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Abstract—Conventional supervised classification approaches
have significant limitations in the land cover classification from
remote sensing data because a large amount of high quality
labeled samples are difficult to guarantee. To overcome this
limitation, combination with unsupervised approach is considered
as one promising candidate. In this paper, we propose a novel
framework to achieve the combination through object association
based on Dempster-Shafer theory. Inspired by object association,
the framework can label the unsupervised clusters according to
the supervised classes even though they have different numbers.
The proposed framework has been tested on the different combi-
nations of commonly used supervised and unsupervised methods.
Compared with the supervise methods, our proposed framework
can furthest enhance the overall accuracy approximately by 8.2%.
The experiment results proved that our proposed framework has
achieved twofold performance gain: better performance on the
insufficient training data case and the possibility to apply on a
large area.

Index Terms—Object association, land cover classification,
combination of supervised learning and unsupervised learning.

I. INTRODUCTION

As an essential mid-step for environment monitoring and
change detection, the generation of thematic land cover maps
through remote sensing data has been considered as one of the
most important applications of remote sensing. Many studies
on classification methods have been carried out to produce a
reliable thematic land cover map.

Supervised learning provides thematic land cover maps with
high accuracy thanks to the prior knowledge used in the
training process. The prior information utilized in supervised
learning can be either derieved in pixel level [1], [2] or
object level [3], [4], [5]. Numerous supervised classification
algorithms have been developed, many of which yield very
promising results. Maximum Likelihood Classification (MLC)
is the most commonly used supervised classification, which
assumes that training data are normally distributed. It renders
satisfying performance in many studies [6], [7]. MLC has
been proved robust for remote sensing images, as long as
the data meets the distribution assumption (e.g. a Gaussian
distribution) [8]. Even though an appropriate classification
methodology and proper data sets are employed to generate
land cover maps, supervised approaches usually require a large

amount of high quality reference data for training process.
However, it is not always possible to collect ground truth
especially for a large or inaccessible area.

Unsupervised learning is another important group of meth-
ods applied on land cover classification [9]. The most highlight
advantage is that it can automatically convert raw image data
into distinguished clusters without prior ground knowledge. K-
means and Iterative Self-Organizing Data Analysis Technique
Algorithm (ISODATA) are the most commonly used unsuper-
vised approaches in remote sensing thanks to their promisng
performance in many studies [10], [11]. However, even though
unsupervised approaches are more appropriate for large and
inaccessiable areas, they can not directly produce thematic
land cover maps; therefore time-consuming manually labeling
process is always required. Due to the lack of prior ground
information, unsupervised learning is usually less accurate
than supervised learning [12].

As both supervised and unsueprvised methods have their
pros and cons, it is thus necessary to consider to combine them
together for better results. Although many studies have been
carried out to achieve the combination, most of them focus on
hierarchical structures which makes supervised learning and
unsupervised learning dependent [13]. This kind of combina-
tion is less robust as the mistakes from the former classifier
may be hard to reduce by the latter especially when it is
unsupervised. Many combinations have been also developed
in feature level [14] to generate more representative feature
spaces or hyper planes; therefore it is difficult to measure
uncertainties of the results from each individual classifier.

The combination in the decision level of independent super-
vised and unsupervised classifiers is still a big challenge. In
[15], the authors applied Dempster-Shafer theory to achieve
this combination, considering supervised learning and unsu-
pervised learning as independent sources, through which the
uncertainty and the imprecision in the fusion can be measured.
However, currently existing methods do not focus on the
conflict situation where the number of supervised classes is
not the same as the number of unsupervised clusters.

Therefore, in this paper, we proposed a novel framework
using object association based on Dempster-Shafer theory to



Fig. 1: Map of the study area

combine supervised learning and unsupervised learning when
the number of classes and the number of clusters are different.
Furthermore, this framework can be applied to improve the ac-
curacy of supervised learning when training data are severely
insufficient.

This paper is organized as follows: In section II, we intro-
duce the study area and data set, followed by some bases of
Dempster-Shafer theory in section III. Object association prob-
lem is explained in section IV. Section V presents the proposed
framework in details. Then, section VI illustrates results of our
experiments. Conclusions are drawn in section VII.

