
HAL Id: hal-01921942
https://hal.science/hal-01921942v5

Preprint submitted on 16 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unifying lower bounds for algebraic machines,
semantically

Thomas Seiller, Luc Pellissier, Ulysse Léchine

To cite this version:
Thomas Seiller, Luc Pellissier, Ulysse Léchine. Unifying lower bounds for algebraic machines, seman-
tically. 2024. �hal-01921942v5�

https://hal.science/hal-01921942v5
https://hal.archives-ouvertes.fr

Unifying lower bounds for algebraic machines, semantically

Thomas Seillera,1,∗, Luc Pellissierb,2, Ulysse Léchinec

aCNRS, LIPN – UMR 7030 CNRS & University of Paris 13, 99 avenue Jean-Baptiste
Clément, 93430, Villetaneuse, France

bUniversity Paris Est Creteil, LACL, Faculté des Sciences et Technologie, 61 avenue du
Général de Gaulle, 94010, Creteil, France

cUniversité Sorbonne Paris Nord, LIPN – UMR 7030 CNRS & University of Paris 13, 99
avenue Jean-Baptiste Clément, 93430, Villetaneuse, France

Abstract

This paper presents a new abstract method for proving lower bounds in computa-
tional complexity. Based on the notion of topological and measurable entropy for
dynamical systems, it is shown to generalise three previous lower bounds results
from the literature in algebraic complexity. We use it to prove that maxflow, a
Ptime complete problem, is not computable in polylogarithmic time on parallel
random access machines (prams) working with real numbers. This improves,
albeit slightly, on a result of Mulmuley since the class of machines considered
extends the class “prams without bit operations”, making more precise the
relationship between Mulmuley’s result and similar lower bounds on real prams.

More importantly, we show our method captures previous lower bounds
results from the literature, thus providing a unifying framework for "topological"
proofs of lower bounds: Steele and Yao’s lower bounds for algebraic decision
trees [1], Ben-Or’s lower bounds for algebraic computation trees [2], Cucker’s
proof that NC is not equal to Ptime in the real case [3], and Mulmuley’s lower
bounds for “prams without bit operations” [4].

∗Corresponding author
Email addresses: thomas.seiller@cnrs.fr (Thomas Seiller), luc.pellissier@lacl.fr

(Luc Pellissier), lechine@lipn.fr (Ulysse Léchine)
1T. Seiller was partially supported by the European Commission Horizon 2020 programme

Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2014) project 659920 - Re-
ACT, the INS2I grants BiGRE and LoBE, the Ile-de-France DIM RFSI Exploratory project
Exploratory project CoHOp, and the ANR-22-CE48-0003-01 project DySCo.

2L. Pellissier was partially supported by ANR-14-CE25-0005 project Elica and ANII
project “Realizabilidad, forcing y computación cuántica” FCE_1_2014_1_104800.

Preprint submitted to Elsevier April 16, 2024

Contents

1 Introduction 2

2 Contents of the paper 7

3 Programs as Dynamical systems 15

4 Algebraic models of computations as amcs 20

5 Entropy and Cells 28

6 First lower bounds 33

7 Refining the method 36

8 Recovering Ben Or and Cucker’s theorems 41

9 Algebraic surfaces for an optimization problem 43

10 Improving Mulmuley’s result 49

1. Introduction

1.1. Computational Complexity
The field of computational complexity was initiated soon after the conception

of the first computers. While theoretical results had already established a
definition of the notion of “computable function” on the set of natural numbers,
it became quickly apparent that computable did not mean practical, as many
functions considered computable could not be computed within a reasonable
time.

The first complexity class defined was that of feasible functions [5, 6, 7], which
is now known as Ptime: the set of polynomial time computable functions, i.e.
functions f for which there exists a polynomial p and a (usually Turing) machine
M computing f whose running time on an input n is bounded by p(n). This
class, apart from being the first ever complexity class to appear in the literature,
is arguably the most important one in computer science. Many fundamental
problems concern its relation to other classes, such as knowing wheter NPtime,
the extension of Ptime if one allows for non-deterministic machines in the above
definition, is equal to Ptime. These problems, however, are still open.

Beyond the relationship between Ptime and other classes, the general ques-
tion of classifying the complexity classes became one of the main objectives of
the field, and a number of important results were obtained within the first years.

2

1.2. Separation, Lower bounds and Barriers
As part of the classification problem, complexity theory has traditionally

been concerned with proving separation results. Among the numerous open
separation problems lies the much advertised Ptime vs. NPtime problem of
showing that some problems considered hard to solve but efficient to verify do
not have a polynomial time algorithm solving them.

Proving that two classes B ⊂ A are not equal can be reduced to finding
lower bounds for problems in A: by proving that certain problems cannot be
solved with less than certain resources on a specific model of computation, one
can show that two classes are not equal. Conversely, proving a separation result
B ⊊ A provides a lower bound for the problems that are A-complete [8] – i.e.
problems that are in some way universal for the class A.

The proven lower bound results are however very few, and most separation
problems remain as generally accepted conjectures. For instance, a proof that
the class of non-deterministic exponential problems is not included in what is
thought of as a very small class of circuits was not achieved until very recently
[9].

The failure of most techniques of proof has been studied in itself, which
lead to the proof of the existence of negative results that are commonly called
barriers. Altogether, these results show that all proof methods we know are
ineffective with respect to proving interesting lower bounds. Indeed, there are
three barriers: relativisation [10], natural proofs [11] and algebrization [12, 13],
and every known proof method hits at least one of them, which shows the need
for new methods3. However, to this day, only one research program aimed
at proving new separation results is commonly believed to have the ability to
bypass all barriers: Mulmuley and Sohoni’s Geometric Complexity Theory (gct)
program [14].

1.3. Algebraic models and Geometric Complexity Theory
Geometric Complexity Theory (gct) is widely considered to be a promising

research program that might lead to interesting results. It is also widely believed
to necessitate new and extremely sophisticated pieces of mathematics in order
to achieve its goal. The research program aims in the long run to provide new
techniques for answering the Ptime versus NPtime problem, focussing first on
solving the VP versus VNP problem by showing that certain algebraic surfaces
(representing the permanent and the determinant) cannot be embedded one into
the other. Although this program has lead to interesting developments in pure
mathematics, it has not enhanced our understanding of complexity lower bounds
for the time being (actually, even for Mulmuley himself, such understanding will
not be achieved in our lifetimes [15]).

Intuitively, this program develops a proof method for proving lower bounds in
algebraic complexity based on algebraic geometry [14]: separation of the Valiant

3In the words of S. Aaronson and A. Wigderson [12], “We speculate that going beyond this
limit [algebrization] will require fundamentally new methods.”

3

complexity classes VP and VNP could be deduced from the impossibility of
embedding an algebraic variety P defined from the permanent into an algebraic
variety D defined from the determinant (with constraints on the dimensions).
Two main approaches were proposed using representation theory and exploiting
the decomposition of representations of varieties into irreducible components:

• occurence obstructions aims to exhibit an irreducible representation of
G = GLkC which occurs as a G-subrepresentation in the coordinate ring
of P but not occurring as a G-subrepresentation in the coordinate ring of
D, while

• multiplicity obstructions an irreducible representation of G = GLkC which
occurs as a G-subrepresentation in both the coordinate ring of P and
in the coordinate ring of D, but whose multiplicity of occurence in the
coordinate ring of P is strictly greater than its multiplicity of occurence in
the coordinate ring of D.

Obviously, the first approach is easier, as a particular case of the second. Recently,
some negative results [16] have shown this easiest path proposed by gct fails.
Some positive results on a toy model were however obtained regarding multiplicity
obstructions [17]: although the obtained results are not new, they use the
multiplicity obstruction method and are considered a proof-of-concept of the
approach.

The gct program was inspired, according to its creators, by a lower bound
result obtained by Mulmuley [4] for “prams without bit operations”, a result we
strengthen in the present work.

1.4. Lower bounds for prams without bit operations
Mulmuley showed in 1999 [4] that a notion of machine introduced under the

name “prams without bit operations” does not compute maxflow in polyloga-
rithmic time. This notion of machine, quite exotic at first sight, corresponds to
an algebraic variant of prams, where registers contain integers and individual
processors are allowed to perform sums, subtractions and products of integers. It
is argued by Mulmuley that this notion of machine provides an expressive model
of computation, able to compute some non trivial problems in NC such as Neff’s
algorithm for computing approximate roots of polynomials [18]. Mulmuley’s
result is understood as a big step forward in the quest for a proof that Ptime
and NC are not equal. However, the result was not strengthened or reused in
the last 20 years, and remained the strongest known lower bound result in this
line of enquiry.

The maxflow problem is quite interesting as it is known to be in Ptime
(by reduction to linear programming, or the Ford-Fulkerson algorithm [19]). In
fact, it is Ptime complete [20], and (obviously) there are currently no known
efficiently parallel algorithm solving it. This lower bound proof, despite being
the main inspiration of the well-known gct research program, remains seldom
cited and has not led to variations applied to other problems.

4

Remark. In fact, the article by Mulmuley shows lower bounds for several problems,
and not only for the maxflow problem. While this paper focusses on maxflow,
this is a choice motivated by the particular importance of the latter (maxflow
being Ptime-complete [?]). However, the lower bounds obtained by Mulmuley
for other problems can be obtained and strengthened in a similar way using our
technique.

1.5. Contributions.
The first contribution of this work is a strengthening of Mulmuley’s lower

bounds result for machines working on real numbers. Indeed, while the latter
proves that maxflow is not computable in polylogarithmic time in a variant of
arithmetic prams, i.e. working with integers, the proof uses in an essential way
techniques from real algebraic geometry. We will explain how this result is in
fact a consequence of our main technical lemma, i.e. follows from lower bounds
for algebraic prams, that is machines working on the reals. Indeed, we show
that division-free polylogarithmic algebraic prams compute the same sets of
integers as division-free polylogarithmic arithmetic prams (Proposition 71).

We then show that maxflow is in fact not computable in polylogarithmic
time in a more expressive model of algebraic prams, in which processors are
allowed to perform arbitrary divisions and arbitrary roots in addition to the basic
operations allowed in Mulmuley’s case (addition, subtraction, multiplication).
We then explain how this more general result fails to lift to the arithmetic case,
pinpointing to the precise reason it does: that euclidean division (in fact division
by 2) is not computable in polylogarithmic time by algebraic prams. This
leads us to prove that the corresponding class, which contains the problems
computable by Mulmuley’s notion of prams, is in fact strictly contained in NC.
This leads to the main technical result of our paper:

Theorem 1. Let N be a natural number and M be a real-valued pram with at
most 2O((logN)c) processors, where c is any positive integer.

Then M does not compute euclidean division by 2 on inputs of length N in
O((logN)c) steps.

This result improves the result shown by Mulmuley, since the class of machines
he considers4 is strictly contained in the class of machines considered in the
statement.

The second, and main, contribution of the paper is the proof method itself,
which is based on dynamic semantics for programs by means of graphings, a
notion introduced in ergodic theory and recently used to define models of linear
logic by the first author [21, 22, 23, 24]. The dual nature of graphings, both
continuous and discrete, is essential in the present work, as it enables invariants
from continuous mathematics, in particular the notion of topological entropy for
dynamical systems, while the finite representability of graphings is used in the

4As mentioned above, Mulmuley considers integer-valued prams, but this class computes
exactly the restrictions of sets decided by real-valued prams to integral points.

5

key lemma (as the number of edges appears in the upper bounds of Lemma 55
and Lemma 5).

In particular, we show how this proof method captures known lower bounds
and separation results in algebraic models of computation, namely Steele and
Yao’s lower bounds for algebraic decision trees [1], Ben-Or’s lower bounds on
algebraic computation trees [2], Cucker’s proof that NCR is not equal to PtimeR

[3] (i.e. answering the NC vs Ptime problem for computation over the real
numbers).

1.6. A more detailed view of the proof method
One of the key ingredients in the proof is the representation of programs

as graphings, and quantitative soundness results. We refer to the next sections
for a formal statement, and we only provide an intuitive explanation for the
moment. Since a program P is represented as a graphing |[P]|, which is in some
way a dynamical system, the computation P (a) on a given input a is represented
as a sequence of values |[a]|, |[P]|(|[a]|), |[P]|2(|[a]|), . . . – an orbit for the dynamical
system. Quantitative soundness states that not only |[P]| computes exactly the
same function (where computation is understood as convergence to a stationary
value) as the original program P , but it does so with a constant time overhead,
i.e. if P (a) terminates on a value b in time k, then |[P]|Ck

(|[a]|) = |[b]|, where C is
a constant fixed once and for all for the model of computation.

The second ingredient is the dual nature of graphings, both continuous and
discrete objects. Indeed, a graphing representative is a graph-like structure
whose edges are represented as continuous maps, i.e. a finite representation
of a (partial) continuous dynamical system. Given a graphing, we define its
kth cell decomposition, which separates the configuration space into cells such
that two inputs in the same cell are indistinguishable in k steps, i.e. the
graphing’s computational traces on both inputs are equal. We can then use
both the finiteness of the graphing representatives and the topological entropy
of the associated dynamical system to provide upper bounds on the size of a
further refinement of this geometric object, namely the k-th entropic co-tree of a
graphing – a kind of final approximation of the graphing by a computational
tree: intuitively, the k-th entropic co-tree is a computational tree that mimicks
the behaviour of the graphing for the k final steps of computation.

As we deal with algebraic models of computation, this implies a bound on the
representation of the kth cell decomposition as a semi-algebraic variety. In other
words, the kth cell decomposition is defined by polynomial in·equalities and we
provide bounds on the number and degree of the involved polynomials. The
corresponding statement is the main technical result of this paper (Lemma 5).

This lemma can then be used to obtain lower bounds results that we now
detail. Precise definitions of the complexity classes involved can be found in
Section 4.

Computational trees.. Using the Milnor-Olĕınik-Petrovskii-Thom theorem [25, 26,
27] to bound the number of connected components of the kth cell decomposition,

6

we then recover the lower bounds of Steele and Yao on algebraic decision trees,
and the refined result of Ben-Or providing lower bounds for algebraic computation
trees. In fact, we even slightly generalise Ben-Or’s result as we obtain lower
bounds for the model extended with arbitrary roots, while Ben-Or’s original
paper only considered square roots.

Cucker’s result.. A different argument based on invariant polynomials provides a
proof of Cucker’s result that NCR ̸= PtimeR by showing that a given polynomial
that belongs to PtimeR cannot be computed within NCR. In fact, our main
technical result also shows that euclidean division by 2 cannot be computed
by algebraic circuits. We present a direct proof of this result inspired from the
general entropic co-trees approach (Section 10.2). This result is also a direct
corollary of theorem 1.

Mulmuley’s result.. Lastly, following Mulmuley’s geometric representation of the
maxflow problem, we are able to strenghthen his celebrated result to obtain lower
bounds on the size (depth) of a pram over the reals computing this problem.
While this result holds for real-valued prams, we explain how it fails to extend
to integer-valued machines, leading to a further strengthening of the result.

Euclidean division.. We then explain how to further strengthen the result by
showing that euclidean division cannot be computed in this algebraic prams
model in polylogarithmic time. More precisely, we show that euclidean division
by 2 cannot be computed, leading to the result. Intuitively, this is due to the
exponential number of breakpoints in the geometric representation of euclidean
division. This extends the direct proof that division by 2 cannot be computed by
algebraic circuits obtained earlier, using the entropic co-tree method introduced
in this paper.

2. Contents of the paper

2.1. Computation models as graphings.
The present work reports on the first investigations into how the interpretation

of programs as graphings (generalised dynamical systems) could shed a new
light on proofs of lower bounds. This interpretation of programs rely on two
ingredients:

• the interpretation of models of computation as monoid actions. In our
setting, we view the computational principles of a computational model
as elements that act on a configuration space. As these actions can be
composed, but are not necessarily reversible, it is natural to interpret them
as a monoid acting on a configuration space.

• the realization of programs as graphings. We abstract programs as graphs
whose vertices are subspaces of the product of the configuration space and
the control states and edges are labelled by elements of the acting monoid,
acting on subspaces of vertices.

7

Let us illustrate how monoid actions and graphings formalise the notions
of model of computation and program. We consider Turing machines, and
mathematically represent the model as the following monoid action. We consider
the space of configurations X ×S, where X = {⋆, 0, 1}|Z| of Z-indexed sequences
of symbols ⋆, 0, 1 that are almost always equal to ⋆ and S is a finite set of control
states. A given point in this configuration space, extended with a chosen control
state, describes a configuration of a Turing machine. Now, instructions present
in the model give rise to maps from X to X: for instance moving the working
head to the right can be represented as right : X → X, (ai)i∈Z 7→ (ai+1)i∈Z,
that is the usual shift operator. The set of instructions then generates a monoid
action M ↷ X, or equivalently a monoid of endomorphisms of X, namely the
monoid generated by the maps induced by the instructions. A graphing is then
a collection of edges consisting of a source (a subspace of X × S) and a realiser
(an element of the monoid M and a target state in S). The instruction “if
in control state a and the head is reading a 0 or a 1, move to the right and
move to control state b” is then represented as an edge of source the subspace
{(ai)i∈Z ∈ X | a0 ̸= ⋆} × {a} and realised by the map right× (a 7→ b).

The basic intuitions here can be summarised by the following slogan: “Com-
putation, as a dynamical process, can be modelled as a dynamical system”. Of
course, the above affirmation cannot be true of all computational processes; for
instance the traditional notion of dynamical system is deterministic. In practice,
one works with a generalisation of dynamical systems named graphings. Intro-
duced in ergodic theory [28, 29, 30], graphings were recently used in theoretical
computer science to define realisability models of linear logic [22, 24, 21], in
which they are shown to model non-deterministic and probabilistic computation
[23, 31].

To do so, we consider that a computation model is given by a set of generators
(representing basic instructions) and its actions on a space (representing the
configuration space). So, in other words, we define a computation model as
an action of a monoid (presented by its generators and relations) on a space
α : M ↷ X. This action can then be specified to be continuous, mesurable, etc.
depending on the properties we are interested in.

A program in such a model of computation is then viewed as a graphing :
a graph whose vertices are subspaces of the configuration space and edges are
generators of the monoid: in this way, the partiality of certain operations and
branching are both allowed. This point of view is very general, as it can allow
to study, as special model of computations, models that can be discrete or
continuous, algebraic, rewriting-based, etc.

A point in the configuration space is sent (potentially non-deterministically)
through the graphing to other points: they constitute the orbit of the point
under the graphing. This orbit can be eventually stationnary, meaning that the
computation has reached a result, or have any kind of complex behavior. In any
case, the study of the orbits of a graphing contain a lot of information on the
graphing as will be clear when studying entropy.

8

2.2. The general algebraic model
We are able to introduce prams acting over integers or real numbers in

this setting. They can be described as having a finite number of processors,
each having access to a private memory on top of the shared memory, and able
to perform the operations +,−,× – and possibly division and root operations
(depending on the models considered) –, as well as branching and indirect
addressing. Interestingly, we can represent these machines in the graphings
framework in two steps: first, by defining the (sequential) ram model, with just
one processor; and then by performing an algebraic operation corresponding to
parallelisation on the corresponding monoid action.

