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ABSTRACT
The modelling of the vibroacoustic response of a periodically rib-stiffened cylindrical multilayered shell is
of great interest in numerous industrial applications, among which submarine acoustics. An approach is
proposed in this paper to couple an immersed multilayered shell model with models of the axisymmetric
stiffeners. The multilayered shell may be modeled either with the transfer matrix method (TMM) or with
the direct global method (DGM). Both methods are spectral: displacements and stress are obtained in the
wavenumber domain before reconstructing the solution in the physical domain. This allows us representing
different types of layers: isotropic, orthotropic, fluid, etc. The stiffeners are coupled to the multilayered
shell at the internal radius of the latter. They are introduced in the formulation by dynamic circumferential
admittances which are estimated by classic finite element methods. To illustrate the method we’ll present
different results as much for validation as for comparison with the unstiffened shell.

Keywords: Sound, Insulation, Transmission

1. INTRODUCTION

In military naval industry, designing submarines antennas can be of great complexity, especially the flank
antennas for which to determine an accurate signal response is of crucial interest. A reliable configuration
for modeling such a problem is to consider a cylindrical multilayered structure stiffened at its inner radius
by a periodic network of stiffeners, and excited by an incident plane wave at its outer radius. The goal of
this article is to develop an analytical method for the coupling of the stiffeners to the multilayered structure
for reconstructing the pressure field at the antenna radius. Many spectral methods already cover the problem
of modeling the same unribbed structure excited by a plane wave [1–5], and always remain on the same
principle: first one has to solve the problem in each layer of the structure, then to find a way of assembly the
whole system in order to represent the multilayered structure behaviour. Two of them retained our attention
in this article: one is the direct global method, inspired from [1, 2] and limited to isotropic solid layers or fluid
layers and use a Helmholtz decomposition then assembles the system with a global matrix; the other is the
transfer matrix method, inspired from [3–5] and establishes a relation between the strain-displacement state
vector at both ends of an elementary layer. This enables to propagate the vector state from an end to an other
of the multilayered structure, the method is adapted to handle both orthotropic or isotropic layers, but suffers
instability when introducing intermediate fluid layers. Therefore, the formalism retained for the coupling
with the stiffeners shall adapt to either modeling method retained for describing the unribbed problem. We
present briefly in Sec. 2 the full problem to be solved, then we introduce in Sec. 3 the developed formalism
on how to couple the stiffeners to the unribbed shell. We highlight quantities one should compute to achieve
the calculation of the pressure field at the sensor radius when the shell is coupled to the stiffeners. Then we
detail in Sec. 4 the way of getting these quantities for each of both methods retained for the modeling of the
unribbed multilayered shell. Finally we’ll present results for each method in Sec. 5.

2. PRESENTATION OF THE PROBLEM

We consider a multilayered cylindrical structure ribbed by a network of equally spaced stiffeners of a distance
d, as represented on Fig. 1:
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Figure 1: Multilayered cylindrical shell

It is supposed axisymmetric and of infinite length along its axis, which justifies the Fourier transform (1)
used for switching from either the physical domain or the spectral domain:

F (r, φ, z) =
1

2π

+∞∑
−∞

einφ
∫ +∞

−∞
F̃ (r, n, α)eiαzdα

F̃ (r, n, α) =
1

2π

∫ 2π

0

e−inφ
∫ +∞

−∞
F (r, φ, z)e−iαzdzdφ

(1)

The various layers are numbered from 1 being the steel shell to N being the last coating, and with 0 and
N + 1 being respectively the air filling the internal cavity and the water occupying the semi-infinite exterior
domain.
The stiffeners are connected at the inner radius of the structure, equally spaced along its axis with a distance
d.
The sensor is supposed to be punctual and placed into the external fluid, at a radius rA. The multilayered
structure is therefore subject to several excitations: the fluid loadings, the stress applied by the stiffeners
network at the inner radius r0, and the plane wave exciting its outer radius rN . In these conditions, assuming
the polar angle of the incident unit plane wave to be φi, αi0 its wavenumber and ce the compression waves
velocity in the external fluid, the pressure field is known to be of the form:

pT (r, n, α) = pb(r, n, α) + pe(r, n, α) (2)
pb(r, n, α) = 2π(−i)ne−inφi

[
Jn(γ|αi0 r)−

J ′n(γ|αi0 rN)

