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Résumé — Real-time monitoring and control of solids and structures, based on the the solution of
the equations of motion, remains a challenge mainly due to its computational complexity. For such a
purpose, both direct and inverse formulations of the dynamic problem must be addressed. In this work,
we propose computing parametric solutions of the inverse problem by combining classic regularization
techniques and the Proper Generalized Decomposition method. This approach could potentially allow
for the design of a generalized control system, which might be able to control the structure for changing
conditions, defined by the parameters.
Mots clés — Structural dynamics, inverse problems, control, monitoring, reduced order modeling, real-
time computing, parametric solutions, PGD.

1 Introduction

The computational complexity associated to the solution of the equations of motion has been a
concern for several decades. This has led to wide variety of methods, not always well-suited for real-
time computing. Therefore, new approaches are required in order to allow for real-time monitoring and
control of solids and structures. Numerous potential applications could be then envisaged, ranging from
soft robotics to hybrid laboratories. Hybrid laboratories are a combination of experimental laboratories
coupled with real time simulations. This approach can reduce the cost of the experiments by simulating
the behaviour of a part of the structure instead of realizing it. Therefore, the simulation is done for the part
of the system where the behaviour is known and suitable to be computed and the experiment is perfor-
med in the part of the system where complex or not well known physics may happen[1][8]. The coupling
between the simulation and the experiment is made by an actuator, which transmits the communication
between the simulation device and the experiment, transforming forces or displacements coming from
the experiment to data and vice versa, data to forces or displacements.

Real time control and monitoring of forces and displacements implies a fast, robust and reliable
solution procedure. The simulation requires the solution of the structural dynamic problem in a time
interval shorter than the actuator time, which is in the order of a kHz. On the other hand, parametric
solutions are an interesting tool that could reduce the operation time in applications where the system
parameters may change with certain frequency. Classical methods, although they are well-established
and may be very useful in many applications, may not be well-suited for the real-time context. Time-
integration schemes may not reach the execution times required. Modal methods might be a good solution
for real time applications, but both integration and modal methods fail in computing parametric solutions
when more than a few number of parameters are considered.

Pre-computing the solution for all the parameters values in a certain interval is clearly an advantage
when fast solutions are sought. Model order reduction methods as Proper Orthogonal Decomposition
(POD) [3] or Reduced Model Basis (RBM) [10] are some of the methods applied in parametric pro-
blems that produce good results. Proper Generalized Decomposition (PGD) [5], which is also a model
order reduction method, brings some advantages to solve parametric models. The transfer function is
widely used in structural dynamics to compute the displacements when an external force is applied.
This approach can transform linear differential equations in algebraic operations. For real time applica-
tions applied in time domain, this function is called impulse response, with which we can compute the
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displacements without the benefits of the frequency domain, but avoiding transforming the data to that
domain. In multidimensional problems, one can talk about generalized impulse response [2]. The term
generalized comprehends the dependence of the impulse response on some pre-selected parameters. In
dynamical problems, parameters as Young’s modulus, damping factor or boundary conditions may be of
interest in some analysis.

The objective of this work is to obtain the generalized inverse impulse response. On the contrary of
the impulse response, the inverse impulse response links known displacements with unknown external
applied forces, therefore an inverse problem must be solved. In this work, the PGD is applied to deal
with the parametric nature of the problem in combination with Tikhonov’s regularization, which is used
to treat the inverse problem. Both direct and inverse generalized impulse responses are a powerful tool
for real time control and monitoring of structures, in particular in the context of hybrid simulation.

The rest of the paper is organized as follows : section 2 deals with the direct generalized impulse
response, gives an overview about the existing methods and shows how to applied PGD to compute the
generalized impulse response. Section 3 address the inverse problem that arises in the computation of
the generalized inverse impulse response. Finally, some results and conclusions are shown in the last two
sections.

2 The generalized impulse response

In this section the procedure applied to compute the generalized impulse response of a structure
is recalled. First, the dynamic equation in time domain is transformed to its equivalent in frequency
domain ; this approach is more suitable for the solution of the parametric problem. Then, the transfer
function is sought in a parametric form by using the model order reduction technique PGD. Finally, the
generalized impulse response is obtained by transforming the transfer function to the time domain by
applying Fourier’s theory.

The classical methods that can be used to compute the impulse response could be classified depending
on how are they approaching the problem : some deal with it in time domain as Newmark’s β method
[16], some in the frequency domain as the harmonic analysis [11] or they can also apply some modal
transformation.

