
HAL Id: hal-01921942
https://hal.science/hal-01921942v1

Preprint submitted on 14 Nov 2018 (v1), last revised 17 Oct 2024 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PRAMs over integers do not compute maxflow efficiently
Luc Pellissier, Thomas Seiller

To cite this version:
Luc Pellissier, Thomas Seiller. PRAMs over integers do not compute maxflow efficiently. 2018. �hal-
01921942v1�

https://hal.science/hal-01921942v1
https://hal.archives-ouvertes.fr

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

PRAMs over integers do not compute maxflow
efficiently

LUC PELLISSIER∗, Universidad de la República, Uruguay
THOMAS SEILLER†, CNRS, France

Finding lower bounds in complexity theory has proven to be an extremely difficult task. In this
article, we analyze two proofs of complexity lower bound: Ben-Or’s proof of minimal height of
algebraic computational trees deciding certain problems and Mulmuley’s proof that restricted
Parallel Random Access Machines (prams) over integers can not decide P-complete problems
efficiently. We present the aforementioned models of computation in a framework inspired by
dynamical systems and models of linear logic : graphings.
This interpretation allows to connect the classical proofs to topological entropy, an invariant

of these systems; to devise an algebraic formulation of parallelism of computational models; and
finally to strengthen Mulmuley’s result by separating the geometrical insights of the proof from
the ones related to the computation and blending these with Ben-Or’s proof. Looking forward,
the interpretation of algebraic complexity theory as dynamical system might shed a new light on
research programs such as Geometric Complexity Theory.

Additional Key Words and Phrases: Semantics, Computational Complexity, Dynamical Systems,
Algebraic Geometry

∗L. Pellissier was partially supported by ANR project Elica (ANR-14-CE25-0005) and ANII project “Realizabili-
dad, forcing y computación cuántica” FCE_1_2014_1_104800
†T. Seiller was partially supported by the European CommissionMarie Skłodowska-Curie Individual Fellowship
(H2020-MSCA-IF-2014) project 659920 - ReACT and the CNRS INS2I JCJC grant BiGRE.

Authors’ addresses: Luc Pellissier, IMERL, Facultad de Ingeniera, Universidad de la República, Julio Herrera y
Reissig 565, Montevideo, 11300, Uruguay, pellissier@fing.edu.uy; Thomas Seiller, LIPN – UMR 7030 CNRS &
University of Paris 13, CNRS, 99, avenue Jean-Baptiste Clément, Villetaneuse, 93430, France, seiller@lipn.fr.

2019. XXXX-XXXX/2019/11-ART $15.00
https://doi.org/

, Vol. 1, No. 1, Article . Publication date: November 2019.

https://doi.org/

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

:2 Luc Pellissier and Thomas Seiller

1 INTRODUCTION
While the general theory of computability focused on studying what a computable function
is, computer scientists quickly realised that this notion was not meaningful in practice.
Indeed, one can always define a computable function f such that no current computer
could compute the values of f for two-digits inputs within the next, say, ten years.
This lead researchers to work on the definition and understanding of the notion of

feasible computation, i.e. characterise a set of functions which can be effectively computed.
Within the span of a single year three different papers [13, 18, 25] tackled this question,
and all of them provided the same answer, namely feasible functions are those functions
for which there exists a program whose running time is asymptotically bounded by a
polynomial in the input. This is how the first complexity class was born: the class of
polynomial-time computable functions.
Very quickly, other classes were defined, some of them considering constraints on space

rather than time. The question of classifying the complexity classes became one of the
main question in the field, and a number of important results were obtained within the
first years.

Lower bounds. As part of the classification problem, complexity theory has traditionally
been concerned with proving separation results. Among the numerous open separation
problems lies the much advertised Ptime vs. NPtime problem of showing that some
problems considered hard to solve but efficient to verify do not have a polynomial time
algorithm solving them.
Proving that two classes B ⊂ A are not equal can be reduced to finding lower bounds for

problems in A: by proving that certain problems cannot be solved with less than certain
resources on a specific model of computation, one can show that two classes are not equal.
Conversely, proving a separation result B ⊊ A provides a lower bound for the problems
that are A-complete [15] – i.e. problems that are in some way universal for the class A.
Alas, the proven lower bound results are very few, and most separation problems remain

as generally accepted conjectures. For instance, a proof that the class of non-deterministic
exponential problems is not included in what is thought of as a very small class of circuits
was not achieved until very recently [48].
The failure of most techniques of proof has been studied in itself, which lead to the

proof of the existence of negative results that are commonly called barriers. Altogether,
these results show that all proof methods we know are ineffective with respect to proving
interesting lower bounds. Indeed, there are three barriers: relativisation [8], natural proofs
[37] and algebrization [1], and every known proof method hits at least one of them. This
shows the need for new methods1. However, to this day, only one research program aimed
at proving new separation results is commonly believed to have the ability to bypass all
barriers: Mulmuley and Sohoni’s Geometric Complexity Theory (gct) program [35].

Geometric Complexity Theory. is widely considered to be a promising research program
that might lead to interesting results. It is also widely believed to necessitate new and

1In the words of S. Aaronson and A. Wigderson [1], “We speculate that going beyond this limit [algebrization]
will require fundamentally new methods.”

, Vol. 1, No. 1, Article . Publication date: November 2019.

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

PRAMs over integers do not compute maxflow efficiently :3

extremely sophisticated pieces of mathematics in order to achieve its goal. The research
program aims to prove the Ptime , NPtime lower bound by showing that certain algebraic
surfaces (representing the permanent and the discriminant, which are believed [47] to
have different complexity if Ptime , NPtime) cannot be embedded one into the other.
Although this program has lead to interesting developments as far as pure mathematics
is concerned, it has not enhanced our understanding of complexity lower bounds for the
time being (actually, even for Mulmuley himself, such understanding will not be achieved
in our lifetimes [20]). Recently, some negative results [28] have closed the easiest path
towards it promised by gct.
The gct program was inspired, according to its creators, by a lower bound result ob-

tained by Mulmuley [34]. Specifically, it was proved that the maxflow problem (deciding
whether a certain quantity can flow from a source to a target in a weighted graph) is not
solvable efficiently in a specific parallel model (the pram without bit operations). The
maxflow problem is quite interesting as it is known to be in Ptime (by reduction to linear
programming, or the Ford-Fulkerson algorithm [19]), but there are no known efficiently
parallel algorithm solving it. This lower bound proof, despite being the main inspiration of
the well-known gct research program, remains seldom cited and has not led to variations
applied to other problems. At first sight it relies a lot on algebraic geometric techniques
and results, such as the Milnor-Thom theorem2.

