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Resume — This work presents a methodology for patient-specific finite element modeling which 
takes both individualized geometry and material properties of biological structures into consideration. 
In this study, the mesh is driven by personalized material knowledge which is extracted from advanced 
medical imaging. Additionally, a user-friendly program including image processing, material-driven 
meshing and material properties assignment, named C3M “Computed Material-driven Mesh Model”, 
has been developed to generate efficiently subject-specific FE models derived from medical images. 
This process is applied to generate a patient specific FE model of lumbar spine based on both MRI and 
CT images. 
Keywords — patient specific finite element model; material-driven meshing; medical images; lumbar 
spine 

1. Introduction 

Low back pain is a common health problem which impacts a large part of the population in 
industrialized countries. Over the years, numerical modeling has been widely studied to investigate the 
biomechanics of lumbar spine for strongly assisting clinicians in diagnosis and treatments of this 
spinal pathology. In recent years, there has been a growing interest in researching and developing 
patient specific computer modelling which has proven its ability to provide great promises for 
inferring realistic model of individual subject. However, still the specificity of these models is not 
fully described or is limited to patient geometry. In fact, few models consider appropriate material 
properties derived from tissue characterization obtained from medical images. Furthermore, patient 
specific models can be obtained with geometry and mechanical properties derived from CT, but few 
from MRI which is well-suited for examining soft tissues. Therefore, development of the high-fidelity, 
patient-specific finite element model of the lumbar spine still presents the challenge. In this context of 
patient-specific finite element modeling, mesh generation is a crucial issue which requires an accurate 
representation of the geometry with well-shaped and sized elements and a relevant distribution of 
materials.  

In the framework of patient-specific finite element modeling of the lumbar spine, there is lack of 
exploitation of both MRI and CT to derive the model which takes both personalized geometry and 
material into consideration simultaneously. Additionally, there is no fully integrated process for 
geometric modeling, material-driven mesh and material assignment of the spinal structures in which 
the mesh is driven by material properties from medical images. In fact, the purpose of this study is to 
provide solutions for this modeling challenge. 

Therefore, the objective of this work is to develop a new strategy to create patient specific finite 
element models by integrating material knowledge for driving the meshing process. An integrative 
modelling workflow, including an easy-to-implement segmentation method, a material-driven 
meshing process based on an efficient mesh generator and material properties assignment process is 
proposed to create high fidelity finite element models of the lumbar spine from both MRI and CT 
images.   
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2. Materials and methods 

2.1. Computational workflow 

An integrative modeling workflow including image processing, meshing, material properties 
assignment is developed (Figure 1). Each component of this workflow is described in the following 
subsections. 

	
Figure 1 – Modeling workflow 

2.2. Image processing based on material properties knowledge 

The aim of the first stage of the finite element model development is to define different regions in 
the tissues from medical images. In this process, a semi-automatic segmentation coupled with a 
threshold process based on material knowledge is developed to obtain multi-level masks which 
represent the heterogeneity of the material.  

In the first step of this process, the semi-auto segmentation is performed to extract the tissue’s 
boundary and output a set of binary masks. This step is based on two alternative methods: Canny 
method [1] and fast continuous max-flow approach [2]. The former technique is used due to its easy 
implementation while the latter technique is more complex and computationally expensive, but can 
efficiently provide more accurate results. 

The Canny method is implemented to find edges by looking for local maxima of the gradient of 
image associated with a Gaussian filter. There are two thresholds related to the Canny algorithm: a 
highest threshold of the gradient magnitude of the image for selecting strong edges, and a low 
threshold (i.e. 0.4*high threshold) for selecting weak edges which are connected to strong edges. Note 
that, in this study, the high threshold value is calculated by using the Otsu algorithm (Otsu 1979) 
which is a well-known method of choosing threshold value automatically. Additionally, the post-
processing is automatically performed to remove small objects with minimal number pixels criteria 
from binary image. Finally, labelled masks in binary are generated.  

The other alternative technique implementing in this step is new continuous max-flow algorithm 
which was developed by Yuan et al. (2010) for efficiently solving the continuous min-cut problems. 
The maximal flow problem is to find the largest amount of flow allowed to pass from the source s to 
the sink t without violating any capacity constraint.  It should be note that the source and sink related 
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to background and foreground is determined based on Otsu threshold. Therefore, there is no manual 
selection for the source and the sink in this case. Additionally, the auto-segmentation is also improved 
by considering the 3D pixel connectivity with 6-connected background neighbors in 3D view (axial, 
sagittal, coronal plane) to avoid or limit artifacts, such as holes.  

