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Abstract: 

Statistical energy methods in vibroacoustics, like the statistical energy analysis (SEA) or 

the statistical modal energy distribution analysis (SmEdA), rely on specific modal coupling 

assumptions (MCAs) between subsystem modes. These methods assume that the behavior 

of subsystem mode amplitudes mimic that of oscillators, that the modes within a subsystem 

are uncoupled, and that the coupling between two different subsystems only takes place 

through the interaction of resonant modes. In the case of more than two subsystems being 

connected at a junction, however, it becomes difficult to establish a modal interaction 

scheme for them. In SEA, the problem is avoided by resorting to the travelling wave 

approach instead of the modal one. Nevertheless, there is a need for other energy-based 

methods, like SmEdA, to deal with such a situation. In this work it is proposed to extend 

the displacement-stress dual formulation, originally intended for two subsystems, to the 

case of multiple flexural waveguides connected at a junction. Numerical results are 

presented for a test case consisting of a floor coupled to two walls at right angle. The 

fulfillment of the MCAs by the dual modal formulation is examined in terms of the 

impedance mismatch between the floor and the walls.   
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1 Introduction 

Statistical energy-based approaches are widely used to describe the dynamics of complex 

built-up structures at mid and high frequencies. From all methods, the most popular one is 

statistical energy analysis (SEA) [1-5]. In SEA, the global system to be analyzed is 

subdivided into several subsystems (each one representing a group of resonant modes), and 

power balance equations are established between them. Despite their simplicity, the 

derivation of the SEA equations relies on several rigorous assumptions whose range of 

validity is not easy to establish. Many studies have addressed this subject in the past, see 

for example [6-11], or the more recent works in [12, 13].  

 The strict hypotheses demanded by SEA essentially confine it to the high frequency 

range. To address the so-called mid-frequency problem and extend energy-based methods 

to lower frequencies than those in the range of SEA, several proposals have been made. In 

the framework of modal approaches, the energy distribution analysis (EDA) [14], for 

instance, expresses the energy influence coefficients [15] of a built-up structure in terms of 

the modes of the whole structure. In the Asymptotical Scaled Modal Analysis (ASMA) 

method [16-19], the physical size of the solution domain is reduced based on a scaling law, 

while the damping loss factor is artificially increased. This leaves a scaled model that can 

represent the mean response of the original system, with the advantage of only needing a 

reduced number of modes.  

Another modal approach is the statistical modal energy distribution analysis 

(SmEdA) method [20-22], which establishes power balance equations between individual 

connected subsystem modes, rather than between the subsystems themselves. This 

circumvents the SEA requirements of modal energy equipartition and enables applying 

SmEdA to cases of low modal overlap, locally excited subsystems, and to deal with 

complex heterogeneous subsystems. SEA is then recovered as a limiting case from SmEdA 

[20].  

The coupling between two subsystems in SmEdA and SEA takes place according to 

a set of conditions that the resonant modes in the subsystems must fulfill. We may term 

such conditions as the modal coupling assumptions (MCAs), to be detailed below. The 

MCAs permit characterizing the coupling between subsystems (groups of resonant modes) 

in SEA, or between individual modes in SmEdA, through coupling loss factor coefficients. 
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The latter strongly facilitate solving SEA and SmEdA systems, and resolving problems of 

practical industrial interest, like the computation of energy transmission paths [23-26].  

There is no evidence, however, indicating that the MCAs should generalize to 

multiple subsystems connected at a junction. It is precisely the purpose of this work to 

make some first steps towards this goal, by considering the case of several flexural 

waveguides sharing a common joint. As far as the authors know, this problem has not been 

tackled before. 

In SEA, the latter seems to be a theoretical problem rather than a practical one. This 

is so because there is a way out to the situation: one can resort to the wave approach to 

SEA instead of the modal one. Travelling waves are considered and one can deduce the 

expressions for the coupling loss factors at a junction [27-30] from wave transmission 

coefficients [31-34]. Finite elements [35-36], spectral methods [37] and hybrid finite 

element (FEM)-SEA approaches [38] can also be employed to compute them. In SmEdA, 

however, the problem is not only of theoretical but also of practical importance. This is so 

because in SmEdA the subsystem modes are required to compute the coupling loss factors, 

and there is no alternative akin to the wave approach in SEA.  

 To find a modal coupling scheme for multiple subsystems connected at a junction, 

it is herein suggested to resort to the dual modal formulation (DMF) [39-42]. When applied 

to a pair of subsystems, the DMF complies with the MCAs. This formulation has been 

known since long ago to properly describe the dynamic behavior of a flexible structure 

coupled to a closed acoustic domain [39, 40]. The structure is described by the 

displacement field and the uncoupled-free modes (i.e. in-vacuo modes), whereas the cavity 

is characterized by the acoustic pressure field and the blocked modes (i.e. cavity modes 

assuming rigid walls).  