The ram model on integers has, as configuration space Z|Z| an infinite array
of cells each containing a real number, and the operations are the usual ones.
The equivalent model on the reals has as configuration space R|R|; the indexing
by real numbers eases the definition in the presence of indirect addressing, even
though in practise only a finite number of registers can be accessed and/or
modified in a finite computation.

Parallel computation is thus modelled per se, at the level of the model of
computation. As usual, one is bound to chose a mode of interaction between
the different processes when dealing with shared memory. We will consider here
only the case of Concurrent Read Exclusive Write (crew), i.e. all processes can
read the shared memory concurrently, but if several processes try to write in the
shared memory only the process with the smallest index is allowed to do so.

The heart of our approach of parallelism is based on commutation. Among all
the instructions, the ones affecting only the private memory of distinct processors
can commute, while it is not the case of two instructions affecting the central
memory. We do so by considering a notion of product for monoids (definition 28)
that generalizes both the direct product and the free product: we specify, through
a conflict relation, which of the generators can and can not commute, allowing
us to build a monoid representing the simultaneous action.

To ease the presentation, and since many different algebraic models are con-
sidered in the paper, we introduce a very general abstract model of computation,
e.g. the monoid action αRfull for machines computing on the reals (Definition 13).
We then show that all notions of machines considered in the present paper can be
adequately represented by considering restrictions of αRfull. The main technical
lemma being proved for the most general action αRfull, it then applies naturally
to all those models: algebraic computational trees, algebraic circuits, prams
over the reals, etc.

2.3. Entropy
We fix an action α : M ↷ X for the following discussion (it can be thought

of as the most general action αRfull that captures all algebraic models of interest
in this work). One important aspect of the representation of abstract programs
as graphings is that restrictions of graphings correspond to known notions from
mathematics. In a very natural way, a deterministic α-graphing defines a partial
dynamical system. Conversely, a partial dynamical system whose graph is

9

contained in the measured preorder {(x, y) ∈ X2 | ∃m ∈ M,α(m)(x) = y} [32]
can be associated to an α-graphing.

The study of deterministic models of computations can thus profit from
the methods of the theory of dynamical systems. In particular, the methods
employed in this paper relate to the classical notion of topological entropy. The
topological entropy of a dynamical system is a value representing the average
exponential growth rate of the number of orbit segments distinguishable with a
finite (but arbitrarily fine) precision. The definition is based on the notion of
open covers: for each finite open cover C, one can compute the entropy of a map
w.r.t. C, and the entropy of the map is then the supremum of these values when
C ranges over the set of all finite covers. As we are considering graphings and
those correspond to partial maps, we explain how the techniques adapt to this
more general setting and define the entropy h(G, C) of a graphing G w.r.t. a
cover C, as well as the topological entropy h(G) defined as the supremum of the
values h(G, C) where C ranges over all finite open covers.

While the precise results described in this paper use the entropy h0(G)
w.r.t. a specific cover (similar bounds could be obtained from the topological
entropy, but would lack precision), the authors believe entropy could play a
much more prominent role in future proofs of lower bounds. Indeed, while h0(G)
somehow quantifies over one aspect of the computation, namely the branchings,
the topological entropy computed by considering all possible covers provides a
much more precise picture of the dynamics involved. In particular, it provides
information about the computational principles described by the action; this
information may lead to more precise bounds based on how some principles are
much more complex than some others, providing some lower bounds on possible
simulations of the former with the latter.

2.4. Known lower bounds and entropy
All the while only the entropy w.r.t. a given cover will be essential in this

work, the overall techniques related to topological entropy provide a much clearer
picture of the techniques. We first use the following lemma bounding the k-cell
decomposition of a given graphing.

Proposition 2. Let G be a deterministic graphing. We consider the state
cover entropy h0([G]) = limn→∞ Hn

X([G],S) where S is the state cover. The
cardinality of the k-th cell decomposition of X w.r.t. G, as a function c(k) of k,
is asymptotically bounded by g(k) = 2k.h0([G]), i.e. c(k) = O(g(k)).

This lemma can be used to derive known lower bounds from the literature,
namely Steele and Yao’s result on algebraic decision trees. Algebraic decision
trees are finite ternary trees describing a program deciding a subset of Rn: each
node verifies whether a chosen polynomialtakes a positive, negative, or null value
at the point considered. A d-th order algebraic decision tree is an algebraic
decision tree in which all polynomials are of degree bounded by d.

In a very natural manner, an algebraic decision tree can be represented as
a ι-graphing, where ι is the trivial action on the space Rn. We use entropy to

10

provide a bound on the number of connected components of subsets decided by ι-
graphings. These bounds are obtained by combining a bound in terms of entropy
and a variant of the Milnor-Olĕınik-Petrovskii-Thom theorem due to Ben-Or.
The latter, which we recall below, bounds the number of connected components
of a semi-algebraic set in terms of the number of polynomial inequalities, their
maximal degree, and the dimension of the space considered. These bounds then
lead to the lower bounds on algebraic decision trees obtained by Steele and Yao.

Corollary 3 (Steele and Yao [1]). A d-th order algebraic decision tree deciding
a subset W ⊆ Rn with N connected components has height Ω(logN).

Mulmuley’s original result on prams without bit operations can also be
obtained as a corollary of this bound, associated with a more involved geometric
argument. We detail and rephrase the latter (in a way that will allow us to
reuse it in the last section) in section 9. Combining the results of this section
and the previous lemma about the k-cell decomposition, one obtains Mulmuley’s
theorem.

Corollary 4 (Mulmuley [4]). Let M be a pram without bit operations, with
at most 2O((logN)c) processors, where N is the length of the inputs and c any
positive integer.

Then M does not decide maxflow in O((logN)c) steps.

2.5. Entropic co-tree and the technical lemma
The above result of Steele and Yao adapts in a straightforward manner to a

notion of algebraic computation trees describing the construction of the polyno-
mials to be tested by mean of multiplications and additions of the coordinates.
As shown above, this result uses techniques quite similar to that of Mulmuley’s
lower bounds for the model of prams without bit operations. The authors also
quickly realised the techniques is similar to that used by Cucker in proving that
NCR ̸= PtimeR [3].

It turns out a refinement of Steele and Yao’s method was quickly obtained
by Ben-Or [2] so as to obtain a similar result for an extended notion of algebraic
computation trees allowing for computing divisions and taking square roots. We
adapt Ben-Or techniques within the framework of graphings, in order to apply
this refined approach to Mulmuley’s framework, leading to a strengthened lower
bounds result.

This techniques refines the bounds on the kth-cell decomposition explained
above by considering entropic co-trees. They are defined in a similar way as the
k-th cell decomposition but further track the different instructions involved. The
result is a directed graph in the form of a tree with all edges pointing toward
the root (hence the name of co-tree). This tree can be understood as a final
approximation of the graphing as a computational tree: it is a computational
tree whose behaviour mimicks that of the graphing in the last computation steps
leading to acceptation or rejection. At each fixed depth, the set of vertices of
the co-tree refine the k-th cell decomposition explained above. The additional
information related to the instructions realising the edges of the co-tree can be

11

used to derive a set of polynomial in·equalities whose total degree can be bounded
by the depth, the state-cover entropy h0, the algebraic degree (Definition 56) –
the maximal number of instructions used in a single edge of the graphing –, and
the root degree ∂

√
G – the largest integer d such that the d-th root instruction

appears in the graphing.
This leads to the following technical lemma, from which most of the subse-

quent lower bound results will be obtained.

Lemma 5. Let G be a crewp(αRfull)-computational graphing representative,
Seqk(E) the set of length k sequences of edges in G, and D its algebraic degree.
Suppose G computes the membership problem for W ⊆ Rn in k steps, i.e.
for each element of Rn, πS(G

k(x)) = ⊤ if and only if x ∈ W . Then W
is a semi-algebraic set defined by at most Card(Seqk(E)).2k.h0([G]) systems of
pkD equations of degree at most max(2, ∂

√
G) and involving at most pD(k + n)

variables.

As a first corollary of this theorem, we obtain a generalisation of Ben-Or’s
result (Theorem 57). It follows from the above theorem and the Milnor-Olĕınik-
Petrovskii-Thom theorem bounding the number of connected components of a
semi-algebraic set. A corollary of this general result is Ben-Or’s original lower
bounds for Algebraic Computational Trees.

Corollary 6 ([2, Theorem 5]). Let W ⊆ Rn be any set, and let N be the
maximum of the number of connected components of W and Rn \ W . An
algebraic computation tree computing the membership problem for W has height
Ω(logN).

The above lemma is then applied to obtain Cucker’s theorem that NCR ̸=
PtimeR.

Corollary 7. No algebraic circuit of depth k = logi n and size kp compute Fer:

{x ∈ Rω | |x| = n ⇒ x2n

1 + x2n

2 = 1}.

Finally, the lemma can be used to obtain a first strengthening of Mulmuley’s
lower bound (Theorem 8). As explained above, Mulmuley’s result for prams
without bit operations (working on integers) corresponds to lower bounds on
division-free algebraic – i.e. working on the reals – prams. By using the above
technical lemma, we are able to extends the lower bounds for computing maxflow
to algebraic prams with division and arbitrary roots.

Before stating this result and explaining how we are able to further generalise
it, we sketch Mulmuley’s geometric method. While the results here are not new,
the authors’ contribution is that of reformulation. In particular, we reorganise
the geometric part of the proof as the combination of two results: a previous
result of Murty and Carstensen showing the existence of an exponential linear
parametrization of maxflow, and a general geometric statement (Theorem 68).
This reformulation will be used in later sections to show that a problem easier
than maxflow cannot be computed in the algebraic prams model.

12

2.6. Mulmuley’s geometrization
Contrarily to Ben-Or’s model, the pram machines do not decide sets of reals

but of integers, making the use of algebraico-geometric results to uncover their
geometry much less obvious. The mechanisms of Mulmuley’s proof rely on twin
geometrizations: one of a special optimization problem that can be represented
by a surface in R3 (subsections 9.1 and 9.2), the other one by building explicitly,
given a pram, a set of algebraic surfaces such that the points accepted by the
machine are exactly the integer points enclosed by the set of surfaces.

That second part can be abstracted as a relation between the sets decided by
prams without bit operations and division-free algebraic prams. In other words,
the set of integral points accepted by a pram without bit operations coincides
with the integral points lying in the set decided by a corresponding algebraic
pram. This is stated as (Proposition 71).

Finally, the proof is concluded by a purely geometrical theorem (Theorem 68).
We would like to stress here that this separation in three movement, with a
geometrical tour-de-force, is not explicit in the original article. We nonetheless
believe it greatly improves the exposition (on top of allowing for a stregthening
of the results). This geometric theorem expresses a tension between the two
geometrizations. Our work focuses here only on the construction of a set of
algebraic surfaces representing the computation of a pram; the remaining part
of our proof follows Mulmuley’s original technique closely.

Building surfaces. The first step in Mulmuley’s proof is to use the parametric
complexity results of [33] to represent an instance of the decision problem
associated to maxflow so that it induces naturally a partition of Z3 that can
then be represented by a surface.

The second step is to represent any partition of Z3 induced by the run of a
machine by a set of surfaces in R3, in order to be able to use geometric methods.

Let K be a compact of R3 and P = (P1, . . . , Pm) be a partition of Z3∩K. P
can be extended to a partition of the whole of K in a number of ways, as pictured
in Fig. 1. In particular, P can always be extended to a partition Palg (resp.
Psmooth,, Pana) of K such that all the cells are compact, and the boundaries of
the cells are all algebraic (resp. smooth, analytic) surfaces.

In general, such surfaces have no reason to be easy to compute and the more
they are endowed with structure, the more complicated to compute they are to
be. In the specific case of prams, the decomposition can naturally be represented
with algebraic surfaces whose degree is bounded. This choice of representation
might not hold for any other model of computation, for which it might be more
interesting to consider surfaces of a different kind.

This set of algebraic surfaces is here built just as in our description of Ben-
Or’s result using the entropic co-tree: we construct the co-tree approximating
the computation of a specific pram and build along the branches of this co-tree
a system of polynomial equations on a larger space than the space of variables
actually used by the machine.This system of integer polynomials of bounded
degree then defines surfaces exactly matching our needs, since the number of

13

Figure 1: Two curves that define the same partition of Z2

varieties and their maximal degrees are bounded using the technical lemma
described above.

2.7. A first improvement on Mulmuley’s lower bounds
Interestingly, this allows us to derive from the technical lemma a proof that

algebraic prams, with division and arbitrary roots instructions on top of the
instructions allowed in the prams without bit operations model, cannot compute
maxflow in polylogarithmic time. This is a first (arguably mild) improvement
over Mulmuley’s proof.

Theorem 8. Let N be a natural number and M be a real-valued pram with at
most 2O((logN)c) processors, where c is any positive integer.

Then M does not decide maxflow on inputs of length N in O((logN)c) steps.

Following Mulmuley’s original method on division-free machines, one would
then like to lift this result to arithmetic prams, i.e. prams over the integers
with division (and possibly root operations). It turns out, however, that this
cannot be done, a result not surprising since such machines can be shown to be
equivalent to usual prams.

More precisely, we can prove that algebraic prams cannot compute euclidian
division. We provide two proofs of this result. We first show that algebraic circuits
(i.e. with division but no root operations) cannot compute euclidean division by
2 using a (new) direct proof method bounding the number of continuous pieces
of the piece-wise continuous function computed by the circuit. This direct proof
is a specific but more concrete instance of the general entropic co-tree approach,
and illustrates well how the lower bounds are obtained. We further explain how
to abstract the mathematical problem corresponding to generalising this bound
to root operations, and illustrate the difficulty of doing so (even with only square
roots).

In a second step, we use our technical lemma, together with the geometric
result of Mulmuley, to provide lower bounds for computing the remainder modulo
2 in the general algebraic prams model. This leads to the main technical result
of this paper.

14

Theorem 1. Let N be a natural number and M be a real-valued pram with at
most 2O((logN)c) processors, where c is any positive integer.

Then M does not compute the euclidean division modulo 2 on inputs of length
N in O((logN)c) steps.

This result shows a fundamental difference in expressive power between models
with real-valued division and models allowed to compute the euclidean division.
Indeed, this shows that a parallel model over the reals, even if allowed division
and arbitrary roots, cannot compute euclidean division in polylogarithmic time.

2.8. Conclusion
This work slightly strengthens Mulmuley’s lower bounds on "prams without

bit operations". More importantly, it shows how the semantic techniques based on
abstract models of computation and graphings can shed new light on several lower
bound techniques. In particular, it establishes some relationship between the
lower bounds and the notion of entropy which, although arguably still superficial
in this work, could potentially become deeper and provide new insights and finer
techniques.

Showing that the interpretation of programs as graphings can translate, and
even refine, such strong lower bounds results is also important from another
perspective. Indeed, the techniques of Ben-Or and Mulmuley (as well as other
results of e.g. Cucker [3], Yao [34]) seem at first sight restricted to algebraic
models of computation due to their use of the Milnor-Olĕınik-Petrovskii-Thom
theorem (or other geometric arguments) which holds only for real semi-algebraic
sets. However, the second author’s characterisations of Boolean complexity
classes in terms of graphings acting on algebraic spaces [23] opens the possibility
of using such algebraic methods to provide lower bounds for boolean models of
computation.

3. Programs as Dynamical systems

3.1. Abstract models of computation and graphings
We consider computations as a dynamical process, hence model them as a

dynamical systems with two main components: a space X that abstracts the
notion of configuration space (excluding control states) and a monoid acting
on this space that represents the different operations allowed in the model of
computation. Although the notion of space considered can vary (one could
consider e.g. topological spaces, measure spaces, topological vector spaces), we
restrict ourselves to topological spaces in this work.

Definition 1. An abstract model of computation (amc) is a monoid action
α : M ↷ X, i.e. a monoid morphism from M to the group of endomorphisms of
X. The monoid M is often given by a set G of generators and a set of relations
R. We denote such an amc as α : ⟨G,R⟩ ↷ X.

15

Programs in an amc α : ⟨G,R⟩ ↷ X is then defined as graphings, i.e. graphs
whose vertices are subspaces of the space X (representing sets of configurations
on which the program act in the same way) and edges are labelled by elements
of M⟨G,R⟩, together with a global control state. More precisely, we use here the
notion of topological graphings5 [22].

Definition 2. An α-graphing representative G w.r.t. a monoid action α : M ↷
X is defined as a set of edges EG together with a map that assigns to each
element e ∈ EG a pair (SG

e ,mG
e) of a subspace SG

e of X – the source of e – and
an element mG

e ∈ M – the realiser of e.

While graphing representatives are convenient to manipulate, they do provide
too much information about the programs. Indeed, if one is to study programs
as dynamical systems, the focus should be on the dynamics, i.e. on how the
object acts on the underlying space. The following notion of refinement captures
this idea that the same dynamics may have different graph-like representations.

Definition 3 (Refinement). An α-graphing representative F is a refinement
of an α-graphing representative G, noted F ⩽ G, if there exists a partition
(EF

e)e∈EG of EF such that ∀e ∈ EG:

∀f ̸= f ′ ∈ EF
e , SF

f △ SF
f ′ = ∅;

∀f ∈ EF
e , mF

f = mG
e .

This induces an equivalence relation defined as

F ∼ref G ⇔ ∃H, H ⩽ F ∧H ⩽ G.

The notion of graphing is therefore obtained by considering the quotient of
the set of graphing representatives w.r.t. ∼ref . Intuitively, this corresponds to
identifying graphings whose actions on the underlying space are equal.

Definition 4. An α-graphing is an equivalence class of α-graphing representa-
tives w.r.t. the equivalence relation ∼ref .

We can now define the notion of abstract program. These are defined as
graphings

Definition 5. Given an amc α : M ↷ X, an α-program A is a ᾱ-graphing GA

w.r.t. the monoid action ᾱ = α × Sk ↷ X × SA, where SA is a finite set of
control states of cardinality k and Sk is the group of permutations of k elements.

Now, as a sanity check, we will show how the notion of graphing do capture
the dynamics as expected. For this, we restrict to deterministic graphings, and
show the notion relates to the usual notion of dynamical system.

5While “measured” graphings were already considered [22], the definition adapts in a
straightforward manner to allow for other notions such as graphings over topological vector
spaces – which would be objects akin to the notion of quiver used in representation theory.

16

Definition 6. An α-graphing representative G is deterministic if for all x ∈ X
there is at most one e ∈ EG such that x ∈ SG

e . An α-graphing is deterministic
if its representatives are deterministic. An abstract program is deterministic if
its underlying graphing is deterministic.

Lemma 7. There is a one-to-one correspondence between the set of deterministic
graphings w.r.t. the action M ↷ X and the set of partial dynamical systems f :
X ↪→ X whose graph is contained in the preorder6 {(x, y) | ∃m ∈ M,α(m)(x) =
y}.