H ′n(γ|αi0 rN)
Hn(γ|αi0 r)

]
δ|αi0 (α)

pe(r, n, α) = Zfle(r, n)uN(rN , n, α) · er

with δ|αi0 (α) = δ(α− αi0) being the Dirac function shifted around the incident wavenumber αi0.

The external fluid impedance is Zfle(r, n) =
ρeω

2Hn(γ(αi0)r)

γ(αi0)H
′
n(γ(αi0)rN)

with γ(α) =
√
k2 − α2 and k =

ω

ce
.

It is then necessary to determine the displacements field at the outer radius to reconstruct the pressure field at
the sensor radius. Concerning the stress field at the outer radius, one can deduce from (2):

σN(rN , n, α) = σN,PW(rN , n, α) + σfle(rN , n, α)

with:

{
σN,PW(rN , n, α) = −pb(rN , n, α)er

σfle(rN , n, α) = −pe(rN , n, α)er

(3)

At the inner radius we have:

σ1(r0, n, α) = σfli(r0, n, α) + σ1r(r0, n, α) (4)
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The stress field due to the internal fluid loading is
σfli(r0, n, α) = p1i(r0, n, α)er = Zfli(r0, n, α) (u1(r0, n, α) · er) er.

The internal fluid impedance is Zfli(r, n, α) =
ρiω

2Jn(γi(α)r)

γi(α)J ′n(γi(α)r0)
with γi(α) =

√
k2i − α2 and ki =

ω

ci
The stress field σ1r is due to the periodic stiffeners network.

3. CALCULUS METHOD OF THE STRESS AND DISPLACEMENTS AT THE IN-
NER RADIUS

We detail in this section a way of computing the displacements u1(r0, n, α) at the inner radius when the
multilayered shell is coupled to the stiffeners and is excited by the plane wave. The pressure at the sensor
position will be deduced from these displacements in a last step of the calculation.

3.1 Superposition principle

To determine the displacements induced at the inner radius u1(r0, n, α), the linearity of the system allows to
break down fhe full problem of the multilayered structure into two sub-problems, as shown in Fig. 2:

• the unribbed free shell excited by the plane wave at its outer radius (see Fig. 2(b))
The displacements field generated at the inner radius is noted u1,PW(r0, n, α) .

• the stiffened shell at its inner radius when no other excitation applies other than the fluid loadings (see
Fig. 2(c)).
The displacements field generated at the inner radius by the periodic stiffeners network is noted
u1r(r0, n, α).

(a) Full problem (b) Plane wave excitation (c) stiffeners network excitation

Figure 2: Superposition principle

One can then write the following equation:

u1(r0, n, α) = u1,PW(r0, n, α) + u1r(r0, n, α) (5)

3.2 Admittance matrix and equivalent plane wave stress at the inner radius

In this approach, one need to compute two specific quantities in order to finalize the calculation.
First, for connecting the displacements and stress fields at the air-steel interface, one must introduce the
admittance matrix R(n, α) of the fluid-loaded multilayered shell defined at the inner radius as follows:

u1(r0, n, α) = R(n, α)σ?1(r0, n, α) (6)

where σ?1(r0, n, α) is the stress field generated by the different external constraints applied at the inner radius
other than the internal fluid loading. One can underline that the admittance matrix takes into account both
external and internal fluid loads.
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Knowing this admittance matrix R(n, α), one can immediately get the displacement of the shell at the inner
radius due to the stiffeners stress field:

u1r(r0, n, α) = R(n, α)σ1r(r0, n, α) (7)

