
HAL Id: hal-01922216
https://hal.science/hal-01922216

Submitted on 14 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-based reformulated Craig-Bampton method for
multiple flexural subsystems connected at a junction

with low impedance mismatch
Laurent Maxit, Oriol Guasch

To cite this version:
Laurent Maxit, Oriol Guasch. Energy-based reformulated Craig-Bampton method for multiple flexural
subsystems connected at a junction with low impedance mismatch. Mechanical Systems and Signal
Processing, 2019, 119, pp.471 - 485. �10.1016/j.ymssp.2018.09.039�. �hal-01922216�

https://hal.science/hal-01922216
https://hal.archives-ouvertes.fr


1 

 

Energy-based reformulated Craig-Bampton method for 

multiple flexural subsystems connected at a junction with 

low impedance mismatch   

Laurent Maxit1 and Oriol Guasch2 

1. INSA–Lyon, Laboratoire Vibrations-Acoustique (LVA), 25 bis, av. Jean Capelle, F-69621, 

Villeurbanne Cedex, France.  

e-mail: laurent.maxit@insa-lyon.fr (corresponding author) 

2. GTM - Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull, C/ Quatre 

Camins 2, 08022 Barcelona, Catalonia, Spain. 

e-mail: oriol.guasch@salle.url.edu  

  

Abstract: 

Whereas the coupling between modes of two different subsystems is well-resolved in 

vibroacoustic energy-based methods, the situation becomes more intricate when several 

subsystems get connected at a common junction. In statistical energy analysis (SEA), the 

modal formulation is replaced by the travelling wave approach to solve the problem. 

However, this is not a viable option for other energy-based methods, like the statistical 

modal energy distribution analysis (SmEdA), and a modal coupling scheme is required for 

them. If there is a strong impedance mismatch between the multiple connected subsystems, 

the displacement-stress dual formulation offers a proper way to address the situation. Yet, 

the latter fails if all involved subsystems have similar stiffness. In this work, the feasibility 

of the Craig-Bampton (CB) method to address such circumstance is explored. It is shown 

that the original CB technique does not fulfill the modal coupling assumptions of energy-

based methods, so it is suggested to reformulate it to partially mitigate the problem. 

Numerical tests on a benchmark problem are carried out to validate the proposal. The 

benchmark consists of a floor coupled with two walls at right angle, and it is analyzed for 

different impedance mismatch conditions.   
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Nomenclature 

The symbols used in the main text are described in this section. 

 

,kE

  kinetic energy related the normal modes of subsystem α for an unit harmonic 

excitation 

,kE

  kinetic energy arising from the cross interaction between the normal and the  

characteristic constraint modes for an unit harmonic excitation 

,kE

  kinetic energy of subsystem α related to the characteristic constraint modes for 

an unit harmonic excitation 

,pE

  strain energy related the normal modes of subsystem α for an unit harmonic 

excitation 

,pE

  strain energy of subsystem α related to the characteristic constraint modes for an 

unit harmonic excitation 

f  finite element external force vector of the global system 

Bf  external force vector related to the boundary degrees of freedom 

C

gf  force vector related to the coupling modes 

g CCf  generalized force vector related to the subsystem normal modes and the 

characteristic constraint mode 
INR

g


f  force vector related to the non-resonant (NR) normal modes, plus the constraint 

interface (I) modes (NR+I modes) 
R

gf  force vector related to the resonant normal modes 

If  external force vector related to the interior degrees of freedom 

1

If  external force vector related to the interior degrees of freedom applied on 

subsystem 1 

I  identity matrix 

BBk  stiffness matrix related to the boundary degrees of freedom 

IBk  coupling stiffness matrix between the interior degrees of freedom and the 

boundary degrees of freedom 

IIk  stiffness matrix related to the interior degrees of freedom 

k  stiffness matrix related to the constraint modes 



k  stiffness matrix of subsystem α related to the characteristic constraint modes 

K  finite element stiffness matrix of the considered system 

g CCK  stiffness matrix related to the subsystem normal modes and the characteristic 

constraint mode 
INR

g


K  stiffness matrix related to the non-resonant (NR) normal modes, plus the 

constraint interface (I) modes (NR+I modes) 

BBm  mass matrix related to the boundary degrees of freedom 

IBm  coupling mass matrix between the interior degrees of freedom and the boundary 

degrees of freedom 
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IIm  mass matrix related to the interior degrees of freedom 

m  mass matrix related to the normal modes 

NR




m  mass matrix related to the non-resonant normal modes of subsystem α 



m  coupling mass matrix between the subsystem modes of subsystem α and the 

characteristic constraint modes 
NR




m  coupling mass matrix between to the non-resonant normal modes of subsystem 

α and the constraint modes 
R




m  coupling mass matrix between to the resonant normal modes of subsystem α and 

the constraint modes 
R




m  mass matrix related to the resonant normal modes of subsystem α  

m  coupling mass matrix between the normal modes and the constraint modes 

m  mass matrix related to the constraint modes 



m  mass matrix of subsystem α related to the characteristic constraint modes 

M  finite element mass matrix of the considered system 
C

gM  mass matrix related to the coupling modes 

g CCM  global mass matrix related to the subsystem normal modes and the characteristic 

constraint mode 
INR

g


M  global mass matrix related to the non-resonant (NR) normal modes, plus the 

constraint interface (I) modes (NR+I modes) 
R

gM  global mass matrix related to the resonant normal modes 

CR

g

/
M  global coupling mass matrix between the resonant normal modes and the 

coupling modes 
INRR

g

/
M  global coupling mass matrix between the resonant (R) normal modes and the 

non-resonant (NR) normal modes, plus the constraint interface (I) modes (NR+I 

modes) 