Implicit Computational Complexity. Another approach to complexity theory that emerged
in the recent years is Implicit Computational Complexity (icc). Related to logical approaches
of computational complexity such as Descriptive Complexity, the aim of icc is to study
algorithmic complexity only in terms of restrictions of languages and computational
principles. It has been established since Bellantoni and Cook’ landmark paper [9], and
following work by Leivant and Marion [31, 32].
As part of icc techniques, some approaches derive from the proofs-as-programs (or

Curry–Howard) correspondence. At its core, this correspondence allows one to view the
execution of a program as the cut-elimination procedure of a corresponding proof in a
formal deductive system (e.g. sequent calculus). Initially stated for intuitionnistic logic
[27], the correspondence extends to resource-aware logics such as linear logic (ll), which
is well-suited to study computation. This approach to icc therefore relies on restrictions on
the deductive system considered to characterise complexity classes. In particular, several
variants of ll were shown to characterise FPtime3: bll [23], sll [30], dlal [7] and lll [22].

Dynamic Semantics. The geometry of interaction program was proposed by Girard
[21] shortly after the inception of linear logic. In opposition to traditional denotational
semantics – e.g. domains –, the goi program aims at giving an account of the proofs and
programs which also interprets their dynamical features, i.e. cut-elimination/execution.
This program is well-suited for tackling problems involving computational complexity, and
indeed, geometry of interaction’s first model was used to prove the optimality of Lamping’s
2 Let us here notice that, even though this is not mentionned by Mulmuley, the Milnor-Thom theorem was
already used to prove lower bounds, c.f. papers by Dobkin and Lipton [17], Steele and Yao [46], Ben-Or [10],
and references therein.
3FPtime is a variant of Ptime that computes a function and not just a boolean predicate.

, Vol. 1, No. 1, Article . Publication date: November 2019.

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

:4 Luc Pellissier and Thomas Seiller

reduction in λ-calculus [24]. More recently, a series of characterisations of complexity
classes were obtained using goi techniques [3–6].
Among the most recent and full-fledged embodiement of this program lie the second

author’s Interaction Graphs models [38, 40–42]. These models, in which proofs/programs
are interpreted as graphings – generalisations of dynamical systems –, encompass all
previous goi models introduced by Girard [42]. In particular, Interaction Graphs allow for
modelling quantitative features of programs/proofs [41].

Semantic Approach to Complexity. Based on a study of several Interaction Graphs models
characterising complexity classes [44, 45], the second author has proposed to use graphings
to develop a semantic approach to complexity theory [39]. The basic idea behind this pro-
gram is to model and study programs as dynamical systems that acts on a space – thought
of as the space of configurations. As dynamical systems are inherently deterministic, the
use of graphings is needed to extend the approach to probabilistic and/or non-deterministic
programs. One can then study a program through the geometry of the associated graphing
(for instance, a configuration caught in a loop is represented as a point of the space of
finite orbit).
The second author conjectures that advanced methods developed within the theory of

dynamical systems, in particular methods specific to the study of ergodic theory using
techniques from operator algebras, could enable new proof techniques for separation. It
can be argued that such techniques should be able to bypass barriers [43].

2 CONTENTS OF THE PAPER
2.1 Computation models as graphings.
The present work reports on the first investigations into how the interpretation of programs
as graphings could lead to separation techniques, by rephrasing two well-known lower
bound proofs. The interpretation of programs rely on two ingredients:

• the interpretation of models of computation as monoid actions. In our setting, we
view the computational principles of a computational model as elements that act
on a configuration space. As these actions can be composed, but are not necessarily
reversible, it is natural to interpret them as composing a monoid acting on a configu-
ration space. As, moreover, we are intersted in having control in our computations
(knowing whether it is finished, failed, succeeded,. . .), we consider actions that can
be decomposed as a part that computes using the principles of computation and a
part that just modifies a control state;

• the realization of programs as graphings. We abstract programs as graphs whose
vertices are subspaces of the product of the configuration space and the control states
and edges are labelled by elements of the acting monoid, acting on subspaces of
vertices.

The basic intuitions here can be summarised by the following slogan: "Computation,
as a dynamical process, can be modelled as a dynamical system". Of course, the above
affirmation cannot be true of all computational processes; for instance the traditional
notion of dynamical system is deterministic. In practice, one works with a generalisation of

, Vol. 1, No. 1, Article . Publication date: November 2019.

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

PRAMs over integers do not compute maxflow efficiently :5

dynamical systems named graphings; introduced as part of a family of models of linear logic,
graphings have been shown to model non-deterministic and probabilistic computation.
To do so, we consider that a computation model is given by a set of generators (that

correspond to computation principles) and its actions on a space (representing the configu-
ration space). So, in other words, we define a computation model as an action of a monoid
(presented by its generators and relations) on a space α : M ↷ X. This action can then be
specified to be continuous, mesurable, . . . depending on the properties we are interested in.
A program in such a model of computation is then viewed as a graph, whose vertices

are subspace of the configuration space and edges are generators of the monoid: in this
way, both the partiality of certain operations and branching is allowed. This point of view
is very general, as it can allow to study, as special model of computations, models that can
be discrete or continuous, algebraic, rewriting-based,. . .

2.2 Entropy
We fix an action α : M ↷ X for the following discussion. One important aspect of
the representation of abstract programs as graphings is that restrictions of graphings
correspond to known notions from mathematics. In a very natural way, a deterministic
α-graphing defines a partial dynamical system. Conversely, a partial dynamical system
whose graph is contained in the measured preorder {(x,y) ∈ X2 | ∃m ∈ M,α(m)(x) = y}
[39] can be associated to an α-graphing.
The study of deterministic models of computations can thus profit from the methods

of the theory of dynamical systems. In particular, the methods employed in this paper
relate to the classical notion of topological entropy. The topological entropy of a dynamical
system is a value representing the average exponential growth rate of the number of orbit
segments distinguishable with a finite (but arbitrarily fine) precision. The definition is
based on the notion of open covers: for each finite open cover C, one can compute the
entropy of a map w.r.t. C, and the entropy of the map is then the supremum of these
values when C ranges over the set of all finite covers. As we are considering graphings
and those correspond to partial maps, we explain how the techniques adapt to this more
general setting and define the entropy h(G, C) of a graphing G w.r.t. a cover C, as well
as the topological entropy h(G) defined as the supremum of the values h(G, C) where C
ranges over all finite open covers.
While the precise results described in this paper use the entropy h0(G) w.r.t. a specific

cover (similar bounds could be obtained from the topological entropy, but would lack
precision), the authors believe entropy could play a much more prominent role in future
proofs of lower bound. Indeed, while h0(G) somehow quantifies over one aspect of the
computation, namely the branchings, the topological entropy computed by considering
all possible covers provides a much more precise picture of the dynamics involved. In
particular, it provides information about the computational principles described by the
amc; this information may lead to more precise bounds based on how some principles
are much more complex than some others, providing some lower bounds on possible
simulations of the former with the latter.
All the while only the entropy w.r.t. a given cover will be essential in this work, the

overall techniques related to entropy provide a much clearer picture of the techniques. In

, Vol. 1, No. 1, Article . Publication date: November 2019.