Time integration schemes give a good solution without the need of any transformation of the dyna-
mic equation, but, in real time applications, they are computationally expensive. Modal superposition
method is one of the most used methods in dynamic analysis. This method takes profit of eigenvectors
properties to transform the system in some new coordinates where equations are uncoupled and the reso-
lution time can be reduced. Among the disadvantages of the modal method can be found the case when
not proportional damping is considered and a quadratic problem must be solved [13]. In addition, chan-
ging conditions (i.e. changing parameters) cannot be managed in real-time due to the cost associated to
extracting and projecting the equations onto the new eigenbasis. When more than a few parameters are
considered, the so-called curse of dimensionality makes unaffordable the solution by classical methods.

Model reduction techniques appear to deal with the dimensionality issue, by lowering the compu-
tational cost. Among the model reduction methods we can cite the Proper Orthogonal Decomposition
(POD) or the Reduced Basis Method (RBM), which are widely used. Previously cited modal method can
be also seen as a model reduction method when the number of its terms are truncated. The general pro-
cedure of a posteriori model reduction methods is to generate certain solutions to the problem and then
find a suitable reduced basis. The parametric domain must somehow explored in order to guarantee the
pertinency of the reduced basis for any possible parameter combination. PGD method, on the contrary,
is an a priori method, that is, its algorithm is able to extract the parametric solution in a separated tensor
format without the need of sampling the parametric domain [6]. The strategy followed by PGD algo-
rithm is an iterative enrichment procedure which avoids computing the solution one by one for all the
parameters possibilities, allowing then to deal with parametric solutions of several parameters.

2.1 Computing the generalized transfer function

PGD algorithm computes the generalized solution by an iterative procedure, which is more suitable
to be applied in frequency domain than in time domain. Therefore, the harmonic method is used to set the
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problem in the frequency domain, where the PGD method will be applied to obtain the transfer function
in a parametric form. In the harmonic method, one assumes that the excitation can be expressed as a sum
of n harmonics, so the resultant system can be written as :

f(t) = fs p(t).

Applying Fourier transform on the equation of motion, n uncoupled equations (i.e. one for each
frequency) are obtained in the frequency domain :

(−ω
2M+ iωC+K)h = fs, (1)

where one can recognize the inertial, damping, elastic and external applied forces terms, respectively. In
addition, h is known as the transfer function and fs collects the spacial coefficients of f. PGD algorithm is
applied then in the equation (1) to find the parametric solution, h(ω), in a frequency band ω ∈ [ω−,ω+].
The method builds the solution as a separate representation, it is, as a sum of multiplied functions, where
each function depends on one parameter, e.g. the Young modulus in the present case. The separated form
of the solution reads :

h(ω,E) =
n

∑
i=1

XiWi(ω)Ei(E), (2)

where X is a vector that collects the nodal generalized space funtions, W is a function which depends on
the frequency and E is a function which depends on Young’s modulus.

2.2 Computing the generalized impulse response. On line application

Once the generalized transfer function is computed, the impulse response can be easily obtained by
applying Fourier theory. For the sake of notation simplicity, we use h(ω) and h(t) being one the Fourier
transform of the other, and the dependence on t and ω is explicitly written :

h(ω) =
∫

∞

−∞

h(t)e−iωtdt ; h(t) =
1

2π

∫
∞

−∞

h(ω)eiωtdω.

Applying Fourier relations to Eq. (2) it reads :

h(t,E) = F −1

(
n

∑
i=1

XiWi(ω)Ei(E)

)
=

n

∑
i=1

Xi F −1 (Wi(ω)) Ei(E) =
n

∑
i=1

XiWi(t)Ei(E),

where F −1 represents the inverse Fourier transform. Finally, to compute displacements in real time, the
generalized impulse response must be recovered and Duhamel’s theory applied, resulting the convolu-
tion :

u(t,E) =
∫ t

0
p(t− τ)h(τ,E)dτ. (3)

Note that, if one only needs the displacements on a single degree of freedom, u j, the correspondent
component of h must be selected :

u j(t,E) =
∫ t

0
p(t− τ)h j(τ,E)dτ.