CCq  amplitude vector of the characteristic constraint mode 

C

gq  amplitude vectors related to the coupling modes 

g CCq  global amplitude vector related to the subsystem normal modes and the 

characteristic constraint mode 
INR

g


q  global amplitude vectors related to the non-resonant (NR) normal modes, plus 

the constraint interface (I) modes (NR+I modes) 
R

gq  global amplitude vectors related to the resonant normal modes 

q  amplitude vector of the normal modes of the subsystem with fixed interface 

NR




q  amplitude vectors related to the non-resonant normal modes of subsystem α 

R




q  amplitude vectors related to the resonant normal modes of subsystem α 

q  amplitude vector of the constraint modes 

FFS  power spectral density of the force signal 

u  displacement vector of the global system 
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Bu  displacement vector related to the boundary degrees of freedom 

Iu  displacement vector related to the interior degrees of freedom 

Γ  matrix containing the eigenvectors related to the CN  first coupling modes 

i
ζ  eigenvector related to the i-th eigenvalue i

C  of the generalized eigenvalue 

problem defined by the mass and stiffness matrices of the non-resonant normal 

modes, plus the constraint interface modes (i.e. eigenvector related to the i-th 

coupling mode) 
  damping loss factor 

i  eigenvalue of the i-th normal modes of the subsystem with fixed interface 
i

C  eigenvalue of the i-th coupling modes 

i

CC  eigenvalue of the i-th characteristic constraint modes 

α
Λ  eigenvalue diagonal matrix of subsystem  1,2,3,4  

C
Λ  eigenvalue diagonal matrix related to the coupling modes 

CCΛ  eigenvalue diagonal matrix related to the characteristic constraint mode 

R

gΛ  eigenvalue diagonal matrix related to the resonant normal modes 

Λ  eigenvalue diagonal matrix related to the normal modes of the subsystem with 

fixed interface 
NR




Λ  eigenvalue diagonal matrix related to the non-resonant normal modes of 

subsystem α 
R




Λ  eigenvalue diagonal matrix related to the resonant normal modes of subsystem 

α 

  matrix containing the eigenvectors related to the CCN  first characteristic 

constraint modes  
i
ξ  eigenvector related to the i-th eigenvalue i

CC  of the generalized eigenvalue 

problem defined by the mass and stiffness matrices related to the constraint 

modes (i.e. eigenvector related to the ith Characteristic Constraint (CC) mode) 
i

IIφ  eigenvector related to the i-th eigenvalue i  of the generalized eigenvalue 

problem defined by the mass and stiffness matrices related to the interior degrees 

of freedom (i.e. eigenvector related the i-th normal mode of the considered 

subsystem with fixed interface) 

  matrix containing the eigenvectors related to the 
IIN  first normal modes of the 

considered subsystem with fixed interface 
ψ  matrix containing the static shapes related to the interior and boundary degrees 

(i.e. constraint modes) 

IBψ  matrix containing the static shapes related to the interior degrees of freedom 

  angular frequency 
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1 Introduction 

It is well-known that statistical energy analysis (SEA) admits two distinct formulations [1-

3]. The first one arises from statistical considerations on how normal modes in a built-up 

structure interchange energy and is referred to as the modal approach to SEA. The second 

one grounds on statistical developments of disordered travelling waves propagating in a 

structure and is named the wave approach to SEA. The advantage of such a twofold 

formulation is that when difficulties are encountered when applying the modal one, those 

can be often overcome by switching to the wave one, and vice versa. 

 An example of such a type concerns the connection of several subsystems at a 

junction. In SEA a subsystem is identified with a group of resonant modes. Under certain 

conditions, which we denote as the modal coupling assumptions (MCAs) (to be specified 

below), the modal approach establishes the power balance equations between two distinct 

subsystems. However, it is not clear at all whether the MCAs generalize to multiple 

subsystems connected at a junction. SEA circumvents the problem by resorting to the wave 

approach to characterize that situation (see e.g., [4-6]). Yet in a recent work [7], it was 

shown that it was also possible to establish a modal scheme satisfying the MCAs, whenever 

there was a strong impedance mismatch between the subsystems sharing the joint. The dual 

modal stress-displacement formulation was used for that purpose [8-12]. The current work 

is to be viewed as a follow-up of [7], where we now address the case of all connected 

subsystems having similar stiffness i.e, when there is a low impedance mismatch at the 

joint. 

 One might argue that such a problem is only of theoretical interest to SEA, given 

that in practice one could always avoid it by switching to the wave formulation. Even if 

that was the case, which is still believe interesting per se, there are other energy-based 

methods where there is a need for a multiple connection scheme that complies with the 

MCAs. The strong hypotheses underlying SEA ([1,2]) limit the theory to the high 

frequency range, so many methods have been proposed to extend its applicability to lower 

frequencies and face the so-called mid frequency problem. On the one hand, the wave 

approach to SEA can be derived from more general ray-tracing techniques under the 

assumption of diffusivity (see e.g., [13,14]). On the other hand, in what concerns modal 

extensions to SEA, several methods have been proposed. For instance, in the energy 
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distribution analysis (EDA) [15,16] energy transmission is characterized by means of 

energy influence coefficients, which are related to structural global modes. In the 

Asymptotical Scaled Modal Analysis (ASMA) method [17-20] a scaling procedure is 

established to work with a reduced model that represents the average behavior of the 

original system. Lastly, the statistical modal energy distribution analysis (SmEdA) method 

[21-24] proposes power balance equations between individual resonant modes belonging 

to different subsystems, rather than between subsystems themselves, as in SEA. In fact, the 

latter can be obtained as a limit case of SmEdA. It is to be noted that SmEdA fulfils the 

MCAs, like SEA, but has no wave approach analogue, so a modal coupling scheme for 

multiple connected subsystems it is not only an issue of academic interest for SmEdA, but 

a subject of very practical interest. 