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

:6 Luc Pellissier and Thomas Seiller

particular, the definition of entropic co-trees (Theorem 37) are quite natural from this point
of view and clarifies the methods employed by e.g. Ben-Or and Mulmuley.

2.3 Ben-Or’s proof
One lower bounds result related to Mulmuley’s techniques is the bounds obtained by Steele
and Yao [46] on Algebraic Decision Trees. Algebraic decision trees are defined as finite
ternary trees describing a program deciding a subset of Rn : each node verifies whether a
chosen polynomial, say P , takes a positive, negative, or null value at the point considered.
A d-th order algebraic decision tree is an algebraic decision tree in which all polynomials
are of degree bounded by d .
In a very natural manner, an algebraic decision tree can be represented as an ι-graphings,

when ι is the trivial action on the space Rn . We use entropy to provide a bound on the
number of connected components of subsets decided by ι-graphings. These bounds are
obtained by combining a bound in terms of entropy and a variant of the Milnor-Thom
theorem due to Ben-Or. The latter, which we recall below (Theorem 26) bounds the number
of connected components of a semi-algebraic set in terms of the number of polynomial
inequalities, their maximal degree, and the dimension of the space considered.

Theorem 29. Let T be a d-th order algebraic decision tree deciding a subsetW ⊆ Rn . Then
the number of connected components ofW is bounded by 2hd(2d − 1)n+h−1

, where h is the

height of T .

This result of Steele and Yao adapts in a straightforward manner to a notion of algebraic
computation trees describing the construction of the polynomials to be tested by mean of
multiplications and additions of the coordinates. The authors remarked this result uses
techniques quite similar to that of Mulmuley’s lower bounds for the model of pramswithout
bit operations. It is also strongly similar to the techniques used by Cucker in proving that
NCR , PtimeR [16].
However, a refinement of Steele and Yao’s method was quickly obtained by Ben-Or so as

to obtain a similar result for an extended notion of algebraic computation trees allowing for
computing divisions and taking square roots. We here adapt Ben-Or techniques within the
framework of graphings, in order to apply this refined approach to Mulmuley’s framework,
leading to a stregnthened lower bounds result.
Adapting Ben-Or’s method, we obtain a proof of the following result on computational

graphings in the amc of algebraic computational trees. The class of computational graphings
contains the interpretation of algebraic computational trees and the result generalises
that of Ben-Or by giving a bound on the number of connected components of the subset
decided by a computational graphing. This bound depends on the number of edges of the
computational graphing, as well as its algebraic degree (Theorem 42).

Theorem 43. Let G be a computational graphing representative, Card(E) its number of

edges, and D its algebraic degree. Suppose G computes the membership problem forW ⊆ Rn

in k steps, i.e. for each element of Rn , πS(Gk (x)) = ⊤ if and only if x ∈W . ThenW has at

most 2h0([G])+132kD+n+1
connected components.

, Vol. 1, No. 1, Article . Publication date: November 2019.

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

PRAMs over integers do not compute maxflow efficiently :7

This reformulation of Ben-Or techniques is then applied to strengthen a lower bound
obtained by Mulmuley [34]. While Mulmuley’s model of “prams without bit operations”
is a restriction of the usual notion of algebraic prams over the integers, we obtain here
similar lower bounds for the non-restricted model. For this purpose, we first need to show
how parallelism can be accomodated within the framework of amcs and graphings.

2.4 prams and the crew
We are able to introduce prams acting over integers in this setting. They can be described
as having a finite number of processors, each having access to a private memory on top
of the shared memory, and able to perform the operations +,−,×, / as well as branching
and indirect addressing. Interestingly, we can represent these machines in the graphings
framework in two steps: first, by defining the srammodel, with just one processor; and then
by performing an algebraic operation at the level of the algebraic models of computation.
So, in a way, parallel computation is modelled per se, at the level of models. As usual,

one is bound to chose a mode of interaction between the different processes when dealing
with shared memory. We will consider here only the case of Concurrent Read Exclusive

Write (crew), i.e. all processes can read the shared memory concurrently, but if several
processes try to write in the shared memory only the process with the smallest index is
allowed to do so.
The heart of our approach of parallelism is based on commutation. Among all the

instructions, the ones affecting only the privatememory of distinct processors can commute,
while it is not the case of two instructions affecting the central memory. We do so by
considering a notion of product for monoids that generalizes both the direct product and
the free product: we specify, through a conflict relation, which of the generators can and
can not commute, allowing us to build a monoid representing the simultaneous action.

2.5 Mulmuley’s geometrization
Contrarily to Ben-Or’s model, the prammachines do not decide sets of reals but of integers,
making the use of algebraico-geometric results to uncover their geometry much less
obvious. The mechanisms of Mulmuley’s proof rely on twin geometrizations: one of a
special optimization problem that can be represented by a surface in R3 Subsec. 8.1-8.2,
the other one by building explicitly, given a pram, a set of algebraic surfaces such that
the points accepted by the machine are exactly the integer points enclosed by the set of
surfaces.
Finally, the proof is concluded by a purely geometrical theorem (Thm. 61)4 expressing a

tension between the two geometrizations. Our work focuses here only on the construction
of a set algebraic surfaces representing the computation of a pram; the remaining part of
our proof follows Mulmuley’s original technique closely.

Building surfaces. The first step in Mulmuley’s proof is to use the parametric complexity
results of Carstensen [12] to represent an instance of the decision problem associated to

4We would like to stress here that this separation in three movement, with a geometrical tour-de-force, is not
explicit in the original article. We nonetheless believe it greatly improves the exposition.

, Vol. 1, No. 1, Article . Publication date: November 2019.