3 Computing the generalized inverse impulse response

In the previous section the function which links known forces with unknown displacements has been
computed. In this section, the procedure to compute the function which links known displacements with
unknown forces will be developed. This is an important function that, in control applications, allows
to compute the required force from displacement measures. This function, called inverse impulse res-
ponse is obtained from (4), which when considering a single displacement coordinate and a single force
coordinate writes :

p(t) =
∫ t

0
u(t− τ)g(τ)dτ, (4)
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which results in solving an inverse problem [14], where several works have been carried out to solve it
[4] [7] [9] [15]. Among all the existing techniques, one of the most used is the Tikhonov’s regularization
[12]. From a set of measures of forces and displacements, the method finds the best solution by least
squares technique minimizing the functional Π :

Π(g) =
m

∑
i=1

(ui(t)∗g(t)− pi(t))2 +λS(g).

where S(g) is some imposed condition over g(t), for example a limit in its norm, m is the number of pairs
of forces and displacements and "∗" denotes the convolution operation. Minimizing Π respect to g(t),
the discrete form reads :

g = (UT U+λDT D)−1UT p, (5)

where U is the Toeplitz matrix built from ui(t), D comes from the regularization condition imposed over
g(t) and p is the vector coming from p(t).

3.1 Parametric inverse impulse response

Hybrid laboratories couple experiments with simulations, and have a great interest when complex
physical behaviours which are difficult to simulate occur in some part of a structure. This complex
behaviour is reproduced physically in the laboratory, and the rest of the behaviour of the structure is
simulated by coupling both processes by an appropriate device. Therefore, the simulation must be able
to compute in real time the corresponding reactive force from the data of the experiment, either forces or
displacements. Parametric solutions could be used to accomplish such an objective. In this framework,
the coupling condition (e.g. displacements at the interface between the actuator and the physical expe-
riment) might be parametrized, and the reaction force of the rest of the structure computed in terms of
such parameters. In addition, analysis and optimization of structures are some of the interests of hybrid
laboratories, where different structural configurations may be studied, leading to different parameters.
By computing the generalized inverse impulse response one would be able to obtain a certain structural
configuration by just evaluating the corresponding parameters. Computing the forces from measured dis-
placements could be done in the on line phase by a convolution operation, which is not time consuming.

To solve the minimization problem defined in Eq. (5), a training set of forces and displacements is
required, and the component of h that correspond to the measured degree of freedom are selected. Data
can be obtained from experiments or from simulations. In this case, since the impulse response h(t,E)
can be computed as shown in section 2, training data can be generated by using Eq. (3), which reads in
parametric form :

u`(t,E) = p`(t)∗h(t,E) = p`(t)∗
n

∑
i=1

αiWi(t)Ei(E) =
n

∑
i=1

αi [p`(t)∗Wi(t)] Ei(E), (6)

for 1 ≤ ` ≤ m, being m the number of training measures and αi the j-th component of Xi. Observe that
the separated structure is preserved in Eq. (6). Next, the functional to be minimized is :

Π(g) =
m

∑
`=1

[(
n

∑
i=1

αi (p`(t)∗Wi(t)) Ei(E)

]
∗g(t,E)− p`(t)

)2

+λS2(g).

Thanks to the separated structure of this functional, a separated representation of g(t,E) can be sought
with the PGD method :

g(t,E) =
n

∑
i=1

Vi(t)Zi(E).

Finally, once g(t,E) has been obtained, the forces can be computed in real time by applying the parame-
tric version of Eq. (4), that is :

p(t) =
∫ t

0
u(t− τ)g(τ,E)dτ,

for any value of the parameter E, by simply evaluating the generalized inverse impulse response.
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4 Results

This section shows a brief example in order to illustrate application of the aforementioned method
to the structure depicted in Fig. 1. The young modulus and the mass density are taken E = 10000 and
ρ= 1, respectively. A proportional damping is considered. Displacements and rotations are null IN nodes
1 and 2. Both impulse responses, from direct and inverse problem respectively, are computed. Then, in

FIGURE 1 – Schematics of a beam structure considered in the example.

an online phase, a force F is applied on x direction on node 6, and displacements utest are computed. To
verify the procedure, the original force F is recovered by convolving utest with g(t). Note that both utest

and F are computed in real time. Results are shown in the Fig. 2.
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FIGURE 2 – Recovering original force

5 Conclusions

Parametric solutions have proved its strong points when dealing with real time problems. Pre-computing
the whole solution of a problem is clearly an advantage when the system parameters can change with
certain frequency. Recent developed model reduction method PGD allows to build a parametric solution
avoiding the curse of dimensionality. Impulse response is the function that links unit impulse forces with
caused displacements. By a simple convolution operation, it gives the response in displacements for a
known external applied force. Its computation is a direct problem, where several methods may be used to
calculate it. On the other hand, the impulse response that links known displacements with external forces
comes from the solution of an inverse problem, and regularization techniques have been applied to solve
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it. By computing generalized impulse responses, both direct and inverse, which its computation rests in
an offline phase, we are able to compute in real time forces and displacements in structures under elastic
behavior.
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