II. STUDY AREA AND DATA SETS

A. Study area

The area of study located in Colorado in United Status,
lies within latitudes 38◦30′53.44′′N - 36◦22′23.05′′N and
longitudes 108◦0′10.24′′W - 105◦18′35.60′′W. It is contained
San Juan National Forest and Rio Grande National Forest, as
shown in Fig.1. The two national forest parks are mainly com-
posed of deciduous forest, evergreen forest, mix forest. The
remaining natural vegetation still occurs as shrub, grassland
and herbaceous. A large area of pasture is also contained near
Monte Vista. This selected area contains two national forest
parks as well as various developed areas thus can be used to
mimic the complex environment with a wide range of land
covers. We separate the study area into two subareas of equal
size: validation area and training area.

B. Satellite

The satellite used in this study is LandSat-8 OLI consisting
of eight spectral bands with a spatial resolution of 30 meters,
a panchromatic band with a resolution of 15 meters and two
thermal bands with a resolution of 100 meters. The image
acquired on the 11 June 2018 was obtained from USGS Earth
Explorer [16]. Geometric correction of the image has already
done through UTM map projection by NASA. The bands used
for our study include band 1-7 which are all spectral bands.

C. Training and validation data

Training and validation data applied in our study was
obtained from National Land Cover Database 2011 (NLCD
2011) [17], which was created by the Multi-Resolution Land
Characteristics (MRLC) Consortium. NLCD 2011 has 16-
class land cover classification scheme that has been applied
consistently across the United States at a spatial resolution of
30 meters. The code of the land cover classification scheme
of NLCD 2011 is shown in Table I.

TABLE I: Land cover classification scheme of NLCD 2011

Code Legend Code Legend
11 Open Water 42 Evergreen Forest
12 Perennial Ice/Snow 43 Mixed Forest
21 Developed, Open Space 52 Shrub/Scrub
22 Developed, Low Intensity 71 Grassland/Herbaceous
23 Developed, Medium Intensity 81 Pasture/Hay
24 Developed, High Intensity 82 Clutivated Crops
31 Barren Land (Rock/Sand/Clay) 90 Woody Wetlands

41 Deciduous Forest 95 Emergent Herbaceous
Wetlands

In our study, we select half of the study area as the training
area which includes all 16 types of land covers mentioned in
Table I with the size of 2000×4000 pixels to generate training
samples, as shown in Fig. 1. The other half of the study area
with the same size is chosen as validation area as shown in
Fig. 1. To simulate the situation where training samples are
insufficient for supervised classifier, only a small amount of
pixels per class are randomly selected as training samples,
which will be explained in details in section VI

III. DEMPSTER-SHAFER THEORY

As a generalization of traditional probability, Dempster-
Shafer theory [18], [19] allows to distribute support to not only
a single proposition itself but also to the union of propositions.
One of the greatest advantages of Dempster-Shafer theory
is that it allows to take into consideration uncertainty and



imprecision at the same time via two functions: belief and
plausibility, derived from mass function. The mass function
is defined on all the subsets of the frame of discernment
Ω = {ω1, . . . , ωn}, and assigns belief degree to all the
elements in the power set of discernment, noted as 2Ω.

The sum of the masses of all the propositions is one:∑
A⊆Ω

m(A) = 1 (1)

On the contrary, the mass function of the null proposition ∅ is
usually set to zero but it is also possible to be a positive value.
m(∅) = 0 refers to a closed world hypothesis, in which the
discernment Ω contains all the possible situations in reality.
If m(∅) is superior to 0, this corresponds to an open world
hypothesis, where unknown situation outside of Ω can be
considered. m(A) can be considered as a degree of evidence
supporting the claim that a specific element of Ω belongs to
the set A, yet not to any subset of A [20].

IV. OBJECT ASSOCIATION

Object association was originally derived from tracking
problem to estimate the status of mobile objects detected by
multiple sensors. Mathematically speaking, object association
refers to match two finite set of objects E = {e1, ..., en} and
F = {f1, ...fp} with possibly different combinations. It is
usually assumed that each object in one set should be matched
with at most one object in the other set. An object is possible
to disappear between two successive time frames, which leads
to no correspondent counterpart for this object in the other set.

The problem could be considered in the framework of
Dempster-Shafer theory, also referred as Belief function.
Therefore, a piece of evidence presenting the possible as-
sociation of two objects ei and fj can be modeled by a
mass function mij on the discernment Θij = {0, 1}. Let
Rij represent the relation between the object ei and fj . The
mass function mij({1}) refers to the probability of Rij = 1,
mij({0}) is the probability Rij = 0 and mij({0, 1}) is the
probability of knowing nothing about the relation Rij .