By analogy between the acoustic waves in a fluid medium and the longitudinal waves 

in a rod, the DMF was extended in [41] to coupled rods, showing that the modal series 

converges even when the rods have equal properties. By the end of the nineties, the DMF 

was generalized to continuous mechanical systems [42]. If there is a mechanical impedance 

mismatch at a junction (which can be related to the weak coupling assumption), the modal 

series can be truncated to the resonant modes, as demanded by the MCAs [42]. The 

boundary conditions of the uncoupled-subsystems can then be clearly defined; the stiffest 
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subsystem should be free at the junction and described by its displacements, while the soft 

one should be blocked and represented by its stresses.  

In this work, the DMF is extended to multiple subsystems sharing a junction. Still, 

the method requires one subsystem to be clearly stiffer than the others, the stiffest 

subsystem being characterized by its free modes and the remaining ones by blocked modes. 

Numerical tests will be presented for different impedance mismatches between subsystems, 

to determine under which conditions the resonant modes can represent the global behavior 

of the system, and therefore fulfill with the MCAs.  

The paper is organized as follows. The MCAs are detailed in section 2, together with 

a summary of the DMF applied to a pair of subsystems. As a by-product of the paper, we 

also present a new derivation of the DMF equations in the Appendix, stemming from 

Hamilton’s principle and its complementary form [43], rather than from Reissner’s 

principle. Section 3 introduces a benchmark problem consisting of four panels sharing a 

junction, which will be used to facilitate discussion through the remaining of the paper. 

Some considerations on subsystem substructuring are also outlined, followed by the 

derivation of the DMF for the four panel test case. Numerical simulations and a discussion 

on the results are provided in section 4. The conclusions and future perspectives close the 

paper in section 5. 

2 Basic theory for two coupled subsystems connected at a junction 

2.1 Modal coupling assumptions 

The modal coupling assumptions (MCAs) characterizing the interaction between modes, 

or groups of modes, belonging to two different subsystems, can be summarized as follows 

(see e.g., [1,5]):  

 - the interaction concerns the modes of the uncoupled subsystems, 

- the dynamic behavior of a subsystem mode can be associated to the dynamic 

behavior of an oscillator (mass-spring-damper system), 

- the coupling between the modes in different subsystems is conservative and 

takes place through mass, stiffness and/or gyroscopic elements, 

- modes within a subsystem are uncoupled (orthogonality of modes),   
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- the resonant modes of each subsystem suffice to account for the energy 

interchanged with other subsystems. 

Few works seem to exist analyzing the particular fulfilment of the MCAs in mechanical 

systems. Crandall and Lotz [20], for instance, established the modal equations for the 

specific case of two flexural beams coupled by a torsion spring. The subsystem modes were 

chosen as the modes of the uncoupled-free subsystems and displacements were used to 

describe the vibration of the two beams. However, the resulting modal coupling scheme 

was not in accordance with the MCAs; some terms arise in the formulation which express 

direct coupling between modes belonging to the same subsystem. Nonetheless, if the 

torsion stiffness of the spring is small in comparison with the beam flexural stiffness, it 

was shown that the inner mode coupling can be neglected leading to fulfillment of the 

MCAs. Scharton and Lyon had previously obtained similar results for two weakly coupled 

identical beams [44].  

Despite of the MCAs being at the very core of SEA and SmEdA, as said in the 

Introduction it is unclear whether they could also apply to the connection of more than two 

subsystems. Before extending the DMF to multiple subsystems to check that issue, let us 

first give a summary of the method when applied to the easier situation of two coupled 

subsystems.    

2.2 The dual modal formulation basic equations 

Consider two continuous elastic subsystems 1 and 2, coupled at a junction Γ, subsystem 1 

being excited by a mechanical force. The DMF [42] allows one to calculate the vibration 

response of the two coupled subsystems from the uncoupled subsystem modes and the 

reduced modal equations. In accordance with the formulation (see [42] and appendix A), 

the stiffer subsystem is described by its displacement field and its uncoupled-free modes 

(i.e. assuming null stresses at the connection), whereas the softer one should be 

characterized by a stress field (e.g., acoustic pressure) and by their uncoupled-blocked 

modes (i.e. contemplating null displacements at the connection).  

Suppose that subsystem 1 is the stiffest one and that pu  represents the 

displacement vector of its p-th free mode when normalized to a unit modal mass. Besides, 
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qσ stands for the stress tensor of the q-th blocked mode of subsystem 2, when normalized 

to unit modal stiffness (i.e. unit modal strain energy). 

The displacement vector at a point M of subsystem 1,  tM ,u , and the stress tensor 

at a point N of subsystem 2,  tN ,σ , admit the modal expansions,  

     



Pp

pp MttM
ˆ

, uu       and           



Qq

qq NttN
ˆ

, σσ  , (1) 

where  tp  and  tq  respectively represent the modal amplitudes. P̂  and Q̂  stand for 

the sets of modes of subsystems 1 and 2 retained in the modal expansion. The number of 

modes in each set are denoted by  PP ˆcard and  QQ ˆcard . 