Lastly, we define some restrictions of α-programs that will be important later.
First, we will restrict the possible subspaces considered as sources of the edges,
as unrestricted α-programs could compute even undecidable problems by, e.g.
encoding it into a subspace used as the source of an edge. Given an integer
k ∈ ω, we define the following subspaces of Rω, for ⋆ ∈ {>,⩾,=, ̸=,⩽, <}:

Rω
k⋆0 = {(x1, . . . , xk, . . .) ∈ Rω | xk ⋆ 0}.

Definition 8 (Computational graphings). Let α : ⟨G,R⟩ ↷ X be an amc. A
computational α-graphing is an α-graphing T with distinguished states ⊤, ⊥
which admits a finite representative such that each edge e has its source equal
to one among Rω, Rω

k⩾0, R
ω
k⩽0, R

ω
k>0, R

ω
k<0, R

ω
k=0, and Rω

k ̸=0.

Definition 9 (treeings). Let α : ⟨G,R⟩ ↷ X be an amc. An α-treeing is an
acyclic and finite α-graphing, i.e. an α-graphing F for which there exists a finite
α-graphing representative T whose set of control states ST = {0, . . . , s} can be
endowed with an order < such that every edge of T is state-increasing, i.e. for
each edge e of source Se, for all x ∈ Se,

πST(α(me)(x) > πST(x),

where πST denotes the projection onto the control states space.
A computational α-treeing is an α-treeing T which is a computational α-

graphing with the distinguished states ⊤, ⊥ being incomparable maximal ele-
ments of the state space.

3.2. Quantitative Soundness
As mentioned in the introduction, we will use in this paper the property of

quantitative soundness of the dynamic semantics just introduced. This result is
essential, as it connects the time complexity of programs in the model considered
(e.g. prams, algebraic computation trees) with the length of the orbits of the
considered dynamical system. We here only state quantitative soundness for
computational graphings, i.e. graphings that have distinguished states ⊤ and ⊥

6When α is a group action acting by measure-preserving transformations, this is a Borel
equivalence relation R, and the condition stated here boils down to requiring that f belongs
to the full group of α.

17

representing acceptance and rejection respectively. In other words, we consider
graphings which compute decision problems.

Quantitative soundness is expressed with respect to a translation of machines
as graphings, together with a translation of inputs as points of the configuration
space. In the following section, these operations are defined for each model of
computation considered in this paper. In all these cases, the representation of
inputs is straightforward.

Definition 10. Let amc α be an abstract model of computation, and M a
model of computation. A translation of M w.r.t. α is a pair of maps |[·]| which
associate to each machine M in M computing a decision problem a computational
α-graphing |[M]| and to each input ι a point |[ι]| in X× S.

Definition 11. Let amc α be an abstract model of computation, M a model of
computation. The amc α is quantitatively sound for M w.r.t. a translation |[·]| if
for all machine M computing a decision problem and input ι, M accepts ι (resp.
rejects ι) in k steps if and only if |[M]|k(|[ι]|) = ⊤ (resp. |[M]|k(|[ι]|) = ⊥).

3.3. The algebraic amcs
We now define the actions αfull and αRfull. Those will capture all algebraic

models of computation considered in this paper, and the main lemma (lemma 5)
will be stated for this monoid action. All lower bounds results recovered from
the literature, as well as the new lower bounds obtained in this work will be
obtained as corollaries of this technical lemma.

As we intend to consider prams at some point, we consider from the beginning
the memory of our machines to be separated in two infinite blocks Zω, intended
to represent sets of both shared and private memory cells7.

Definition 12. The underlying space of αfull is X = ZZ ∼= Zω ×Zω. The set of
generators is defined by their action on the underlying space, writing k//n the
floor ⌊k/n⌋ of k/n with the conventions that k//n = 0 when n = 0 and n

√
k = 0

when k ⩽ 0:

• consti(c) initialises the register i with the constant c ∈ Z: αfull(consti(c))(x⃗) =
(x⃗{xi := c});

• ⋆i(j, k) (⋆ ∈ {+,−,×, //}) performs the algebraic operation ⋆ on the values
in registers j and k and store the result in register i: αfull(⋆i(j, k))(x⃗) =
(x⃗{xi := xj ⋆ xk});

• ⋆ci (j) (⋆ ∈ {+,−,×, //}) performs the algebraic operation ⋆ on the value
in register j and the constant c ∈ Z and store the result in register i:
αfull(⋆

c
i (j))(x⃗) = (x⃗{xi := c ⋆ xj});

7Obviously, this could be done without any explicit separation of the underlying space, but
this will ease the constructions of the next section.

18

• copy(i, j) copies the value stored in register j in register i: αfull(copy(i, j))(x⃗) =
(x⃗{xi := xj});

• copy(♯i, j) copies the value stored in register j in the register whose index
is the value stored in register i: αfull(copy(♯i, j))(x⃗) = (x⃗{xxi

:= xj});

• copy(i, ♯j) copies the value stored in the register whose index is the value
stored in register j in register i: αfull(copy(i, ♯j))(x⃗) = (x⃗{xi := xxj});

• n
√
i(j) computes the floor of the n-th root of the value stored in register j

and store the result in register i: αfull(
n
√
i(j))(x⃗) = (x⃗{xi := n

√
xj}).

We also define the real-valued equivalent, which will be essential for the proof
of lower bounds. The corresponding amc αRram is defined in the same way than
the integer-valued one, but with underlying space X = RZ and with instructions
adapted accordingly:

• the division and n-th root operations are the usual operations on the reals;
• the three copy operators are only effective on integers.

Note that we consider the space RR, i.e. an uncountable number of potential
registers. This appears to us as the simplest way to represent the model of
real-valued prams which includes indirect addressing. In practise, only a finite
number of registers can be accessed during a finite execution (since indexes need
to be computed), and therefore a countable number of potential registers would
be enough. However this poses the issue of defining the semantics properly:
using maps from R to N do not work because this creates side-effects giving
more expressive power to the machines (e.g. considering that indirect addressing
copy(♯i, j) modifies the register of index ⌊i⌋ – where ⌊·⌋ is the floor function –
turns out to provide a way to define euclidean division!). On the other hand,
defining a dynamic allocation of register should be possible but would complicate
the definitions.

Definition 13. The underlying space of αRfull is X = RR ∼= RR ×RR. The
set of generators is defined by their action on the underlying space, with the
conventions that k/n = 0 when n = 0 and n

√
k = 0 when k ⩽ 0:

• consti(c) initialises the register i with the constant c ∈ R: αRfull(consti(c))(x⃗) =
(x⃗{xi := c});

• ⋆i(j, k) (⋆ ∈ {+,−,×, /}) performs the algebraic operation ⋆ on the values
in registers j and k and store the result in register i: αRfull(⋆i(j, k))(x⃗) =
(x⃗{xi := xj ⋆ xk});

• ⋆ci (j) (⋆ ∈ {+,−,×, /}) performs the algebraic operation ⋆ on the value
in register j and the constant c ∈ R and store the result in register i:
αRfull(⋆

c
i (j))(x⃗) = (x⃗{xi := c ⋆ xj});

• copy(i, j) copies the value stored in register j in register i: αRfull(copy(i, j))(x⃗) =
(x⃗{xi := xj});

19

• copy(♯i, j) copies the value stored in register j in the register whose index
is the value stored in register i: αRfull(copy(♯i, j))(x⃗) = (x⃗{xxi := xj});

• copy(i, ♯j) copies the value stored in the register whose index is the value
stored in register j in register i: αRfull(copy(i, ♯j))(x⃗) = (x⃗{xi := xxj

});

• n
√
i(j) computes the n-th real root of the value stored in register j and

store the result in register i: αRfull(
n
√
i(j))(x⃗) = (x⃗{xi := n

√
xj}).

4. Algebraic models of computations as amcs

4.1. Algebraic computation trees
The first model considered here will be that of algebraic computation tree

as defined by Ben-Or [2]. Let us note this model refines the algebraic decision
trees model of Steele and Yao [1], a model of computation consisting in binary
trees for which each branching performs a test w.r.t. a polynomial and each
leaf is labelled YES or NO. Algebraic computation trees only allow tests w.r.t. 0,
while additional vertices corresponding to algebraic operations can be used to
construct polynomials.

Definition 14 (algebraic computation trees, [2]). An algebraic computation tree
on Rn is a binary tree T with an function assigning:

• to any vertex v with only one child (simple vertex) an operational in-
struction of the form fv = fvi ⋆ fvj , fv = c ⋆ fvi , or fv =

√
fvi , where

⋆ ∈ {+,−,×, /}, vi, vj are ancestors of v and c ∈ R is a constant;

• to any vertex v with two children a test instruction of the form fvi ⋆ 0,
where ⋆ ∈ {>,=,⩾}, and vi is an ancestor of v or fvi ∈ {x1, . . . , xn};

• to any leaf an output YES or NO.

Let W ⊆ Rn be any set and T be an algebraic computation tree. We say
that T computes the membership problem for W if for all x ∈ Rn, the traversal
of T following x ends on a leaf labelled YES if and only if x ∈ W .

As algebraic computation trees are trees, they will be represented by treeings,
i.e. αRfull-programs whose set of control states can be ordered so that any edge
in the graphing is strictly increasing on its control states component.

Definition 15. Let T be a computational αRfull-treeing. The set of inputs
In(T) (resp. outputs Out(T)) is the set of integers k (resp. i) such that there
exists an edge e in T satisfying that:

• either e is realised by one of +i(j, k), +i(k, j), −i(j, k), −i(k, j), ×i(j, k),
×i(k, j), /i(j, k), /i(k, j) +c

i (k), −c
i (k), ×c

i (k), /ci (k),
n
√
i(k);

• or the source of e is one among Rω
k⩾0, R

ω
k⩽0, R

ω
k>0, R

ω
k<0, R

ω
k=0, and

Rω
k ̸=0.

20

The effective input space InE(T) of an αact-treeing T is defined as the set of
indices k ∈ ω belonging to In(T) but not to Out(T). The implicit input space
InI(T) of an αact-treeing T is defined as the set of indices k ∈ ω such that
k ̸∈ Out(T).

Definition 16. Let T be an αRfull-treeing, and assume that 1, 2, . . . , n ∈ InI(T).
We say that T computes the membership problem for W ⊆ Rn in k steps if k
successive iterations of T restricted to {(xi)i∈ω ∈ Rω | ∀1 ⩽ i ⩽ n, xi = yi}×{0}
reach state ⊤ if and only if (y1, y2, . . . , yn) ∈ W .

Remark. Let x⃗ = (x1, x2, . . . , xn) be an element of Rn and consider two elements
a, b in the subspace {(y1, . . . , yn, . . .) ∈ Rω | ∀1 ⩾ i ⩾ n, yi = xi} × {0}. One
easily checks that πS(T

k(a)) = ⊤ if and only if πS(T
k(b)) = ⊤, where πS is the

projection onto the state space and T k(a) represents the k-th iteration of T on a.
It is therefore possible to consider only a standard representative |[x⃗]| of x⃗ ∈ Rn,
for instance (x1, . . . , xn, 0, 0, . . .) ∈ Rω, to decide whether x⃗ is accepted by T .

Definition 17. Let T be an algebraic computation tree on Rn, and T ◦ be the
associated directed acyclic graph, built from T by merging all the leaves tagged
YES in one leaf ⊤ and all the leaves tagged NO in one leaf ⊥. Suppose the internal
vertices are numbered {n+ 1, . . . , n+ ℓ}; the numbers 1, . . . , n being reserved
for the input.

We define |[T]| as the αact-graphing with control states {n+1, . . . , n+ℓ,⊤,⊥}
and where each internal vertex i of T ◦ defines either:

• a single edge of source Rω realized by:

– (⋆i(j, k), i 7→ t) (⋆ ∈ {+,−,×}) if i is associated to fvi = fvj ⋆ fvk
and t is the child of i;

– (⋆ci (j), i 7→ t) (⋆ ∈ {+,−,×}) if i is associated to fvi = c ⋆ fvk and t
is the child of i;

• a single edge of source Rω
k ̸=0 realized by:

– (/i(j, k), i 7→ t) if i is associated to fvi = fvj/fvk and t is the child of
i;

– (/ci (k), i 7→ t) if i is associated to fvi = c/fvk and t is the child of i;

• a single edge of source Rω
k⩾0×{i} realized by (2

√
i(k), i 7→ t) if i is associated

to fvi =
√
fvk and t is the child of i;

• two edges if i is associated to fvi ⋆ 0 (where ⋆ ranges in >, ⩾) and its
two sons are j and k. Those are of respective sources Rω

k⋆0 × {i} and
Rω

k⋆̄0 × {i} (where ⋆̄ =′⩽′ if ⋆ =′>′, ⋆̄ =′<′ if ⋆ =′⩾′, and ⋆̄ =′ ̸=′ if
⋆ =′=′.), respectively realized by (Id, i 7→ j) and (Id, i 7→ k)

Proposition 18. Any algebraic computation tree T of depth k is faithfully
and quantitatively interpreted as the αRfull-program |[T]|. I.e. T computes the
membership problem for W ⊆ Rn if and only if |[T]| computes the membership
problem for W in k steps – that is πS(|[T]|k(|[x⃗]|)) = ⊤.

21

As a corollary of this proposition, we get quantitative soundness.

Theorem 19. The representation of acts as αRfull-programs is quantitatively
sound.

4.2. Algebraic circuits
As we will recover Cucker’s proof that NCR ̸= PtimeR, we introduce the

model of algebraic circuits and their representation as αRfull-programs.

Definition 20. An algebraic circuit over the reals with inputs in Rn is a finite
directed graph whose vertices have labels in N×N, that satisfies the following
conditions:

• There are exactly n vertices v0,1, v0,2, . . . , v0,n with first index 0, and they
have no incoming edges;

• all the other vertices vi,j are of one of the following types:

1. arithmetic vertex: they have an associated arithmetic operation
{+,−,×, /} and there exist natural numbers l, k, r,m with l, k < i
such that their two incoming edges are of sources vl,r and vk,m;

2. constant vertex: they have an associated real number y and no
incoming edges;

3. sign vertex: they have a unique incoming edge of source vk,m with
k < i.

We call depth of the circuit the largest m such that there exist a vertex vm,r, and
size of the circuit the total number of vertices. A circuit of depth d is decisional
if there is only one vertex vd,r at level d, and it is a sign vertex; we call vd,r the
end vertex of the decisional circuit.

To each vertex v one inductively associates a function fv of the input variables
in the usual way, where a sign node with input x returns 1 if x > 0 and 0 otherwise.
The accepted set of a decisional circuit C is defined as the set S ⊆ Rn of points
whose image by the associated function is 1, i.e. S = f−1

v ({1}) where v is the
end vertex of C.

We represent algebraic circuit as computational αRfull-treeings as follows.
The first index in the pairs (i, j) ∈ N×N are represented as states, the second
index is represented as an index in the infinite product Rω, and vertices are
represented as edges.

Definition 21. Let C be an algebraic circuit, defined as a finite directed graph
(V,E, s, t, ℓ) where V ⊂ N ×N, and ℓ : V → {init,+,−,×, /, sgn} ∪ {constc |
c ∈ R} is a vertex labelling map. We suppose without loss of generality that
for each j ∈ N, there is at most one i ∈ N such that (i, j) ∈ V . We define N as
max{j ∈ N | ∃i ∈ N, (i, j) ∈ V }.

We define the αRfull-program |[C]| by choosing as set of control states {i ∈
N | ∃j ∈ N, (i, j) ∈ V } and the collection of edges {e(i,j) | i ∈ N∗, j ∈ N, (i, j) ∈
V } ∪ {e+(i,j) | i ∈ N∗, j ∈ N, (i, j) ∈ V, ℓ(v) = sgn} realised as follows:

22

• if ℓ(v) = constc, the edge e(i,j) is realised as (+nv
j (c), 0 7→ i) of source

Rω
nv=0 × {0};

• if ℓ(v) = ⋆ (⋆ ∈ {+,−,×}) of incoming edges (k, l) and (k′, l′), the edge e(i,j)
is of source Rω × {max(k, k′)} and realised by (⋆j(l, l

′),max(k, k′) 7→ i);

• if ℓ(v) = / of incoming edges (k, l) and (k′, l′), the edge e(i,j) is of source
Rω

l′ ̸=0 × {max(k, k′)} and realised by (/j(l, l
′),max(k, k′) 7→ i);

• if ℓ(v) = sgn of incoming edge (k, l), the edges e(i,j) and e+(i,j) are of
respective sources Rω

nv=0∧xl⩽0 × {k} and Rω
nv=0∧xl>0 × {k} realised by

(Id, k 7→ i) and (+j(nv, 1), k 7→ i) respectively.

As each step of computation in the algebraic circuit is translated as going
through a single edge in the corresponding αRfull-program, the following result
is straightforward.

Theorem 22. The representation of algcirc as αRfull-programs is quantita-
tively sound.

4.3. Algebraic rams
In this paper, we will consider algebraic parallel random access machines,

that act not on strings of bits, but on integers. In order to define those properly,
we first define the notion of (sequential) random access machine (ram) before
considering their parallelisation.

A ram command is a pair (ℓ, I) of a line ℓ ∈ N⋆ and an instruction I among
the following, where i, j ∈ N, ⋆ ∈ {+,−,×, /}, c ∈ Z is a constant and ℓ, ℓ′ ∈ N⋆

are lines:
skip; Xi := c; Xi := Xj ⋆ Xk; Xi := Xj;

Xi := ♯Xj; ♯Xi := Xj; if Xi = 0 goto ℓ else ℓ′.

A ram machine M is then a finite set of commands such that the set of lines
is {1, 2, . . . , |M |}, with |M | the length of M . We will denote the commands in
M by (i, InstM (i)), i.e. InstM (i) denotes the line i instruction.

Following Mulmuley [4], we will here make the assumption that the input in
the ram (and in the pram model defined in the next section) is split into numeric
and nonumeric data – e.g. in the maxflow problem the nonnumeric data would
specify the network and the numeric data would specify the edge-capacities –
and that indirect references use pointers depending only on nonnumeric data8.
We refer the reader to Mulmuley’s article for more details.

8Quoting Mulmuley: "We assume that the pointer involved in an indirect reference is not
some numeric argument in the input or a quantity that depends on it. For example, in the
max- flow problem the algorithm should not use an edge-capacity as a pointer—which is a
reasonable condition. To enforce this restriction, one initially puts an invalid-pointer tag on
every numeric argument in the input. During the execution of an arithmetic instruction, the
same tag is also propagated to the result if any operand has that tag. Trying to use a memory
value with invalid-pointer tag results in error." [4, Page 1468].

23

Machines in the ram model can be represented as graphings w.r.t. the action
αfull. Intuitively the encoding works as follows. The notion of control state
allows to represent the notion of line in the program. Then, the action just
defined allows for the representation of all commands but the conditionals. The
conditionals are represented as follows: depending on the value of Xi one wants
to jumps either to the line ℓ or to the line ℓ′; this is easily modelled by two
different edges of respective sources H(i) = {x⃗ | xi = 0} and H(i)c = {x⃗ | xi ̸= 0}.