The second step of this process is multi-level mask generation.  Based on material property 
knowledge for inhomogeneous biological tissues, the appropriate threshold values are chosen to 
establish multi-level masks representing the multi-material regions of the tissue. The material property 
knowledge, for instance, can be derived from bone characterization for vertebrae [3, 4] or tissue-based 
data from advanced MRI protocols for IVDs [5, 6]. 

2.3. Material-driven mesh generation 

A specific material-driven meshing process is developed based on an open-source mesh generator 
Iso2mesh V1.7.9 2013 [7]. From multi-level 3D images, a multi-domain 3D mesh is directly generated 
using ‘vol2mesh’ utility of Iso2mesh with constrained Delaunay tetrahedralisation (CDT) extraction 
method. It should be highlighted that interfaces of multi-domain are defined by material knowledge 
via the multi-level mask.  

To estimate the shape quality of the material-driven meshed model, Joe-Liu index [8] is used. The 
index value closed to one indicates higher mesh quality (equilateral tetrahedron) and a value closed to 
0 means nearly degenerated element, flat or elongated.  

2.4. Material properties assignment 

The in vivo quantitative information of tissues which characterizes biomechanical behavior of the 
tissues can be extracted directly from medical images (CT, MRI) and then assigned to the models for 
FE analysis. 

Regarding the bone tissue, it is well known that its mechanical properties can be derived from CT 
images due to the high contrast between the bone tissue and the soft tissues around in CT images as 
well as the linear correlation between CT numbers and apparent density of biologic tissues. In the first 
step of material properties assignment, by using the numerical integration method [9], the material 
mapping is implemented to assign the average of CT numbers to relevant elements of the material-
driven volume mesh. The CT value assigned to each node is approximately equivalent to the CT value 
of the voxel enclosing that node.  

After that, depending on which region the element belongs to, relevant correlations established in 
literature study [3, 4] are adequately applied to convert the CT value of that element to density and 
elastic modulus values. This procedure can provide different material distribution for each mesh 
element which results in a good representation of the inhomogeneity, however, leads to the 
computational problems. In fact, the number of materials can be reduced by separating the whole 
range of material values in to material cards by a ΔE threshold. 

With respect to the soft tissues, like intervertebral disc (IVD), the same process is applied to assign 
material properties to mesh model. However, the biomechanical behaviour is derived from advanced 
Magnetic Resonance Imaging sequences such as T2 mapping, diffusion-weighted and diffusion tensor 
sequences [5, 6]. 
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2.5. A case study- Patient-specific finite element model of lumbar spine with material-
driven mesh derived from CT and MRI images 

2.5.1. Lumbar spine modeling derived from CT and conventional MRI data 

To test our developed modelling workflow, the finite element model of a whole lumbar spine is 
generated. The dataset consisting of 343 CT images and 19 sagittal T2-weighted MR images of a 
patient are obtained from the MYSPINE European project. The CT and MRI images have the voxel 
resolution of 0.607x0.607x1.25 mm3 and 0.7x0.7x3.0 mm3, respectively.  

The FE models of vertebrae are generated by implementing the integrative modeling process C3M. 
Accordingly, a multi-label dataset representing not only cortical bone, spongious bone but also facet 
joints and endplates is firstly obtained  by performing the image processing based on material 
knowledge derived from CT [3, 4]. After that, from this dataset, a multi-material mesh is generated by 
using Iso2mesh function. The same process is applied to generate a FE model of IVD. In this case, the 
multi-label dataset including both annulus fibrosus (AF) and nucleus pulposus (NP) is derived from 
the conventional MRI images. In order to facilitate the assembly of vertebrae and IVD, the MRI-based 
IVD mesh is non-rigidly aligned to an CT-based IVD mesh based on iterative closest point (ICP) 
algorithm. In order to test the quality of meshed models, the FE analysis is performed on model. 
Mooney-Rivlin hyperelastic material constants reported in [10] are used to model the mechanical 
behavior of the IVD. For the boundary conditions, the model is submitted to a finite element analysis 
with an axial compressive load of 1000 N on L1 with a distribution of 80% of load for the upper 
endplate, 10% of load for the left upper facet joint and 10% of load for the right upper facet joint. All 
the nodes from the lower endplate of the vertebra L5 are constrained in all directions. All the 
interfaces between endplates and between facet joints are defined as tied contacts. 

2.5.2. IVD modeling derived from advanced MRI data 

This subsection aims at developing the patient-specific model of IVD from advanced MRI data by 
using the proposed C3M software. In this work, the material knowledge of IVD is the quantitative 
information on NP and AF, such as T2 relaxation time, the apparent diffusion coefficient (ADC), 
which is derived from T2 mapping, diffusion-weighted and diffusion tensor MR imaging. 