Following the DMF approach, the expressions in Eq. (1) are to be introduced in the 

weak formulation of the coupled problem. Taking advantage of the orthogonality of the 

uncoupled modes and making the change of variables Qqqq
ˆ,   , the modal equations 

of motion can be written as (see appendix A for a derivation), 

1 1

2 2T

            
              

             

1 1 1

2 2

I 0 q 0 W q Λ 0 q f

0 I q W 0 q 0 Λ q 0
, 

 

(2) 

with 

1 2   12

1 1 1

2 2 2

,  ,  , ,

diag ,  diag .

p q p pqP Q P P Q

p qP P Q Q

F W 

 

   

 

                

       

1

1

q q f W

Λ Λ
 

 

 

p , q  denote the modal angular frequencies of modes p and q, and pF  the modal forces 

due to the external excitation. 
12

pqW  stands for the intermodal work between modes p and q, 

which is given by 

12 dpq p qW


  u σ n . (3) 

n in Eq. (3) represents the normal vector pointing outwards to the boundary of subsystem 

2. Note that viscous damping could be also easily introduced in the modal equations (2).  

The system of equations (2) corresponds well to the MCAs. In addition to the external 

force and the damping loss factor, these models require knowing the modal angular 

frequencies and the mode shapes (in term of displacements or stresses) at the coupling 
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junction. For time harmonic excitations, the modal amplitudes can be obtained solving the 

matrix system (2). The displacement at point M, or the stress at N, can then be computed 

from Eq. (1). Moreover, the total energy (kinetic energy + strain potential energy) of each 

subsystem can be calculated from the summation of their modal energies. The reader is 

referred to [42] for details on these developments, which will be not reproduced herein.   

3 Extended theory for multiple subsystems connected at a junction 

3.1   Description of the benchmark model and cases 

For ease of exposition, the viability of the DMF approach when applied to multiple 

subsystems is analyzed for a specific structure composed of four flexural panels coupled at 

a junction, at right angle (see Fig. 1). Panels P1 and P2 in the figure represent the floor 

whereas panels P3 and P4 stand for vertical walls. The plates have clamped boundary 

conditions on the outer edges.  

This example has been chosen because it is widely met in practical applications of 

SEA (e.g., in the naval and building industries). However, to keep the problem amenable 

for analytical description we have only considered the flexural motion of the panels. 

Therefore, the coupling among the plates only takes place through rotations and moments 

at the junction. The coupling between the out of plane motions (flexural) and the in-plane 

motions (longitudinal/shear motions) has been discarded in the analysis.  

Two typical cases of building structures are contemplated. In the first one (test case 

#1), the floor is 20 cm in thickness and made of concrete, while the walls are 5 cm in 

thickness and made of brickwork. Therefore, there is a clear impedance mismatch at the 

junction, the concrete floor being much stiffer than the brickwork walls. In the second 

situation (test case #2), both, the floor and the walls will be made of concrete with a 

thickness of 20 cm. Consequently, all individual panels will have the same impedance. 

 A normal force excitation with unit power spectral density,   /HzN 1 2fSFF , is 

applied on panel P1, at the 1 kHz central frequency octave band. The point of excitation is 

located at coordinates (0m, 1.6m, 0.87m). The damping loss factor of the floor and walls 

has been fixed to 0.02 in both configurations. 

 The DMF calculations to be performed in subsequent sections need the subsystem 

modes as inputs, with appropriate boundary conditions. These modes have been computed 
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using the finite element method (FEM) and the SDTool code [45] in MATLAB. The 

computational mesh for test case #1 has been defined with a criterion of six elements per 

flexural wavelength at 2 kHz. The global FEM mesh is composed of 52126 nodes and 

51604 quadrilateral shell elements, with 134 nodes belonging to the coupling junction. The 

same mesh has been considered for the second test case, which presents stiffer walls. 

Clamped boundary conditions have been imposed on the nodes of the outer edges. 

Moreover, the three translations remain blocked for the 134 nodes belonging to the 

coupling edge because, as said, only flexural motion has been taken into account. The 

meshes of the subsystems have been built from the global mesh. Appropriate boundary 

conditions at the nodes of the junction have been imposed in agreement with the 

requirements of the DMF method. The subsystem modes are then extracted using the 

Implicitly Restarted Lanczos Method (eigs command in SDTool, [45]). All subsequent 

DMF computations have been carried with MATLAB. 

3.2 Sub-structuring and SEA weak coupling assumption 

Once defined the test cases, the next step is that of partitioning the four-plate system into 

subsystems. This sub-structuring [46-50] should comply with the weak coupling 

assumption of SEA. Different definitions for the latter can be found in literature, which 

have always been a matter of discussion. The following ones could be useful in the present 

context.  

 In [46], Langley proposed that “… the coupling will be said to be weak if the Green 

function for subsystem j is approximately equal to that of the uncoupled subsystem.”, while 

a few years later, Fahy and James [49] asserted that “Under the conditions of weak 

coupling, the system modes are ‘localized’ in the sense that they closely resemble in natural 

frequency and shape the modes of the uncoupled subsystems (given the appropriate 

boundary conditions), and that their energies reside principally within the corresponding 

subsystems.”. Moreover, the same authors specified that “Depending on the nature of the 

coupling, the boundary conditions for the uncoupled system do not always correspond to 

free displacement at the coupling” [50].  