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

:8 Luc Pellissier and Thomas Seiller

Fig. 1. Two curves that define the same partition of Z2

maxflow so that it induces naturally a partition of Z3 that can then be represented by a
particular surface.
The second step is to represent any partition of Z3 induced by the run of a machine by a

set of surfaces in R3, in order to be able to use geometric methods.
LetK be a compact of R3 and P = (P1, . . . , Pm) be a partition of Z3∩K . P can be extended

to a partition of the whole of K in a number of ways, as pictured in Fig. 1. In particular,
P can always be extended to a partition Palg (resp. Psmooth, , Pana) of K such that all the
cells are compact, and the boundaries of the cells are all algebraic (resp. smooth, analytic)
surfaces.
In general, such surfaces have no reason to be easy to compute and the more they are

endowed with structure, the more complicated to compute they are to be. In the specific
case of prams, the decomposition can naturally be represented with algebraic surfaces
whose degree is moreover bounded. This choice of representation might not hold for any
other model of computation, for which it might be more interesting to consider surfaces of
a different kind.
The method for building such a set of algebraic surfaces is reminiscent of the technique

we used for Ben-Or’s result: build a tree summarizing the computation of a specific pram
and build, along this tree a system of polynomial equations on a larger space than the
space of variables actually used by the machine, this larger space allowing to consider
full-fledged division. This system of integer polynomials of bounded degree then defines
surfaces exactly matching our needs.

2.6 The main result
Interestingly, this allows to use Ben-Or’s technique of adding new variables to handle
operations such as division and square root to prams, which is a mild improvement over
Mulmuley’s proof (and indeed, as noted in his article, the method is able of handling
additional instructions as long as arbitrary bits are not easy to compute: in our model,
bits of low orders are easy to compute – parity is just the remainder of a division – but
computing the middle order bits of a number is difficult, see Prop. 64). By considering that
the length of an input is be the minimal length of a binary word representing it, we get a
realistic cost model for the prams, for which we can prove:

, Vol. 1, No. 1, Article . Publication date: November 2019.

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

PRAMs over integers do not compute maxflow efficiently :9

Theorem 63. Let G be a pram without bit operations with 2O ((logN)c)
processors, where N

is the length of the inputs and c any positive integer.

G does not decide maxflow in O((logN)c) steps.

If we call NCZ the class of computation problems that can be decided by a pram over
integers in time logarithmic in the length of the inputs and a number of processors
polylogarithmic in the length of the inputs, we have proved that

NCZ , Ptime

2.7 Conclusion
This work not only provides a strengthened lower bound results, but shows how the
semantic techniques based on abstract models of computation and graphings can shed new
light on some lower bound techniques. In particular, it establishes some relationship
between the lower bounds and the notion of entropy which, although arguably still
superficial in this work, could potentially become deeper and provide new insights and
finer techniques.
Showing that the interpretation of programs as graphings can translate, and even refine,

such strong lower bounds results is also important from another perspective. Indeed, the
techniques of Ben-Or and Mulmuley (as well as other results of e.g. Cucker [16], Yao [49])
seem at first sight restricted to algebraic models of computation due to their use of the
Milnor-Thom theorem which holds only for real semi-algebraic sets. However, the second
author’s characterisations of Boolean complexity classes in terms of graphings acting on
algebraic spaces [44] opens the possibility of using such algebraic methods to provide
lower bounds for boolean models of computation.

3 ABSTRACT MODELS OF COMPUTATION, ABSTRACT PROGAMS
The basic intuitions here can be summarised by the following slogan: "Computation,
as a dynamical process, can be modelled as a dynamical system". Of course, the above
affirmation cannot be true of all computational processes; for instance the traditional
notion of dynamical system is deterministic. In practice, one works with a generalisation of
dynamical systems named graphings; introduced as part of a family of models of linear logic,
graphings have been shown to model non-deterministic and probabilistic computation.
Given a set G, we denote by M⟨G⟩ the free monoid on G, i.e. the set of finite sequences

of elements of G.

Definition 1. We recall that a presentation ⟨G,R⟩ of a monoid M is given by a set G of
generators and a set R of relations such thatM is isomorphic to M⟨G⟩/R.

Definition 2. Let M be a monoid and X be a space. An action of M on X is a monoid
morphism α fromM to the set of endomorphisms on X. We denote actions by α : M ↷ X,
sometimes omitting the morphism α .

In this definition, we purposely chose to not specify the kind of space considered. As
a consequence, if one considers a discrete space X (i.e. sets), the set of endomorphisms
will simply be the set of functions X → X. Similarly, if X is a topological space, the set of
endormorphisms will be continuous maps (hence α will be a continuous action). Etc.

, Vol. 1, No. 1, Article . Publication date: November 2019.

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

:10 Luc Pellissier and Thomas Seiller

Definition 3. An abstract model of computation (amc) is defined as a triple (G, R,α), where
⟨G, R⟩ is a presentation of a monoid M⟨G, R⟩ and α is a monoid action M⟨G, R⟩ ↷ X. We
denote an amc as α : ⟨G, R⟩ ↷ X.

Remark. Although it might seem enough to define an abstract model of computation solely
as a monoid action, the choice of a presentation of the monoid by generators and relations
is important. First, when considering several models of computation, one wants to consider
a notion of compilation: an element f ∈ End(Y) is compilable in the actionM ↷ X when
there is an automorphism Ψ : X → Y such that one can write X = ⊎i=1, ...,nXi and the
restriction of Ψ−1 ◦ f ◦ Ψ to Xi is the restriction of an element дi ofM to Xi . To use this
notion of compilation in a meaningful way, one would want to quantify the complexity

of compilation. This can be done only by considering a definition of the monoid M as
generators and relations ⟨G, R⟩, allowing one to consider the degree5 of дi – the length of
the smallest word in G∗ representing дi – and therefore the degree of the compilation of f
into α : ⟨G, R⟩ ↷ X.
Although we will not consider the notion of compilation in this work, it is remarkable

that the representation of the monoid as generators and relations is needed in the definition
of the parallelisation of actions – defined as the crew operation.

Definition 4. A graphing representative G w.r.t. a monoid actionM ↷ X is defined as a
set of edges EG and for each element e ∈ EG a pair (SGe ,mG

e) of a subspace SGe of X – the
source of e – and an elementmG

e ∈ M – the realiser of e .

Graphings come in different flavours (discrete, topological, measurable), depending on
the type of space X one wishes to consider. If X is a topological space, the action will be
continuous, if X is a measure space, the action will be measurable. While the notion of
graphing representative does not depend on this choice, the notion of graphing is defined as
a quotient of the space of graphing representative w.r.t. an adequate notion of equivalence.
We will here consider the notion of topological graphing [42], which we will simply call
graphings. In this case, the notion of equivalence is easier to define than in the case of
measurable graphings as the latter requires one to consider almost-everywhere equality.