From the displacement field generated at the inner radius by the plane wave excitation at the outer radius
in the sub-problem 2(b), one can deduce the equivalent plane wave stress field σ1,PWeq(r0, n, α) at the inner
radius such that:

σ1,PWeq(r0, n, α) = R−1(n, α)u1,PW(r0, n, α) (8)

Therefore, using Eq. (6) and (7), Eq. (5) can be rewritten:

u1(r0, n, α) = R(n, α) [σ1,PWeq(r0, n, α) + σ1r(r0, n, α)] (9)

At this stage of the calculation the stiffeners network contribution to the stress field remains to be deter-
mined, which is the subject of the following part 3.3.
Then we’ll explain on how to get the admittance matrix and the equivalent plane wave stress for each model-
ing method of the multilayered structure in 4.

3.3 Calculus of the stiffeners contribution

3.3.1 Finite element modeling of the stiffeners

The choice was made to model the axisymetrical stiffeners of the network by shell elements, which entails
the taking into account of 4 degrees of freedom at each node of the mesh represented in Fig. 3 :

(a) Rib geometry (b) Shell elements modeling

Figure 3: Modeling of any stiffener

The fourth degree of freedom introduced is the rotation angle around the circonferential axis, which
verifies the relationship:

Ψφ(r, φ, z) =
∂ur
∂z

(r, φ, z) (10)

Besides, the meridional moment per surface unitMφ introduced by the rotation angle is assumed to verify:

Mφ(r, φ, z) =
∂σrr
∂z

(r, φ, z) (11)

Furthermore, one can define for any stiffener the dynamic stiffness matrix [B(n)] which connects these
degrees of freedom and the forces this stiffener suffers at the nodes in contact with the steel shell at the inner
radius, which are the cylinder attachments points (r0, z = qd).
By applying the principle of reciprocal actions, one can establish a relationship between the displacements at
the air-steel interface and the stress undergone by the steel shell at the inner radius:

[B(n)]


uz1
uφ1
ur1
Ψ1

 (r0, n, z = qd) = −


σ1rz

σ1rφ

σ1rr

M1φ

 (r0, n, z = qd) (12)
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One can observe from Equation (12) that displacements and stress at the inner radius shall be extended to
take into account the angle of rotation and its induced meridional moment:

u1 = (uz1, uφ1, ur1)
T → u1 = (uz1, uφ1, ur1,Ψ1)

T

σ1r = (σ1rz, σ1rφ, σ1rr)
T → σ1r = (σ1rz, σ1rφ, σ1rr,M1φ)

T

σ1,PWeq = (0, 0, σ1,PWeq · er)T → σ1,PWeq = (0, 0, σ1,PWeq · er, 0)
T

(13)

Therefore, extending the theoretical stress field σ?1 involved in (6) into σ?1 = σ1,PWeq + σ1r and using
(10)-(11) enables to extend as well the admittance matrix defined before:

R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

σ1r(r0, n, α) = u1r(r0, n, α) (14)

avec:


R14(n, α) = −iαR13(n, α), R41(n, α) = iαR31(n, α)

R24(n, α) = −iαR23(n, α), R42(n, α) = iαR32(n, α)

R34(n, α) = −iαR33(n, α), R43(n, α) = iαR33(n, α)

R44(n, α) = α2R33(n, α)

From now on, the extension to the rotation angle is considered to be done at the inner radius for the
displacements and stress fields, as well as for the admittance matrix, and we omit the bar symbol over the
fields letters.