 The above considerations suggest that the localization of the global modes could 

give clear indications for partitioning a system into subsystems, as well as for defining the 

boundary conditions of the uncoupled subsystems. For example, in the EDA formalism 



9 

 

([14,16]), the 𝜓𝑗𝑘
𝑟  parameter could be used as an indicator of localization of the global 

modes. This parameter corresponds to the integral on subsystem r of the product of mode 

shapes i and j multiplied by the mass density (see Eq. (3) in [16]). As global modes are 

considered in EDA, the 𝜓𝑗𝑗
𝑟  parameter approaches to the generalized mass when the mode 

j is localized on subsystem r.   

In the case of large models, localizing global modes for sub-structuring is not very 

practical because it implies computing all system modes. However, it provides a helpful 

guideline for our small four panel benchmark problem. For instance, in Fig. 2 we have 

plotted the spatial shapes of four global modes corresponding to the first test case of section 

3.1, and compared them with the spatial shapes of the subsystem modes defined in 

accordance with the DMF. As observed from Figs. 2a and 2b, the global mode shapes at 

80.4 Hz and 181 Hz are localized on panel P4, and closely resemble those of the uncoupled-

blocked modes of panel P4 at 80.5 Hz and 181.1 Hz, shown in Figs. 2e and 2f. Similarly, 

the global mode shapes in Figs. 2c and 2d at 88.1 Hz and 308.9 Hz are mainly restricted to 

panels P1 and P2 (i.e., the floor) and match the floor uncoupled-free modes, as shown in 

Figs. 2g and 2h.  

Altogether, this indicates that the DMF is well adapted to describe the vibration 

behavior of this system. The floor, which is the stiffest component, should constitute a 

single subsystem described in terms of displacements and by its uncoupled-free modes 

(null stress at the coupling junction). The vertical walls should be two additional 

independent subsystems characterized by their stresses and uncoupled-blocked modes (null 

displacement at the coupling junction). Therefore, in what follows subsystem 12 will 

designate the floor (panels P1 plus P2), whereas subsystems 3 and 4 will respectively 

correspond to the vertical walls P3 and P4. 

3.3 Dual modal equations for the four panels 

The DMF outlined in section 2.2 is next extended to the four-plate benchmark structure 

considering the subsystem partitioning presented above. Hereafter the following notation 

will apply: 

- l  designates the set of nodes belonging to the coupling junction, 

-  p  stands for the angular frequency of mode p of subsystem  4,3,12 , 
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-  
 ip,  and 



ipM , respectively symbolize the angular rotation and reaction moment at 

node li   of mode p of subsystem  . 

As mentioned in section 3.1,  the modes of each uncoupled subsystem have been 

calculated with FEM. Remember that to compact the equations, the mode shapes of 

subsystem 12 are taken normalized to unit modal kinetic energy and those of subsystems 3 

and 4 normalized to unit modal strain energy. For subsystem 12, the three rotations of the 

134 nodes belonging to the coupling junction have been left free whilst fixed to zero for 

subsystems 3 and 4.  

Applying the DMF and the conditions of conservation of slope and bending 

moment at the junction, the modal equations for the 3 coupled subsystems can be deduced. 

These read, in matrix form, 































































































































0

0

F

q

q

q

Λ00

0Λ0

00Λ

q

q

q

00W

00W

WW0

q

q

q

I00

0I0

00I
11

4

3

12

4

3

2

4

3

12

T412

T 312

412312

4

3

12













 

 

   (4) 

where 

- 4312  , , qqq  are the vectors of modal amplitudes of subsystems 12, 3, and 4 

(


pq  stand for their components, namely the p-th mode of the  -th 

subsystem), 

- 4312  , , ΛΛΛ  are the eigenvalue diagonal matrices of subsystems 12, 3, and 

4 (with only non-null components 
2

pppΛ   ), and, 

 

  

- 312
W  and 412

W  are the matrices of intermodal works between subsystems 12 and 

3, and between subsystems 12 and 4. Their components are designated by 
pqW (i.e., 

intermodal work between the p-th mode of subsystem   and the q-th mode of 

subsystem  ) and can be computed from the FEM nodal variables as (see Eq. (80) 

in [42]) 





i

iqippq MW   ,, . (5) 
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 Expanding one of the rows in Eq. (4) one gets a particular case of the canonical 

problem needed to comply with the MCAs [5], 







 
q

qpqpppp qWFqq  2 , (6) 

which states that each mode p of a subsystem   behaves as a mass-spring oscillator (l.h.s 

of Eq. (6)) that is coupled to oscillators (modes q) in another subsystem    through 

gyroscopic elements (r.h.s of Eq. (6)). It remains yet to be checked whether the sole 

consideration of the subsystem resonant modes suffices to represent the global behavior of 

the system. In other words, is it possible to correctly estimate the subsystem energies if one 

only retains the resonant modes in the DMF Eq. (4)? To answer this question, DMF 

calculations will be performed in the following section with and without non-resonant 

modes and compared to a reference solution using the system global modes.  

To compute the modal energy of the p-th mode of subsystem  ,  fEp


, we have 

introduced some viscous damping in Eq. (4) and applied a unit harmonic excitation at 

frequency f. The vector of the modal energies of subsystem  , pE   
α

E  can be 

computed from the modal amplitude vectors in Eq. (4) as, 

 
2

21

2

  α
E I Λ q . 