As said before, it was concluded in [7] that the DMF works well when there is a 

strong impedance mismatch between subsystems at the junction, but it is not a valid modal 

approach for low impedance mismatch values. In such situation each subsystem perceives 

the feedback of the other ones at the junction and may be well approximated as having 

clamped boundary conditions there. It was consequently suggested in [7] that one could 

resort to the celebrated Craig-Bampton (CB) formulation [25,26] instead of the DMF. In 

the CB method, the fixed-interface component modes (i.e., blocked modes) are computed 

for each subsystem and complemented with the so-called constraint modes. Thereby, the 

fixed-interface component modes could be - a priori - well adapted to represent the global 

behavior of coupled subsystems.  

The organization of the paper is as follows. Section 2 reviews the MCAs and give a 

brief outline of the CB formulation. Section 3 presents a benchmark problem consisting of 

a floor and two walls at right angle, which was used to illustrate the developments in [7]. 

We resort to it once more to allow comparison with the formulations in this work. The 

modal equations for the benchmark problem are derived in section 4 for the original CB 

method, followed by numerical simulations and a discussion. It is shown that, 

unfortunately, the standard CB does not comply with the MCAs, so an alternative CB 

formulation is proposed and tested in section 5, to improve the results. Finally, conclusions 

are drawn in section 6. 
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2 Theoretical framework 

2.1 Modal coupling assumptions 

To make the present paper self-contained, let us reproduce the set of modal coupling 

assumptions (MCAs) listed in [7] that, for energy-based methods, describe the interaction 

between modes, or groups of modes, belonging to two different subsystems. The MCAs, 

state that (see also [1,2]):  

 - the interaction only involves the modes of the uncoupled subsystems, 

- the dynamics of a subsystem mode are those of an oscillator (mass-spring-

damper system), 

- the coupling between modes in different subsystems is conservative and happens 

through mass, stiffness and/or gyroscopic elements, 

- modes within a subsystem are uncoupled (i.e., the modes conform an orthogonal 

set),   

- the resonant modes of each subsystem account for all energy interchanged with 

other subsystems. 

2.2 Fundamentals of the Craig-Bampton method 

To facilitate the comprehension of the forthcoming sections, let us next present an outline 

of the most meaningful results of the original Craig-Bampton method [25,26]. To begin 

with, consider a nonspecific finite element (FEM) model of a single subsystem, its equation 

of motion being given by 

fKuuM  , (1) 

where u  stands for the nodal displacement vector and f for the external applied force 

vector. As usual, a dot symbol designates time derivative. M stands for the FEM mass 

matrix and K for the stiffness one.  

Let us partition the displacements and applied forces into 











B

I

u

u
u ,    










B

I

f

f
f , 

 

(2) 

where the vector Iu  contains the displacements of the interior degrees of freedom (d.o.f.s) 

of the subsystem and Bu  encompasses the displacements of the boundary d.o.f.s. 
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Analogously, 
If stands for the forces applied on the interior d.o.f.s and 

Bf for those at the 

boundary. 

 The mass and stiffness matrices in Eq. (1) are partitioned accordingly as   











BBBI

IBII

mm

mm
M   and 










BBBI

IBII

kk

kk
K . 

 

(3) 

The Craig-Bampton method allows one to rewrite Eq. (1) with the splitting in Eqs. 

(2)-(3) using two different sets of modes, namely,  

(a) The normal modes with fixed-interface,  : 

These modes are calculated with all boundary d.o.f.s held fixed (i.e. 0Bu ). The i-th mode 

is represented by the eigenvector 
i

IIφ ,  with eigenvalue i , which is obtained from the 

generalized eigenvalue problem   

   II

i

IIII

i

II Ni ,..,2,1  ,0  φmk  . 
 

(4) 

IIN  is the total number of modes retained to represent the subsystem. The eigenvectors  

i

IIφ  can be ranged as the columns of a matrix  IIN

IIIIIIII φφφφ  ...   21  to finally build the 

normal mode matrix  











0

IIφ
. 

 

(5) 

(b) The constraint modes, ψ : 

A constraint mode is defined as the static deflection induced in the subsystem when 

applying a unit displacement at one boundary d.o.f while keeping all remaining boundary 

d.o.f.s fixed. The constraint mode matrix is given by (see [25,26]) 

 
























BB

IBII

BB

IB

I

kk

I

ψ
ψ

1

. 

 

(6) 

The constraint modes provide a complete set of deformation shapes associated with the 

motion of the boundary d.o.f.s.  
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 The two type of modes defined by Eqs. (5-6) can be concatenated into a matrix 

 ψB   that can be used to transform the displacement vector u  to modal coordinates 

 T qqq  ,   

                  Bqu  . (7) 

 Introducing Eq. (7) in Eq. (1) and projecting the equations on the basis B , provides 













































BI

T

IB

III

TT f

0

fψ

fφ
q

k0

0Λ
q

mm

mm







  , 
 

(8) 

with 

i

IIII

Ti

II φmφm  , IBII

T

IB

T

BI

T

IBIBBIBB ψmψmψψmmm  ,   

IIII

T

IBIIBI φmψφmm  , 

IB

T

IBBB kψkk  ,   
IIII NN

i

IIII

T

II   diagφkφΛ . 

 

3 Benchmark problem and sub-structuring 

The developments concerning the CB approaches in the forthcoming sections will be 

applied to the same benchmark problem in [7]. This will ease comparison with the results 

reported in that previous work. The benchmark is depicted in Figure 1 and consists of a 

structure where four panels share a junction at right angle. The floor is made of panels P1 

and P2 while panels P3 and P4 constitute vertical walls. Only flexural motions of the panels 

are considered to facilitate the analytical developments.  