3.3.2 Stress field applied by the stiffeners network

Once this extent has been done, one can define the stress field applied by the periodic stiffeners network using
(12):

σ1r(r0, n, z) =
∞∑

q=−∞

σ1r(r0, n, z = qd)δ(z − qd)

= − [B(n)]
∞∑

q=−∞

u1(r0, n, z = qd)δ(z − qd)

(15)

One can therefore establish the expression for the stress applied by the stiffeners network in the spectral
domain, after applying a Poisson relation:

σ1r(r0, n, α) = −1

d
[B(n)]

∞∑
q=−∞

u1

(
r0, n, α+

2πq

d

)
(16)

Using (9) and (16) leads to:

u1(r0, n, α) = R(n, α)σ1,PWeq(r0, n, α)− 1

d
R(n, α) [B(n)]

∞∑
q=−∞

u1

(
r0, n, α+

2πq

d

)
(17)

Therefore it is possible to determine the sum of the displacements
∑∞

q=−∞ u1

(
r0, n, α+ 2πq

d

)
and es-

tablish an explicit expression for the periodic stiffeners network contribution of stress:

σ1r(r0, n, α) = −1

d
[B(n)]

[
Id +

1

d

{ ∞∑
q=−∞

R

(
n, α+

2πq

d

)}
[B(n)]

]−1
×

∞∑
q=−∞

R(n, α)σ1,PWeq

(
r0, n, α+

2πq

d

) (18)

Finally, the displacement field at the inner radius is given by introducing (18) in (9).
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4. SPECTRAL METHODS FOR MODELING THE MULTILAYERED STRUCTURE
RESPONSE APPLIED TO THE COUPLING

We detail in this section how to adapt two spectral methods to the established formalism for coupling the
multilayered structure to the periodic stiffeners network. In each method we shall present the main princi-
ple, how to get the admittance matrix and the equivalent plane wave at the inner radius, and finally how to
reconstruct the pressure field at the sensor radius.

4.1 Direct global method

4.1.1 Principle of the DGM

The direct global method relies on a Helmholtz decomposition of the displacements and stress fields inside
each elementary layer of the multilayered structure. The elementary matrices connecting the displacements
and stress to the coefficients of the Helmholtz decomposition are constructed under the assumption that:

• for a fluid layer, the acoustic pressure is solution of the Helmholtz equation

• for a solid layer, the displacements field is decomposed in a sum of scalar and vector potentials solu-
tions of the Helmholtz equation [1, 2].

Therefore, if we note F and B respectively a fluid and solid matrix of an arbitrary layer we can write:

•Fluid layer:

(
ur(r, n, α)

σrr(r, n, α)

)
= F (r, n, α)

(
A1

A2

)
(n, α)

(19)

•Solid layer:



ur(r, n, α)

uφ(r, n, α)

uz(r, n, α)

σrr(r, n, α)

σrφ(r, n, α)

σrz(r, n, α)


= B(r, n, α)



A1

A2

A3

A4

A5

A6


(n, α)

The coefficients of the elementary matrices can be found in [1], then we use it to express the conditions of
continuity between layers and to assembly the global matrix involved in the system below describing the
multilayered structure:

Z(n, α){X}(n, α) = E(n, α) (20)

whereZ(n, α) is the global matrix of the system, invariant from the excitation chosen, which is characterized
by the excitation vector E(n, α). {X}(n, α) contains the elementary coefficients of each layer, and follows
the shape:

{X}(n, α) =

(
A0

1 A0
2

∣∣∣∣A1
1 · · ·A1

6

∣∣∣∣ · · · ∣∣∣∣AN1 · · ·AN6 ∣∣∣∣AN+1
1 AN+1

2

)T
(n, α) (21)

More details on the global matrix method can be found in [7].