Several solutions about choosing the best relation R∗ based
on pairwise mass functions mij have been proposed. In [25],
the authors combines the mass function mij for each i and
then find the best relation R∗ through maximum pignistic
probability. In [26], the problem is transferred into an equiva-
lent linear assignment problem and then searches for the most
plausible relation as the best one, which thus can be solved in
polynomial time. Since the number of classes and clusters is
large in our study, we applied the approach proposed in [26]
on the combination of supervised learning and unsupervised
leaning. It can be stated as the following inter linear program:

max(

n∑
i=1

p∑
j=1

ωijRij) (2)

subject to
p∑

j=1

Rij ≤ 1 ∀i ∈ {1, ..., n} (3)

n∑
i=1

Rij ≤ 1 ∀j ∈ {1, ..., p} (4)

Rij ∈ {0, 1} ∀i ∈ {1, ..., n},∀j ∈ {1, ..., p} (5)

in which wij is a coefficient generated by mij presenting the
uncertainty as well as imprecision on the evidence of relation
between ei and fj .

V. THE PROPOSED FRAMEWORK

A. Combination of supervised learning and unsupervised
learning

Let us denote S as the set of classes generated from
supervised learning and C as the set of clusters derived
from unsupervised learning. Based on the principle of object
association, we have to match elements from two sets of
objects S = {s1, ..., sn} and C = {c1, ..., cp} with the most
possible combination.

As explained in Section IV, mass function mij with 1 ≤
i ≤ n, 1 ≤ j ≤ q, indicates all available evidences about the
association between S and C. Each mij encodes a piece of
evidence about a binary variableRij . This variable indicates
si is the same type as cj when it equals to 1, and 0 otherwise.
Each mij is thus on the discernment Θ = {0, 1} having:

mij({1}) = αij (6)

mij({0}) = βij (7)

mij({0, 1}) = 1− αij − βij (8)

where αij and βij is measured based on the similarity between
a class si and a cluster cj .

We assumed that n < p because the number of class, a
kind of prior knowledge, can be consider as the lower bound
of the number of cluster which is an unknown variable in real
situation. Hence, a cluster cj is usually smaller than a class
si. To measure the similarity between si and cj , we consider
the percentage of pixels in cj is labeled as si. We thus use the
ratio of pixels in intersection of si in cj to pixels in cj as the
similarity δij , shown as follows:

δij =
|si ∪ cj |
|cj |

(9)

For αij and βij , we have:

αij = γδij (10)

βij = γ(1− δij) (11)

in which γ represents a discounting coefficient ranging from
0 to 1 to measure the reliability of classifiers.

To assign label of classes to clusters, we consider the
following linear optimization problem:

max
R

(
∑
i,j

ωijRij) (12)



Fig. 2: The proposed framework.

subject to
p∑

j=1

Rij ≥ 1 ∀i ∈ {1, ..., n} (13)

n∑
i=1

Rij = 1 ∀j ∈ {1, ..., p} (14)

Rij ∈ {0, 1} ∀i ∈ {1, ..., n},∀j ∈ {1, ..., p} (15)

with
ωij = ln

1− βij
1− αij

(16)

The most plausible relation R∗, which indicates assignments
between classes and clusters, can thus be found by solving the
above optimization problem.

Unlike to classical object association problem where each
object in one set has at most one counterpart in the other set, in
our problem, each class si can be assigned to multiple clusters
while each cluster cj is merely matched with one class as we
always have n < p.

B. Generation of land cover map for a large area

The proposed framework can produce a thematic land
cover map on a large area merely by deploying a supervised
approach on a small slice of the validation region. We select
a slice of area containing all types of land covers to employ a
supervised learning approach. On the contrary, unsupervised
learning approach is applied on the whole area. The principal
ideal behind the proposed framework is to assign the most
plausible label to each clusters in the same area where thematic
labels are offered by the supervised approach; later we can
enlarge these labeled clusters to the whole area.

The main steps of the proposed framework is shown in
Fig 2, in which the region marked with orange rectangular
denoted as A is the selected slice for conducting supervised
learning approach. The set of classes produced by the super-
vised approach deployed on the region A is denoted as:

SA = {sA1 , ..., sAn } (17)

The set of clusters from the unsupervised learning on the entire
validation area is denoted as:

C = {c1, ..., cp} (18)

The set of clusters in the region A denoted as CA is defined
as:

CA = {cAi |cAi = ci ∩ SA} (19)

The object association is firstly applied between the set SA

and the set CA; therefore clusters in CA can be all assigned
by a thematic label from the supervised approach. To enlarge
thematic labels to the whole area representing by the set of
clusters C, we assign each cluster ci with the same label as
its subset cAi shown as follows:

L(ci) = L(cAi ) (20)

where L(x) represents the final thematic label of object x.