Definition 5 (Refinement). A graphing representative F is a refinement of a graphing
representativeG , noted F ⩽ G , if there exists a partition6 (EFe)e ∈EG of EF such that ∀e ∈ EG :(

∪f ∈EFe S
F
f

)
△ SGe = ∅; ∀f , f ′ ∈ EFe , SFf △ SFf ′ = ∅;

∀f ∈ EFe , mF
f =m

G
e

This notion defines an equivalence relation defined by F ∼ G if and only if there exists H
with H ⩽ F and H ⩽ G.

Definition 6. A graphing is an equivalence class of graphing representatives w.r.t. the
equivalence relation generated by refinements.
5Let us notice that this notion has already been considered in relation to dynamical systems, used to define
what is called the algebraic entropy and the fundamental group entropy [29, Section 3.1]
6We allow the sets EFe to be empty.

, Vol. 1, No. 1, Article . Publication date: November 2019.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

PRAMs over integers do not compute maxflow efficiently :11

Agraphing is deterministic if its representatives are deterministic, i.e. if any representative
G is such that for all x ∈ X there is at most one e ∈ EG such that x ∈ SGe .

Definition 7. An abstract program A within an amc α : ⟨G, R⟩ ↷ X is defined as a finite
set SA of control states and a graphingGA w.r.t. the monoid action M⟨G, R⟩ ×Sk ↷ X× SA.
An abstract program is deterministic if its underlying graphing is deterministic.

4 THE CREW
In this section, we explain how the abstract framework described in the last section can be
used to model parallel computation. As usual, one is bound to chose a mode of interaction
between the different processes when dealing with shared memory. We will consider here
only the case of Concurrent Read Exclusive Write (crew), i.e. all processes can read the
shared memory concurrently, but if several processes try to write in the shared memory
only the process with the smallest index is allowed to do so.
We abstract the crew mode of interaction at the level of monoid, by performing an

operation reminiscent (in that it also generalizes the free product) of the amalgamated
sum [11, A, I, §7, 3], but chosen relatively to monoid actions. For this, we suppose that we
have two monoid actions M⟨G,R⟩ ↷ X × Y and M⟨H ,Q⟩ ↷ X × Z, where X represents
the shared memory. Among the generators of each monoid, we will separate those that
potentially conflict with the generator of the other monoid (typically a write) from the
other and perform a sum over those generators.

Definition 8 (Conflicted sum). Let M⟨G,R⟩, M⟨G ′, R′⟩ be two monoids and # ⊆ G ×G ′

a relation between the generators of G and G ′, called the conflict relation, we define the
conflicted sum of M⟨G, R⟩ and M⟨G ′, R′⟩ over #, noted M⟨G, R⟩ ∗# M⟨G ′, R′⟩,as the monoid
M⟨({1} ×G) ∪ ({2} ×G ′),Q⟩ where Q is defined as:

Q = ({1} ×G) ∪ ({2} ×G ′) ∪ {
(
(1,д)(2,д′), (2,д′)(1,д)

)
, (д,д′) < #} ∪ {(1, e)} ∪ {(1, e ′)}

where 1, e and e ′ are the neutral elements of M⟨G, R⟩ ∗# M⟨G ′, R′⟩ and its two components.
In the particular case where # = (G × H ′) ∪ (H ×G ′), with H ,H ′ respectively subsets of

G and G ′, we will write the sum M⟨G, R⟩ ∗H H ′ M⟨G ′, R′⟩.

Remark. When the conflic relation # is empty, this defines the usual direct product of
monoids. This was to be expected. Indeed, one should think of this relation as representing
the elements that do not commute because they interact with the shared memory. As a
consequence, when it is empty no conflicts can arise w.r.t. the shared memory. In other
words, the direct product of monoids corresponds to the parallelisation of processeswithout
shared memory.
Dually, when the relation full (# = G ×G ′), it defines the free product of the monoids,

so the free product corresponds to the parallelisation of processes where all instructions
interact with the shared memory.

Definition 9. Let α : M ↷ X × Y be a monoid action. We say that an elementm ∈ M is
central relatively to α (or just central) if the action ofm commutes with the first projection
πX : X × Y → X, i.e. α(m);πX = α(m); in other wordsm acts as the identity on X.

, Vol. 1, No. 1, Article . Publication date: November 2019.

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

:12 Luc Pellissier and Thomas Seiller

Intuitively, central elements are those that will not affect the shared memory. As such,
they do not raise any issues when the processes are put in parallel. On the other hand,
non-central elements need to be dealt with care.

Definition 10. Let M⟨G, R⟩ ↷ X × Y be an amc. We note Zα the set of central elements
and Z̄α (G) the set {m ∈ G | n < Zα }.

Definition 11 (The crew operation). Let α : M⟨G, R⟩ ↷ X×Y and β : M⟨H ,Q⟩ ↷ X×Z
be amcs. We define the amc

crew(α, β) : M⟨G, R⟩ ∗Z̄α (G) Z̄β (G′)
M⟨G ′, R′⟩ ↷ X × Y × Z

by letting crew(α, β)(m,m′) = α(m) ∗ β(m′) on elements ofG ×G ′, where α(m) ∗ β(m′) is
defined as:

α(m) ∗ β(m′) : X × Y × Z → X × Y × Z

=

{
∆; [α(m);πY , β(m′)] ifm < Z̄α (G),m

′ ∈ Z̄β (G
′);

∆; [α(m), β(m′);πZ] otherwise

with ∆ : (x,y, z) 7→ (x,y, x, z) : X × Y × Z → X × Y × X × Z.

We now need to check that we defined the operation on monoids and the action coher-
ently. In other words, that the previous operation is compatible with the quotient by the
adequate relations, i.e. it does define a monoid action.

Lemma 12. The crew operation on amcs is well-defined.

5 ENTROPY AND CELLS
5.1 Topological Entropy
Topological Entropy was introduced in the context of dynamical systems in an attempt
to classify the latter w.r.t. conjugacy. The topological entropy of a dynamical system is a
value representing the average exponential growth rate of the number of orbit segments
distinguishable with a finite (but arbitrarily fine) precision. The definition is based on the
notion of open covers.