4.1.2 Obtaining the admittance matrix and the equivalent plane wave stress

The direct global method allows to reconstruct the displacements field in the steel shell at the inner radius
using the steel solid matrix evaluated at the same radius:

u1(r0, n, α) = B1
|r0(1 : 3, :){X}(3 : 8, :) (22)

Besides let consider the following point mechanical excitation σm applied at the point (r0, φ0 = 0, z0 =

0) and written below in both physical and spectral domain:

σm(r0, φ, z) = 2πδ(φ)δ(z) · v
σm(r0, n, α) = 1 · v

(23)
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where v can be any of the three vectors of the cylindrical base ez, eφ ou er.
Then let write the three displacement fields associated with each of the three different excitations repre-

sented in (23):
(v = ez ⇐⇒ σrz imposed) u1|σrz

(v = eφ ⇐⇒ σrφ imposed) u1|σrφ

(v = er ⇐⇒ σrr imposed) u1|σrr

(24)

Finally one can notice that each column of the admittance matrix R(n, α) is identical to the previous
displacement fields:

R(n, α) · ez =

R11(n, α)

R21(n, α)

R31(n, α)

 = u1|σrz

R(n, α) · eφ =

R12(n, α)

R22(n, α)

R32(n, α)

 = u1|σrφ

R(n, α) · er =

R13(n, α)

R23(n, α)

R33(n, α)

 = u1|σrr

(25)

The admittance matrix is then constructed by computing three different DGM calculations, where only the
excitation vector changes. The final step is to get the displacements fields necessary to the construction of the
admittance matrix:

R(n, α) =

(
u1|σrz

∣∣∣∣∣u1|σrφ

∣∣∣∣∣u1|σrr

)
(26)

Once the admittance matrix is defined, one can also get the equivalent plane wave stress by computing
an other DGM calculation, this time with the set of boundary conditions corresponding to the excitation by
a plane wave of the unribbed multilayered structure at its outer radius rN . Indeed, the displacements field in
the steel shell at the inner radius r0 that one can reconstruct from this calculation is identical to the product
of the admittance matrix by the equivalent plane wave stress, so we have:

σ1,PWeq(r0, n, α) = R−1(n, α)u1,PW(r0, n, α) (27)

4.1.3 Pressure field at the sensor radius

To reconstruct the pressure field at the sensor radius, we first get the stiffeners contribution σ1r(r0, n, α) to
the stress field from equations (18), after calculating the admittance matrix and the equivalent plane wave
as described above. Then a last DGM calculation is necessary to determine the displacements field in the
last coating at the outer radius uN,ribs,OP(rN , n, α), computed with the set of boundary conditions of the full
problem. To achieve this, the stress field σ1r(r0, n, α) already determined is used to complete the set of
boundary conditions of the problem.

4.2 Transfer matrix method

4.2.1 Principle of the transfer matrix method

The transfer matrix method was more widely detailed in [7], here we only present the relation that one can get
between the state vector containing the displacements and stress evaluated at both ends of the multilayered
structure: (

uN
σN

)
(rN , n, α) =

(
TuNu1

TuNσ1

TσNu1
TσNσ1

)
(n, α)

(
u1

σ1

)
(r0, n, α)

avec: u = (uz uφ u1r)
T et σ = (σrz σrφ σrr)

T

(28)

The submatrices in the system (28) constitute the transfer matrix of the whole structure, which is found by
multiplying the different transfer matrices of the elementary layers. The developments for getting the global
transfer matrix can be found in [7].
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4.2.2 Obtaining the admittance matrix and the equivalent plane wave stress

By using equations (4) and (3), one can get the following relationship between displacements and stress in
the steel shell at the inner radius:

u1(r0, n, α) = R(n, α)
[
σ0
1,PWeq(r0, n, α)δ(α− αi0) + σ1r(r0, n, α)

]
(29)

with: 
R(n, α) = (X−1Y )(n, α)

σ1,PWeq(r0, n, α) = Y −1(n, α)σN,PW(rN , n, α)

X(n, α) = − [TfleTuNu1
+ TσNu1

+ (TσNσ1
+ TfleTuNσ1

)Tfli] (n, α)

Y (n, α) = [TσNσ1
+ TfleTuNσ1

] (n, α)

(30)

and Tfli and Tfle being defined as:{
Tfli(r, n, α) = Zfli(r, n, α)er ⊗ er

Tfle(r, n) = Zfle(r, n)er ⊗ er
(31)

4.2.3 Pressure field at the sensor radius

Finally, one can reconstruct the displacement field in the last coating at the outer radius uN,ribs,OP(rN , n, α)

by using the first relation of the matrix system (28):

uN(rN , n, α) = TuNu1
(n, α)u1(r0, n, α) + TuNσ1

(n, α)σ1(r0, n, α) (32)

The pressure field can then be obtained with the relation (2).