Definition 23. Let M be a ram machine. We define the translation |[M]| as
the αram-program with set of control states {0, 1, . . . , L, L+ 1} where each line
ℓ defines (in the following, ⋆ ∈ {+,−,×} and we write ℓ++ the map ℓ 7→ ℓ+ 1):

• a single edge e of source X× {ℓ} and realised by:
– (Id, ℓ++) if InstM (ℓ) = skip;
– (consti(c), ℓ++) if InstM (ℓ) = Xi := c;
– (⋆i(j, k), ℓ++) if InstM (ℓ) = Xi := Xj ⋆ Xk;
– (copy(i, j), ℓ++) if InstM (ℓ) = Xi := Xj;
– (copy(i, ♯j), ℓ++) if InstM (ℓ) = Xi := ♯Xj;
– (copy(♯i, j), ℓ++) if InstM (ℓ) = ♯Xi := Xj.

• an edge e of source H(k)c × {ℓ} realised by (//i(j, k), ℓ++) if InstM (ℓ) is
Xi := Xj/Xk;

• a pair of edges e, ec of respective sources H(i)× {ℓ} and H(i)c × {ℓ} and
realised by respectively (Id, ℓ 7→ ℓ0) and (Id, ℓ 7→ ℓ1), if the line is a
conditional if Xi = 0 goto ℓ0 else ℓ1.

The translation |[ι]| of an input ι ∈ Zd is the point (ῑ, 0) where ῑ is the sequence
(ι1, ι2, . . . , ιk, 0, 0, . . .).

Now, the main result for the representation of rams is the following. The
proof is straightforward, as each instruction corresponds to exactly one edge,
except for the conditional case (but given a configuration, it lies in the source of
at most one of the two edges translating the conditional).

Theorem 24. The representation of rams as αfull-programs is quantitatively
sound w.r.t. the translation just defined.

4.4. The Crew operation and prams
Based on the notion of ram, we are now able to consider their parallelisation,

namely prams. A pram M is given as a finite sequence of ram machines
M1, . . . ,Mp, where p is the number of processors of M . Each processor Mi

has access to its own, private, set of registers (Xik)k⩾0 and a shared memory
represented as a set of registers (X0k)k⩾0.

One has to deal with conflicts when several processors try to access the shared
memory simultaneously. We here chose to work with the Concurrent Read,
Exclusive Write (crew) discipline: at a given step at which several processors
try to write in the shared memory, only the processor with the smallest index will
be allowed to do so. In order to model such parallel computations, we abstract
the crew at the level of monoids. For this, we suppose that we have two monoid
actions M⟨G,R⟩ ↷ X × Y and M⟨H,Q⟩ ↷ X × Z, where X represents the

24

shared memory. We then consider the subset # ⊂ G×H of pairs of generators
that potentially conflict with one another – the conflict relation.

Definition 25 (Conflicted sum). Let M⟨G,R⟩, M⟨G′,R′⟩ be two monoids and
⊆ G × G′. The conflicted sum of M⟨G,R⟩ and M⟨G′,R′⟩ over #, noted
M⟨G,R⟩ ∗# M⟨G′,R′⟩, is defined as the monoid with generators ({1} × G) ∪
({2} ×G′) and relations

({1} ×R) ∪ ({2} ×R′) ∪ {(1, e)} ∪ {(1, e′)}
∪{

(
(1, g)(2, g′), (2, g′)(1, g)

)
| (g, g′) /∈ #}

where 1, e, e′ are the units of M⟨G,R⟩ ∗# M⟨G′,R′⟩, M⟨G,R⟩ and M⟨G′,R′⟩
respectively.

In the particular case where # = (G×H ′)∪(H×G′), with H,H ′ respectively
subsets of G and G′, we will write the sum M⟨G,R⟩ ∗H H′ M⟨G′,R′⟩.

Remark. When the conflict relation # is empty, this defines the usual direct
product of monoids. This corresponds to the case in which no conflicts can
arise w.r.t. the shared memory. In other words, the direct product of monoids
corresponds to the parallelisation of processes without shared memory.

Dually, when the conflict relation is full (# = G×G′), this defines the free
product of the monoids.

Definition 26. Let α : M ↷ X × Y be a monoid action. We say that an
element m ∈ M is central relatively to α (or just central) if m acts as the identity
on X, i.e.9 α(m);πX = πX .

Intuitively, central elements are those that will not affect the shared memory.
As such, only non-central elements require care when putting processes in parallel.

Definition 27. Let M⟨G,R⟩ ↷ X × Y be an amc. We note Zα the set of
central elements and Z̄α(G) = {m ∈ G | m ̸∈ Zα}.

Definition 28 (The crew of amcs). Let α : M⟨G,R⟩ ↷ X × Y and β :
M⟨H,Q⟩ ↷ X×Z be amcs. We define the amc crew(α, β) : M⟨G,R⟩ ∗

Z̄α(G) Z̄β(G′)

M⟨G′,R′⟩ ↷ X×Y×Z by letting crew(α, β)(m,m′) = α(m)∗β(m′) on elements
of G×G′, where10:

α(m) ∗ β(m′) ={
∆1; [α(m);πY , β(m

′)]; [σX,Y , IdZ] if m ̸∈ Z̄α(G),m′ ∈ Z̄β(G
′),

∆2; [α(m), β(m′);πZ] otherwise,

9Here and in the following, we denote by ; the sequential composition of functions. I.e. f ; g
denotes what is usually written g ◦ f .

10We denote σX,Y : Y ×X → X×Y the map defined as (y, x) 7→ (x, y).

25

with ∆i : X×Y × Z → X×Y ×X× Z defined11 as:

∆1 :(x, y, z) 7→ (x0, y, x, z)

∆2 :(x, y, z) 7→ (x, y, x0, z).

We can now define amc of prams and thus the interpretations of prams as
abstract programs. For each integer p, we define the amc crewp(αfull). This
allows the consideration of up to p parallel rams: the translation of such a ram
with p processors is defined by extending the translation of rams by considering
a set of states equal to L1 × L2 × · · · × Lp where for all i the set Li is the set of
lines of the i-th processor.

Now, to deal with arbitrary large prams, i.e. with arbitrarily large number
of processors, one considers the following amc defined as a direct limit.

Definition 29 (The amc of prams). Let α : M ↷ X×X be the amc αfull.
The amc of prams is defined as αpram = lim−→crewk(α), where crewk−1(α) is
identified with a restriction of crewk(α) through crewk−1(α)(m1, . . . ,mk−1) 7→
crewk(α)(m1, . . . ,mk−1, 1).

Remark that the underlying space of the pram amc αpram is defined as the
union ∪n∈ωZ

ω × (Zω)n which we will write Zω × (Zω)(ω). In practise a given
αpram-program admitting a finite αpram representative will only use elements in
crewp(αfull), and can therefore be understood as a crewp(α)-program.

Theorem 30. The representation of prams as αpram-programs is quantitatively
sound.

4.5. Real prams
These definitions and results stated for integer-valued prams can be adapted

to define real-valued prams and their translation as αRfull-programs.
A real-valued ram command is a pair (ℓ, I) of a line ℓ ∈ N⋆ and an instruction

I among the following, where i, j ∈ N, ⋆ ∈ {+,−,×, /}, c ∈ Z is a constant and
ℓ, ℓ′ ∈ N⋆ are lines:

skip; Xi := c; Xi := Xj ⋆ Xk; Xi := Xj;
Xi := ♯Xj; ♯Xi := Xj; if Xi = 0 goto ℓ else ℓ′.

We consider a restriction for pointers similar to that considered in the case
of integer-valued rams. A real-valued ram machine M is then a finite set of
commands such that the set of lines is {1, 2, . . . , |M |}, with |M | the length of
M . We will denote the commands in M by (i, InstM (i)), i.e. InstM (i) denotes
the line i instruction.

A real-valued pram M is given as a finite sequence of real-valued ram
machines M1, . . . ,Mp, where p is the number of processors of M . Each processor

11Formally, the definition of ∆i is parametrised by the choice of a point x0 ∈ X, but the
map α(m) ∗ β(m′) does not depend on this choice because of the projections on Y and Z.

26

Mi has access to its own, private, set of registers (Xik)k⩾0 and a shared memory
represented as a set of registers (X0k)k⩾0. Again, we chose to work with the
Concurrent Read, Exclusive Write (crew) discipline as it is well translated
through the crew operation of amcs.

The following definition provides the straightforward definition of real-valued
prams as graphings.

Definition 31. Let M be a real-valued ram machine. We define the translation
|[M]| as the αRfull-program with set of control states {0, 1, . . . , L, L+ 1} where
each line ℓ defines (in the following, ⋆ ∈ {+,−,×} and we write ℓ++ the map
ℓ 7→ ℓ+ 1):

• a single edge e of source X× {ℓ} and realised by:
– (Id, ℓ++) if InstM (ℓ) = skip;
– (consti(c), ℓ++) if InstM (ℓ) = Xi := c;
– (⋆i(j, k), ℓ++) if InstM (ℓ) = Xi := Xj ⋆ Xk;
– (copy(i, j), ℓ++) if InstM (ℓ) = Xi := Xj;
– (copy(i, ♯j), ℓ++) if InstM (ℓ) = Xi := ♯Xj;
– (copy(♯i, j), ℓ++) if InstM (ℓ) = ♯Xi := Xj.

• an edge e of source Rk ̸=0 × {ℓ} realised by (/i(j, k), ℓ++) if InstM (ℓ) is
Xi := Xj/Xk;

• a pair of edges e, ec of respective sources Ri=0 × {ℓ} and Ri ̸=0 × {ℓ}
and realised by respectively (Id, ℓ 7→ ℓ0) and (Id, ℓ 7→ ℓ1), if the line is a
conditional if Xi = 0 goto ℓ0 else ℓ1.

The translation |[ι]| of an input ι ∈ Zd is the point (ῑ, 0) where ῑ is the sequence
(ι1, ι2, . . . , ιk, 0, 0, . . .).

For each integer p, we then define the amc crewp(αRfull). This allows the
consideration of up to p parallel real-valued rams: the translation of such a ram
with p processors is defined by extending the translation of real-valued rams
just defined by considering a set of states equal to L1 × L2 × · · · × Lp where for
all i the set Li is the set of lines of the i-th processor.

Since we need to translate arbitrary large real-valued prams, i.e. with
arbitrarily large number of processors, one considers the following amc defined
as a direct limit.

Definition 32 (The amc of real-valued prams). Let α : M ↷ X×X be the
amc αRfull. The amc of real-valued prams is defined as αRpram = lim−→crewk(α),
where crewk−1(α) is identified with a restriction of crewk(α) through

crewk−1(α)(m1, . . . ,mk−1) 7→ crewk(α)(m1, . . . ,mk−1, 1).

Then the following results are quite straightforward.

Theorem 33. The representation of real-valued rams as αRfull-programs is quan-
titatively sound. The representation of real-valued prams as αRpram-programs is
quantitatively sound.

27

5. Entropy and Cells

5.1. Topological Entropy
Topological Entropy was introduced in the context of dynamical systems in

an attempt to classify the latter w.r.t. conjugacy. The topological entropy of a
dynamical system is a value representing the average exponential growth rate of
the number of orbit segments distinguishable with a finite (but arbitrarily fine)
precision. The definition is based on the notion of open covers.

Open covers.. Given a topological space X, an open cover of X is a family
U = (Ui)i∈I of open subsets of X such that ∪i∈IUi = X. A finite cover U
is a cover whose indexing set is finite. A subcover of a cover U = (Ui)i∈I is
a sub-family S = (Uj)j∈J for J ⊆ I such that S is a cover, i.e. such that
∪j∈JUj = X.

We will denote by Cov(X) (resp. FCov(X)) the set of all open covers (resp.
all finite open covers) of the space X.

We now define two operations on open covers that are essential to the
definition of entropy. An open cover U = (Ui)i∈I , together with a continuous
function f : X → X, defines the inverse image open cover f−1(U) = (f−1(Ui))i∈I .
Note that if U is finite, f−1(U) is finite as well. Given two open covers U = (Ui)i∈I

and V = (Vj)j∈J , we define their join U ∨ V as the family (Ui ∩ Vj)(i,j)∈I×J .
Once again, if both initial covers are finite, their join is finite.

Entropy. Usually, entropy is defined for continuous maps on a compact set,
following the original definition by Adler, Konheim and McAndrews [35]. Using
the fact that arbitrary open covers have a finite subcover, this allows one to
ensure that the smallest subcover of any cover is finite. I.e. given an arbitrary
cover U , one can consider the smallest – in terms of cardinality – subcover S
and associate to U the finite quantity log2(Card(S)). This quantity, obviously,
need not be finite in the general case of an arbitrary cover on a non-compact set.

However, a generalisation of entropy to non-compact sets can easily be defined
by restricting the usual definition to finite covers12. This is the definition we
will use here.

Definition 34. Let X be a topological space, and U = (Ui)i∈I be a finite cover
of X. We define the quantity H0

X(U) as

min{log2(Card(J)) | J ⊂ I,∪j∈JUj = X}.

In other words, if k is the cardinality of the smallest subcover of U , H0(U) =
log2(k).

12This is discussed by Hofer [36] together with another generalisation based on the Stone-Čech
compactification of the underlying space.

28

Definition 35. Let X be a topological space and f : X → X be a continuous
map. For any finite open cover U of X, we define:

Hk
X(f,U) = 1

k
H0

X(U ∨ f−1(U) ∨ · · · ∨ f−(k−1)(U)).

One can show that the limit limn→∞ Hn
X(f,U) exists and is finite [35]; it will

be noted h(f,U). The topological entropy of f is then defined as the supremum
of these values, when U ranges over the set of all finite covers FCov(X).

Definition 36. Let X be a topological space and f : X → X be a continuous
map. The topological entropy of f is defined as h(f) = supU∈FCov(X) h(f,U).

5.2. Graphings and Entropy
We now need to define the entropy of deterministic graphing. As mentioned

briefly already, deterministic graphings on a space X are in one-to-one corre-
spondence with partial dynamical systems on X. To convince oneself of this,
it suffices to notice that any partial dynamical system can be represented as a
graphing with a single edge, and that if the graphing G is deterministic its edges
can be glued together to define a partial continuous function [G]. Thus, we only
need to extend the notion of entropy to partial maps, and we can then define
the entropy of a graphing G as the entropy of its corresponding map [G].

Given a finite cover U , the only issue with partial continuous maps is that
f−1(U) is not in general a cover. Indeed, {f−1(U) | U ∈ U} is a family of open
sets by continuity of f but the union ∪U∈Uf

−1(U) is a strict subspace of X
(namely, the domain of f). It turns out the solution to this problem is quite
simple: we notice that f−1(U) is a cover of f−1(X) and now work with covers
of subspaces of X. Indeed, U ∨ f−1(U) is itself a cover of f−1(X) and therefore
the quantity H2

X(f,U) can be defined as (1/2)H0
f−1(X)(U ∨ f−1(U)).

We now generalise this definition to arbitrary iterations of f by extending
Definitions 35 and 36 to partial maps as follows.

Definition 37. Let X be a topological space and f : X → X be a continuous
partial map. For any finite open cover U of X, we define:

Hk
X(f,U) = 1

k
H0

f−k+1(X)(U ∨ f−1(U) ∨ · · · ∨ f−(k−1)(U)).

The entropy of f is then defined as h(f) = supU∈FCov(X) h(f,U), where h(f,U)
is again defined as the limit limn→∞ Hn

X(f,U) [36].

Now, let us consider the special case of a graphing G with set of control states
SG. For an intuitive understanding, one can think of G as the representation
of a pram machine. We focus on the specific open cover indexed by the set
of control states, i.e. S = (X× {s}s∈SG), and call it the states cover. We will
now show how the partial entropy Hk(G,S) is related to the set of admissible
sequence of states. Let us define those first.

29

Definition 38. Let G be a graphing, with set of control states SG. An admissible
sequence of states is a sequence s = s1s2 . . . sn of elements of SG such that for
all i ∈ {1, 2, . . . , n− 1} there exists a subset Ci of X – i.e. a set of configurations
– such that G contains an edge from Ci × {si} to (a subspace of) Ci+1 × {si+1}
(with the convention that Cn = X).

Example 39. As an example, let us consider the very simple graphing with four
control states a, b, c, d and edges from X × {a} to X × {b}, from X × {b} to
X × {c}, from X × {c} to X × {b} and from X × {c} to X × {d}. Then the
sequences abcd and abcbcbc are admissible, but the sequences aba, abcdd, and
abcba are not.

Lemma 40. Let G be a graphing, and S its states cover. Then for all integer k,
the set Admk(G) of admissible sequences of states of length k > 1 is of cardinality
2k.H

k(G,S).

Proof. We show that the set Admk(G) of admissible sequences of states of length
k has the same cardinality as the smallest subcover of S ∨ [G]−1(S) ∨ · · · ∨
[G]−(k−1)(S)). Hence Hk(G,S) = 1

k log2(Card(Admk(G))), which implies the
result.

The proof is done by induction. As a base case, let us consider the set
of Adm2(G) of admissible sequences of states of length 2 and the open cover
V = S ∨ [G]−1(S) of D = [G]−1(X). An element of V is an intersection
X× {s1} ∩ [G]−1(X× {s2}), and it is therefore equal to C[s1, s2]× {s1} where
C[s1, s2] ⊂ X is the set {x ∈ X | [G](x, s1) ∈ X×{s2}}. This set is empty if and
only if the sequence s1s2 belongs to Adm2(G). Moreover, given another sequence
of states s′1s

′
2 (not necessarily admissible), the sets C[s1, s2] and C[s1, s2] are

disjoint. Hence a set C[s1, s2] is removable from the cover V if and only if the
sequence s1s2 is not admissible. This implies the result for k = 2.

The step for the induction is similar to the base case. It suffices to consider
the partition Sk = S ∨ [G]−1(S) ∨ · · · ∨ [G]−(k−1)(S)) as Sk−1 ∨ [G]−(k−1)(S).
By the same argument, one can show that elements of Sk−1 ∨ [G]−(k−1)(S)
are of the form C[s = (s0s1 . . . sk−1), sk] × {s1} where C[s, sk] ⊂ X is the set
{x ∈ X | ∀i = 2, . . . , k, [G]i−1(x, s1) ∈ X× {si}}. Again, these sets C[s, sk] are
pairwise disjoint and empty if and only if the sequence s0s1 . . . sk−1, sk is not
admissible.

A tractable bound on the number of admissible sequences of states can be ob-
tained by noticing that the sequence Hk(G,S) is sub-additive, i.e. Hk+k′

(G,S) ⩽
Hk(G,S) + Hk′

(G,S). A consequence of this is that Hk(G,S) ⩽ kH1(G,S).
Thus the number of admissible sequences of states of length k is bounded by
2k

2H1(G,S). We now study how the cardinality of admissible sequences can be
related to the entropy of G.

Lemma 41. For all ϵ > 0, there exists an integer N such that for all k ⩾ N ,
Hk(G,U) < h([G]) + ϵ.

30

Proof. Let us fix some ϵ > 0. Notice that if we let Hk(G,U) = H0(U∨[G]−1(U)∨
· · · ∨ [G]−(k−1)(U))), the sequence Hk(U) satisfies Hk+l(U) ⩽ Hk(U) +Hl(U).
By Fekete’s lemma on subadditive sequences, this implies that limk→∞ Hk/k
exists and is equal to infk Hk/k. Thus h([G],U) = infk Hk/k.