Open covers. Given a topological space X, an open cover of X is a family U = (Ui)i ∈I of
open subsets of X such that ∪i ∈IUi = X. A finite cover U is a cover whose indexing set is
finite. A subcover of a cover U = (Ui)i ∈I is a sub-family S = (Uj)j ∈J for J ⊆ I such that S
is a cover, i.e. such that ∪j ∈JUj = X.
We will denote by Cov(X) (resp. FCov(X)) the set of all open covers (resp. all finite open

covers) of the space X.
We now define two operations on open covers that are essential to the definition of

entropy. An open cover U = (Ui)i ∈I , together with a continuous function f : X → X,
defines the inverse image open cover f −1(U) = (f −1(Ui))i ∈I . Note that if U is finite,
f −1(U) is finite as well. Given two open coversU = (Ui)i ∈I andV = (Vj)j ∈J , we define
their joinU∨V as the family (Ui ∩Vj)(i , j)∈I×J . Once again, if both initial covers are finite,
their join is finite.

, Vol. 1, No. 1, Article . Publication date: November 2019.

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

PRAMs over integers do not compute maxflow efficiently :13

Entropy. Usually, entropy is defined for continuous maps on a compact set, following the
original definition by Adler, Konheim and McAndrews [2]. Using the fact that arbitrary
open covers have a finite subcover, this allows one to ensure that the smallest subcover
of any cover is finite. I.e. given an arbitrary coverU, one can consider the smallest – in
terms of cardinality – subcover S and associate to U the finite quantity log2(Card(S)).
This quantity, obviously, need not be finite in the general case of an arbitrary cover on a
non-compact set.
However, a generalisation of entropy to non-compact sets can easily be defined by

restricting the usual definition to finite covers7. This is the definition we will use here.

Definition 13. Let X be a topological space, and U = (Ui)i ∈I be a finite cover of X. We
define the quantity H 0

X(U) as
min{log2(Card(J)) | J ⊂ I ,∪j ∈JUj = X}.

In other words, if k is the cardinality of the smallest subcover ofU, H 0(O) = log2(k).

Definition 14. Let X be a topological space and f : X → X be a continuous map. For any
finite open coverU of X, we define:

Hk
X(f ,U) =

1
k
H 0
X(U ∨ f −1(U) ∨ · · · ∨ f −(k−1)(U)).

One can show that the limit limn→∞Hn
X(f ,U) exists and is finite; it will be notedh(f ,U).

The topological entropy of f is then defined as the supremum of these values, when U

ranges over the set of all finite covers FCov(X).

Definition 15. Let X be a topological space and f : X → X be a continuous map. The
topological entropy of f is defined as h(f) = supU∈FCov(X) h(f ,U).

5.2 Graphings and Entropy
We now need to define the entropy of deterministic graphing. As mentioned briefly already,
deterministic graphings on a space X are in one-to-one correspondence with partial
dynamical systems on X. To convince oneself of this, it suffices to notice that any partial
dynamical system can be represented as a graphing with a single edge, and that if the
graphing G is deterministic its edges can be glued together to define a partial continuous
function [G]. Thus, we only need to extend the notion of entropy to partial maps, and we
can then define the entropy of a graphing G as the entropy of its corresponding map [G].
Given a finite coverU, the only issue with partial continuous maps is that f −1(U) is not

in general a cover. Indeed, { f −1(U) | U ∈ U} is a family of open sets by continuity of f
but the union ∪U ∈U f −1(U) is a strict subspace of X (namely, the domain of f). It turns out
the solution to this problem is quite simple: we notice that f −1(U) is a cover of f −1(X) and
now work with covers of subspaces of X. Indeed,U ∨ f −1(U) is itself a cover of f −1(X)
and therefore the quantity H 2

X(f ,U) can be defined as (1/2)H 0
f −1(X)(U ∨ f −1(U)).

We now generalise this definition to arbitrary iterations of f by extending Definitions
14 and 15 to partial maps as follows.
7This is discussed by Hofer [26] together with another generalisation based on the Stone-Čech compactification
of the underlying space.

, Vol. 1, No. 1, Article . Publication date: November 2019.

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

:14 Luc Pellissier and Thomas Seiller

Definition 16. Let X be a topological space and f : X → X be a continuous partial map.
For any finite open coverU of X, we define:

Hk
X(f ,U) =

1
k
H 0
f −k+1(X)(U ∨ f −1(U) ∨ · · · ∨ f −(k−1)(U)).

The entropy of f is then defined as h(f) = supU∈FCov(X) h(f ,U), where h(f ,U) is again
defined as the limit limn→∞Hn

X(f ,U).

Now, let us consider the special case of a graphingG with set of control states SG . For an
intuitive understanding, one can think of G as the representation of a pram machine. We
focus on the specific open cover indexed by the set of control states, i.e. S = (X× {s}s ∈SG),
and call it the states cover. We will now show how the partial entropy Hk (G,S) is related
to the set of admissible sequence of states. Let us define those first.

Definition 17. LetG be a graphing, with set of control states SG . An admissible sequence
of states is a sequence s = s1s2 . . . sn of elements of SG such that for all i ∈ {1, 2, . . . ,n − 1}
there exists a subset C of X – i.e. a set of configurations – such that G contains an edge
from C × {si } to a subspace of X × {si+1}.

Example 18. As an example, let us consider the very simple graphing with four control
states a,b, c,d and edges from X× {a} to X× {b}, from X× {b} to X× {c}, from X× {c} to
X× {b} and from X× {c} to X× {d}. Then the sequences abcd and abcbcbc are admissible,
but the sequences aba, abcdd , and abcba are not.

Lemma 19. Let G be a graphing, and S its states cover. Then for all integer k , the set

Admk (G) of admissible sequences of states of length k > 1 is of cardinality 2k .Hk (G ,S)
.

Proof. We show that the set Admk (G) of admissible sequences of states of length k has
the same cardinality as the smallest subcover of S ∨ [G]−1(S) ∨ · · · ∨ [G]−(k−1)(S)). Hence
Hk (G,S) = 1

k log2(Card(Admk (G))), which implies the result.
The proof is done by induction. As a base case, let us consider the set of Adm2(G)

of admissible sequences of states of length 2 and the open cover V = S ∨ [G]−1(S) of
D = [G]−1(X). An element of V is an intersection X × {s1} ∩ [G]−1(X × {s2}), and it is
therefore equal toC[s1, s2]×{s1}whereC[s1, s2] ⊂ X is the set {x ∈ X | [G](x, s1) ∈ X×{s2}}.
This set is empty if and only if the sequence s1s2 belongs to Adm2(G). Moreover, given
another sequence of states s ′1s