 

(7) 

The mean modal energy, 


pE , in response to a white noise force of unit power 

spectral density in the octave band of central frequency cf ,  is obtained by integrating 

(using a simple quadrature rule), 

      
2

1

2

1

f

f

p

f

f

FFpp dffEdffSfEE 
, 

 

(8) 

where 1f  and 2f  are the lower and upper bound frequencies of the considered octave band.  

On the other hand, the energy of subsystem   at frequency f can be computed adding the 

energies of the modes in the subsystem,    fEfE
p

p  . Finally, the subsystem energy 
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for a white noise force in the octave is computed as  
2

1

f

f

dffEE  , which should equal


p

pE .   

4 Numerical simulations and discussion 

4.1 Results 

The total energies of subsystems 12 and 3 have been first calculated, according to the DMF, 

for the test case #1 of section 3.1, and plotted versus frequency in Fig. 3. This figure also 

contains the reference energies obtained from the global modes of the system, as described 

in section 2.2 of [51]. The calculations have been performed for the 1 kHz octave band 

considering 200 modes per subsystem. This frequency band has been initially chosen since 

it guarantees, at least, 10 resonant modes per band for each subsystem, as required by SEA 

[1,5].  

A very good agreement can be observed between the different curves, even if only 

resonant subsystem modes are included in the DMF calculations. Some slight differences 

can also be appreciated at the bounds of the frequency band, which could be expected 

because of the stronger influence of the non-resonant modes at these frequencies. Note that 

the frequency matching between subsystem modes seems to have a similar effect than the 

one between global modes in EDA. Indeed, in the EDA formalism of [14,16], the frequency 

cross-modal terms Γ𝑗𝑘  are small unless modes j and k are resonant.  

For better understanding the influence of neglecting the non-resonant modes, in 

Fig. 4 we have plotted the modal energies of each subsystem with and without considering 

them. The modal energies of subsystem 12 are not affected by the non-resonant modes 

(Fig. 4a), which is logical because subsystem 12 is directly excited with the external force. 

As opposed, non-resonant modes somewhat influence the less energetic modes of 

subsystems 3 and 4 (Figs. 4b and c), though the higher ones are well approximated only 

with the resonant modes. It can be therefore concluded that resonant coupling suffices for 

a correct prediction of the subsystem energies at the 1 kHz octave band.  

One could wonder whether the above results would remain valid for other 

frequency bands and/or for different damping values. To that purpose further tests were 
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ran. Those are presented in Fig. 5. Three octave bands have been considered, namely 250 

Hz, 500 Hz and again 1 kHz for comparison, as well as four damping loss factors that range 

from 0.005 to 0.05. The energies of the receiving subsystems 3 and 4 have been computed 

according to the DMF, with and without considering the non-resonant modes, and 

compared to the reference solution. Subsystem 3 respectively has 18, 40, and 101 resonant 

modes at the 250 Hz, 500 Hz and 1 kHz octave bands, while there are 15, 32 and 78 resonant 

modes for subsystem 4.  

 It can readily be checked from Fig. 5 that the DMF calculations well recover the 

reference energy of the receiving subsystems, even if one just considers the resonant 

modes. Notably, observe how the relatively low energy level of subsystem 4 at the 500 Hz 

octave band (as compared to the other two bands) is correctly represented by the DMF. The 

overall reduction of the two subsystem energies when increasing the damping is also well 

reproduced (see Figs. 5b, 5c and 5d). Meaningful differences can only be appreciated for 

subsystem 4 at 500 Hz, for the highest damping configuration (i.e. 0.05  in Fig. 5d). The 

subsystem energy is clearly underestimated in this case, particularly if non-resonant modes 

are neglected in the DMF computation. This can be attributed to the energy exchange 

between resonant and non-resonant modes having natural frequencies close to the upper 

and/or lower band limits of the octave. When the damping growths, the modal overlap 

factor increases and the interactions between subsystem modes are less sensitive to the 

frequency matching. The exchange of energy between resonant and non-resonant modes 

can then become significant. Except for that singular situation, however, it is apparent from 

Figs. 3, 4 and 5 that the results from the resonant DMF are quite satisfactory. Therefore, 

under the premises of test case #1, the DMF offers a modal coupling scheme in agreement 

with the MCAs. 

 Next, let us focus on test case #2 described in section 3.1. The same type of 

computations than for test #1 have been carried out. The results are summarized in Table 

1, where the overall subsystem energies are presented. As observed, significant 

discrepancies with the global modes reference solution are found for subsystems 3 and 4, 

even if both, resonant and non-resonant modes are included in the computations. This 

means that the 200 - resonant or non-resonant - modes are not sufficient to ensure the 

convergence of the modal expansion and a larger number of them should be needed to 
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achieve a better result. In fact, this is not unexpected since the considered subsystem modes 

do not resemble those of the system global modes as in test case #1.  

