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ABSTRACT
The modelling of the vibroacoustic response of a periodically rib-stiffened cylindrical
multilayered shell is of great interest in numerous industrial applications, among which
submarine acoustics. An approach is proposed in this paper to couple an immersed
multilayered shell model with models of the axisymmetric stiffeners. The multilayered shell
may be modeled either with the transfer matrix method (TMM) or with the direct global
method (DGM). Both methods are spectral: displacements and stress are obtained in the
wavenumber domain before reconstructing the solution in the physical domain. This allows
us representing different types of layers: isotropic, orthotropic, fluid, etc. The stiffeners are
coupled to the multilayered shell at the internal radius of the latter. They are introduced in
the formulation by dynamic circumferential admittances which are estimated by classic finite
element methods. To illustrate the method we’ll present different results as much for
validation as for comparison with the unstiffened shell.
Keywords: Sound, Insulation, Transmission

1. INTRODUCTION

In military naval industry, designing submarines antennas is of great complexity, especially the
flank antennas for which to determine an accurate signal response is of crucial interest. A reliable
configuration for modeling such a problem is to consider a cylindrical multilayered structure rein-
forced at its inner radius by a periodic stiffeners array, and excited by an incident plane wave at its
outer radius.
This article aims to develop an analytical method for the coupling of the stiffeners to the multilayered
structure and to reconstruct the pressure field at the antenna radius via substructuring approach.
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Many spectral methods already cover the problem of modeling the unribbed structure excited by a
plane wave [1–5], and always rely on the same principle: first one has to solve the problem in each
layer of the structure, then one has to find a way of assembly the whole system in order to represent
the multilayered structure behaviour. Two of them are investigated in this article: Helmholtz de-
composition [1] coupled to direct global matrix [2]; numerical integration of state-space equation
coupled to transfer matrix method [3–5]. First method is limited to isotropic layers while solid
layers can be chosen either orthotropic in the second. However, the latter suffers great instability
when considering finite fluid layers.
The coupling with the stiffeners array must adapt to either modeling method described above.
The substructuring approach used to solve the full problem is detailed in Sec. 2. In Sec. 3 and Sec.
4 we calculate the response of the subsystems.
The coupling between both subsystems is detailed in Sec. 5.
Finally we present validation results for the transfer matrix method in Sec. 6.

2. PRESENTATION OF THE PROBLEM

2.1. Global system

To switch between physical and spectral domains, the Fourier transform (1) is defined below.

F (r, φ, z) =
1

2π

+∞∑
−∞

einφ
∫ +∞

−∞
F̃ (r, n, α)eiαzdα

F̃ (r, n, α) =
1

2π

∫ 2π

0

e−inφ
∫ +∞

−∞
F (r, φ, z)e−iαzdzdφ

(1)

Let us consider an infinite multilayered cylindrical structure (MCS) centered on the z axis as
shown in Fig.1. The first layer is assumed to be a steel shell, and the other layers are various coatings
stacked upon it. The structure is reinforced by a periodic stiffeners array (PSA) of equal spacing d,
which connects to the steel shell at its inner radius r0. It is excited by a unit incident plane wave at
the outer radius rN , its polar angle is noted φi.

Figure 1: Multilayered cylindrical shell (MCS) reinforced by periodic stiffeners array (PSA)

Layers are numbered from 1 to N starting from the steel shell. 0 and N + 1 are respectively the
internal cavity filled with air and the semi-infinite exterior medium filled by water.
Displacements and stresses in any layer j are noteduj = (ujz ujφ ujr)

T andσj = (σj,rz σj,rφ σj,rr)
T .
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A punctual sensor is placed into the external fluid, at a radius rA.
To determine the acoustic radiation of such structure at the sensor location, a classic substructuring
approach is used and detailed below.

2.2. Substructuring approach and superposition principle

A substructuring approach is chosen. The reinforced multilayered global structure is split into two
separate subsystems, the unribbed MCS (SS1) and the PSA (SS2) [8, 9]. This is represented in Fig.
2:

(a) Global system (b) Loads applied on SS1 (c) Loads applied on SS2

Figure 2: Substructuring approach and superposition principle

Applying the superposition principle on subsystem SS1 entails the equivalence between deter-
mining its response to both external and internal loads and getting the one from the reinforced
fluid-loaded MCS global system to a plane wave excitation.