VI. EXPERIMENT RESULTS AND DISCUSSION

In this section, we tested the proposed framework with
different combinations of supervised learning and unsuper-
vised learning. To verify the possibility to apply the proposed
framework on a large area, we only carried out supervised
learning on a quarter of the validation area. Based on the
labels it generates, a thematic land cover map of the entire



TABLE II: Comparison of MLC and MLC + ISODATA in classification accuracy.

Number of
clusters

Accuracy of each land cover category Overall
accuracy

11 12 21 22 23 24 31 41 42 43 52 71 81 82 90 95

20 0.316 0.051 0.078 0.077 0.133 0.019 0.064 0.212 0.494 0.464 0.352 0.205 0.255 0.142 0.116 0.199 0.325
40 0.590 0.031 0.041 0.057 0.064 0.008 0.034 0.189 0.672 0.574 0.571 0.452 0.257 0.163 0.047 0.235 0.475
60 0.541 0.001 0.026 0.079 0.044 0.034 0.037 0.179 0.694 0.572 0.634 0.451 0.306 0.075 0.039 0.267 0.496
80 0.463 0.043 0.027 0.063 0.025 0.022 0.059 0.198 0.711 0.521 0.684 0.429 0.308 0.071 0.027 0.294 0.505
100 0.579 0.026 0.019 0.069 0.033 0.032 0.046 0.206 0.698 0.606 0.676 0.479 0.313 0.048 0.014 0.339 0.514
200 0.746 0.006 0.027 0.088 0.098 0.012 0.079 0.164 0.682 0.595 0.659 0.453 0.319 0.065 0.040 0.347 0.501
300 0.697 0.019 0.020 0.088 0.077 0.022 0.0941 0.232 0.684 0.580 0.672 0.441 0.318 0.057 0.046 0.363 0.504
400 0.689 0.005 0.021 0.092 0.115 0.0115 0.084 0.219 0.678 0.600 0.657 0.441 0.324 0.091 0.047 0.352 0.500
500 0.739 0.012 0.035 0.110 0.106 0.057 0.101 0.239 0.664 0.551 0.624 0.469 0.307 0.119 0.062 0.367 0.497

MLC 0.771 0.064 0.065 0.109 0.375 0.294 0.591 0.231 0.572 0.764 0.449 0.377 0.278 0.262 0.180 0.327 0.432

TABLE III: Overall accuracy of MLC and MLC+ISODATA with different size of training samples.

Percentage
in the training

area
0.05% 0.1% 0.2% 0.4% 0.8% 1.2% 1.6% 2.0% 2.4% 5.0% 10.0% 20.0% 40.0% 80.0% 100.0%

MLC 0.418 0.437 0.446 0.447 0.451 0.453 0.456 0.457 0.456 0.460 0.470 0.484 0.499 0.528 0.539
MLC+ISODATA 0.475 0.504 0.513 0.510 0.505 0.508 0.507 0.509 0.509 0.511 0.514 0.518 0.529 0.554 0.562

validation area can be produced by the proposed framework,
as illustrated in Fig. 2. We also applied supervised learning on
the entire validation area to compared with the results from
the proposed framework.

Apart from the experiments on different combination of
methods, we also conducted the proposed framework with
different size of training data and made the comparison with
supervised learning. We repeated all the experiments in our
study 10 times to take their average results.

A. Combination of MLC and ISODATA

We have first used the combination of MLC and ISODATA
in the proposed framework with the number of clusters ranging
from 20 to 500. To mimic the situation where training samples
are severely insufficient, we first selected a very small amount
of training samples to train MLC. Table II summarizes the
comparison between the proposed framework and MLC on
the validation area with training samples accounting for 0.2%
in the training area. The overall accuracy and the accuracy
of each land cover category in Table II were measured by
confusion matrix. Due to the limitation of space, we have
employed the code of NLCD classification mentioned in
Table I to represent each land cover category and marked the
best accuracy in bold. The overall accuracy of the proposed
framework improves as the number of clusters k increasing
and the best performance is reached when k = 100.

We displayed the results of MLC shown in Fig. 3a to
compare with the best thematic land cover map generated
through the combination of MLC and ISODATA, as shown
in Fig. 3b. MLC apparently misclassifed a part of shrub as
medium intensity developed area. However, after the combi-
nation with ISODATA in the proposed framework, the best

(a) Results of MLC.