To better understand this point we may compare the subsystem modal parameters 

considered in the DMF with those of the global modes. These parameters are the modal 

frequencies pf  ( 2p pf  ) in Eq. (6)) and the modal angular rotations at the coupling 

junction,  
12

, ,  p i i  , in Eq. (5).  Fig. 6, shows the values of the maximum angular rotation

max

,maxp p i
i

 


  as a function of the modal frequencies pf , up to 450 Hz.  To facilitate 

visualization, only the free modes presenting a significant deformation of plate 1 have been 

included. One can observe how the values for subsystem 12 resemble those of the global 

modes for test case #1, which explains why convergence was achieved in that occasion. As 

opposed, the results for subsystem 12 clearly differ from the global ones for test case #2. 

The maximum angular rotations of subsystem 12 are systematically greater than those of 

the global system, whilst the modal frequencies become lower. Consequently, it is apparent 

that for the second test case the DMF seems not to be the appropriate approach to get a 

modal coupling scheme according to the MCAs. 

4.2 Discussion 

The basic reason for above behavior and failure of the DMF in case #2 is that the 

floor and the panels have the same thicknesses and material properties, and thus exhibit the 

same dynamic stiffness. Hence, a more pertinent partitioning scheme for #2 compliant with 

the DMF is needed.  

One option could be that in Fig. 7a. It consists in choosing, for instance, panel P1 as 

a subsystem and then grouping all remaining panels into another subsystem. In such 

situation, there would be a significant mechanical impedance mismatch between the two 

subsystems and the DMF could be applied. Panel P1 (subsystem 1) could be well 

characterized by blocked modes, whereas the three others panels (subsystem 2) could be 

represented by free modes. However, this alternative sub-structuring would not be very 

feasible for complex built-up structures in practice, so it will be not pursued hereafter.  
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Test 
case 

                                     Panel  

Energy  

1+2  3 4 

#1 Reference  68.4 dB  44.7 dB  46.4 dB 

#1 DMF 68.4 dB  44.2 dB  45.9 dB  

#1 DMF (resonant modes only) 68.2 dB  44.0 dB  45.7 dB 

#2 Reference  67.9 dB  56.6 dB  57.2 dB 

#2 DMF 67.9 dB  37.7 dB  36.0 dB 

#2 DMF (resonant modes only) 67.8 dB  34.8 dB  34.3 dB 

 

Table 1: Comparison of subsystem energies for test cases #1 and #2. Role of resonant and 

non-resonant modes. Results correspond to the 1 kHz octave band (dB, ref. 10-12 J). 

 

A more manageable sub-structuring alternative for case #2 could rely on the weak 

coupling definition by Fahy and James [49, 50], already cited in section 3.1. Given that all 

panels have the same dynamic stiffness, each one perceives the other three at the junction. 

One may therefore expect each panel to be blocked at the junction by the other three. The 

global modes could be more localized in that picture and resemble those of uncoupled 

panels with clamped boundary conditions at the junction. This would result in the sub-

structuring scheme depicted in Fig. 7b, in which each panel is identified with a subsystem. 

Note that this scheme corresponds to the partitioning generally assumed in the traveling 

wave approach to SEA [27-30].   

However, an important question remains, namely, which could be the modal 

formulation amenable with the partition scheme in Fig. 7b that also satisfies the MCAs? 

The DMF must be discarded because only one subsystem could be described by its 

uncoupled blocked modes, the other ones having to be characterized by uncoupled free 

modes. An appealing alternative would be to resort to the well-known Craig-Bampton (CB) 

method [52,53]. Given that the normal modes in the CB are defined with fixed-interfaces, 

this popular approach may be well adapted to our objective. Checking whether the CB, or 

some variation of it, is suitable to characterize multiple subsystems connected at a junction, 

with low impedance matching and according to the MCAs, will be the topic of companion 

paper [54].  
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5 Conclusions 

In this paper we have studied the possibility of obtaining a modal coupling scheme for 

multiple flexural waveguides sharing a junction, in accordance with the required modal 

coupling assumptions (MCAs) of some energy-based methods, like SEA and SmEdA. In 

particular, the dual modal formulation (DMF) has been extended to deal with multiple 

connected subsystems. It has been shown that the latter can satisfy the MCAs, the modes 

of the different subsystems being coupled through gyroscopic elements. However, the 

DMF suffers from one drawback: it only works well if one of the subsystems is clearly 

stiffer than the others. Therefore, the approach fails when applied to subsystems with 

similar dynamic stiffness. This has motivated to address the problem of connected 

subsystems with low impedance mismatch in a companion paper [54]. 

On the other hand, we shall notice that only flexural waves have been considered 

in this work. Future developments may address the influence of longitudinal and shear 

waves on the modal coupling. Also, it would be interesting to derive coupling loss factors 

in SmEdA and SEA from the herein reported results.  

 

Appendix A. Dual Modal Formulation from Hamilton’s principle and its 

complementary form 

A derivation of Eq. (2) in the main text steming from variational principles will be next 

presented. The reader is refered to [42] for a more complete description of all involved 

concepts and equations regarding the DMF. The exposition will be based on Hamilton’s 

principle and its complementary form [43], while it was based on two forms of the Reissner 

principle in [42].   

Let us consider two elastic continuous mechanic systems rigidly coupled at the 

surface   (see Fig. A.1). 1V  and 
2V  represent the volumes occupied by subsystems 1 and 

2, and the unit vectors 1n  and 
2n  represent the outer normal to these volumes. 

