification and Removal[END_REF]- [START_REF] Laraba | Exploiting pipeline adc properties for a reduced-code linearity test technique[END_REF], [START_REF] Jin | Code-Density Test of Analog-to-Digital Converters Using Single Low-Linearity Stimulus Signal[END_REF], [START_REF] Lin | Transition-code based linearity test method for pipelined adcs with digital error correction[END_REF] rely on external equipment and dedicated post-processing to either relax the linearity requirement of the signal generator [START_REF] Zhuang | Cost-effective accurate dac-adc co-testing and dac linearization[END_REF], [START_REF] Jin | Accurate Testing of Analog-to-Digital Converters Using Low Linearity Signals With Stimulus Error Identification and Removal[END_REF]- [START_REF] Kook | Low-resolution dac-driven linearity testing of higher resolution adcs using polynomial fitting measurements[END_REF], reduce the number of necessary measurements [START_REF] Laraba | Exploiting pipeline adc properties for a reduced-code linearity test technique[END_REF], [START_REF] Lin | Transition-code based linearity test method for pipelined adcs with digital error correction[END_REF], or both [START_REF] Jin | Code-Density Test of Analog-to-Digital Converters Using Single Low-Linearity Stimulus Signal[END_REF], [START_REF] Chen | User-smile: Ultrafast stimulus error removal and segmented model identification of linearity errors for adc built-in self-test[END_REF]. The work presented in this manuscript is aimed at BIST applications, and, as it is shown in Table VI, the obtained experimental results compare very well to the state-of-the-art.

VI. APPLICATIONS

In the view of the obtained experimental results, the proposed on-chip ramp stimulus generator may be employed for the on-chip characterization of the static non-linearity of moderate-resolution ADCs, in the range up to 11 to 12 bits. The developed on-chip ramp generator may enable a full-BIST implementation of classic static test techniques, such as the standard static tests in [START_REF]IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters[END_REF], and may be also a key building block for moving advanced reduced-code algorithms on-chip, as discussed in [START_REF] Laraba | Exploiting pipeline adc properties for a reduced-code linearity test technique[END_REF]- [START_REF] Chen | User-smile: Ultrafast stimulus error removal and segmented model identification of linearity errors for adc built-in self-test[END_REF] for the particular case of pipeline, cyclic, and SAR ADCs.

Regarding the practical implementation of static linearity test as a full-BIST, the proposed generator reuses the FS reference voltage of the ADC under test, which simplifies the co-integration of the generator together with the ADC under test, within the trade-offs discussed in section III.B. In terms of area overhead, compared to the area of reported state-ofthe-art ADCs [START_REF] Sehgal | A 12 b 53 mW 195 MS/s Pipeline ADC with 82 dB SFDR Using Split-ADC Calibration[END_REF], [START_REF] Briseno-Vidrios | A 44-fJ/Conversion Step 200-MS/s Pipeline ADC Employing Current-Mode MDACs[END_REF], the proposed generator represents, in average, less than a 10% area overhead. Moreover, current trends in VLSI design propose the use of system level test buses for the hierarchical control of embedded mixed-signal test instruments within a complex system [START_REF] Kerkhoff | Applying ijtag-compatible embedded instruments for lifetime enhancement of analog front-ends of cyber-physical systems[END_REF], [START_REF] Sarson | Use models for extending ieee 1687 to analog test[END_REF]. Indeed, this system level approach may enable sharing the on-chip ramp generator between different ADCs in a VLSI system, which further reduces the overhead. For instance, if an onchip ramp generator could be shared for the test of the column read-out ADCs in a consumer CMOS imager sensor, the area overhead could be below 0.1% of the total system area. In future applications, this system level approach may also allow a complete ADC characterization combining on-chip static and dynamic tests in the same VLSI system by integrating also dynamic stimulus generators, such as the one presented in [START_REF] Barragan | A Fully-Digital BIST Wrapper Based on Ternary Test Stimuli for the Dynamic Test of a 40 nm CMOS 18-bit Stereo Audio Σ∆ ADC[END_REF] for Σ∆ ADCs. In this line, the target application defines the type of tests required for the ADCs in the system. Thus, as it is described in [START_REF]IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters[END_REF], static performance is critical for applications such as automatic control and data acquisition, while dynamic performance is critical for audio applications.

Imaging applications, on the other hand, demand both static and dynamic tests for an appropriate characterization.

VII. CONCLUSIONS

We have presented an on-chip step-wise ramp generator architecture and a discrete-time measurement strategy for static test of ADCs. The proposed ramp generator is based on a discrete-time SC integrator whose input stage has been modified to produce a very small integration gain. The main non-idealities affecting the performance of the ramp generator and the accuracy of the proposed static linearity measurements have been comprehensively explored, and analytical design equations for a practical implementation have been provided.