Two test cases corresponding to strong and low impedance mismatches at the 

junction will be contemplated. In test case #1 the floor is made of concrete and it is 20 cm 

in thickness, the walls being brickwork constructed and 5 cm in thickness. It was shown in 

[7] that in such situation the structure could be divided into three subsystems: a single 

subsystem for the floor (panels P1 + P2) and two more subsystems for each wall (see Figure 

2a). The DMF performed well in that case and provided a modal coupling scheme in 

accordance with the MCAs. This was because there is a strong impedance mismatch 

between the floor and the walls. However, in a second test case #2, all panels were assumed 

to be made of concrete and of 20 cm in thickness. The DMF failed in that occasion, and it 
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was argued in [7] that a sub-structuring scheme in which every panel was identified with a 

subsystem, having clamped conditions at the junction, would be more appropriate for test 

case #2 (see Figure 2b). This is so because all panels having the same stiffness, their motion 

gets blocked at the junction by the three remaining ones. Our goal in the forthcoming 

section will be to check whether, as suggested in [7], the CB method could perform better 

than the DMF for test case #2, and see if it also works well for test case #1.  

 The modes of the four panels needed for the CB developments have been obtained 

from a FEM model and the SDTool code in MATLAB [27]. The whole benchmark 

structure has been meshed with 51604 quadrilateral shell elements (52126 nodes). This 

mesh has been used for the two test cases and fulfils the criterion of six elements per 

flexural wavelength at 2 kHz for test case #1. Given that results will be presented for the 

1kHz octave band, the mesh is fine enough to get negligible numerical errors in the two 

test cases. 134 nodes have been placed at the structure junction with blocked translations 

in the three directions (only rotation is allowed as we are only considering flexural motion).  

Besides, clamped boundary conditions have been imposed on the nodes of the outer edges.  

The meshes of the subsystems have been directly extracted from the global mesh 

of the structure and the subsystem modes obtained from the Implicitly Restarted Lanczos 

Method (eigs command in SDTool, [27]). In what concerns external excitation, a normal 

force with unit power spectral density (   /HzN 1 2fSFF ) has been applied on panel P1, at 

the 1 kHz central frequency octave band. The excitation point has coordinates (0m, 1.6m, 

0.87m). Besides, the damping loss factor of all panels has been set to 0.02   for the two 

test cases. 

4 Craig-Bampton method for multiple subsystems coupled at a junction 

4.1 Modal equations for four subsystems coupled at a junction 

The CB developments in section 2.2 can be extended to the four-panel benchmark structure 

in Figure 1. To assemble the subsystem matrices, displacement continuity and force 

equilibrium have been imposed at the junction using the Boolean assembly matrix [25,26]. 

Given that the external excitation is only applied to an internal d.o.f. of subsystem 1, the 

four-panel CB modal equations become 
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ggggg fqKqM  , (9) 

with  

,  , 

11

11

41

4

3

2

1



















































I

T

IB

I

T

II

gg

fψ

0

0

0

fφ

f

q

q

q

q

q

q











 

 

 

The number of constraint modes in Eq. (9) can be substantially diminished if one 

solves the generalized eigenproblem associated to its mass and stiffness matrices, (see [25, 

26]),  

1 4 1 4 0i i

CC     m k ξ . 
 

(10) 

The resulting eigenvectors 
i
ξ  are referred to as the Characteristic Constraint (CC) modes, 

and their number CCN  is supposed to be less than the number of constraint modes. The 

eigenvectors 
i
ξ  are normalized to unit generalized mass and can be organized in columns 

in the matrix 
1 2  ... CCN       . This matrix can be used to transform from the constraint 

mode amplitudes 
41 

q  to the CC ones CCq ,  

CCqq 41  . (11) 

The stiffness matrix 
41

k  diagonalizes to diag
cc cc

i

CC cc N N



   Λ and the modal equations 

(9) can then be rewritten as 

g CC g CC g CC g CC g CC     M q K q f , (12) 

with 

.  ,  

41

4

3

2

1

414321

44

33

22

11









































































k0000

0Λ000

00Λ00

000Λ0

0000Λ

K

mmmmm

mm000

m0m00

m00m0

m000m

M g

TTTT

g
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1 11 1 1

2 22

3 33

4 44

1 2 3 4 41 1

 ,  ,  ,  

T

II I

g CC g CC g CC

T T T T T T T TT T
ccCC IB I

 

 

 

 

   

  

    
    

    
       
    
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.g CC

CC











 
 
 
 
 
 
 
 
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0 Λ 0 0 0

K 0 0 Λ 0 0

0 0 0 Λ 0

0 0 0 0 Λ

 

The algebraic matrix system (12) expresses the coupling of the subsystem blocked 

modes to the CC ones through mass matrix elements. Expanding the system in rows allows 

one to recover the standard canonical problem at the basis of some energy-based methods 

[2],   

      ,41,1     















q

CCqpqpI

T

IIp

p

ppp
qqq mfφm  (13a) 

    .11  








q

q
pq

TT

pI

T

IB

T

CCp

i

CCCCp qqq  mfψ  (13b) 

Eq. (13a) states that any normal mode of subsystem  , say the p-th mode 


pq , behaves as 

a mass-spring oscillator (l.h.s of Eq. (13a)) that is mass-coupled to a q-th characteristic 

constraint CC mode (r.h.s of Eq. (13a)) but not to the normal modes of other subsystems. 

Conversely, Eq. (13b) shows that any CC mode also corresponds to a mass-spring oscillator 

that exhibits inertial coupling with the normal modes of the four panel subsystems, 

41 .  