′
2 (not necessarily admissible), the sets C[s1, s2] and C[s1, s2]

are disjoint. Hence a set C[s1, s2] is removable from the cover V if and only if the sequence
s1s2 is not admissible. This implies the result for k = 2.
The step for the induction is similar to the base case. It suffices to consider the partition

Sk = S∨[G]−1(S)∨ · · ·∨ [G]−(k−1)(S)) as Sk−1 ∨[G]−(k−1)(S). By the same argument, one
can show that elements ofSk−1∨[G]

−(k−1)(S) are of the formC[s = (s0s1 . . . sk−1), sk]×{s1}
where C[s, sk] ⊂ X is the set {x ∈ X | ∀i = 2, . . . ,k, [G]i−1(x, s1) ∈ X × {si }}. Again, these
sets C[s, sk] are pairwise disjoint and empty if and only if the sequence s0s1 . . . sk−1, sk is
not admissible. □

A tractable bound on the number of admissible sequences of states can be obtained
by noticing that the sequence Hk (G,S) is sub-additive, i.e. Hk+k ′(G,S) ⩽ Hk (G,S) +

, Vol. 1, No. 1, Article . Publication date: November 2019.

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

PRAMs over integers do not compute maxflow efficiently :15

Hk ′(G,S). A consequence of this is that Hk (G,S) ⩽ kH 1(G,S). Thus the number of
admissible sequences of states of length k is bounded by 2k2H 1(G ,S). We now study how
the cardinality of admissible sequences can be related to the entropy of G.
Lemma 20. For all ϵ > 0, there exists an integer N such that for all k ⩾ N , Hk (U)/k <

h([G]) + ϵ .

Proof. Let us fix some ϵ > 0. Notice that if we let Hk (U) = H 0(U ∨ [G]−1(U) ∨ · · · ∨

[G]−(k−1)(U))), the sequence Hk (U) satisfies Hk+l (U) ⩽ Hk (U) + Hl (U). By Fekete’s
lemma on subadditive sequences, this implies that limk→∞Hk/k exists and is equal to
infk Hk/k . Thus h([G],U) = infk Hk/k .
Now, the entropy h([G]) is defined as supU limk→∞Hk (U)/k . This then rewrites as

supU infk Hk (U)/k . We can conclude that h([G]) ⩾ infk Hk (U)/k for all finite open cover
U.
Since infk Hk (U)/k is the limit of the sequence Hk/k , there exists an integer N such

that for all k ⩾ N the following inequality holds: |Hk (U)/k − infk Hk (U)/k | < ϵ , which
rewrites asHk (U)/k − infk Hk (U)/k < ϵ . From this we deduceHk (U)/k < h([G])+ϵ . □
Lemma 21. LetG be a graphing, and let c : k 7→ Card(Admk (G)). Then c(k) = O(2k2h([G]))

as k goes to infinity.

5.3 Cells Decomposition
Now, let us consider a deterministic graphingG , with its state coverS. We fix a length k > 2
and reconsider the sets C[s] = C[(s1s2 . . . sk−1, sk)] (for a sequence of states s = s1s2 . . . sk)
that appear in the proof of Lemma 19. The set (C[s])s∈Admk (G) is a partition of the space
[G]−k+1(X).
This decomposition splits the set of initial configurations into cells satisfying the follow-

ing property: for any two initial configurations contained in the same cell C[s], the k-th first

iterations of G goes through the same admissible sequence of states s.
Definition 22. LetG be a deterministic graphing, with its state cover S. Given an integer
k , we define the k-fold decomposition of X along G as the partition {C[s] | s ∈ Admk (G)}.
Then Lemma 19 provides a bound on the cardinality of the k-th cell decomposition.

Using the results in the previous section, we can then obtain the following proposition.
Proposition 23. Let G be a deterministic graphing, with entropy h(G). The cardinality of
the k-th cell decomposition of X w.r.t.G , as a function c(k) of k , is asymptotically bounded by

д(k) = 2k2h([G])
, i.e. c(k) = O(д(k)).

We also state another bound on the number of cells of the k-th cell decomposition, based
on the state cover entropy, i.e. the entropy with respect to the state cover rather than the
usual entropy which takes the supremum of cover entropies when the cover ranges over
all finite covers of the space. This result is a simple consequence of Theorem 19.
Proposition 24. Let G be a deterministic graphing. We consider the state cover entropy
h0([G]) = limn→∞Hn

X([G],S) where S is the state cover. The cardinality of the k-th cell

decomposition of X w.r.t. G, as a function c(k) of k , is asymptotically bounded by д(k) =
2k2h0([G])

, i.e. c(k) = O(д(k)).

, Vol. 1, No. 1, Article . Publication date: November 2019.

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

:16 Luc Pellissier and Thomas Seiller

6 ALGEBRAIC COMPUTATION TREES AND BEN-OR’S TECHNIQUE
We will now explain how to obtain lower bounds for algebraic models of computation
based on the interpretation of programs as graphings and entropic bounds. These results
make use of the Milnor-Thom theorem which bounds the sum of the Betti numbers of
algebraic varieties. In fact, we will use a version due to Ben-Or of this theorem.

6.1 Milnor-Thom theorem
Let us first recall the classic Milnor-Thom theorem.

Theorem 25 ([33, Theorem 3]). If X ⊆ Rm is defined by polynomial identities of the form

f1 ⩾ 0, . . . , fp ⩾ 0

with total degree d = deg f1 + · · · + deg fp , then

rankH ∗X ⩽
1
2
(2 + d)(1 + d)m−1.

We will use in the proof the following variant of the Milnor-Thom bounds, stated and
proved by Ben-Or.

Theorem 26. Let d,n,h ∈ N.
Let βd (n,h) be the maximal number of connected components of sets V ⊆ Rn be a set

defined by the following polynomial equations:

q1(x1, . . . , xn) = 0
...
qm(x1, . . . , xn) = 0
p1(x1, . . . , xn) > 0
...
ps (x1, . . . , xn) > 0
ps+1(x1, . . . , xn) ⩾ 0
...
ph(x1, . . . , xn) ⩾ 0

for pi ,qi ∈ R[X1, . . . ,Xn] of degree lesser than d .
If d ≥ 2, we have:

βd (n,h) ⩽ d(2d − 1)n+h−1

First, we will write composition of functions as f ;д instead of д ◦ f .

6.2 Algebraic decision trees
One lower bounds result related to Mulmuley’s techniques is the bounds obtained by Steele
and Yao [46] on Algebraic Decision Trees. Algebraic decision trees are defined as finite
ternary trees describing a program deciding a subset of Rn : each node verifies whether a
chosen polynomial, say P , takes a positive, negative, or null value at the point considered.