Now, the entropy h([G]) is defined as supU limk→∞ Hk(U)/k. This then
rewrites as supU infk Hk(U)/k. We can conclude that h([G]) ⩾ infk Hk(U)/k for
all finite open cover U .

Since infk Hk(U)/k is the limit of the sequence Hk/k, there exists an in-
teger N such that for all k ⩾ N the following inequality holds: |Hk(U)/k −
infk Hk(U)/k| < ϵ, which rewrites as Hk(U)/k − infk Hk(U)/k < ϵ. From
this we deduce Hk(U)/k < h([G]) + ϵ, hence Hk(G,U) < h([G]) + ϵ since
Hk(G,U) = Hk(G,U).

Lemma 42. Let G be a graphing, and let c : k 7→ Card(Admk(G)). Then
c(k) = O(2k.h([G])) as k goes to infinity.

Lastly, we prove a result bounding the entropy of a map α(m) ∗ β(m′) in the
crew of amcs. The result is essentially a consequence of the product rule ([35,
Theorem 3], or [37]) stating that the entropy of a product h(f × g) is bounded
above by the sum h(f) + h(g).

Lemma 43. Let α : M⟨G,R⟩ ↷ X ×Y and β : M⟨H,Q⟩ ↷ X × Z be amcs
such that every non-central element of β acts as the identity on Z. Then for all
m ∈ M⟨G,R⟩ and m′ ∈ M⟨H,Q⟩, the entropy of α(m) ∗ β(m′) is bounded by the
sum of the entropies of α(m) and β(m′):

h(α(m) ∗ β(m′) ⩽ h(α(m)) + h(β(m′)).

Proof. We show that the entropy of α(m) ∗ β(m′) is bounded by the entropy of
α(m)×β(m). The result then follows by the product rule [37]. We distinguish two
cases: the first case is when one of α(m) or β(m′) is central, i.e. α(m);πX = πX or
β(m′);πX = πX, the second case is when both α(m) and β(m′) act non-trivially
on X.

For the first case, we may consider that β(m′) is central without loss of
generality. It is then of the form β̃ × IdX with β̃ : Z → Z, and the key
observation is that

α(m) ∗ β(m′) = α(m)× β̃

in this case. We now apply the product rule on both identities. From the first
identity, we get

h(β(m′)) = h(β̃) + h(IdX = h(β̃),

since the entropy of the identity is equal to 0, and from the second identity, we
get

h(α(m) ∗ β(m′)) ≤ h(α(m′)) + h(β̃).

Combining both we obtain that h(α(m) ∗ β(m′)) = h(α(m)) + h(β(m′)).
For the second case, the definition of α(m) ∗ β(m′) states that it is equal to

the following map:
∆2;α(m)× (β(m′);πZ).

31

Diagrammatically, this is defined as:

X

Y

Z

X

Y

X

Z

X

Y

X

Z

X

Y

Z

α(m)

β(m′)

We will now bound the entropy of α(m) ∗ β(m′). This is where we will use the
hypothesis that β(m′) acts as the identity on Z, i.e. that β(m′)(x, z) = (x′, z).
Indeed, from this hypothesis, one can deduce that

α(m) ∗ β(m′)(x, y, z) = α(m)(x, y)× IdZ(z),

hence

h(α(m) ∗ β(m′)) = h(α(m)) + h(IdZ) = h(α(m)) ≤ h(α(m)) + h(β(m′)),

since h(IdZ) = 0 and h(β(m′)) ≥ 0.

5.3. Cells Decomposition
Now, let us consider a deterministic graphing G, with its state cover S. We

fix a length k > 2 and reconsider the sets C[s] = C[(s1s2 . . . sk−1, sk)] (for a
sequence of states s = s1s2 . . . sk) that appear in the proof of Lemma 40. The
set (C[s])s∈Admk(G) is a partition of the space [G]−k+1(X).

This decomposition splits the set of initial configurations into cells satisfying
the following property: for any two initial configurations contained in the same
cell C[s], the k-th first iterations of G goes through the same admissible sequence
of states s.

Definition 44. Let G be a deterministic graphing, with its state cover S. Given
an integer k, we define the k-fold decomposition of X along G as the partition
{C[s] | s ∈ Admk(G)}.

Then Lemma 40 provides a bound on the cardinality of the k-th cell de-
composition. Using the results in the previous section, we can then obtain the
following proposition.

Proposition 45. Let G be a deterministic graphing, with entropy h(G). The
cardinality of the k-th cell decomposition of X w.r.t. G, as a function c(k) of k,
is asymptotically bounded by g(k) = 2k.h([G]), i.e. c(k) = O(g(k)).

We also state another bound on the number of cells of the k-th cell decom-
position, based on the state cover entropy, i.e. the entropy with respect to the
state cover rather than the usual entropy which takes the supremum of cover
entropies when the cover ranges over all finite covers of the space. This result is
a simple consequence of lemma 40.

Proposition 2. Let G be a deterministic graphing. We consider the state
cover entropy h0([G]) = limn→∞ Hn

X([G],S) where S is the state cover. The
cardinality of the k-th cell decomposition of X w.r.t. G, as a function c(k) of k,
is asymptotically bounded by g(k) = 2k.h0([G]), i.e. c(k) = O(g(k)).

32

6. First lower bounds

We will now explain how to obtain lower bounds for algebraic models of
computation based on the interpretation of programs as graphings and entropic
bounds. These results make use of the Milnor-Olĕınik-Petrovskii-Thom theorem
which bounds the sum of the Betti numbers of algebraic varieties. In fact, we
will use a version due to Ben-Or of this theorem.

6.1. Milnor-Olĕınik-Petrovskii-Thom theorem
Let us first recall the classic Milnor-Olĕınik-Petrovskii-Thom theorem. This

theorem provides a bound on the sum of Betti numbers βi(V) of an algebraic
variety V . Recall that the i-th Betti number is the dimension of the i-th C̆ech
cohomology group Hi(V); the number β0(V) then coincides with the number
of connected components of the variety. In the following H∗(V) denotes the
sequence of cohomology groups, and rankH∗V should be understood as standing
for the sum of all βi(V).

Theorem 46 ([25, Theorem 3]). If V ⊆ Rm is defined by polynomial identities
of the form

f1 ⩾ 0, . . . , fp ⩾ 0

with total degree d = deg f1 + · · ·+ deg fp, then

rankH∗V ⩽
1

2
(2 + d)(1 + d)m−1.

We will use in the proof the following variant, stated and proved by Ben-Or.

Theorem 47. Let V ⊆ Rn be a set defined by polynomial in·equations (n,m, h ∈
N): 

q1(x1, . . . , xn) = 0
...
qm(x1, . . . , xn) = 0
p1(x1, . . . , xn) > 0
...
ps(x1, . . . , xn) > 0
ps+1(x1, . . . , xn) ⩾ 0
...
ph(x1, . . . , xn) ⩾ 0

for pi, qi ∈ R[X1, . . . , Xn] of degree lesser than d.
Then β0(V) is at most d(2d− 1)n+h−1, where d = max{2,deg(qi),deg(pj)}.

33

6.2. Algebraic decision trees
From proposition 45, one obtains easily the following technical lemma.

Lemma 48. Let T be a d-th order algebraic decision tree deciding a subset
W ⊆ Rn. Then the number of connected components of W is bounded by
2hd(2d− 1)n+h−1, where h is the height of T .

Proof. We let h be the height of T , and d be the maximal degree of the polyno-
mials appearing in T . Then the h-th cell decomposition of [T] defines a family
of semi-algebraic sets defined by h polynomials equalities and inequalities of
degree at most d. By theorem 47, each of the cells have at most d(2d− 1)n+h−1

connected components. Moreover, proposition 2 states that this family has car-
dinality bounded by 2h.h0([T]); since h0([T]) = 1 because each state has at most
one antecedent state, this bound becomes 2h. Thus, the h-th cell decomposition
defines at most 2h algebraic sets which have at most d(2d− 1)n+h−1 connected
components. Since the set W decided by T is obtained as a union of the semi-
algebraic sets in the h-th cell decomposition, it has at most 2hd(2d− 1)n+h−1

connected components.

Corollary 3 (Steele and Yao [1]). A d-th order algebraic decision tree deciding
a subset W ⊆ Rn with N connected components has height Ω(logN).

This result of Steele and Yao adapts in a straightforward manner to a notion
of algebraic computation trees describing the construction of the polynomials
to be tested by mean of multiplications and additions of the coordinates. The
authors remarked this result uses techniques quite similar to that of Mulmuley’s
lower bounds for the model of prams without bit operations. It is also strongly
similar to the techniques used by Cucker in proving that NCR ⊊ PtimeR [3].

However, a refinement of Steele and Yao’s method was quickly obtained by
Ben-Or so as to allow for computing divisions and taking square roots in this
notion of algebraic computation trees. In the next section, we explain Ben-Or
techniques from within the framework of graphings through the introduction of
entropic co-trees. We first explain how the present approach already captures
Mulmuley’s proof of lower bounds for prams without bit operations, which we
will later strengthen using entropic co-trees.

6.3. Mulmuley’s result
At this point, we are already capable of recovering Mulmuley’s proof of lower

bounds for prams without bit operations [4]. The gist of the proof is to notice
that given a pram M over integers not using the instructions //·(·, ·) or n

√
·(·),

one can define a real-valued pram M̃ not using the instructions /·(·, ·) or n
√
·(·)

such that:

M accepts an integer-valued point x⃗ in k steps if and only if M̃
accepts x⃗ in k steps.

34

In particular, the subset W ⊆ Zn decided by M is contained in the subset
W̄ ⊆ Rn decided by M̄ , and W c ⊆ W̄ c – where the complement of W is taken
in Zn and the complement of W̄ is taken in Rn. Moreover, the number of steps
needed by M̄ to decide if x⃗ belongs to W̄ is equal to the number of steps needed
by M to decide if x⃗ belongs to W .

The proof of this is straightforward, as each instructions available in the
integer-valued prams model coincide with the restriction to integer values of an
instruction available in the integer-valued prams model. We can then prove the
following result.

Lemma 49. A set V decided by a pram without bit operations M with p
processors in t steps is described by a set of in·equations of total degree13 bounded
by pt.2O(pt).

Proof. Now, one supposes that M computes some set V in t steps. Then it is
computed by M̄ in t steps. Applying proposition 45 on the translation of M̄
we obtain that the t-th cell decomposition of |[M̄]| contains at most 2t.h0([T])

cells. Moreover, each cell is described by a system of at most pt polynomial
in·equations of degree at most 2. Thus, the whole set decided by M̄ is described
by at most pt.2t.h0([T]) in·equations of degree at most 2. Lastly, one can use the
fact that any non-central element in αRfull act as the identity on the private
memory14 and lemma 43 to establish that h0([T]) grows linearly w.r.t. the
number of processors.

This lemma is the first part of Mulmuley’s proof of lower bounds. The second
part of the proof, which does not differ from Mulmuley’s argument, is detailed
and reformulated in Section 9. We only provide a quick sketch of Mulmuley’s
result here, based on result presented in this later section. Note that the proof
of the more general result Theorem 8 follows the same general pattern.

Corollary 4. Let M be a pram without bit operations, with at most 2O((logN)c)

processors, where N is the length of the inputs and c any positive integer.
Then M does not decide maxflow in O((logN)c) steps.

Sketch. The crux is the obtention of Theorem 68 which, combined with The-
orem 63, implies that there exists a polynomial P such that no surface of
total degree δ can separate the integer points defined by maxflow as long as
2Ω(N) > P (δ). Hence, if we suppose that M is such that both the running time
t and number of processors p are O((logk(N))c) (for any positive integers k and
c), the previous result implies that the total degree δ of the set decided by M̄
is at most O(2pt). Hence 2Ω(N) > P (δ) for any polynomial P , and we conclude
that M̄ does not compute a set separating the integer points defined by maxflow,
hence M does not decide maxflow.

13The sum of the degrees of the polynomials defining V .
14The only non-central elements are those modifying the shared memory, and those do not

modify the private memory.

35

7. Refining the method

It is not a surprise then that similar bounds to that of algebraic decisions
trees can be computed using similar methods in the restricted fragment without
division and square roots. An improvement on this is the result of Ben-Or
generalising the technique to algebraic computation trees with division and
square root nodes. The principle is quite simple: one simply adds additional
variables to avoid using the square root or division, obtaining in this way a
system of polynomial equations. For instance, instead of writing the equation
p/q < 0, one defines a fresh variable r and considers the system

p = qr; r < 0

This method seems different from the direct entropy bound obtained in the
case of algebraic decision trees. However, we will see how it can be adapted
directly to graphings.

7.1. Entropic co-trees and k-th computational forests
Definition 50 (k-th entropic co-tree). Consider a deterministic graphing repre-
sentative T , and fix an element ⊤ of the set of control states. We can define the
k-th entropic co-tree of T along ⊤ and the state cover inductively:

• k = 0, the co-tree coT0(T) is simply the root nϵ = Rn × {⊤};

• k = 1, one considers the preimage of nϵ through T , i.e. T−1(Rn × {⊤})
the set of all non-empty sets α(me)

−1(Rn×{⊤}) and intersects it pairwise
with the state cover, leading to a finite family (of cardinality bounded by
the number of states multiplied by the number of edges fo T) (ni

e)i defined
as ni = T−1(nϵ) ∩Rn × {i}. The first entropic co-tree coT1(T) of T is
then the tree defined by linking each ni

e to nϵ with an edge labelled by me;

• k + 1, suppose defined the k-th entropic co-tree of T , defined as a family
of elements nπ

e where π is a finite sequence of states of length at most
k and e a sequence of edges of T of the same length, and where nπ

e and
nπ′

e′ are linked by an edge labelled f if and only if π′ = π.s and e′ = f.e
where s is a state and f an edge of T . We consider the subset of elements
nπ
e′ where π is exactly of length k, and for each such element we define

new nodes nπ.s
e.e′ defined as α(me)

−1(nπ
e′) ∩Rn × {s} when it is non-empty.

The k + 1-th entropic co-tree coTk+1(T) is defined by extending the k-th
entropic co-tree coTk(T), adding the nodes nπ.s

e.e′ and linking them to nπ
e′

with an edge labelled by e.

Remark. The co-tree can alternatively be defined non-inductively in the following
way: the nπ

e for π is a finite sequence of states and e a sequence of edges of T of
the same length by nϵ

ϵ = Rn × {⊤} and

nπ.s
e.e =

[
α(me)

−1(nπ
e)
]
∩ [Rn × {s}]

The k-th entropic co-tree of T along ⊤ has as vertices the non-empty sets nπ
e for

π and e of length at most k and as only edges, links nπ.s
e.e → nπ

e labelled by me.

36

This definition formalises a notion that appears more or less clearly in the
work of Lipton and Steele, and of Ben-Or, as well as in the proof by Mulmuley.
The nodes for paths of length k in the k-th co-tree corresponds to the k-th cell
decomposition, and the corresponding path defines the polynomials describing
the semi-algebraic set decided by a computational tree. The co-tree can be used
to reconstruct the algebraic computation tree T from the graphing representative
[T], or constructs some algebraic computation tree (actually a forest) that
approximates the computation of the graphing F under study when the latter is
not equal to [T] for some tree T .

Definition 51 (k-th computational forest). Consider a deterministic graphing T ,
and fix an element ⊤ of the set of control states. We define the k-th computational
forest of T along ⊤ and the state cover as follows. Let coTk(T) be the k-th
entropic co-tree of T . The k-th computational forest of T is defined by regrouping
all elements nπ

e.e⃗′ of length m: if the set Nm
e = {nπ

e.e⃗′ ∈ coTk(T) | len(π) = m}
is non-empty it defines a new node Nm

e . Then one writes down an edge from
Nm

e to Nm−1
e′ , labelled by e, if and only if there exists ns.π

e.e′.f⃗
∈ Nm

e such that

nπ
e′.f⃗

∈ Nm−1
e′ .

One checks easily that the k-th computational forest is indeed a forest: an
edge can exist between Nm

e and Nn
f only when n = m + 1, a property that

forbids cycles. The following proposition shows how the k-th computational
forest is linked to computational trees.

Proposition 52. If T is a computational tree of depth k, the k-th computa-
tional forest of [T] is a tree which defines straightforwardly a graphing (treeing)
representative of T .

We now state and prove an easy bound on the size of the entropic co-trees.

Proposition 53 (Size of the entropic co-trees). Let T be a graphing represen-
tative, E its set of edges, and Seqk(E) the set of paths of length k in T . The
number of nodes of its k-th entropic co-tree coTk(T), as a function n(k) of
k, is asymptotically bounded by Card(Seqk(E)).2(k+1).h([G]), itself bounded by
2Card(E).2(k+1).h([G]).

Proof. For a fixed sequence e⃗, the number of elements nπ
e⃗ of length m in coTk(T)

is bounded by the number of elements in the m-th cell decomposition of T , and
is therefore bounded by g(m) = 2m.h([T]) by proposition 45. The number of
sequences e⃗ is bounded by Card(Seqk(E)) and therefore the size of coTk(T) is
thus bounded by Card(Seqk(E)).2(k+1).h([T]).

From the proof, one sees that the following variant of proposition 2 holds.

Proposition 54. Let G be a deterministic graphing with a finite set of edges
E, and Seqk(E) the set of paths of length k in G. We consider the state
cover entropy h0([G]) = limn→∞ Hn

X([G],S) where S is the state cover. The
cardinality of the length k nodes of the entropic co-tree of G, as a function c(k) of
k, is asymptotically bounded by g(k) = Card(Seqk(E)).2k.h0([G]), which is itself
bounded by 2Card(E).2k.h0([G]).

37

7.2. The technical lemma
This definition formalises a notion that appears more or less clearly in the

work of Steele and Yao, and of Ben-Or, as well as in the proof by Mulmuley. It
will be key in establishing the main technical lemma, namely lemma 5.

The vertices for paths of length k in the k-th co-tree corresponds to the
k-th cell decomposition, and the corresponding path defines the polynomials
describing the semi-algebraic set decided by a computational tree. While in
Steele and Yao and Mulmuley’s proofs, one obtain directly a polynomial for
each cell, we here need to construct a system of equations for each branch of the
co-tree.

Given a crewp(αRfull)-graphing representative G we will write ∂
√
G the

maximal value of n for which an instruction n
√
i(j) appears in the realiser of an

edge of G.
The proof of this theorem is long but simple to understand as it follows

Ben-Or’s method. We define, for each vertex of the k-th entropic co-tree, a
system of algebraic equations (each of degree at most 2). The system is defined
by induction on k, and uses the information of the specific instruction used to
extend the sequence indexing the vertex at each step. For instance, the case of
division follows Ben-Or’s method, introducing a fresh variable and writing down
two equations. As mentioned in footnote 8, the input variables are split into
numerical and non-numerical inputs, and one assumes that indirect references
do not depend on non-numerical inputs. This implies that all indirect references
have a fixed value determined by the non-numerical input; hence in the analysis
below – which focuses on numerical inputs – indirect references correspond to
references to a fixed value register.