In comparison with the DMF approach to the problem in [7], a fifth subsystem 

appears in the BC formulation. It is composed by the CC modes which are not localized on 

one panel (see Figure 3, and in particular Figure 3c), but it rather represents the global part 

of the dynamic behavior of the coupled plates. This subsystem is also directly excited by 

the external force term 11

I

T

IB

T
fψ  in Eqs. (12) and (13b).  
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In addition to being expressed in the canonical form (13), to check if the above 

equations fulfill with the MCAs it should be verified whether resonant modes could 

account for the whole energy of the system at a given frequency band. This will be tested 

for the cases #1 and #2 described in section 3. Prior to that, however, we should depict how 

to compute the subsystem energies from the amplitudes of the normal modes, 

q , and CC 

modes, .  

4.2 Computation of subsystem energies 

The energy of a subsystem is given by the sum of the kinetic and potential energies of the 

modes in the subsystem. These quantities are averaged in time though this will be not 

explicitly indicated hereafter.  

Assuming a unit harmonic external excitation, tje  , and introducing homogeneous 

structural damping into the system, the modal governing equations (12) transform to  

      CCgCCgCCgCCg j   fqKM )1(2 . 
 

(14) 

From Eq. (14) and the matrix definitions in Eqs. (11) and (12), the kinetic energy of 

subsystem α can be computed as,  

        


























,,,

2

4

1
kkk

CC

T

H

CC

k EEEE 





























q

q

mm

mm

q

q
, 

 

(15) 

with  IBII

T

IB

H
ψmψm



  and  IIII

T

IB φmψm


 . The three summands in the second 

equality of (15) are given by, 

-   













  qmq
H

kE 2

,
4

1
 : kinetic energy from the normal modes, 

-   CC

H

CCkE qmq






  2

,
4

1
 : kinetic energy associated to the CC modes, 

-    CC

H

kE qmq










  Re
2

1 2

,  : kinetic energy arising from the cross interaction between 

the normal and CC modes. 

Notice that  

,kE  can be either positive or negative. This term is a consequence of the 

fact that normal and CC modes are not orthogonal with respect to the subsystem mass 

matrix.   

CCq
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On the other hand, the time-averaged potential energies of a subsystem can be 

obtained from 

      






















,,
4

1
pp

CC

H

CC

p EEE 





























q

q

k0

0Λ

q

q
, 

 

(16) 

with  IBII

T

IB

H
ψkψk



 . The two summands in the r.h.s of Eq. (16) correspond to,   

- : potential energy from the normal modes, 

-   CC

H

CCpE qkq






 
4

1
,  : potential energy associated to the CC modes. 

The mean energy of a subsystem in response to a white noise force of unit power 

spectral density in each octave band is obtained by integrating the summation of the kinetic 

(15) and potential (16) spectral energies over the bandwidth using a simple quadrature rule.  

4.3 CB numerical simulations and discussion 

The total energies of the subsystems have been computed with Eq. (15-16) for test cases 

#1 and #2. The energies have been integrated in the 1 kHz octave band and compared to a 

reference solution obtained from the global mode computation described in section 2.2 of 

[28]. 200 normal modes have been considered for the modal energy computations, which 

has proved more than enough to ensure convergence. As regards the CC modes, 20 of them 

have sufficed to achieve a good agreement with the reference solution. This is remarkable 

since 396 constraint modes would have been necessary to achieve similar results. 

 Results are given in Table 1 for the two test cases. As observed, the total energies 

estimated with the CB approach are compliant with the reference ones. Except for the 

excited subsystem, where the contribution of the normal modes dominates, the normal 

modes and the CC ones equally add to the energies of panels 2, 3 and 4. There are, however, 

some issues that prevent one identifying Eq. (11) as a suitable candidate to fulfill the 

MCAs. On the one hand the resonant modes contribute significantly to the overall energy 

of the normal modes, especially for subsystem 1, but hardly exceed 50-60% of the energy 

for subsystems 2, 3 and 4 (bear in mind that results are presented in dB in Table 1). On the 

other hand, the energy cross contributions are rather important (mainly for test case #1) 

and attain negative values. An energy-based model like SEA or SmEdA cannot account for 

  













  qΛq
H

pE
4

1
, 
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these cross contributions which arise because the subsystem normal modes and the CC-

modes are not orthogonal with respect to the subsystem mass matrix. Indeed, and as seen 

from the MCAs in section 2.1, in those methods modes are identified with oscillators and 

the power flow interchanged between them is proportional to the difference between their 

energies. The energy of each mode can be estimated, but not the cross-contribution between 

them. Moreover, in the results of Table 1 the cross contributions also include the influence 

of non-resonant modes. 

To further check the degree of compliance with the MCAs, we have made a second 

computation retaining only the resonant normal modes (and also the 20 CC-modes). The 

amount of resonant normal modes for each plate is given in Table 2. As observed, the 

number is much lower than that of the previous computation, where 200 normal modes per 

plate were considered. Yet, the number still complies with the SEA requirements of at least 

10 subsystem modes for frequency band. Table 2 also includes the modal overlap factors 

deduced from the number of resonant modes. The modal overlap values are close to one, 

which indicates that the dynamic behavior of the subsystems is neither non-diffuse (as for 

high modal overlaps), nor dominated by a few strongly resonant modes (as for small modal 

overlaps). Therefore, the conditions for SEA application are fulfilled [2].  

The results with the sole consideration of resonant modes are shown in Table 3. 

The energy predictions are clearly less accurate than those from Table 1. Actually, only the 

energy of the excited panel is correctly estimated. For panels 2, 3 and 4, this second CB 

calculation underestimates the energy levels between 1 dB and 4.5 dB, depending on the 

subsystem and the test case. The influence of the cross terms has also noticeably decreased 

because of the exclusion of the non-resonant normal modes.  