F

  and 

 2,1,  

C
, respectively denote the boundary surfaces with free and blocked 

displacements. It is assumed that each subsystem is made of an elastic, homogeneous 

material.  

In the following, subsystem 1 is described by its displacement field and subsystem 

2 by its stress field. In Lagrangian coordinates  1,2,3i , ix , iu  and ij represent the 
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displacement and the strain tensor components in 
1V , while ij  and ip  respectively denote 

those of the stress tensor and momentum in 
2V .  ijklC  is the elasticity tensor associated to 

subsystem 1 and ijklS is the compliance tensor associated to subsystem 2. 
1 and 

2  

respectively stand for the mass densities of subsystems 1 and 2. For the sub-structuring of 

the problem (see Fig. A.1), it becomes necessary to separate the two subsystems, and to 

prescribe displacements and stresses on their coupling surface  . The stress tensor 

components kl  are prescribed on   for subsystem 1, whereas the displacements lu  are 

imposed on   for subsystem 2.  

The variational formulation of the elastodynamics of each subsystem can be 

introduced as follows. Consider the free vibration of the elastic conservative subsystems 

between time instants 
1t  and 2t . For subsystem 1, described in terms of displacements, the 

Hamilton functional H  [43] reads, 

    















2

1 1

1*

t

t

ijij

V

kH dundVUTu  , 
 

(A.1) 

where klijklijCU 
2

1
 is the strain energy, with  ijjiij uu ,,

2

1
 , and 

2

1

*

2

1
iuT   is the 

complementary kinetic energy. Here a comma denotes differentiation with respect to the 

index space coordinate. The dynamic problem related to subsystem 1 consists in finding 

the displacements iu  satisfying the displacement boundary conditions, which render the 

functional H stationary.  

 The variational approach for subsystem 2, described in terms of stresses, involves 

the complementary form of Hamilton’s functional, T [43]. To express this functional in 

terms of ij , one can consider the impulse quantities ij , defined by ijij    (see [43]), so 

that  

    















2

1 2

2*

t

t

jiji

V

ijT dnudVTU   . 
 

(A.2) 

klijklijSU  
2

1*   in Eq. (A.2) is the complementary strain energy and 
2

2

2
ip

T   the kinetic 

energy, with jijip ,  in the absence of volume forces. Solving the elastodynamics of 



18 

 

subsystem 2 consists in finding the impulses ij  that satisfy the force boundary conditions 

and render the functional 
T  stationary. 

Next, let us consider the normal modes of the uncoupled-free subsystem 1 (i.e. with 

null stresses on Γ) and the normal modes of the uncoupled-blocked subsystem 2 (i.e. with 

null displacements on Γ).  Denote by piu , the displacement shapes (i=1,2,3) of mode p of 

the uncoupled-free subsystem 1, and by qij , the stress shapes (i,j=1,2,3) of mode q of the 

uncoupled-blocked subsystem 2. The modal mass pM , the modal stiffness pK , and the 

modal angular frequency p of mode p in subsystem 1, are given by 

dVuM
V

pip 
1

2

,1 , dVCK
V

pklijklpijp 
1

,,  , 
p

p

p
M

K
 . 

 

(A.3) 

  

Analogously, the modal mass (or modal strain energy) qM , the modal stiffness (or modal 

kinetic energy) qK , and the modal angular frequency q of mode q in subsystem 2, read 

 

dVSM
V

qklijklqijq 
2

,,  , dVK
V

qjij

q 
2

2

2

,,




,

q

q

p
M

K
 . 

 

(A.4) 

 

The displacement field of subsystem 1 and the stress field of subsystem 2 can then be 

decomposed on their respective subsystem modal basis as, 

 

     



Pp

pipi MuttMu
ˆ

,,  ,         



Qq

qijqij NttN
ˆ

,,  , 
 

(A.5) 

 
 

where p  and q  represent the modal amplitudes, and P̂ , Q̂  stand for the sets of modes of 

subsystems 1 and 2 retained in the modal expansion. Given that ijij   , we can also 

decompose the impulse field as 

 

     



Qq

qijqij NttN
ˆ

,,   with Qqqq
ˆ,   . 

 

(A.6) 

 

Introducing the modal expansions Eqs. (A.5) and (A.6) in the functionals Eqs. (A.1) 

and (A.2), and making use of the orthogonality of modes (see [43]), provides the modal 
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amplitudes that render each functional stationary. This results in the Euler-Lagrange 

equations, which yield 





















.ˆ,0

,ˆ,0

2

,
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1

QqSdnuKM

PpdunKM

jqijiqqqq

pijijpppp









 

 

(A.7) 

 

To re-assemble the two subsystems, we impose displacement continuity and force 

equilibrium at the coupling surface  . This allows one to rewrite the prescribed 

displacements, lu , and stresses, ij , on  as, 

   tMutMu il ,,   , M , 
 

(A.8) 

 
 

    21 ,, jijjij ntMntM   , M . (A.9) 

 

From the modal expansions in Eq. (A.5) it follows 

     MuttMu
Pp

pipl 



ˆ

,,  , M , (A.10) 

 