Besides, the principle of reciprocal actions states that load σINT
1,MCS applied by subsystem SS2 on

subsystem SS1 at coupling attachment points is the opposite of the one exerted on subsystem SS2
by subsystem SS1.
From fluid-loaded subsystem SS1, plane wave excitation is an external load, while reaction of the
PSA is an internal load.

Then displacement and stress fields at the inner radius, respectively u1 and σ1, as well as stress
field at the outer radius σN can be written as follows:

u1(r0, n, α) = uEXT
1,MCS(r0, n, α) + uINT

1,MCS(r0, n, α) (2)
σ1(r0, n, α) = σINT

1,MCS(r0, n, α) + σfli(r0, n, α) (3)
σN(rN , n, α) = σEXT

N,MCS(rN , n, α) + σfle(rN , n, α) (4)

• When external load is applied on SS1 at its outer radius rN , stress field generated at the outer
radius is noted σEXT

N,MCS and no external load is applied at the inner radius.
Displacement field generated at the inner radius is noted uEXT

1,MCS (see Fig. 2(b)).

• When internal load is applied on SS1, displacement field at the inner radius is noted uINT
1,MCS

while the surface reaction of the PSA on the MCS is noted σINT
1,MCS.

No internal load is applied at the outer radius (see Fig. 2(c)).

• When external and internal loads apply on SS1, air in the cavity and water surrounding the
MCS apply reaction stresses at inner and outer radius, noted respectively σfli and σfle.
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3. RESPONSE OF SUBSYSTEM SS1

In this section we describe how to get the response of the fluid-loaded subsystem SS1 for each
spectral method retained for the modeling of the MCS. We explicit external load as fluid reaction
stresses in this section, and the internal load is explained in the next section.

3.1. External load and fluid reaction stresses

External load applied on SS1 is the incident plane wave excitation at the outer radius, to which
induced loadings of external and internal fluids must be added. The incident wavenumber is noted
αi0.
Such a scattering problem is commonly dealt with by decomposing the total spectral pressure in the
water as the sum of the blocked pressure pb and the scattered pressure pe [10]. With uN being the
displacement field at the outer radius, these are explicited in (5) below:

pT (r, n, α) = pb(r, n, α) + pe(r, n, α) (5)
pb(r, n, α) = 2π(−i)ne−inφi

[
Jn(γ|αi0 r)−

J ′n(γ|αi0 rN)

H ′n(γ|αi0 rN)
Hn(γ|αi0 r)

]
δ(α− αi0)

pe(r, n, α) = Zfle(r, n, α)uN(rN , n, α) · er, Zfle(r, n, α) =
ρeω

2Hn(γ(α)r)

γ(α)H ′n(γ(α)rN)

The compression velocity in the external fluid is ce, and γ(α) =
√
k2 − α2 with k =

ω

ce
.

Stress field σEXT
N,MCS defined at the outer radius in (4) then becomes explicit:

σN(rN , n, α) = σEXT
N,MCS(rN , n, α) + σfle(rN , n, α)

with:

{
σEXT
N,MCS(rN , n, α) = −pb(rN , n, α)er

σfle(rN , n, α) = −pe(rN , n, α)er

(6)

The radiated spectral pressure in the internal fluid is given below [1]:

p1i(r0, n, α) = Zfli(r0, n, α)u1(r0, n, α) · er, Zfli(r, n, α) =
ρiω

2Jn(γi(α)r)

γi(α)J ′n(γi(α)r0)
(7)

The compression waves velocity in the internal fluid is ci, and γi(α) =
√
k2i − α2 with ki =

ω

ci
.

Stress field induced at the inner radius by the internal fluid loading is given below:

σfli(r0, n, α) = p1i(r0, n, α)er (8)
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3.2. Admittance matrices at the SS1-SS2 interface

The coupling between both subsystems SS1 and SS2 requires to introduce two admittance matrices
Ra(n, α) and Rb(n, α), which take into account fluid loadings and are defined below:

uEXT
1,MCS(r0, n, α) = Ra(n, α)σEXT

N,MCS(rN , n, α) (9)
uINT

1,MCS(r0, n, α) = Rb(n, α)σINT
1,MCS(r0, n, α) (10)

Admittance matrixRa connects displacement field uEXT
1,MCS of the steel shell at the coupling interface

with the plane wave excitation load σEXT
N,MCS applied at the outer radius.

Admittance matrixRb connects displacement field uINT
1,MCS of the steel shell at the coupling interface

with internal load applied at the inner radius σINT
1,MCS.