To better understand the reason of the discrepancies between the second and first 

calculations, an analysis of the modal parameters (modal injected power, modal coupling 

mass, modal energy) of the first CB computation has been performed. If we arbitrarily 

focus on subsystem 3 (equivalent results arise for the other non-excited subsystems), some 

hints can be grasped on what is happening. One can observe in Figure 4a that the low 

frequency non-resonant modes outside the 1kHz band have substantial energy. In 

particular, the first mode (which is clearly non-resonant) has the largest energy of all 

modes. This is in contrast with the global distribution of the modal energy one gets form 
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the DMF approach (compare with Figure 4b in [7]). In that figure, the most energetic modes 

are mainly resonant which allows one neglecting them in the dual modal formulation 

without introducing much error.  

We can gather more information having a look at the modal mass coupling matrix 

3

m  in Figure 4b of the current paper. The first non-resonant normal mode appears 

strongly coupled with the first CC-mode. Similarly, other non-resonant normal modes 

exhibit substantial couplings with the CC ones. This is at the origin the problem. The strong 

coupling makes the non-resonant modes play a significant role in the energy sharing 

between subsystems. Consequently, they cannot be neglected, and the MCAs may be 

violated if the standard CB formulation Eq. (11) is considered. To somewhat overcome this 

problem, a reformulation of the CB equations will be next proposed.  

 

Test 

case 

                                Panel    

Energy  

1 2  3 4 

#1 Reference  68.5 dB 61.4 dB 44.7 dB 46.4 dB 

#1 CB – Normal modes 

         (Resonant contrib.) 

68.1 dB 

(67.5 dB) 

60.5 dB 

(57.7 dB) 

47.1 dB 

(44.2 dB) 

47.7 dB 

(46.1 dB) 

#1 CB – CC modes 60.8 dB 60.5 dB 44.2 dB 42.8 dB 

#1 CB – Cross contributions 57.8 dB (-) 59.2 dB (-)  46.8 dB (-) 45.3 dB (-) 

#1 CB - Total 68.5 dB 61.5 dB 44.7 dB 46.4 dB 

#2 Reference  67.9 dB 57.2 dB 56.6 dB 57.2 dB 

#2 CB – Normal modes 

         (Resonant contrib.) 

67.8 dB 

(67.4 dB) 

56.1 dB 

(53.8 dB) 

54.9 dB 

(52.8 dB) 

54.9 dB 

(53.5 dB) 

#2 CB – CC modes 55.9 dB 55.6 dB 55.2 dB 54.9 dB 

#2 CB – Cross contributions 50.0 dB (-) 54.0 dB (-) 52.9 dB (-) 49.8 dB (-)  

#2 CB - Total 67.9 dB 57.2 dB 56.6 dB 57.2 dB 

Table 1: Subsystem energies and different contributions resulting from the standard CB 

method (dB, ref. 10-12 J, (-) = negative contributions). Results for the octave band 1 kHz. 

 

 

Test 

case 

                                Panel    

Quantity  

1 2  3 4 

#1 Number of resonant modes 38 27 101 78 

#1 Modal overlap factor 1.1 0.8 2.8 2.2 

#2 Number of resonant modes 38 27 24 17 

#2 Modal overlap factor 1.1 0.8 0.7 0.5 

Table 2: Number of resonant modes and modal overlap factor for each panel. 
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Test 

case 

                                Panel    

Energy  

1 2  3 4 

#1 Reference  68.5 dB 61.4 dB 44.7 dB 46.4 dB 

#1 CB – R normal modes 67.6 dB 56.2 dB 38.8 dB 43.0 dB 

#1 CB – CC modes 54.7 dB 54.7 dB 34.2 dB 33.9 dB 

#1 CB – Cross contributions 36.9 dB (-) 39.9 dB (-) 21.9 dB (-) 26.3 dB (-) 

#1 CB - Total 67.8 dB 58.5 dB 40.1 dB 43.4 dB 

#2 Reference  67.9 dB 57.2 dB 56.6 dB 57.2 dB 

#2 CB – R normal modes 67.5 dB 54.7 dB 49.5 dB 52.3 dB 

#2 CB – CC modes 51.8 dB 51.8 dB 51.8 dB 51.7 dB 

#2 CB – Cross contributions 39.1 dB (-) 37.7 dB (-) 36.4 dB (-) 38.8 dB (-) 

#2 CB - Total 67.6 dB 56.5 dB 53.7 dB 55.1 dB 

Table 3: Same type of results than in Table 1 with the standard CB method but only 

considering the Resonant (R) normal modes. Results for the octave band 1 kHz. 

5 Reformulation of the Craig-Bampton method  

5.1 Reformulated CB modal equations for four subsystems coupled at a junction 

Let us start by splitting the modal amplitude vector gq  in Eq. (9) in two parts: 
R

gq which 

includes the amplitude vectors of the resonant (R) normal modes, and 
INR

g


q  standing for 

the amplitude vectors of the non-resonant (NR) normal modes, plus the constraint interface 

(I) modes (NR+I modes). The size of this last vector corresponds to the summation of the 

number of NR modes, NRN ,  and the number of the constraint modes (i.e. the number of 

boundary d.o.f.s). The algebraic system of equations (9) can then be rewritten as, 
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(17) 

with 
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Next, and similarly to what was done for the calculation of the CC modes in Eq. 

(10), an eigen-analysis is carried out for the matrices related to the NR+I modes,  

0NR I i NR I i

g C g    K M ζ . 
 

(18) 

The eigenvectors 
i
ζ  associated to the eigenvalues

i

C  will be hereafter referred to as the 

Coupling (C) modes. It should be remarked that the definition of the NR modes depends 

on the considered frequency band. Consequently, the C modes will also depend on it.  

 Suppose a total of CN  coupling modes. Their eigenvectors can be settled in columns 

in a matrix 
1 2  ... CN   Γ ζ ζ ζ . The modal coordinate vector gq  can then be projected onto 

the C modes basis through the transformation 
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(19) 

     Pre-and post-multiplication of Eq. (17) by C  results in  
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with  ΓMΓM
INR

g

TC

g

 , ΓMM
INRR

g

CR

g

 //
 and 

INR

g

TC

g

 fΓf . As in Eq. (13), we could 

expand Eq. (20) and check that this system essentially establishes an inertial coupling 

between the resonant subsystem modes and the C modes. The subsystem energies can be 

calculated following the procedure exposed in section 4.2. 