Lemma 55. Let G be a computational graphing representative with edges realised
only by generators of the amc crewp(αRfull), and Seqk(E) the set of paths of
length k in G. Suppose G computes the membership problem for W ⊆ Rn in k
steps, i.e. for each element of Rn, πS(G

k(x)) = ⊤ if and only if x ∈ W . Then
W is a semi-algebraic set defined by at most Card(Seqk(E)).2k.h0([G]) systems
of pk equations of degree at most max(2, ∂

√
G) and involving at most p(k + n)

variables and p(k + n) inequalities.

Proof. If G computes the membership problem for W in k steps, it means W
can be described as the union of the subspaces corresponding to the nodes nπ

e

with π of length k in coTk(T). Now, each such subspace is an algebraic set, as
it can be described by a set of polynomials as follows.

Finally let us note that, as in Mulmuley’s work [4], since in our model the
memory pointers are allowed to depend only on the nonnumeric parameters,
indirect memory instructions can be treated as standard – direct – memory
instructions. In other words, whenever an instruction involving a memory
pointer is encountered during the course of execution, the value of the pointer
is completely determined by nonnumerical data, and the index of the involved
registers is completely determined, independently of the numerical inputs.

We define a system of equations (Ee
i)i for each node nπ

e of the entropic
co-tree coTk(T). We explicit the construction for the case p = 1, i.e. for the

38

amc crew1(αRfull) = αRfull; the case for arbitrary p is then dealt with by
following the construction and introducing p equations at each step (one for each
of the p instructions in αRfull corresponding to an element of crewp(αRfull)).
This is done inductively on the size of the path e⃗, keeping track of the last
modifications of each register. I.e. we define both the system of equations (Ee

i)i
and a function15 h(e) : Rω ∪ {⊥} → ω (which is almost everywhere null). This
function increases each time a register is modified, and will be used to create a
new variable corresponding to the value of the register at this precise moment in
the computation. The additional value ⊥ will be used to create new variables
not related to a specific register (used in the case of comparisons below).

For an empty sequence, the system of equations is empty, and the function h(ϵ)
is constant, equal to 0. The system of equation, as well as the function h(ϵ), are
then jointly defined inductively as follows. Suppose that e⃗′ = (e1, . . . , em, em+1),
with e⃗ = (e1, . . . , em), and that one already computed (Ee

i)i⩾m and the function
h(e). We now consider the edge em+1 and let (r, r′) be its realizer. We extend the
system of equations (Ee

i)i⩾m by a new equation Em+1 and define the function
h(e′) as follows:

• if r = +i(j, k), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)
otherwise; then Em+1 is xi,h(e′)(i) = xj,h(e′)(j) + xk,h(e′)(k);

• if r = −i(j, k), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)
otherwise; then Em+1 is xi,h(e′)(i) = xj,h(e′)(j) − xk,h(e′)(k);

• if r = ×i(j, k), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)
otherwise; then Em+1 is xi,h(e′)(i) = xj,h(e′)(j) × xk,h(e′)(k);

• if r = /i(j, k), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)
otherwise; then Em+1 is xi,h(e′)(i) × xk,h(e′)(k) = xj,h(e′)(j);

• if r = +c
i (k), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)

otherwise; then Em+1 is xi,h(e′)(i) = c+ xk,h(e′)(k);

• if r = −c
i (k), h(e′)(x) = h(e)(x) + 1 if x = i, and h(e′)(u) = h(e)(u)

otherwise; then Em+1 is xi,h(e′)(i) = c− xk,h(e′)(k);

• if r = ×c
i (k), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)

otherwise; then Em+1 is xi,h(e′)(i) = c× xk,h(e′)(k);

• if r = /ci (k), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)
otherwise; then Em+1 is xi,h(e′)(i) × c = xk,h(e′)(k);

• if r = n
√
i(k), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)

otherwise; then Em+1 is (xi,h(e′)(i))
n = xk,h(e′)(k);

• if r = copy(i, j), h(e′)(u) = h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u)
otherwise; then Em+1 is xi,h(e′)(i) = xj,h(e′)(j);

15The use of ⊥ is to allow for the creation of fresh variables not related to a register.

39

• if r = copy(♯i, j), then the value of ♯i does not depend on the numerical
inputs and corresponds to a fixed value a ∈ R; we then define h(e′)(u) =
h(e)(u) + 1 if u = a, and h(e′)(u) = h(e)(u) otherwise; then Em+1 is
xa,h(e′)(a) = xj,h(e′)(j);

• if r = copy(i, ♯j), then the value of ♯j does not depend on the numerical
inputs and corresponds to a fixed value a ∈ R; we then define h(e′)(u) =
h(e)(u) + 1 if u = i, and h(e′)(u) = h(e)(u) otherwise; then Em+1 is
xi,h(e′)(i) = xa,h(e′)(a);

• if r = Id, the source of the edge eq is of the form {(x1, . . . , xn+ℓ) ∈ Rn+ℓ |
P (xk)} × {i} where P compares the variable xk with 0:

– if P (xk) is xk ̸= 0, h(e′)(u) = h(e)(u) + 1 if u = ⊥, and h(e′)(u) =
h(e)(u) otherwise then Em+1 is x⊥,h(e′)(⊥)xk,h(e′)(k) − 1 = 0;

– otherwise (e.g. P (xk) is the inequality xk ≤ 0) we set h(e′) = h(e)
and Em+1 is defined as P (xk,h(e′)(k)).

We now consider the system of equations (Ei)
k
i=1 defined from the path e

of length k corresponding to a node nπ
e of the k-th entropic co-tree of G. This

system consists in k equations of degree at most max(2, ∂
√
G) and containing

at most k + n variables, counting the variables x0
1, . . . , x

0
n corresponding to the

initial registers, and adding at most k additional variables since an edge of
e⃗ introduces at most one fresh variable. Among these equations, at most k
are inequalities, since each edge introduces at most one inequation. Since the
number of vertices nπ

e is bounded by Card(Seqk(E)).2k.h0([G]) by proposition 54,
we obtained the stated result in the case p = 1.

The case for arbitrary p is then deduced by noticing that each step in the
induction would introduce at most p new equations and p new variables. The
resulting system thus contains at most pk equations of degree at most max(2, ∂

√
G)

and containing at most p(k + n) variables.

This theorem extends to the case of general computational graphings by
considering the algebraic degree of the graphing.

Definition 56 (Algebraic degree). Let α : ⟨G,R⟩ ↷ X be an amc. The algebraic
degree of an element of M⟨G,R⟩ is the minimal number of generators needed
to express it. The algebraic degree of an α-graphing is the maximum of the
algebraic degrees of the realisers of its edges.

If an edge is realised by an element m of algebraic degree D, then the method
above applies by introducing the D new equations corresponding to the D
generators used to define m. The general result then follows.

Lemma 5. Let G be a crewp(αRfull)-computational graphing representative,
Seqk(E) the set of paths of length k in G, and D its algebraic degree. Suppose G
computes the membership problem for W ⊆ Rn in k steps, i.e. for each element
of Rn, πS(G

k(x)) = ⊤ if and only if x ∈ W . Then W is a semi-algebraic set
defined by at most Card(Seqk(E)).2k.h0([G]) systems of pkD equations of degree
at most max(2, ∂

√
G) and involving at most pD(k + n) variables.

40

8. Recovering Ben Or and Cucker’s theorems

8.1. Ben-Or
We now recover Ben-Or result by obtaining a bound on the number of

connected components of the subsets W ⊆ Rn whose membership problem is
computed by a graphing in less than a given number of iterations. This theorem
is obtained by applying the Milnor-Olĕınik-Petrovskii-Thom theorem on the
obtained systems of equations to bound the number of connected components
of each cell. Notice that in this case p = 1 and ∂

√
G = 2 since the model of

algebraic computation trees use only square roots. A mode general result holds
for algebraic computation trees extended with arbitrary roots, but we here limit
ourselves here to the original model.

Theorem 57. Let G be a computational αRfull-graphing representative trans-
lating an algebraic computational tree, Seqk(E) the set of length k sequences of
edges in G. Suppose G computes the membership problem for W ⊆ Rn in k steps.
Then W has at most Card(Seqk(E)).2k.h0([G])+132k+n−1 connected components.

Proof. By Lemma 55 (using the fact that p = 1 and ∂
√
G = 2), the problem W

decided by G in k steps is described by at most Card(Seqk(E)).2k.h0([G]) systems
of k equations of degree 2 involving at most k+n variables and at most k inequal-
ities. Applying Theorem 47, we deduce that each such system of in·equations (of
k equations of degree 2 in Rk+n) describes a semi-algebraic variety S such that
β0(S) < 2.3(n+k)+k−1. This being true for each of the Card(Seqk(E)).2k.h0([G])

cells, we have that β0(W) < Card(Seqk(E)).2k.h0([G])+132k+n−1.

Since a subset computed by a tree T of depth k is computed by |[T]| in k steps
by Theorem 19, we get as a corollary the original theorem by Ben-Or relating
the number of connected components of a set W and the depth of the algebraic
computational trees that compute the membership problem for W .

Corollary 6 ([2, Theorem 5]). Let W ⊆ Rn be any set, and let N be the
maximum of the number of connected components of W and Rn \ W . An
algebraic computation tree computing the membership problem for W has height
Ω(logN).

Proof. Let T be an algebraic computation tree computing the membership
problem for W , and consider the computational treeing [T]. Let d be the
height of T ; by definition of [T] the membership problem for W is com-
puted in exactly d steps. Thus, by the previous theorem, W has at most
Card(Seqk(E)).2d.h0([T])+132d+n−1 connected components. As the interpreta-
tion of an algebraic computational tree, h0([T]) is at most equal to 2, and
Card(Seqk(E)) is bounded by 2d. Hence N ⩽ 2d.22d+13n−132d, i.e. d =
Ω(logN).

We immediately deduce an application that will be useful to us in the
remainder. Let m ∈ N and 0 < x < 2m. Let k ∈ N be such that 1 ⩽ k ⩽ m.
We call

⌊
x

2k−1

⌋
− 2

⌊
x
2k

⌋
the k-th bit of x.

41

Lemma 58. An algebraic computation tree computing the k-th bit of x has
height Ω(m− k).

Proof. Let

W =
{
x ∈ R |

⌊ x

2k−1

⌋
− 2

⌊ x

2k

⌋
= 1

}
W is the disjoint union of 2m−k+1 intervals, and so is its complement in]0; 2m[.
So, by Theorem 6, any algebraic computation tree computing the k-th bit has
height Ω(m− k).

We will see later that bit-extraction is also difficult for the pram model (cf.
Prop. ??). This is an essential difference between the booleans and algebraic
models.

Remark. In the case of algebraic prams discussed in the next sections, the k-th
entropic co-tree coTk(T)[M] of a machine M defines an algebraic computation
tree which follows the k-th first steps of computation of M . I.e. the algebraic
computation tree coTk(T)[M] approximate the computation of M in such a
way that M and coTk(T)[M] behave in the exact same manner in the first k
steps.

8.2. Cucker’s theorem
Cucker’s proof considers the problem defined as the following algebraic set.

Definition 59. Define Fer to be the set:

{x ∈ Rω | |x| = n ⇒ x2n

1 + x2n

2 = 1},

where |x| = max{n ∈ ω | xn ̸= 0}.

It can be shown to lie within PtimeR, i.e. it is decided by a real Turing
machine [38] – i.e. working with real numbers and real operations –, running in
polynomial time.

Theorem 60 (Cucker ([3], Proposition 3)). The problem Fer belongs to PtimeR.

We now prove that Fer is not computable by an algebraic circuit of polyloga-
rithmic depth. The proof follows Cucker’s argument, but uses the lemma proved
in the previous section.

Corollary 7 (Cucker ([3], Theorem 3.2)). No algebraic circuit of depth k = logi n
and size16 kp compute Fer.

16We notice here that we do not assume any bounds on the number of processors.

42

Proof. For this, we will use the lower bounds result obtained in the previ-
ous section. Indeed, by Theorem 22 and Lemma 5, any problem decided
by an algebraic circuit of depth k is a semi-algebraic set defined by at most
Card(Seqk(E)).2k.h0([G]) systems of k equations of degree at most max(2, ∂

√
G) =

2 (since only square roots are allowed in the model) and involving at most k + n
variables. But the curve FR

2n defined as {x2n

1 + x2n

2 − 1 = 0 | x1, x2 ∈ R} is
infinite. As a consequence, one of the systems of equation must describe a set
containing an infinite number of points of FR

2n .
This set S is characterized, up to some transformations on the set of equations

obtained from the entropic co-tree, by a finite system of inequalities of the form

s∧
i=1

Fi(X1, X2) = 0 ∧
t∧

j=1

Gj(X1, X2) < 0,

where t is bounded by kp and the degree of the polynomials Fi and Gi are
bounded by 2k. Moreover, since FR

2n is a curve and no points in S must lie
outside of it, we must have s > 0.

Finally, the polynomials Fi vanish on that infinite subset of the curve and
thus in a 1-dimensional component of the curve. Since the curve is an irreducible
one, this implies that every Fi must vanish on the whole curve. Using the fact
that the ideal (X2n

1 +X2n

2 − 1) is prime (and thus radical), we conclude that
all the Fi are multiples of X2n

1 +X2n

2 − 1 which is impossible if their degree is
bounded by 2log

i n as it is strictly smaller than 2n.

9. Algebraic surfaces for an optimization problem

9.1. Geometric Interpretation of Optimization Problems
We start by showing how decision problems of a particular form induce a

binary partition of the space Zd: the points that are accepted and those that are
rejected. Intuitively, the machine decides the problem if the partition it induces
refines the one of the problem.

We will consider problems of a very specific form: decisions problems in Z3

associated to optimization problems. Let Popt be an optimization problem on
Rd. Solving Popt on an instance t amounts to optimizing a function ft(·) over a
space of parameters. We note MaxPopt(t) this optimal value. An affine function
Param : [p; q] → Rd is called a parametrization of Popt. Such a parametrization
defines naturally a decision problem Pdec: for all (x, y, z) ∈ Z3, (x, y, z) ∈ Pdec

iff z > 0, x/z ∈ [p; q] and y/z ≤ MaxPopt ◦ Param(x/z).
In order to study the geometry of Pdec in a way that makes its connection

with Popt clear, we consider the ambient space to be R3, and we define the ray
[p] of a point p as the half-line starting at the origin and containing p. The
projection Π(p) of a point p on a plane is the intersection of [p] and the affine
plane A1 of equation z = 1. For any point p ∈ A1, and all p1 ∈ [p], Π(p1) = p.
It is clear that for (p, p′, q) ∈ Z2 ×N+, Π((p, p′, q)) = (p/q, p′/q, 1).

43

The cone [C] of a curve C is the set of rays of points of the curve. The
projection Π(C) of a surface or a curve C is the set of projections of points in C.
We note Front the frontier set

Front = {(x, y, 1) ∈ R3 | y = MaxPopt ◦ Param(x)}.

and we remark that

[Front] = {(x, y, z) ∈ R2 ×R+ | y/z = MaxPopt ◦ Param(x/z)}.

Finally, a machine M decides the problem Pdec if the sub-partition of
accepting cells in Z3 induced by the machine is finer than the one defined
by the problem’s frontier [Front] (which is defined by the equation y/z ≤
MaxPopt ◦ Param(x/z)).

9.2. Parametric Complexity
We now further restrict the class of problems we are interested in: we will

only consider Popt such that Front is simple enough. Precisely:

Definition 61. We say that Param is an affine parametrization of Popt if
Param;MaxPopt is

• convex
• piecewise linear, with breakpoints λ1 < · · · < λρ

• such that the (λi)i and the (MaxPopt ◦ Param(λi))i are all rational.
The (parametric) complexity ρ(Param) is defined as the number of breakpoints

of Param;MaxPopt.

An optimization problem that admits an affine parametrization of complexity
ρ is thus represented by a surface [Front] that is quite simple: the cone of the
graph of a piecewise affine function, constituted of ρ segments. We say that such
a surface is a ρ-fan. This restriction seems quite serious when viewed geometri-
cally. Nonetheless, many optimization problems admit such a parametrization.
Before giving examples, we introduce another measure of the complexity of a
parametrization.

Definition 62. Let Popt be an optimization problem and Param be an affine
parametrization of it. The bitsize of the parametrization is the maximum of the
bitsizes of the numerators and denominators of the coordinates of the breakpoints
of Param;MaxPopt.

In the same way, we say that a ρ-fan is of bitsize β if all its breakpoints are
rational and the bitsize of their coordinates is lesser thant β.

Theorem 63 (Murty [39], Carstensen [33]).

1. there exists an affine parametrization of bitsize O(n) and complexity 2Ω(n) of
combinatorial linear programming, where n is the total number of variables
and constraints of the problem.

44

2. there exists an affine parametrization of bitsize O(n2) and complexity 2Ω(n)

of the maxflow problem for directed and undirected networks, where n is
the number of nodes in the network.

We refer the reader to Mulmuley’s paper [4, Thm. 3.1.3] for proofs, discussions
and references.

9.3. Algebraic Surfaces
An algebraic surface in R3 is a surface defined by an equation of the form

p(x, y, z) = 0 where p is a polynomial. If S is a set of surfaces, each defined
by a polynomial, the total degree of S is defined as the sum of the degrees of
polynomials defining the surfaces in S.

Let K be a compact of R3 delimited by algebraic surfaces and S be a finite
set of algebraic surfaces, of total degree δ. We can assume that K is actually
delimited by two affine planes of equation z = µ and z = 2µz and the cone of
a rectangle {(x, y, 1) | |x|, |y| ⩽ µx,y}, by taking any such compact containing
K and adding the surfaces bounding K to S. S defines a partition of K by
considering maximal compact subspaces of K whose boundaries are included in
surfaces of S. Such elements are called the cells of the decomposition associated
to S.

The cell of this partition can have complicated shapes: in particular, a cell
can have a arbitrarily high number of surfaces of S as boundaries. We are going
to refine this partition into a partition ColS whose cells are all bounded by cones
of curves and at most two surfaces in S.

9.4. Collins’ decomposition
We define the silhouette [4, Section 5.3] of a surface defined by the equation

p(x, y, z) = 0 by: {
p(x, y, z) = 0

x ∂p
∂x + y ∂p

∂y + z ∂p
∂z = 0.

The silhouette of a surface is the curve on the surface such that all points (x, y, z)
of the silhouette are such that the ray [(x, y, z)] belongs to the tangent plane of
the surface on (x, y, z).

Up to infinitesimal perturbation of the coefficients of the polynomials, we
can assume that the surfaces of S have no integer points in K.

Π(K) = {Π(x) | x ∈ K} is a compact of the affine plane A1. Let us consider
the set Π(S) of curves in Π(K) containing:

• the projection of the silhouettes of surfaces in S;
• the projection of the intersections of surfaces in S and of the intersection

of surfaces in S with the planes z = µ(1 + n
6δ), n ∈ {1, . . . , 6δ − 1}, where

δ is the total degree of S;
• vertical lines of the form {(x, a, 1) | |x| ≤ 2β+1} for a a constant such that

such lines pass through:
– all intersections among the curves;

45

– all singular points of the curves;
– all critical points of the curves with a tangent supported by e⃗y.