5. RESULTS FOR BOTH METHODS ON A REDUCED RIBBED SHELL CONFIGU-
RATION

In this section we finally present first validation results for the coupling formalism developed in Sec. 2-3
specific to the transfer matrix method concerning the modeling of the multilayered shell.

5.1 Numerical setup

The configuration used for the numerical computations is the same as in [8], concerning the shell and ribs
dimensions, which is summarized in Table 1. The stiffeners are assumed to be of classic T-shape, and their
section is rectangular. The last row of the following table reminds that the infinite series involved in Eq. 18
are truncated numerically into finite sums covering the range J−Q;QK.

Properties Air Steel Water Stiffener
Density (kg.m−3) 1.2 (ρi) 7900 (ρs) 1000 (ρe)

Sound velocity (m.s−1) 340 (ci) 1470 (ce)
Longitudinal velocity (m.s−1) 5790 (cL)
Transversal velocity (m.s−1) 3100 (cT )

Inner radius (cm) 0.49
Outer radius (cm) 0.5

Stiffeners network period (cm) 1.5 (d)
Height (cm) 0.5 (h)
Width (mm) 0.5 (h)

Number of stiffeners Q 10

Table 1: Numerical setup

The antenna is assumed to be only one ponctual sensor, its radius is worth rA = 6.04 cm, and the axial
position zA along the shell axis can vary.
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5.2 Results for the normal incidence

5.2.1 First validation on the pressure field

First we present in Fig. 4 the signal response according to the frequency of the multilayered shell when
excited by a plane wave under normal incidence, for a sensor placed at different axial positions zA = 0,
zA = d

2
and zA = d.

The results are confronted to an already validated model which utilizes a thin shell assumption for de-
scribing the multilayered structure.

(a) zA = 0 (b) zA = d
2 (c) zA = d

Figure 4: Signal response at the sensor radius for different axial positions

One can underline that the correlation of the two responses fade away with the increasing frequency, be-
cause the thin shell model is valid only at low frequency.
Both responses 4(a) and 4(b) are identical, because in these cases the sensor is placed at a coupling point of
two consecutive stiffeners. This verdict enables to validate the periodicity of the system.

5.2.2 Second validation on the displacement field

Secondly, we present an analysis of the displacement field at the inner radius when the stiffener is supposed
infinitly rigid about the radial dimension, in that configuration the shell is assumed simply supported at the
coupling points with the stiffeners. In that case the dynamic stiffness [B(n)] takes the following form:

[B(n)] =


0 0 0 0

0 0 0 0

0 0 b33 0

0 0 0 0

 , b33 → +∞ (33)

This also entails perfect cancellation of the displacements at the different coupling points z = qd, there-
fore one can highlight this result by plotting the spatial displacements of the multilayered shell for a given
frequency at the inner radius, as it is done in Fig. 5 for the normal displacement on the interval zA ∈ J−d, dK
at the frequency f = 20 kHz:
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Figure 5: Displacements at the inner radius. f = 20 kHz, zA ∈ J−d, dK

One can see at the coupling points zA = 0,±d the cancellation of the displacement field at the inner
radius.

6. CONCLUSION

In this article, we developed a formalism to model cylindrical multilayered ribbed shells. The developed
formalism is adaptable to both direct global method or transfer matrix method which shall be retained for
modeling the multilayered structure. The preliminary validation exposed in this article shall be followed with
much deeper investigation, in particular a cross validation between the direct global method and the transfer
matrix method, as well as a comparison between these last two with a finite element method.
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