          2

ˆ
,

2

ˆ
,

1, j

Qq

qijqj

Qq

qijqiij nMtnMtntM 


   , M . (A.11) 

 

Introducing Eqs. (A.10) and (A.11) in Eq. (A.7), finally results in  

12

ˆ

12

ˆ

ˆ0, ,

ˆ0, ,

p p p p pq q

q Q

q q q q pq p

p P

M K W p P

M K W q Q
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    





 

 

(A.12) 

 

with 12 2

, ,pq i p ij q jW u n d


   standing for the intermodal work between mode p in subsystem 

1 and mode q in subsystem 2. Eq. (2) in the main text is nothing but Eq. (A.12) written in 

matrix form and normalized to unit modal mass.  
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FIGURE CAPTIONS 

 

 

Figure 1. Geometry of the benchmark structure. 

 

Figure 2. Comparison of the spatial shapes of the system global modes (left column) and 

the subsystem modes computed with the DMF (right column) for the first test case.  (a-d) 

examples of global modes; (e-f) blocked modes of P4: (g-h) free modes of P1+P2.   

 

Figure 3. Subsystem energy response depending on frequency for subsystem 12 (black) 

and subsystem 3 (grey), for test case #1.  Continuous line: reference energy from global 

modes; Dashed line: DMF computation considering resonant and non-resonant modes; 

Dotted line: DMF computation with only resonant modes.  

 

Figure 4. Modal energy distribution for test case #1. Cross: DMF taking into account 

resonant and non-resonant modes; Circle: DMF only considering resonant modes; (a) 

subsystem 12; (b) subsystem 3; (c), subsystem 4.  

Vertical dash lines indicate the bandwidth of the 1 kHz octave band; 

 

Figure 5. Energies of subsystem 3 (left) and subsystem 4 (right) for the 250 Hz, 500 Hz 

and 1 kHz octave bands and for damping loss factor values: (a) 0.005  ; (b) 0.01  ; 

(c) 0.02  ; (d) 0.05  . Test case #1. 

Figure 6. Maximum modal angular rotations at the coupling edge 
max

p versus modal 

frequency pf . Cross: modes of the free subsystem 12 (like in DMF); Square: global modes 

of case #1; Circle: global modes of case #2. 

Figure 7.  Partitioning and boundary conditions for the second test: (a) Alternative DMF 

substructuring; (b) CB substructuring.  (Section view of the panels). 
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Figure A.1. (a) Rigid coupling of two continuous subsustems; (b) Fictive separation of the 

two subsystems with the associated prescribed condition on the coupling surface Γ. 

TABLE CAPTIONS 

 

Table 1: Comparison of subsystem energies for test cases #1 and #2. Role of resonant and 

non-resonant modes. Results correspond to the 1 kHz octave band (dB, ref. 10-12J). 
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Figure 1. Geometry of the benchmark structure.  

 

 

  



28 

 

 

 

(a) 

 

 

 

 

 

(e) 

 

 

(b) 

 

 

 

 

(f) 

 

 

(c) 

 

 

 

 

 

 

(g) 

 

 

(d) 

 

 

 

 

 

(h) 

 

Figure 2. Comparison of the spatial shapes of the system global modes (left column) and 

the subsystem modes computed with the DMF (right column) for the first test case.  (a-d) 

examples of global modes; (e-f) blocked modes of P4: (g-h) free modes of P1+P2.   

 

80.4 Hz 80.5 Hz 

181.0 Hz 

88.1 Hz 

308.9 Hz 

181.1 Hz 

88.1 Hz 

308.8 Hz 

Hz 



29 

 

 

 

 

Figure 3. Subsystem energy response depending on frequency for subsystem 12 (black) 

and subsystem 3 (grey), for test case #1.  Continuous line: reference energy from global 

modes; Dashed line: DMF computation considering resonant and non-resonant modes; 

Dotted line: DMF computation with only resonant modes.  
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(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c) 

Figure 4. Modal energy distribution for test case #1. Cross: DMF taking into account 

resonant and non-resonant modes; Circle: DMF only considering resonant modes; (a) 

subsystem 12; (b) subsystem 3; (c) subsystem 4.  

Vertical dash lines indicate the bandwidth of the 1 kHz octave band; 
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Figure 5. Energies of subsystem 3 (left) and subsystem 4 (right) for the 250 Hz, 500 Hz 

and 1 kHz octave bands and for damping loss factor values: (a) 0.005  ; (b) 0.01  ; 

(c) 0.02  ; (d) 0.05  . Test case #1. 
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Figure 6. Maximum modal angular rotations at the coupling edge 
max

p versus modal 

frequency pf . Cross: modes of the free subsystem 12 (like in DMF); Square: global modes 

of case #1; Circle: global modes of case #2. 
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(a)                                                 (b) 

Figure 7.  Partitioning and boundary conditions for the second test: (a) Alternative DMF 

substructuring; (b) CB substructuring.  (Section view of the panels). 

  



34 

 

 

 

 

(a) 

 
(b) 

Figure A.1. (a) Rigid coupling of two continuous subsustems; (b) Fictious separation of 

the two subsystems with the associated prescribed conditions on the coupling surface Γ. 

 

 

 

 