Eqn. 2 can then be detailed as follows:

u1(r0, n, α) = Ra(n, α)σEXT
N,MCS(rN , n, α) +Rb(n, α)σINT

1,MCS(r0, n, α) (11)

3.3. Transfer matrix method (TMM)

3.3.1. Principle

For more details on the TMM, one can refer to [6].
Here we only introduce the relation one can get between the hybrid state vector evaluated at both
ends of the MCS:(

uN
σN

)
(rN , n, α) =

(
TuNu1 TuNσ1

TσNu1 TσNσ1

)
(n, α)

(
u1

σ1

)
(r0, n, α) (12)

Submatrices in system (12) constitute the transfer matrix of the whole structure, established by
multiplying the different transfer matrices of elementary layers in the MCS. Developments for
getting the global transfer matrix are available in [6].

3.3.2. Displacement field at the inner radius

Closing the matrix system (12) with (6) and (8) leads to explicit expressions for admittance matrices
Ra and Rb:

Ra(n, α) = X−1(n, α)

Rb(n, α) = (RaY )(n, α)

X(n, α) = −
[
Tfle|rNTuNu1 + TσNu1 +

(
TσNσ1 + Tfle|rNTuNσ1

)
Tfli|r0

]
(n, α)

Y (n, α) =
[
TσNσ1 + Tfle|rNTuNσ1

]
(n, α)

(13)

with Tfli and Tfle being derived from fluid impedances Zfli and Zfle:{
Tfli(r, n, α) = Zfli(r, n, α)er ⊗ er
Tfle(r, n, α) = Zfle(r, n, α)er ⊗ er

(14)
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3.3.3. Pressure field at the sensor radius

Once the internal load is made explicit, one can reconstruct the displacement field in the last coating
at the outer radius uN(rN , n, α) by using the first equation of the matrix system (12):

uN(rN , n, α) = TuNu1(n, α)u1(r0, n, α) + TuNσ1(n, α)σ1(r0, n, α) (15)

The pressure field can then be obtained with the relation (5).

3.4. Direct global method (DGM)

3.4.1. Principle

The DGM relies on a Helmholtz decomposition of displacement and stress fields inside each
elementary layer of the MCS [1, 2]. Displacements and stresses in a layer are connected to the
Helmholtz decomposition coefficients with elementary matrices. These are then used to assembly
a global matrix by expressing the continuity conditions between layers. Fluid and solid layers are
assumed respectively perfect and isotropic.

More details on the global matrix method can be found in [6].

3.4.2. Displacement field at the inner radius

Let us consider mechanical point excitations F a
m and F b

m applied respectively at outer and inner
radius r0 and rN chosen unitary in spectral domain:

F a
m(rN , n, α) = 1 · em
F b
m(r0, n, α) = 1 · em

(16)

with em being any of the three cylindrical base vectors ez, eφ ou er.
Displacement fields generated at the inner radius for each of the excitations described in (16) are:

(em = ez ⇐⇒ F a
z /F

b
z imposed

)
 u1|Faz /u1|F bz

(em = eφ ⇐⇒ F a
φ/F

b
φ imposed

)
 u1|Faφ /u1|F bφ

(em = er ⇐⇒ F a
r /F

b
r imposed

)
 u1|Far /u1|F br

(17)

Each column of admittancematricesRa andRb are identical to the displacement fields introduced
in (17) for excitations have been chosen unitary:

Ra(n, α) =

(
u1|Faz

∣∣∣∣∣u1|Faφ

∣∣∣∣∣u1|Far

)

Rb(n, α) =

(
u1|F bz

∣∣∣∣∣u1|F bφ

∣∣∣∣∣u1|F br

) (18)

Each displacement field requires a DGM calculation, for which the mechanical excitation of (16)
changes.
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3.4.3. Pressure field at the sensor radius

Once the PSA reaction load σINT
1,MCS(r0, n, α) is made explicit (see next section), one last DGM

calculation enables to compute the response for the global system.
By reconstructing the displacement field in the last coating at the outer radius uN(rN , n, α), one
can get the spectral total pressure at the sensor radius located in the semi-infinite fluid medium.

4. RESPONSE OF SUBSYSTEM SS2

In this section we explain how to model the response of subsystem SS2 to an excitation applied at
the shell/ribs interface Detail on how each stiffener of the PSA is modeled is given below.