Π(S) defines a Collins decomposition [40] of Π(K). The intersection of any
affine line supported by e⃗y of the plane with a region of this decomposition is
connected if nonempty.

Let c be a cell in Π(S). It is enclosed by two curves in Π(K) and at most
two vertical lines. The curves can be parametrized by cmax : x 7→ max{y ∈ R |
(x, y, 1) ∈ c} and cmin : x 7→ min{y ∈ R | (x, y, 1) ∈ c}, which are both smooth
functions. The volatility of c is defined as the number of extrema of the second
derivatives c′′min and c′′max on their domains of definition.

This set of curves Π(S) can be lifted to a set of surfaces ColS(K) of K that
contains:

• the surfaces of S;
• the cones [s] of every curve s in Π(S);
• the planes bounding K;
• 6δ − 2 dividing planes of equation z = µ(1 + n

6δ), n ∈ {1, . . . , 6δ − 1}.
The projection of a cell of ColS is a cell of Π(S). We say that a cell of ColS(K)
is flat if none of its boundaries are included in surfaces of S.

Let us call d(S) the number of cells in ColS(K).
Let c be a cell in ColS(K). Its volatility is defined as the volatility of its

projection in Π(S).

9.5. Volatility and Separation
We here follow but rephrase Mulmuley [4, Section 5.3; Sample points]

Definition 64. Let K be a compact of R3.
A finite set of surfaces S on K separates a ρ-fan Fan on K if the partition

on Z3 ∩K induced by S is finer than the one induced by Fan.

We now establish the following key result of Mulmuley [4, Theorem 5.9].

Theorem 65. Let S be a finite set of algebraic surfaces of total degree δ, and
Fan a ρ-fan of bitsize β.

If S separates Fan, there exists a compact K and a cell of ColS(K) with
volatility greater than ρ/d(S).

In order to prove this theorem, we will build explicitely the compact K and
this cell by considering sample points on Fan and show in Lemma 67 a bound
on the volatility of this cell.

Let K be a compact delimited by the cone of a rectangle {(x, y, 1) | |x|, |y| ⩽
2β+1} and two planes of equation z = µ and z = 2µ, with µ > (6δ + 1)2β . We
first remark that all affine segments of Fan are in the rectangle base of K.

For each affine segment of Fan with endpoints (xi, y1, 1) and (xi+1, yi+1, 1)
let, for 0 < k < 10d(S), yki be such that (xk

i , y
k
i , 1) is in the affine segment,

where xk
i = (10d(S)−k)xi+kxi+1

10d(S) . We remark that, as |xi − xi+1| > 2−β , we have,
for k, k′, |xk

i − xk′

i | > 2−β/10d(S).

46

Lemma 66. For all sample points (xk
i , y

k
i , 1), there exists a flat cell in ColS

that contains an integer point of [(xk
i , y

k
i , 1)].

Proof. Let (xk
i , y

k
i , 1) be a sample point. [(xk

i , y
k
i , 1)] is divided in N +1 intervals

by the dividing planes. On the other hand, [(xk
i , y

k
i , 1)] intersects surfaces of S in

at most δ points, by Bézout theorem. So, there exists an interval e of [(xk
i , y

k
i , 1)]

that is bounded by the dividing planes and that do not intersect any surface in
S. By construction, e is included in a flat cell, and its projection on the z-axis
has length µ/(6δ + 1), so, as (xk

i , y
k
i , 1) is of bitsize β, (n2βxk

i , n2
βyki , n2

β) is,
for all n ∈ N an integer point of the ray, so, as µ > (6δ + 1)2β , e contains an
integer point.

So, for each affine segment of Fan, there exists a flat cell in ColS that contains
integer points in the ray of at least 10 sample points of the affine segment. Going
further, there exists a cell c of ColS that contains integer points in the ray of at
least 10 sample points of ρ/d(S) affine segments of Fan.

Lemma 67. The volatility of c is at least ρ/d(S).

This is achieved by applying the mean value theorem on the function Π(c)′max

on pairs of sample points. In particular, this proof uses no algebraic geometry.

Proof. Let e be a segment of Fan such that the ray of 10 of its sample points
contain an integer point in c. Let p = (x, y, z) be one of its integer point
and Π(p) = (xp, yp, 1) its projection, which is a sample point in Π(c). Let
q = (x, y + 1, z). As Π(p) is in Fan, and S separates Fan, q is not in c, and
Π(q) = (xq, yq, 1) is not in Π(c). By Thalès theorem, 0 < yq − yp < 1

µ . So, as
yq > Π(c)max(xp) > yp, we have in particular that 0 < Π(c)max(xp)− yp < 1

µ .
So, the 10 sample points have coordinates that approximate the graph of

Π(c)max with an error bounded by 1
µ . Consider two of them p1 = (x1, y1, 1)

and p2 = (x2, y2, 1), such that x1 < x2. Let a be the slope of e (in particular
a = (y2−y1)/(x2−x1). By the mean value theorem, there exists α ∈ [x1, x2] such
that Π(c)′max(α) =

Π(c)max(x2)−Π(c)max(x1)
x2−x1

. But |Π(c)max(x2) − Π(c)max(x1)| ≤
|y2 − y1|+ 2

µ and |x2 − x1| > 1
10d(S)2β

. So, |Π(c)′max(α)− a| ≤ 2 10d(S)2β

µ .
So, the function Π(c)′max is close to the value a, with error bounded, between

all the sample points. By applying the mean value theorem again, we get that
there exists a point in the interval such that Π(c)′′max is close to 0, with an error
bounded by 2 10d(S)2β

µ .
In the same way, let e′ be another segment of Fan such that the ray of 10

of its sample points contain an integer point in c, of slope a′. Let two of them
be p′1 = (x′

1, y
′
1, 1) and p′2 = (x′

2, y
′
2, 1), and suppose x′

2 > x′
1 > x2. By the same

reasoning as above, there exists α′ ∈ [x′
1, x

′
2] such that |Π(c)′max(α

′) − a′| ≤
2 10d(S)2β

µ . By the mean value theorem, there exists β ∈ [α, α′] such that

Π(c)′′max(β) =
Π(c)′max(α

′)−Π(c)′max(α)
α′−α > 1

µ (|a− a′| − 2 10d(S)2β

µ).

47

So, for each of the ρ/d(S) segments of Fan, we can exhibit a point such that
Π(c)′′max is close to zero, and for each successive segment, a point such that it is
far. So Π(c)′′max has at least ρ/d(S) extrema.

9.6. Volatility and Degree
We can now state the following essential result.

Theorem 68 (Mulmuley). Let S be a finite set of algebraic surfaces of total
degree δ.

There exists a polynomial P such that, for all ρ > P (δ), S does not separate
ρ-fans.

While this Theorem underlies Mulmuley’s proof technique, it is not explicitly
stated in his article. This result follows from theorem 65 and the following two
lemmas which appear as claims at the end of Section 5.3 in [4].

Lemma 69. Let S be a finite set of curves of total degree δ, and K be a compact.
The cells of the decomposition ColS of K have a volatility bounded by a polynomial
in δ.

Proof. Let c be a cell in ColS and g(x, y) = 0 be the equation of one of the
boundaries of Π(c) in the affine plane. The degree of g is bounded by the
degree of the intersection of surfaces in S. Any extrema x of f ′′, where f is
a parametrization y = f(x) of this boundary, can be represented as a point
(x, y, y(1), y(2), y(3)) in the 5-dimensional phase space that satisfy polynomial
equations of the form:

g(x, y) = 0, g1(x, y, y
(1)) = 0, g2(x, y, y

(1), y(2)) = 0

g3(x, y, y
(1), y(2), y(3)) = 0, y(3) = 0,

where all the polynomials’ degrees are all bounded by the degree of the intersection
of surfaces in S (as they are the derivatives of g). So, by the Milnor–Thom
theorem, such points are in number polynomial in the total degree of the surfaces
of S.

Lemma 70. The number of cells d(S) of the Collins decomposition of S is
polynomial in δ.

Proof. The intersection of the surfaces in S are algebraic varieties of number
bounded by δ, by the Milnor–Thom theorem. Moreover, so are the silhouettes of
the surfaces, as they are the intersection of two algebraic varieties of total degree
smaller than δ. So, the number of cells in ColS is bounded by the number of
cells of S times the number of dividing planes times the number of intersections,
silhouettes and vertical lines they engender.

48

10. Improving Mulmuley’s result

10.1. prams over R and maxflow
We will now prove our strengthening of Mulmuley’s lower bounds for “prams

without bit operations” [4]. For this, we will combine the results from previous
sections to establish the following result.

Theorem 8. Let N be a natural number and M be a real-valued pram with at
most 2O((logN)c) processors, where c is any positive integer.

Then M does not decide maxflow on inputs of length N in O((logN)c) steps.

Proof of Theorem 8. Let N be an integer. Suppose that a real-valued pram
M with division and roots, with at most p = 2O((logN)c) processors, computes
maxflow on inputs of length at most N in time k = 2O((logN)c).

We know that |[M]| has a finite set of edges E. Since the running time of M is
equal, up to a constant, to the computation time of the crewp(αRfull)-program
|[M]|, we deduce that if M computes maxflow in k steps, then |[M]| computes
maxflow in at most Ck steps where C is a fixed constant.

By Lemma 55, the problem decided by |[M]| in Ck steps defines a system of
equations separating the integral inputs accepted by M from the ones rejected.
I.e. if M computes maxflow in Ck steps, then this system of equations defines a
set of algebraic surfaces that separate the ρ-fan defined by maxflow. Moreover,
this system of equation has a total degree bounded by Ckmax(2, ∂

√
G)2p ×

2O(Card(E)) × 2k.h0(|[M̃]|).
By Theorem 63 and Theorem 68, there exists a polynomial P such that a

finite set of algebraic surfaces of total degree δ cannot separate the 2Ω(N)-fan
defined by maxflow as long as 2Ω(N) > P (δ). But here the entropy of G is
O(p), as the entropy of a product f × g satisfies h(f × g) ⩽ h(f) + h(g) [37].
Hence δ = O(2p2k), contradicting the hypotheses that p = 2O((logN)c) and
k = 2O((logN)c).

This extends Mulmuley’s result because of the following fact.

Proposition 71. A subset A ⊆ Zk is decided by a division-free integer-valued
prams with k processors in time t if and only if there exists a division-free
real-valued prams with k processors computing in time t a subset B ⊆ Rk such
that:

{(x1, x2, . . . , xk) ∈ Zk | (x1, x2, . . . , xk) ∈ B} = A.

Proof. The proof is rather straightforward, since addition and multiplication of
integers yield integers. As a consequence, the available operations in division-free
real prams cannot be used to construct non-integer values from solely integer
inputs.

A consequence of the previous result is that Mulmuley’s original result is
obtained as a corollary of theorem 8. Indeed, suppose a pram without bit
operations computes the maxflow problem in polylogarithmic time. Then there

49

would exist a real-valued pram computing maxflow in polylogarithmic time, a
result contradicting Theorem 8.

Let us now consider the possibility of lifting this result to integer-valued
machines using division. Let M be an integer-valued pram. We would like
to associate to it a real-valued pram M̃ such that M and M̃ accept the same
(integer) values, with at most a polylogarithmic running time overhead. This
implies in particular that real-valued prams (with division, and potentially roots)
should be able to compute euclidean division efficiently. It turns out that this is
not the case. Indeed, we will show that the remainder of the euclidean division
by 2 is in fact not computable in polylogarithmic time by real-valued prams even
in the presence of division and arbitrary root operations. This will be obtained
using the above results based on entropic co-trees and Mumuley’s geometric
argument. However, before providing the proof of this result, we provide a more
concrete version of a similar result on algebraic circuits. This proof illustrates in
a simpler setting the abstract techniques we developed above.

10.2. Real prams and euclidean division
We now give a direct proof that algebraic circuits cannot compute the parity

function. More precisely, we consider the modulo function (noted %) over J0; 2nK.
We prove that the function (n 7→ n%2) cannot be computed by a family of real
circuits of algcirc of largeness poly(n) and of depth polylog(n) over integers
of J0; 2nK. In our proof, we consider that comparison gates returns 1 if true, 0
otherwise. This will ease the proof, while being equivalent to Definition 20.

In this section we do a direct analysis of circuits of algcirc (circuits over reals
with division gate, but no root gates). We will prove that the modulo function,
cannot be computed by such a circuit when we restrict inputs to integers. One
objection quoted by Mulmuley in his paper [4] is that proving computing the
parity function cannot be done with “pram without bit operation”, is akin to
proving that non monotone functions cannot be computed by monotone circuits.
We disagree to the extent that proving that euclidian division is not computed by
a circuit of algcirc is not trivial like in the monotone function case and actually
encapsulates the reason why algebraic circuits of low depth are fundamentally
limited. The core of our argument is the same as the one Mulmuley gives in
his paper, however we feel that our formalism may help in understanding what
are prams of polylog depth and why they are weak. On top of his comparison
with monotone functions Mulmuley adds that anyhow “a lower bound in the
pram model without bit operations is interesting only if the problem has an
efficient sequential algorithm that does not use bit operations [...] One trivial
example of a problem that does not have a strongly polynomial time algorithm
is bit extraction itself (because such an algorithm for bit extraction must work
within O(1) arithmetic and comparison operations, which is impossible)”. We
then give an example of a very simple problem which has a strongly polynomial
time algorithm but is not computed by algebraic circuits: deciding the set{

(x1, . . . , xn ∈ N); (

n∑
i=1

xi)%2 = 0

}
.

50

A similar argument can also be used to prove that the natural bijection from N
to N2 cannot be computed by algebraic circuits (and therefore by prams without
bit operations in polylogarithmic time), which is an interesting limitation to
notice.

The main idea of the proof is a more concrete statement of the technical
lemma above: we show that circuits of algcirc compute piece-wise polynomial
fractions with few zeroes and few pieces and argue that it therefore can’t compute
the euclidean division.

Definition 72. A set I over R is an interval if there exists two real numbers
a, b ∈ R ∪ {−∞; +∞} such that either I = [a, b], or I =]a, b], or I = [a, b[, or
I =]a, b[.

Definition 73 (Comparison of intervals). Let I and J be two non empty, non
intersecting intervals over R. We say I < J if ∀x ∈ I, ∀y ∈ J, x < y.

Given a collection of r > 0 intervals (Ii)
r
i=0, we write I1 < I2 < . . . < Ir to

indicate the family is ordered and all the intervals are empty and non intersecting.

Note that what we call here "pieces" will play the role of (and are in fact)
the cells in the k-cell decomposition exposed above. In particular, the main
technical result leading to the lower bound is an upper bound on the number of
pieces and on the extended degree of the piece-wise rational functions defined by
a circuit of a given depth. This should be understood as a special case of our
general technical lemma (Lemma 5) giving bounds on the number of cells and
the number and degrees of the polynomials defining each cell (here the notion of
extended degree captures both the number of equations and their degree, which
is possible because we work in a simpler setting).

Definition 74 (Interval cut and pieces). Given a family of r intervals I1 < I2 <
. . . < Ir (r > 0), we say it is a size r interval cut if I1, I2, . . . , Ir partitions R.
Each Ii is called a piece.

In the following we may use as a shorthand the notation I for a family of r
intervals (Ii)1≤i≤r.

Definition 75 (Intertwining interval cuts). Suppose given a size n interval cut
I1 < I2 < . . . < In and a size m interval cut J1 < J2 < . . . < Jm. There is at
least one size k interval cut K1, . . . ,Kk such that ∀h,∃i, j,Kh ⊂ Ii ∧Kh ⊂ Jj .
If k is moreover minimal then we call K1, . . . ,Kk an intertwining of I and J .

As an example of intertwining consider the two families I = (]−∞; 0],]0; +∞[)
and J = (]−∞; 1],]1; +∞[); one possible intertwining is (]−∞; 0],]0; 1],]1; +∞[).
Note that the size k of an intertwining between size n and size m interval cuts
satisfies k ⩽ n+m (consider the extremal points of each interval).

Definition 76 (Piece-wise polynomial fraction). Consider given a size n interval
cut I1 < I2 < . . . < In. A function f over D ⊂ R is said to be a piece-wise
polynomial fraction over I if there exists n polynomial fractions f1, . . . , fn such
that for all integer 1 ⩽ i ⩽ n: ∀x ∈ Ii ∩D, f(x) = fi(x).

51

The number of pieces of a piece-wise polynomial fraction f is the smallest
number n such that f is a polynomial fraction over a size n interval cut. We
write c the function which associates to each piece-wise polynomial fraction f
and return its minimal number of pieces. In the following, we will abusively
apply c to circuits that compute piece-wise polynomial fractions.

Let us note that the poles of a polynomial fraction do not requires a splitting
in pieces. For instance, the function f(x) = 1

x2−1 defined for all x ∈ R \ {−1; 1}
is a one piece polynomial fraction. If one wanted to have functions defined over
the whole of R it would be no issue as whenever performing a division we could
add a comparison gate in the circuit to verify that we are not dividing by 0, and
if so return an arbitrary value.

Let F be a piece-wise polynomial fraction over D ⊂ R, there can be multiple
interval cut associated to the number of pieces of F , for instance the function
which is 0 for negative numbers and x 7→ x for non negative numbers as two
minimal cuts : (] −∞; 0],]0;+∞[) or (] −∞; 0[, [0;+∞[). So in the following
we will speak of an interval cut of F . Once we have fixed an interval cut I,
the associated polynomial functions are unique except on intervals Ii such that
Ii∩D = {a} is a singleton, for those intervals we always associate the polynomial
of degree 0, fi = (x 7→ f(a)). This is important for the following definition.

Definition 77 (Augmented degree of a polynomial fraction). Let P and Q be
polynomials over R. We define the augmented degree d(F) of the polynomial
fraction F = P

Q as d(F) = d(P) + d(Q) + 1, where d(P), d(Q) are the degrees of
the polynomials P,Q in the standard meaning.

Let f be a piece-wise polynomial fraction over R with a minimal interval
cut I1 < . . . < In and f1, . . . , fn the associated polynomial fractions. We define
the extended degree of f by d(f) = max1≤i≤nd(fi). In the following we will
abusively apply d to circuits that compute piece-wise polynomial fractions.

Theorem 78. Let P be a real circuit of depth k taking only one input. Then
P computes a piece-wise polynomial fraction such that d(P) ≤ 2k and c(P) ≤
2

k2+3k
2 .

Proof. We prove the result for each gate by induction on the depth of the gate.
I.e. we prove that the circuit computes a piece-wise polynomial fraction, and
that the stated bounds are correct. We denote by ck (resp. dk) the maximal
number of pieces (resp. the maximal augmented degree) of a function computed
by a gate at depth k. Let p be a gate, c(p) corresponds to the augmented degree
of the function computed by p, d to its augmented degree.

For depth k = 1 the function computed is either f = (x 7→ x) or g = (x 7→ 1).
Notice that d(f) = 2, c(f) = 1, d(g) = 1 and c(g) = 1. Therefore d1 ≤ 21 and
c1 ≤ 22.