The proposed discrete-time ramp generator has been designed in a 65 nm CMOS technology and its performance has been experimentally validated in the laboratory. Obtained measurements on 15 fabricated samples show an average static ENOB of 14.5 bit, in a ±2 V differential output range. The feasibility and performance of the proposed static linearity measurement strategy has been verified in an ADC static test scenario with experimental measurements. The fabricated ramp stimulus generator has been employed for characterizing the INL of an off-the-shelf 11-bit ADC. Experimental results show an error in the estimation of the INL of ∼ ±0.3 LSB, compared to reference measurements performed with external high-precision equipment.
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 1 Fig. 1. a) Conceptual schematic of the proposed ramp signal generator; b) Diagram of the generator non-overlapping clock phases.
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 3 Fig. 3. Static Effective Number of Bits of the generated step-wise ramp stimulus as a function of the amplifier gain in the integrator, for a ramp signal generator with an ideal resolution of 15 bit.
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 4 Fig. 4. Resolution of the generated step-wise ramp stimulus as a function of the amplifier input offset, for a ramp signal generator with an ideal resolution of 15 bit.
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 5 Fig. 5. a) Block diagram of the proposed differential step-wise ramp signal generator; b) Timing diagram for the clock phases.
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 6 Fig.6. Transistor-level schematic of the operational amplifier.
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 7 Fig. 7. Common-mode feedback circuits for: a) first stage, and b) second stage of the amplifier.
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 8 Fig. 8. Transistor-level schematic of the designed CMOS switches.
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 9 Fig. 9. a) Layout and floorplan of the step-wise ramp signal generator prototype; b) Microphotograph of one of the fabricated samples.
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 410 Fig. 10. Photograph of the test setup for the step-wise ramp signal generator prototype.
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 11 Fig. 11. Histogram of the measured resolution of the generated step-wise ramp signal for the 15 fabricated generator samples.

Fig. 12 .

 12 Fig. 12. Histogram of the measured static ENOB of the generated step-wise ramp signal for the 15 fabricated generator samples.

  13. a) INL measurements across the complete signal range of the ADC under test using the NI Data Acquisition Card to provide a highresolution ramp stimulus, and using the fabricated ramp signal generator; b) INL estimation difference.

Fig. 14 .

 14 Fig. 14. Histogram of the INL estimation error for the 15 fabricated generator samples.
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TABLE V COMPARISON

 V OF THE MEASURED SIGNAL GENERATOR PERFORMANCE WITH PREVIOUS WORK ON ON-CHIP RAMP STIMULUS GENERATION

	Reference	Generation technique	Linearity (bits) Output swing (V) Area (mm 2 )	Technology
	This work	Step-wise ramp generation	14.5	-2/2	0.06	65nm CMOS
	[4]	Automatic slope adjustment ramp generation	8	-2/2	N/A	N/A
	[5]	Current source integration	14 *	0.1/0.9	0.11	2.0µm CMOS
	[5]	Relaxation oscillator	12 *	0.2/1.4	0.51	1.2µm CMOS
	[6]	Adaptive triangle-wave generation	14 *	-1/1	0.05	0.6µm CMOS
	[9]	Error-cancellation Least-Mean-Square integrator	10	N/A	N/A	N/A
	[9]	SC fully-differential Least-Mean-Square integrator	11	0.7/1.3	0.18	180nm CMOS
	[17]	Σ∆ modulation-based generation	12 *	0.4/1.4	0.02	250nm CMOS
	[8]	Integration of voltage controlled current source	15 *	0/1	0.9	0.5µm CMOS
	[10]	Bootstrap integrator-based generator	> 8 *	N/A	N/A	180nm CMOS
	[15]	Segmented resistor-string DAC	9	0/1.8	0.91	180nm CMOS
		* Electrical simulation results.			

TABLE VI COMPARISON

 VI OF THE OBTAINED MEASUREMENT ACCURACY WITH PREVIOUS WORK ON STATIC LINEARITY TESTING Reference Brief description of key features Nature of validation ADC under test Accuracy (INL measurement)

	This work	On-chip step-wise ramp signal generator	Experimental	11 bit	±0.3 LSB
	[5]	On-chip signal generator based on current source integration	Simulation	10 bit	±0.03 LSB (DNL)
	[5]	On-chip signal generator based on relaxation oscillator	Simulation	10 bit	±0.15 LSB (DNL)
	[11]	On-chip signal generator based on low-resolution DAC with DDEM	Experimental	11 bit	±0.5 LSB
	[11]	On-chip signal generator based on low-resolution DAC with DDEM	Experimental	12 bit	±1 LSB
	[13]	ADC/DAC loopback test	Experimental	10 bit	±0.4 LSB
	[14]	DAC-ADC co-testing	Simulation	12 bit	±0.5 LSB
	[20]	Low resolution DAC with polynomial fitting algorithm	Experimental	12 bit	±0.6 LSB
	[18]	Stimulus error identification and removal	Experimental	16 bit	±2 LSB
	[27]	Error identification and segmented model identification	Simulation	16 bit	±0.8 LSB
	[19]	Double histogram strategy	Simulation	16 bit	±1 LSB
	[21]	Reduced code linearity testing of pipeline ADCs	Experimental	11 bit	±0.2 LSB
	[25]	Transition-code linearity test of pipeline ADCs	Experimental	12 bit	±1.1 LSB
	[24]	Code-density testing with non-linearity identification and removal	Experimental	16 bit	±1 LSB