(b) Results of MLC + ISODATA when k=100.

Fig. 3: Thematic land cover maps

accuracy of shrub is enhanced to 0.684%. This improvement
is presented by the reduction of the red area in Fig. 3b.

Besides shrub, other terrestrial vegetation such as decid-
uous forest, evergreen forest and grassland also have good
improvements of classification accuracy after the combina-
tion. However, some land cover categories such as developed
areas, barren land and emergent herbaceous wetlands, shows
unsatisfying classification accuracy, which are also difficult to



Fig. 4: Accuracy with different size of training samples.

enhance in the proposed framework.
We also tested the proposed framework and MLC with the

different quantities of training samples fixing k = 100. We
started the test on the severely insufficient training samples
which only represent 0.05% of the training area. Table. III
reports the overall accuracy of MLC and the proposed frame-
work with the combination of MLC and ISODATA on the
validation area. Fig. 4. gives a more apparent display of the
enhancement of their accuracies with the increasing of training
samples. The proposed framework always performs better than
MLC when the percentage of training samples ranging from
0.05% to 100% and the largest enhancement of accuracy
occurs at 0.2%.

B. Combination of SVM and ISODATA

A combination of Support Vector Machine (SVM) and
ISODATA was also considered in the proposed framework.
In our study, we selected Radial Basis Function (RBF) kernel
as it is proved to have better results for LandSat data with 7
bands [27]. The error weight and Gamma value in SVM were
set separately to 100 and 0.167 as is proposed in [28].

Table IV reports the overall accuracy as well as the accuracy
of each individual land cover category when training samples
account for 0.2%. The performance of SVM on the entire
validation area is also displayed at the bottom of the Table IV
to make the comparison. The number of clusters k ranged
from 20 to 500 with the best performance of each land cover
category marked in bold. For this combination, the best overall
accuracy is reach when k is 60 and the correspondent results
are shown in Fig. 5a and Fig. 5b.

Compared with MLC, SVM is obviously less competitive to
distinguish shrub and medium intensity developed area when
training data is severely insufficient. This kind of combina-
tion has a good improvement of the accuracy of shrub and
grassland. However, the enhancement of overall accuracy from
0.441 to 0.467 is less apparent than the combination of MLC
and ISODATA.

Another experiment to exterminate the performance of the
proposed framework with different size of training data was
also conducted. The number of clusters k in ISODATA is fixed
at 60 at which this combination achieves the best performance
in the previous experiment. The results are summarized in

Table V and Fig. 6. The overall accuracy is improved when
percentage of training data is from 0.05% to 0.8%, which is
less satisfying than the combination of MLC and ISODATA.

C. Discussion

We applied two combinations in the proposed framework:
MLC with ISODATA, and SVM with ISODATA. For the
experiments with different number of clusters k, we all started
when k is 20, which is approximate to the number of classes
set by MLC and SVM. However, the two combinations are
both less accurate than MLC or SVM in this situation because
of the limitation of unsupervised learning. As a clustering
method, ISODATA separates data merely based on their spec-
tral dissimilarities in the seven optical bands used in the study.
In the complex natural environment, however, different types
of land cover may have similar spectral properties and the
same type may reflects differently in spectral bands due to
varieties of temperature and illumination. A direct application
of ISODATA on our study data is thus less satisfying. The
proposed framework based on object association is to achieve
the combination in the decision level. It can be considered
as an average results of supervised learning and unsupervised
learning when the number of clusters is approximate to the
number of classes. Therefore, the combination of MLC and
ISODATA or SVM and ISODATA is less accurate than the
original supervised approach.

(a) Results of SVM.

(b) Results of SVM + ISODATA with k=60.

Fig. 5: Thematic land cover maps

However, when the number of clusters is largely superior
to the number of classes, the overall accuracy is gradually
promoted with the increment of k. For the combination of
MLC and ISODATA, the overall accuracy achieves the optimal
value at k = 100 and gradually converges when k is closing