4.1. Finite element modeling of the stiffeners

Each of the axisymmetrical stiffeners of the PSA is modeled by shell elements, which implies taking
into account 4 degrees of freedom at each node of the mesh represented in Fig. 3 :

(a) Rib geometry (b) Shell elements modeling

Figure 3: Modeling of any stiffener

At cylinder attachment points (r0, z = qd), one can define for any stiffener the dynamic stiffness
matrix [B(n)] connecting degrees of freedom and loads by:

[B(n)]


uPSAz

uPSAφ

uPSAr

ΨPSA
φ

 (r0, n, z = qd) =


F PSA
z

F PSA
φ

F PSA
r

MPSA
φ

 (r0, n, z = qd) (19)

where loads in the right hand side of (19) are series harmonics of forces per unit length along
the circumferential direction

(
F PSA
z , F PSA

φ , F PSA
r ,MPSA

φ

)T
(r0, φ, z), acting on the PSA at cylinder

attachment points.
We specify that air loading on the stiffeners is neglected when calculating the matrices [B(n)].
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5. COUPLING SUBSYSTEMS SS1 AND SS2

5.1. Extending the MCS fields at the inner radius

The PSA introduces at coupling attachment points a rotation around the cicumferential axis, whose
angle is noted ΨPSA

φ , and verifies the relationship:

ΨPSA
φ (r0, φ, z) =

∂uPSAr

∂z
(r0, φ, z) (20)

Besides, the meridional moment per surface unit MPSA
φ introduced by the rotation angle is

assumed to be equivalent to the following radial excitation force [1]:

F PSA
r (r0, φ, z) = −

∂MPSA
φ

∂z
(r0, φ, z) (21)

Therefore displacements and stresses at the inner radius must be extended to this new degree of
freedom to achieve the coupling between subsystems SS1 and SS2.

Besides, admittance matrices defined in (9)-(10) are extended as well using (20)-(21) [1]:

M(n, α) =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 (22)

with:


M14(n, α) = −iαM13(n, α), M41(n, α) = iαM31(n, α)

M24(n, α) = −iαM23(n, α), M42(n, α) = iαM32(n, α)

M34(n, α) = −iαM33(n, α), M43(n, α) = iαM33(n, α)

M44(n, α) = α2M33(n, α)

with matrixM being either Ra or Rb.
From now on, we consider the displacement and stress fields at the inner radius extended to the
fourth degree of freedom, as well as for the admittance matrices.

5.2. Reaction load from subsystem SS2 on subsystem SS1

Internal reaction load applied by subsystem SS2 on subsystem SS1 is found by applying the principle
of reciprocal actions:

σINT
1,MCS(r0, n, z) = −

∞∑
q=−∞


F PSA
z

F PSA
φ

F PSA
r

MPSA
φ

 (r0, n, z = qd)δ(z − qd)

= − [B(n)]
∞∑

q=−∞

u1(r0, n, z = qd)δ(z − qd)

(23)

The loads per unit length are converted into a reaction force per surface unit for the delta function
has dimension [m−1]. Internal load σINT

1,MCS is then homogeneous to a surface pressure.
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Fourier transform along the axial direction and use of the Poisson relation entails:

σINT
1,MCS(r0, n, α) = −1

d
[B(n)]

∞∑
q=−∞

u1

(
r0, n, α +

2πq

d

)
(24)

Replacing (24) into (11) leads to:

u1(r0, n, α) = Ra(n, α)σEXT
N,MCS(rN , n, α)− 1

d
Rb(n, α) [B(n)]

∞∑
q=−∞

u1

(
r0, n, α +

2πq

d

)
(25)

Therefore one can determine the quantity
∑∞

q=−∞ u1

(
r0, n, α + 2πq

d

)
and establish the following

expression for the PSA reaction pressure:

σINT
1,MCS(r0, n, α) = −1

d
[B(n)]

[
Id +

1

d

{ ∞∑
q=−∞

Rb

(
n, α +

2πq

d

)}
[B(n)]

]−1
×

∞∑
q=−∞

Ra(n, α +
2πq

d
)σEXT

N,MCS

(
rN , n, α +

2πq

d

) (26)

Then, the displacement field at the inner radius is fully known by introducing (26) into (11), and
one can reconstruct the pressure field for either MCS modeling method, using 3.3.3. or 3.4.3..