Basically, the same process for vertebrae modeling, which is detailed in aforementioned subsection 
2.6.1, is applied for IVD modeling. Firstly, from the T2 weighted-MRI images, the outer of the IVD is 
defined and represented as binary masks by implementing semi-auto segmentation process in C3M 
software. Subsequently, multi-label masks representing the AF and 2 regions of NP are obtained based 
on material properties knowledge which is in this case tissue-based data from advanced MRI protocols 
[5]. In this step, the T2 mapping are used to derive the multi-level masks. The T2 values are mapped 
into the binary masks which define the outer of IVD. After that, two thresholds t1, t2 are chosen based 
on [5]   and applied to this T2 map of the segmented images in order to generate the multi-level masks 
which represent different regions in the IVD. After that, the multi-region mesh is generated from the 
multi –label dataset. And finally, biochemical properties quantified from advanced MRI protocols are 
assigned to the model. In this step, both T2 and ADC maps are used to characterize the material of 
IVD model. It should be noted that T2-mapping has been used to quantify the changes in water 
contents of disc composition through T2 relaxation time property. While ADC map provides a 
quantitative analysis of the motion (direction and magnitude) of proteoglycan and water molecules. In 
this study, the water content, glycosaminoglycans (GAGs) per (dry weight) are considered and 
deduced from following empirical linear regression [5, 6].   
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3. Results and discussions 

Results of the generation of patient-specific lumbar spine model are illustrated in Figure 2. 

 
Figure 2 - The generation of patient-specific lumbar spine model 

One can observe similarity between distribution of CT values (Figure 3a) on segmented CT images 

with that of cross section of 3D mesh material driven (Figure 3c). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 –Material distributions on segmented CT slices (a), material-driven meshes (b) and cross sections with 

Young’s modulus mapping (c) 

Non-rigid registration 

(a) (b) 

(c) 
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The FEA results are shown in Figure 4. Compared to the other studies in literature [10], the 
simulation outcomes are in the range of expected values. 

 

Figure 4 – FEA result of the lumbar spine without sacrum 

Figure 5 illustrates the results of material-driven mesh generation of IVD derived from T2 
mapping. 

 

 
Figure 5 –Material-driven mesh generation of IVD derived from T2 mapping 

Figure 6 illustrates the material-driven mesh derived from T2 map with the distribution of T2 
relaxation time visualized at the cross section of IVD. Then the distribution of biochemical properties 
derived from advanced MRI data such as water content and GAG/dry weight can be used from our 
work [5, 6]. 
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Figure 6. Distribution of T2 relaxation time visualized at the cross section of the IVD model. 

To the best of our knowledge, the proposed finite element model of the lumbar spine (vertebrae and 
IVD) is the first patient specific FE model with meshed model generated using material knowledge 
derived from CT and MRI images. The proposed model allows an accurate and straightforward 
assembly of vertebrae and IVDs considering both geometry and material properties reflecting patient-
specificity. Especially, the proposed IVD model  which is  is derived from T2 mapping takes both 
individualized geometry and materials into consideration. This model can be seen as the first IVD 
mesh model composed of 3 distinguished personalized regions including AF, outer and inner NP. 
Additionally, the patient-specific quantitative information on IVD, such as water content, GAGs can 
be included in this proposed model by means of T2 and ADC mapping. This can open the way for 
biomechanical modeling in daily life activities.  

This method presents a new approach for lumbar spine modelling and outerforms the general 
procedure used in literature. Indeed, instead of using different specific commercial software for 
different tasks of lumbar spine modeling, this study implements the proposed C3M software, which is 
an fully integrated process of geometry modeling, material-driven mesh, material properties 
assignment, in order to generate the model more straightforwardly. Moreover, unlike conventional 
approaches which needs to perform 3D geometry reconstruction before 3D mesh generation, the 
proposed approach can directly generate 3D mesh from medical images. In this study, Canny method 
is used due to its easy implementation while the continuous max-flow algorithm is more complex and 
computationally expensive, but can efficiently provide more accurate results. Concerning the meshing,   
Iso2mesh was selected because it is easy-to-use and its implementation is compatible with other 
components of our proposed workflow. In particular, Iso2mesh is capable of dealing with open-
surface problems and controlling mesh density. The benchmarking has been done and shows that  our 
software C3M is twice faster than commercial software, furthermore material distribution integration 
is automatically included in the models generated by C3M. Compared to statistical models, our 
software C3M is slower in term of the time processing but has more subject specific data including 
both geometry and material properties. 

4. Conclusions and perspectives 

This study presents a methodology for patient- specific finite element modelling which take both 
individualized geometry and material properties of biological structures into consideration. More 
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specifically, in this study, the mesh model is driven by personalized material knowledge which is 
extracted from advanced medical imaging. This approach opens a new direction to improve the 
meshing process using material knowledge derived from medical images. Perspective work relates to 
the application of the proposed method for a patient cohort.  
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