TABLE IV: Comparison of SVM and SVM + ISODATA in classification accuracy

Number of
clusters

Accuracy of each land cover category Overall
accuracy

11 12 21 22 23 24 31 41 42 43 52 71 81 82 90 95

20 0.010 0.070 0.202 0.104 0.245 0.001 0.219 0.285 0.569 0.436 0.193 0.126 0.263 0.161 0.202 0.232 0.321
40 0.014 0.011 0.056 0.046 0.562 0.007 0.274 0.243 0.661 0.270 0.126 0.584 0.268 0.149 0.112 0.084 0.445
60 0.737 0.032 0.006 0.097 0.437 0.001 0.320 0.411 0.629 0.003 0.503 0.424 0.344 0.029 0.045 0.214 0.467
80 0.756 0.187 0.026 0.092 0.491 0.006 0.351 0.406 0.668 0.373 0.335 0.427 0.278 0.073 0.058 0.328 0.457
100 0.772 0.027 0.041 0.124 0.565 0.008 0.383 0.336 0.670 0.227 0.223 0.464 0.312 0.053 0.092 0.287 0.450
200 0.739 0.025 0.015 0.153 0.545 0.001 0.339 0.342 0.665 0.262 0.214 0.447 0.347 0.014 0.149 0.299 0.448
300 0.739 0.008 0.015 0.153 0.545 0.001 0.339 0.342 0.665 0.262 0.214 0.447 0.346 0.014 0.149 0.299 0.443
400 0.681 0.010 0.033 0.169 0.649 0.002 0.368 0.331 0.684 0.401 0.232 0.422 0.331 0.113 0.125 0.312 0.450
500 0.716 0.014 0.013 0.207 0.541 0.001 0.410 0.318 0.668 0.404 0.258 0.423 0.338 0.094 0.146 0.335 0.451

SVM 0.765 0.058 0.057 0.202 0.686 0.106 0.503 0.313 0.683 0.522 0.202 0.439 0.321 0.209 0.158 0.359 0.441

TABLE V: Overall accuracy of SVM and SVM+ISODATA with different size of training samples.

Percentage
in the training

area
0.05% 0.1% 0.2% 0.4% 0.8% 1.2% 1.6% 2.0% 2.4% 5.0% 10.0% 20.0% 40.0% 80.0% 100.0%

SVM 0.381 0.428 0.442 0.461 0.464 0.490 0.493 0.493 0.492 0.525 0.571 0.604 0.676 0.709 0.713
SVM+ISODATA 0.392 0.423 0.468 0.470 0.472 0.485 0.483 0.477 0.482 0.516 0.556 0.586 0.658 0.681 0.679

Fig. 6: Accuracy with different size of training samples

to 500. The combination of SVM and ISODATA reaches its
best performance at k = 60. However, the increment of k after
60 doesn’t render more enhancement of accuracy.

A relatively large value of k in ISODATA can separate
original data into multiple homogeneous clusters which thus
can be considered as over-segmentation or super pixels in
spectral space. In this situation, pixels in each pure cluster are
gathered as an entire object whose label is associated by the
proposed framework. Compared to an individual supervised
approach in pixel level, the proposed framework can generate
the thematic land cover maps on object level; therefore, it
has an evident improvement of the overall accuracy. With
the increment of k, the combination of SVM and ISODATA
is less efficient than MLC and ISODATA probably because
the spectral properties of land covers in our study area are
more distinguishable for MLC than SVM when training data
is insufficient.

With the different size of training data, the combination
of MLC and ISODATA always renders better performances

than MLC alone and this improvement of accuracy is most
satisfying when the training samples account for 0.2% in
the training area. However, for SVM and ISODATA, the
enhancement of overall accuracy only occurs when training
samples are from 0.1% to 0.8 possibly because SVM is hard
to find appropriate hyper planes for classification through
such limited training data. Therefore, this combination is less
effective than the first one in our study area.

The uncertainty and imprecision are measured through mass
functions in the object association. We applied the ratio of
pixels in intersection of a class si in a cluster cj to pixels in cj
as the similarity between a class and a cluster. The uncertainty
thus reduces when the number of clusters increases, which
explains why results become better with large k. However,
when k becomes too large, the results are less competitive
due to the loss of information in unsupervised learning.

VII. CONCLUSION

We proposed a novel framework to combine supervised
learning and unsupervised especially focusing on the conflict
situation where the number of classes is not the same as
the number of clusters. It can thus be applied in large or
inaccessible areas where not enough ground truth is available.

The combination conducted in the framework takes merely
spectral information as consideration. Therefore, in our future
work, we will concentrate on enlarging this framework to
combine various formats of information such as contextual
information and ancillary data in the decision level to gener-
ated more accurate thematic land cover maps. On the other
hand, as uncertainty and imprecision take important roles in
classification, the application of Dempster-Shafer theory in
the fusion framework is also another promising aspect in our
future work.
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