5.2 Reformulated CB numerical simulations and discussion 

The reformulated CB equations have been applied once more to test cases #1 and #2. 815 

and 951 C modes below 20kHz have been respectively used for them. The resulting modal 

contributions to the subsystem energies are summarized in Table 4 and show very good 

agreement with the reference solution. For instance, the energy of panel P3 is correctly 

predicted for tests #1 and #2. This was not the case when only R normal modes were 

considered in the standard CB equations (see Table 3). Also, the cross contributions turn 

to be negligible compared with the contributions of the R normal modes and the C modes. 

Hence, the latter suffice to well approximate the subsystem energies.  

 

Test 

case 

                                 Panel    

Energy  

1 2  3 4 

#1 Reference   68.5 dB 61.4 dB 44.7 dB 46.4 dB 

#1 CB – R Normal modes  67.5 dB 57.7 dB 44.2 dB 46.1 dB 

#1 CB – C modes 59.7 dB 59.2 dB 34.8 dB 34.8 dB 

#1 CB – Cross contributions 51.4 dB 46.1 dB (-) 27.3 dB (-) 29.3 dB 

#1 CB - Total 68.3 dB 61.4 dB 44.7 dB 46.4 dB 

#2 Reference  67.9 dB 57.2 dB 56.6 dB 57.2 dB 

#2 CB – R Normal modes  67.4 dB 54.1 dB 52.8 dB 53.5 dB 

#2 CB – C modes 56.0 dB 54.3 dB 54.2 dB 54.2 dB 

#2 CB – Cross contributions 49.1 dB 39.9 dB (-) 39.8 dB (-) 40.6 dB 

#2 CB - Total 67.8 dB 57.1 dB 56.5 dB 57.0 dB 

Table 4: Same type of results than in Table 1 but with the reformulated CB calculation. 

 

The results in Table 4 are mainly consistent with the MCAs except for one question. 

The C modes contemplated in the computations contain both, resonant and non-resonant 

modes. Thus, a new calculation for test case #2 has been carried out only taking into 

account the six existing resonant C modes. Table 5 (second row) indicates that subsystem 

energies are worse estimated in this occasion. Discrepancies between 1 and 2 dB can be 

appreciated (compare with first row in Table 5).  
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To better comprehend these outcomes, the modal energy distributions of 

subsystems 2 and 3, obtained with the sole consideration of resonant modes, are compared 

in Figure 5 with those from the original CB formulation, which also include non-resonant 

modes (herein considered as the reference solution). As seen in the figure, the energies of 

most modes are correctly predicted with the reformulated CB model, even if only resonant 

C modes are involved. However, some large discrepancies can also be observed for a few 

other modes, their energy levels being generally underestimated. For instance, the 

calculation for the 34-th mode of subsystem 2 provides an energy of 5.0x10-10 J, whereas 

the reference value is 1.9x10-8 J. These energy differences in some resonant modes are at 

the origin of the slight discrepancies in dB of the subsystem energies.  

 

Reference  67.9 dB 57.2 dB 56.6 dB 57.2 dB 

CB with all the C modes 67.8 dB 57.1 dB 56.5 dB 57.0 dB 

CB with only resonant C modes  67.8 dB 55.8 dB 55.3 dB 55.7 dB 

CB with the selected C modes 67.7 dB 57.1 dB 56.4 dB 56.8 dB 

Table 5. Subsystem energy results for the reformulated CB calculation with various sets 

of C modes. Test case #2. 

 

An analysis of the mass coupling matrix between the R normal modes and the C 

modes reveals that some non-resonant C modes are strongly coupled to the former. A final 

computation is thus presented which, along with the resonant C modes, also includes those 

non-resonant C modes strongly coupled with the resonant normal modes. A non-resonant 

C mode and a resonant normal mode are assumed to be strongly coupled if their coupling 

mass coefficient in 
CR

g

/
M  is greater than 0.1 (remember that the normal modes and the C 

modes are normalized to unit modal mass). Following this criterion, a total of 198 C modes 

(6 resonant plus 192 non-resonant) are included in the computation. This supposes 

neglecting a large quantity of non-resonant C-modes (753 out of 951). The subsystem 

energies resulting from the reformulated CB with these selected non-resonant modes are 

presented in Table 5 (third row), while the corresponding modal energy distributions are 

shown in Figure 6. A very good agreement with the reference solution is obtained.  

To conclude the analysis based on the reformulated CB method, a schematic 

representation of the proposed modal coupling final arrangement is presented in Figure 7. 
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In the diagram, all modes (subsystem normal modes and C modes) can be associated to 

oscillators, as demanded by the MCAs. The external force directly excites the resonant 

normal modes of subsystem 1 and the C modes. The former are coupled to the latter through 

mass elements, which fulfil the conservative coupling condition of the MCAs. However, 

for an accurate prediction of the energy sharing between subsystems it becomes necessary 

to include some non-resonant C modes in the model. This point cannot be accounted by 

SEA and SmEdA, though it is not exclusive of the situation analyzed in this paper. For 

instance, non-resonant transmission is needed to model energy transfer between acoustic 

cavities separated by a panel, below the critical frequency (see e.g., [29-30]). That issue is 

however out of the scope of the current work.  

6 Conclusions 

In this paper we have explored the potential of the Craig-Bampton (CB) method to 

characterize the coupling between multiple subsystems at a junction, in accordance with 

the coupling modal assumptions (MCAs) of some energy-based methods. This paper 

constitutes a continuation of the previous work by the authors in [7], where the dual modal 

formulation (DMF) was investigated to tackle the same problem. Although the DMF 

performs well when there is a strong impedance mismatch between subsystems at the 

junction, it fails when the involved subsystems have similar stiffness. This motivated 

resorting to the CB to address that situation.  