For the induction step, let us consider a gate called p at depth k + 1. Our
induction hypothesis is that dk ≤ 2k and ck ≤ 2

k(k+3)
2 . We now consider the

different possible gates p.

52

• If p is a multiplication gate: p = p1 ∗ p2. Let I1 < . . . < Ir and J1, <
. . . < Jm be the minimal size interval cuts of p1 and p2, and r = c(p1) and
m = c(p2). Let us consider K1, . . . ,Kk an intertwining of I and J such
that k ⩽ r +m . We note that p is a piece-wise polynomial fraction over
K. Therefore c(p) ≤ c(p1) + c(p2) ≤ 2 ∗ ck ⇒ c(p) ≤ 2 ∗ ck ≤ 2

(k+1)(k+4)
2

. By reasoning over each piece of the interval cut K we also obtain that
d(p) ≤ d(p1) + d(p2) ≤ 2dk.

• If p is either an addition or a division gate, the reasoning is similar.
• If p is a comparison gate: p = (p1 ≤ p2). Let A1 ≤ A2 ≤ . . . ≤ An be the

pieces of p1, B1 ≤ B2 ≤ . . . ≤ Bm be the pieces of p2, and define n = c(p1)
and m = c(p2). Let I1 ≤ I2 ≤ . . . ≤ Ir be an intertwining of A and B. For
all integer 1 ⩽ i ⩽ r, p1 and p2 are both polynomial fraction over Ii and we
can canonically write pi,1 =

qi,1
ti,1

and pi,2 =
qi,2
ti,2

. To count the number of
pieces of p, we focus on each Ii separately. One can notice that over Ii any
new piece of p contained in Ii may only occur on places where pi,1 − pi,2
changes sign, moreover pi,1 ≤ pi,2 if and only if either qi,1∗ti,2−ti,1∗qi,1 ≤ 0
or qi,1 ∗ ti,2 − ti,1 ∗ qi,1 ≥ 0 (depending on the signs of the denominators).
But the polynomial qi,1∗ti,2−ti,1∗qi,1 has at most d(pi,1)+d(pi,2)−1 roots,
therefore over Ii we "add" at most d(pi,1) + d(pi,2) pieces. Since we have
at most r ≤ n+m = c(p1) + c(p2) pieces Ii, we have that c(p) is at most

(d(p1)+d(p2))∗(c(p1)+c(p2)) ≤ 2dk∗2ck ≤ 2∗2k∗2∗2 k2+3k
2 ≤ 2

(k+1)2+3(k+1)
2 .

And d(p) is equal to 1 ≤ 2k+1.

The next lemma state that no piece-wise polynomial fraction with few pieces or
low augmented degree can agree with the remainder function on many consecutive
integers.

Lemma 79. Let f be a piece-wise polynomial fraction over R, N an integer. If
∀k ∈ J0;NK, f(k) = k%2, then d(f) ∗ c(f) ≥ N

10 .

Proof. Let f be a piece-wise polynomial fraction as described in the theorem,
and c its number of pieces with I1, . . . , Ic a corresponding interval cut. If c is less
than N/10, there must be a piece Ij containing at least N/c integers of J0;NK.
We remind that over Ij , the function f is a polynomial fraction which we note
P
Q . Since k 7→ k%2 has N/2c zeroes over Ij , so must P . The polynomial P also
cannot be the zero function because k 7→ k%2 is equal to 1 for some integers in
Ij . Therefore P is of degree at least N/2c, and d(f)∗ c ≥ (N/2c)∗ c ≥ N/10.

Theorem 80. For any function family (fn) computed by a real-valued cir-
cuit family of depth c logd(n), there exists N ∈ N such that ∀n > N,∃k ∈
J0; 2nK, fn(k) ̸= k%2.

Proof. Let (Cn)n be a sequence of circuits of depth kn = O(c logd(n)). Since
n 7→ n%2 is a function with one input, we may consider (Cn)n to be a sequence
of circuits with one input. For any n, the function computed by Cn is a piece-

wise polynomial fraction f . By theorem 78 we have that c(f) ≤ 2
k2
n+3kn

2 and

53

d(f) ≤ 2kn therefore c(f)d(f) = o(2n). Therefore for large enough n, using
lemma 79, f cannot coincide with n 7→ n%2 for all integers in J0; 2nK.

We continue by proving that the two problems given in introduction are
indeed not computable by algebraic circuits.

Theorem 81. The set{
(x1, . . . , xn ∈ N); (

n∑
i=1

xi)%2 = 0

}
.

has polynomially bounded arithmetic circuits but is not computable by polyloga-
rithmic depth algebraic circuits.

Proof. One can retrieve with a circuit of size linear in n the last bit of
∑n

i=1 xi.
One the other hand the set{

(0, . . . , 0, xn ∈ N); (

n∑
i=1

xi)%2 = 0

}
.

is not computable by polylogarithmic depth algebraic circuits by Theorem 80.

Theorem 82. Let f : N 7→ N × N be the usual Cantor pairing function
f(n,m) = 1

2 (m+ n)(m+ n+1)+m. This function is bijective and its reciprocal
f−1 cannot be computed by a polylogarithmic depth algebraic circuit.

Proof. Consider the function g(x, y) = (x < y). (it returns either 0 or 1) The
function g(f−1) has 2

n
2 alternations between 0 and 1 over J0; 2nK therefore it

cannot be computed by a polylogarithmic depth algebraic circuit (by arguments
used to prove theorem 79 and 80 . But g can be computed by a polylogarithmic
depth algebraic circuit. As a consequence, it must be f−1 which cannot be
computed by a polylogarithmic depth algebraic circuit.

We haven’t been able to use this analysis to include circuits with square root
gates. Everything may still hold, but we haven’t been able to prove satisfactory
bounds on the number of zeros of function computed by circuits with square
root gates. This is important because when considering the comparison gates,
the number of pieces created directly depends on the number of zeroes of the
function.

So, while the arguments of this section show a more concrete application of
the ideas behind the method used in this paper, this version is more limited. In
the next section, we will extend this result to the model with arbitrary roots
using the more abstract method developed in previous sections.

10.3. Extending to prams with roots
The above theorem is a particular case of the following result, which we prove

using the general technique developed in the previous sections. We note that we

54

do not know of a more concrete proof using arguments similar to the ones used
in the previous section.

Using the general bounds provided by entropic co-trees (Lemma 55) and the
geometric result extracted from Mulmuley’s geometric proof of lower bounds
(Theorem 68), we show that euclidean division by 2 cannot be computed by
real-valued prams (with division and arbitrary root operations) on inputs of
length N in polylogarithmic time in N .

Theorem 1. Let N be a natural number and M be a real-valued pram with at
most 2O((logN)c) processors, where c is any positive integer.

Then M does not compute euclidean division by 2 on inputs of length N in
O((logN)c) steps.

Proof. Suppose that a real-valued pram M with division and roots, with at most
p = 2O((logN)c) processors, computes euclidean division by 2 on inputs of length
at most N in time k = 2O((logN)c). We know that |[M]| has a finite set of edges E,
and the running time of M is equal, up to a constant, to the computation time
of the crewp(αRfull)-program |[M]|, we deduce that if M computes euclidean
division by 2 in k steps, then |[M]| computes euclidean division by 2 in at most
Ck steps where C is a fixed constant.

Consider the following optimisation problem:

{(x, y, 1) | y ⩽ x//2}

It is defined by the frontier set

Front = {(x, y, 1) ∈ R3 | y = x//2}.

and we remark that the induced cone

[Front] = {(x, y, z) ∈ R2 ×R+ | y/z = MaxPopt ◦ Param(x/z)}.

is a ρ-fan where ρ = 2Ω(N) is exponential in the maximal size of the inputs.
By Lemma 55, the problem decided by |[M]| in Ck steps defines a system of

equations separating the integral inputs accepted by M from the ones rejected. I.e.
if M computes euclidean division by 2 in Ck steps, then this system of equations
defines a set of algebraic surfaces that separate the ρ-fan defined above. Moreover,
this system of equation has a total degree bounded by Ckmax(2, ∂

√
G)2p ×

2O(Card(E)) × 2k.h0(|[M̃]|).
Now by Theorem 68, there exists a polynomial P such that a finite set of

algebraic surfaces of total degree δ cannot separate the 2Ω(N)-fan defined by
euclidean division by 2 as long as 2Ω(N) > P (δ). But here the entropy of G is
O(p) from17 lemma 43. Hence δ = O(2p2k), contradicting the hypotheses that
p = 2O((logN)c) and k = 2O((logN)c).

17Once again using the fact that αRfull possesses the property that non-central elements act
as the identity on the private memory.

55

References

[1] J. M. Steele, A. Yao, Lower bounds for algebraic decision trees, Journal of
Algorithms 3 (1982) 1–8. doi:10.1016/0196-6774(82)90002-5.

[2] M. Ben-Or, Lower bounds for algebraic computation trees, in: Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83,
ACM, New York, NY, USA, 1983, pp. 80–86. doi:10.1145/800061.808735.
URL http://doi.acm.org/10.1145/800061.808735

[3] F. Cucker, Pr ̸= NCr, Journal of Complexity 8 (3) (1992) 230 – 238.
doi:https://doi.org/10.1016/0885-064X(92)90024-6.
URL http://www.sciencedirect.com/science/article/pii/
0885064X92900246

[4] K. Mulmuley, Lower bounds in a parallel model without bit oper-
ations, SIAM J. Comput. 28 (4) (1999) 1460–1509. doi:10.1137/
S0097539794282930.
URL https://doi.org/10.1137/S0097539794282930

[5] A. Cobham, The intrinsic computational difficulty of functions, in: Proceed-
ings of the 1964 CLMPS, 1965.

[6] J. Edmonds, Paths, trees and flowers, Canad. J. Math. 17 (1965) 449–467.

[7] M. O. Rabin, Mathematical theory of automata, Proc. Symp. Appl. Math.
AMS 19 (1967) 159–160.

[8] S. Cook, The complexity of theorem-proving procedures, in: Proceedings of
the 3rd ACM Symposium on Theory of Computing, 1971.

[9] R. Williams, Nonuniform acc circuit lower bounds, J. ACM 61 (1) (2014)
2:1–2:32. doi:10.1145/2559903.
URL http://doi.acm.org/10.1145/2559903

[10] T. Baker, J. Gill, R. Solovay, Relativizations of the p = np question, SIAM
Journal on Computing 4 (4) (1975) 431–442. doi:10.1137/0204037.

[11] A. A. Razborov, S. Rudich, Natural proofs, Journal of Computer and
System Sciences 55 (1) (1997) 24 – 35. doi:https://doi.org/10.1006/
jcss.1997.1494.

[12] S. Aaronson, A. Wigderson, Algebrization: A new barrier in complexity
theory, ACM Trans. Comput. Theory 1 (1) (2009) 2:1–2:54. doi:10.1145/
1490270.1490272.
URL http://doi.acm.org/10.1145/1490270.1490272

[13] B. Aydinlioğlu, E. Bach, Affine relativization: Unifying the algebrization
and relativization barriers, ACM Trans. Comput. Theory 10 (1) (2018).
doi:10.1145/3170704.

56

https://doi.org/10.1016/0196-6774(82)90002-5
http://doi.acm.org/10.1145/800061.808735
https://doi.org/10.1145/800061.808735
http://doi.acm.org/10.1145/800061.808735
http://www.sciencedirect.com/science/article/pii/0885064X92900246
https://doi.org/https://doi.org/10.1016/0885-064X(92)90024-6
http://www.sciencedirect.com/science/article/pii/0885064X92900246
http://www.sciencedirect.com/science/article/pii/0885064X92900246
https://doi.org/10.1137/S0097539794282930
https://doi.org/10.1137/S0097539794282930
https://doi.org/10.1137/S0097539794282930
https://doi.org/10.1137/S0097539794282930
https://doi.org/10.1137/S0097539794282930
http://doi.acm.org/10.1145/2559903
https://doi.org/10.1145/2559903
http://doi.acm.org/10.1145/2559903
https://doi.org/10.1137/0204037
https://doi.org/https://doi.org/10.1006/jcss.1997.1494
https://doi.org/https://doi.org/10.1006/jcss.1997.1494
http://doi.acm.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
https://doi.org/10.1145/3170704

[14] K. D. Mulmuley, The gct program toward the p vs. np problem, Commun.
ACM 55 (6) (2012) 98–107. doi:10.1145/2184319.2184341.
URL http://doi.acm.org/10.1145/2184319.2184341

[15] L. Fortnow, The status of the p versus np problem, Commun. ACM 52 (9)
(2009) 78–86. doi:10.1145/1562164.1562186.
URL http://doi.acm.org/10.1145/1562164.1562186

[16] P. Bürgisser, C. Ikenmeyer, G. Panova, No occurrence obstructions in
geometric complexity theory, in: 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), 2016, pp. 386–395. doi:
10.1109/FOCS.2016.49.

[17] C. Ikenmeyer, U. Kandasamy, Implementing geometric complexity theory:
On the separation of orbit closures via symmetries, in: Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Association for Computing Machinery, New York, NY, USA, 2020, p.
713–726. doi:10.1145/3357713.3384257.
URL https://doi.org/10.1145/3357713.3384257

[18] C. A. Neff, Specified precision polynomial root isolation is in NC, Journal
of Computer and System Sciences 48 (3) (1994) 429 – 463. doi:https:
//doi.org/10.1016/S0022-0000(05)80061-3.

[19] L. R. Ford, D. R. Fulkerson, A simple algorithm for finding maximal network
flows and an application to the hitchcock problem, Canadian Journal of
Mathematics (1957) 210–218.

[20] L. M. Goldschlager, R. A. Shaw, J. Staples, The maximum flow problem is
log space complete for p, Theoretical Computer Science 21 (1982) 105–111.
doi:https://doi.org/10.1016/0304-3975(82)90092-5.

[21] T. Seiller, Interaction graphs: Full linear logic, in: IEEE/ACM Logic in
Computer Science (LICS), 2016.
URL http://arxiv.org/pdf/1504.04152

[22] T. Seiller, Interaction graphs: Graphings, Annals of Pure and Applied Logic
168 (2) (2017) 278–320. doi:10.1016/j.apal.2016.10.007.

[23] T. Seiller, Interaction graphs: Nondeterministic automata, ACM Transac-
tion in Computational Logic 19 (3) (2018).

[24] T. Seiller, Interaction Graphs: Exponentials, Logical Methods in Computer
Science Volume 15, Issue 3 (Aug. 2019). doi:10.23638/LMCS-15(3:25)
2019.
URL https://lmcs.episciences.org/5730

[25] J. Milnor, On the Betti numbers of real varieties, in: Proceedings of the
American Mathematical Society, 1964, p. 275. doi:10.2307/2034050.

57

http://doi.acm.org/10.1145/2184319.2184341
https://doi.org/10.1145/2184319.2184341
http://doi.acm.org/10.1145/2184319.2184341
http://doi.acm.org/10.1145/1562164.1562186
https://doi.org/10.1145/1562164.1562186
http://doi.acm.org/10.1145/1562164.1562186
https://doi.org/10.1109/FOCS.2016.49
https://doi.org/10.1109/FOCS.2016.49
https://doi.org/10.1145/3357713.3384257
https://doi.org/10.1145/3357713.3384257
https://doi.org/10.1145/3357713.3384257
https://doi.org/10.1145/3357713.3384257
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80061-3
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80061-3
https://doi.org/https://doi.org/10.1016/0304-3975(82)90092-5
http://arxiv.org/pdf/1504.04152
http://arxiv.org/pdf/1504.04152
https://doi.org/10.1016/j.apal.2016.10.007
https://lmcs.episciences.org/5730
https://doi.org/10.23638/LMCS-15(3:25)2019
https://doi.org/10.23638/LMCS-15(3:25)2019
https://lmcs.episciences.org/5730
https://doi.org/10.2307/2034050

[26] O. Olĕınik, I. Petrovskii, On the topology of real algebraic surfaces, Izv.
Akad. Nauk SSSR 13 (1949) 389–402.

[27] R. Thom, Sur l’homologie des variétés algébriques réelles, Princeton Univer-
sity Press, 1965, pp. 255–265.

[28] S. Adams, Trees and amenable equivalence relations, Ergodic Theory and
Dynamical Systems 10 (1990) 1–14.

[29] D. Gaboriau, Coût des relations d’équivalence et des groupes, Inventiones
Mathematicae 139 (2000) 41–98. doi:10.1007/s002229900019.

[30] D. Gaboriau, Invariants ℓ2 de relations d’équivalence et de groupes, Publ.
Math. Inst. Hautes Études Sci 95 (93-150) (2002) 15–28.

[31] T. Seiller, Zeta functions and the (linear) logic of markov processes, https:
//hal.archives-ouvertes.fr/hal-02458330 (2021).

[32] T. Seiller, Towards a Complexity-through-Realizability theory,
http://arxiv.org/pdf/1502.01257 (2015).

[33] P. J. Carstensen, The complexity of some problems in parametric linear and
combinatorial programming, Ph.D. thesis, Ann Arbor, MI, USA (1983).

[34] A. C.-C. Yao, Decision tree complexity and betti numbers, Journal of
Computer and System Sciences 55 (1) (1997) 36 – 43. doi:https://doi.
org/10.1006/jcss.1997.1495.

[35] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans-
actions of the American Mathematical Society 114 (2) (1965) 309–319.

[36] J. E. Hofer, Topological entropy for noncompact spaces, The Michigan Math-
ematical Journal 21 (3) (1975) 235–242. doi:10.1307/mmj/1029001311.

[37] L. W. Goodwyn, The product theorem for topological entropy, Transactions
of the American Mathematical Society 158 (2) (1971) 445–452.
URL http://www.jstor.org/stable/1995916

[38] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity
over the real numbers: NP-completeness, recursive functions and universal
machines, American Mathematical Society. Bulletin. New Series 21 (1)
(1989) 1–46. doi:10.1090/S0273-0979-1989-15750-9.

[39] K. G. Murty, Computational complexity of parametric linear programming,
Mathematical programming 19 (1) (1980) 213–219.

[40] G. E. Collins, Quantifier elimination for real closed fields by cylindrical
algebraic decomposition, in: Automata Theory and Formal Languages
2nd GI Conference Kaiserslautern, May 20–23, 1975, Springer, 1975, pp.
134–183.

58

https://doi.org/10.1007/s002229900019
https://hal.archives-ouvertes.fr/hal-02458330
https://hal.archives-ouvertes.fr/hal-02458330
https://doi.org/https://doi.org/10.1006/jcss.1997.1495
https://doi.org/https://doi.org/10.1006/jcss.1997.1495
https://doi.org/10.1307/mmj/1029001311
http://www.jstor.org/stable/1995916
http://www.jstor.org/stable/1995916
https://doi.org/10.1090/S0273-0979-1989-15750-9

	Introduction
	Contents of the paper
	Programs as Dynamical systems
	Algebraic models of computations as amcs
	Entropy and Cells
	First lower bounds
	Refining the method
	Recovering Ben Or and Cucker's theorems
	Algebraic surfaces for an optimization problem
	Improving Mulmuley's result