6. VALIDATION RESULTS FOR THE TRANSFER MATRIX METHOD

In this section we present preliminary results for the full problem computed with the transfer matrix
method for modeling the MCS, in the case of an uncoated steel shell.

6.1. Numerical setup

A reduced steel shell ribbed with a periodic stiffeners array has been investigated for numerical
computations
Stiffeners are assumed to be of rectangular section. Dimensions of steel shell and PSA are given in
Table 1, and are identical to those used in [7].
The dynamic stiffness matrices [B(n)] for any stiffener are precalculated with a finite element
computation, in which the three-dimensional deformation of the section is taken into account.
Last row of Table 1 reminds that the infinite series involved in 26 are truncated numerically into
finite sums covering the range J−Q;QK.

For vibratory results on displacements, the sensor is located either at the inner radius r0 or the
outer radius rN . For the results on the acoustic pressure, the sensor is located in the semi-infinite
medium at a radius rA = 6.04 cm. Axial position zA along the shell axis and polar angle φA are
both variable. The incident polar angle of the plane wave is always φi = 0.

Following results are compared with an already validated model where a thin shell assumption
is made to model the shell.
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Table 1: : Numerical setup

Properties Air Steel Water Stiffener
Density (kg.m−3) 1.2 (ρi) 7900 (ρs) 1000 (ρe)

Sound velocity (m.s−1) 340 (ci) 1470 (ce)
Longitudinal velocity (m.s−1) 5790 (cL)
Transversal velocity (m.s−1) 3100 (cT )

Inner radius (cm) 4.9 (r0)
Outer radius (cm) 5.0 (rN )

Stiffeners network period (cm) 1.5 (d)
Height (cm) 0.5 (h)
Width (cm) 0.1

Number of stiffeners Q 10

6.2. Results for displacement fields under normal incidence

First we present vibratory results on the normal displacement field at both inner and outer radius.
Comparison to the thin shell model is made with the normal displacement field evaluated at the
mid-surface.

6.2.1. Frequency response

Fig. 4 represents the normal displacements as a function of the frequency.
The sensor is placed on a stiffener when zA = 0, and halfway between two consecutive stiffeners
when zA = d

2
. The observation polar angle is φA = 0.

(a) zA = 0, φA = 0 (b) zA =
d

2
, φA = 0

Figure 4: Normal displacement field at inner and outer radius

Both displacement fields are very similar, and one can notice good correlation with the thin shell
model at low regime.
One can underline that the correlation of the two responses with the thin shell model fades away
with increasing frequency, because the latter is valid only at low frequency.
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6.2.2. Spatial distribution of normal displacements

In Fig. 5 below we present for a given frequency the normal displacements at both inner and outer
radius on the interval zA ∈ J−d, dK and for φA ∈ J−π, πK.
At low frequencies, good correlation is observed between displacements at the inner or outer radius
and those calculated on the mid-surface with the thin shell model, everywhere on the surface of the
steel shell.
At higher frequencies, large differences can be observed on Fig. 4(a) and Fig. 4(b) between the
developed method and the thin shell model. Below is represented for f = 133.1 kHz the spatial
variation of displacement field at both inner and outer radius and at the mid-surface:

(a) inner radius (b) outer radius (c) mid-surface (thin shell model)

Figure 5: Normal displacement field at f = 133.1 kHz

Spatial displacement field at the mid-surface of the equivalent thin shell show large differences
with the implemented method.

6.3. Results for acoustic pressure under normal incidence

Now we present acoustic results on the total pressure field evaluated at the sensor radius located in
the water, in the case of normal incidence. Comparison to the thin shell model is done again.

In Fig. 6 below are shown two responses according to the frequency, for the same two sensor
axial and polar positions considered in Fig. 4:

(a) zA = 0, φA = 0 (b) zA =
d

2
, φA = 0

Figure 6: Acoustic total pressure field at rA = 6.04 cm
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One can observe the same behaviour than for the normal displacement. Good correlation with
the thin shell model is aknowledged at low frequency, then the limitations of the shin shell model
induce differences between the responses.

7. CONCLUSION

In this article, we developed a formalism to model cylindrical multilayered ribbed shells. The
developed formalism is adaptable to both direct global method or transfer matrix method which
shall be retained for modeling the multilayered structure. The preliminary validations exposed in
this article shall be followed with much deeper investigation, in particular a cross validation between
the direct global method and the transfer matrix method, as well as a comparison between these last
two with a finite element method.
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