The CB method is appealing at first sight because it considers normal modes with 

fixed-interfaces, which could be well adapted for subsystems with comparable stiffness (in 

this case every subsystem is blocked at the junction by the others). However, despite the 

developments based on the CB have been shown to fulfil various of the requisites in the 

MCAs, numerical tests have revealed that the cross contributions between the subsystem 

normal modes and the characteristic constraint (CC) modes are not negligible, and that 

non-resonant low frequency modes must be taken into account to achieve accurate energy 

predictions. To overcome those difficulties, a reformulation of the CB modal equations has 

been proposed. 

The reformulated CB method has led to the definition of the coupling (C) modes 

for a given frequency band of excitation. C modes are obtained solving a generalized 

eigenvalue problem composed by the mass and stiffness matrices of the non-resonant 
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normal modes and the constraint modes. The cross contributions have been shown to 

become negligible with the reformulation, thus improving the performance of the original 

CB method. Notwithstanding the enhancement, the influence of those non-resonant C 

modes strongly coupled to the normal subsystem modes cannot be neglected to get precise 

subsystem energies. The standard SEA or SmEdA methods cannot embed such behavior, 

but the situation is not so strange, and one can encounter it for instance, in panel sound 

radiation below the critical frequency. Developments to include non-resonant transmission 

have been developed in those theories and could be adapted as well to deal with the problem 

in this paper. Future work may also involve handling the effects of longitudinal and shear 

waves [31-33], which have been disregarded in this paper, as well as extracting coupling 

loss factors from the herein reported modal coupling scheme.   
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FIGURE CAPTIONS 

 

 

Figure 1. Geometry of the benchmark structure. 

 

Figure 2.  Sub-structuring of the benchmark structure (a) DMF in [7] (b) CB. (Section view 

of the panels). 

Figure 3. Illustration of the different modes shapes for the four coupled plates: (a), normal 

modes with fixed interface; (b), constraint modes; (c), Characteristic Constraint (CC) 

modes. Test case #2. (Note that constraint modes correspond to static deflections and 

therefore have no associated frequency).  

Figure 4. Test case # 2.  (a), Modal energy distribution of subsystem 3. Cross: standard CB 

results including non-resonant subsystem modes; Square: standard CB results with only 

resonant subsystem modes. Vertical dash lines indicate the bandwidth of the 1 kHz octave 

band; (b), 3

m , coupling matrix between the CC modes and the normal modes of 

subsystem 3. 

 

Figure 5. Modal energy distributions in test case # 2 for: (a), subsystem 2; (b), subsystem 

3. Cross: standard CB results considering non-resonant modes (reference); circle: 

reformulated CB results with only resonant subsystem modes and resonant C modes. 

Vertical dash lines indicate the bandwidth of the 1 kHz octave band.  

 

Figure 6. Modal energy distributions in test case # 2 for: (a) subsystem 2; (b) subsystem 3. 

Cross: original CB results considering non-resonant modes (reference); circle: CB results 

with only resonant subsystem modes and the selected C modes.  

Vertical dash lines indicate the bandwidth of the 1 kHz octave band.  

 
Figure 7. Schematic representation of the modal coupling scheme related to the 

reformulated CB method (R = resonant, NR = non-resonant). 
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TABLE CAPTIONS 

 

Table 1: Subsystem energies and different contributions resulting from the standard CB 

method (dB, ref. 10-12 J, (-) = negative contributions). Results for the octave band 1 kHz. 

 

Table 2: Number of resonant modes and modal overlap factor for each panel 

 

Table 3: Same type of results than in Table 1 with the standard CB method but only 

considering the Resonant (R) normal modes. Results for the octave band 1 kHz. 

 

Table 4: Same type of results than in Table 1 with the reformulated CB calculation. 

 

Table 5. Subsystem energy results for the reformulated CB calculation with various sets of 

C modes. Test case #2. 
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Figure 1. Geometry of the benchmark structure.  
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(a)                                                 (b) 

Figure 2.  Sub-structuring of the benchmark structure (a) DMF in [7] (b) CB. (Section view 

of the panels). 
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(c) 

Figure 3. Illustration of the different modes shapes for the four coupled plates: (a), normal 

modes with fixed interface; (b), constraint modes; (c), Characteristic Constraint (CC) 

modes. Test case #2. (Note that constraint modes correspond to static deflections and 

therefore have no associated frequency).  
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(b) 

Figure 4. Test case # 2.  (a), Modal energy distribution of subsystem 3. Cross: standard CB 

results including non-resonant subsystem modes; Square: standard CB results with only 

resonant subsystem modes. Vertical dash lines indicate the bandwidth of the 1 kHz octave 

band; (b), 3

m , coupling matrix between the CC modes and the normal modes of 

subsystem 3. 
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(b) 

Figure 5. Modal energy distributions in test case # 2 for: (a), subsystem 2; (b), subsystem 

3. Cross: standard CB results considering non-resonant modes (reference); circle: 

reformulated CB results with only resonant subsystem modes and resonant C modes. 

Vertical dash lines indicate the bandwidth of the 1 kHz octave band. 
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(b) 

Figure 6. Modal energy distributions in test case # 2 for: (a) subsystem 2; (b) subsystem 3. 

Cross: original CB results considering non-resonant modes (reference); circle: CB results 

with only resonant subsystem modes and the selected C modes.  

Vertical dash lines indicate the bandwidth of the 1 kHz octave band.  
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Figure 7. Schematic representation of the modal coupling scheme related to the 

reformulated CB method (R = resonant, NR = non-resonant). 
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