, Vol. 1, No. 1, Article . Publication date: November 2019.

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

PRAMs over integers do not compute maxflow efficiently :17

Definition 27 ([46]). Let n ∈ N.
A d-th order algebraic decision tree for Rn is a ternary tree where
• each internal node contains a test of the form p(x1, x2, . . . , xn) : 0, where p is a
polynomial of degree at most d ;

• each leaf is labelled by yes or no.
We say that the son of an internal node labeled by a polynom p is consistent for

(x1, . . . , xn) ∈ Rn if it is the right son andp(x1, . . . , xn) > 0, themiddle son andp(x1, . . . , xn) =
0, or the left son and p(x1, . . . , xn) < 0. A branch is consistent for (x1, . . . , xn) ∈ Rn if all
the sons of the internal nodes in the branch are consistent for (x1, . . . , xn).
An algebraic decision tree decides a setW ⊆ Rn if, for all (x1, . . . , xn) ∈ Rn , (x1, . . . , xn) ∈

W if and only if the unique maximal branch consistent with (x1, . . . , xn) ends on a leaf
labelled by yes.

We now define an amc of algebraic decision trees. In a very peculiar way, the underlying
space of algebraic decision trees is Rn , and the set of generators and relations of the monoid
is empty (which means that the monoid is {⋆}), so the amc is 1 : ⟨∅,∅⟩ ↷ X where 1
denotes the trivial action. Intuitively, this is to be expected as algebraic decision trees do
not act on the space of configuration.
LetT be an algebraic decision tree. It can be described as a finite set ST = {⊤,⊥,p1, · · · ,pn}

where the (pi)1⩽i⩽n are polynomials on R, together with a relation between the elements
of the control states.

Definition 28. LetT be an algebraic decision tree. We define [T] as the graphing with set
of control states {⊤,⊥,p1, · · · ,pn} where the (pi)1⩽i⩽n are the polynomials ofT , and each
internal node with label p and sons (a,b, c) defines three edges:

• one of source {®x ∈ Rn | p(x1, . . . , xn) > 0} × {p} realized by (Id,p 7→ a);
• one of source {®x ∈ Rn | p(x1, . . . , xn) = 0} × {p} realized by (Id,p 7→ b);
• one of source {®x ∈ Rn | p(x1, . . . , xn) < 0} × {p} realized by (Id,p 7→ c).

From Theorem 23, one obtains easily the following theorem.

Theorem 29. Let T be a d-th order algebraic decision tree deciding a subsetW ⊆ Rn . Then
the number of connected components ofW is bounded by 2hd(2d − 1)n+h−1

, where h is the

height of T .

Proof. We let h be the height of T , and d be the maximal degree of the polynomials
appearing in T . Then the h-th cell decomposition of [T] defines a family of semi-algebraic
sets defined by h polynomials equalities and inequalities of degree at most d . Moreover,
Theorem 24 states that this family has cardinality bounded by 2h2h0 ([T]); since h0([T]) = 0
because each state has at most one antecedent state, this bound becomes 2h . Thus, the h-th
cell decomposition defines at most 2h algebraic sets which have at most d(2d − 1)n+h−1

connected components. Since the setW decided by T is obtained as a union of the semi-
algebraic sets in the h-th cell decomposition, it has at most 2hd(2d − 1)n+h−1 connected
components. □

Corollary 30 (Steele and Yao [46]). A d-th order algebraic decision tree deciding a

subsetW ⊆ Rn with N connected components has height Ω(logN).

, Vol. 1, No. 1, Article . Publication date: November 2019.

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

:18 Luc Pellissier and Thomas Seiller

This result of Steele and Yao adapts in a straightforward manner to a notion of algebraic
computation trees describing the construction of the polynomials to be tested by mean of
multiplications and additions of the coordinates. The authors remarked this result uses
techniques quite similar to that of Mulmuley’s lower bounds for the model of pramswithout
bit operations. It is also strongly similar to the techniques used by Cucker in proving that
NCR ⊊ PtimeR [16].
However, a refinement of Steele and Yao’s method was quickly obtained by Ben-Or so

as to allow for computing divisions and taking square roots in this notion of algebraic
computation trees. We will now explain Ben-Or techniques from within the framework of
graphings. We will later adapt this refinement of Steele and Yao’s method to Mulmuley’s
prams without bit operations, in order to obtain the main theorem of this paper.

6.3 Algebraic Computational Trees
Algebraic computational trees follow the same principles as algebraic decision trees, but
they allow for the representation of computations as part of the tree. I.e. one consider
nodes for every algebraic operation on the set of polynomials.
More formally, an algebraic computational tree is defined from the nodes ×, +, −, /, √

and a test node with three sons corresponding to < 0, = 0 and > 0 as in the algebraic
decision trees case.
The difference is thus that algebraic computation trees only perform tests on expression

that are first defined by means of algebraic operations. If one restricts to the fragment
without division and square root, the overall computational power, i.e. the sets decided,
of computational trees and decision trees are the same. However, while testing wether a
given polynomial is greater than 0 need only one node in an algebraic decision tree, in
general it requires more in algebraic computational trees since one needs to compute the
polynomial explicitly from basic algebraic operations.
It is not a surprise then that similar bounds to that of algebraic decisions trees can be

computed using similar methods in the restricted fragment without division and square
roots. An improvement on this is the result of Ben-Or generalising the technique to
algebraic computational trees with division and square root nodes. The principle is quite
simple: one simply adds additional variables to avoid using the square root or division,
obtaining in this way a system of polynomial equations. For instance, instead of writing
the equation p/q < 0, one defines a fresh variable r and considers the system

p = qr ; r < 0

This method seems different from the direct entropy bound obtained in the case of
algebraic decision trees. However, we will see how it can be adapted directly to graphings.
Given an integer k ∈ ω, we define the following subspaces of Rω :
• Rωk⩾0 = {(x1, . . . , xk , . . .) ∈ Rω | xk ⩾ 0};
• Rωk⩽0 = {(x1, . . . , xk , . . .) ∈ Rω | xk ⩽ 0};
• Rωk>0 = {(x1, . . . , xk , . . .) ∈ Rω | xk > 0};
• Rωk<0 = {(x1, . . . , xk , . . .) ∈ Rω | xk < 0};
• Rωk=0 = {(x1, . . . , xk , . . .) ∈ Rω | xk = 0};

, Vol. 1, No. 1, Article . Publication date: November 2019.

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

PRAMs over integers do not compute maxflow efficiently :19

start

f1 = x1 − x2

f2 = x1 − x3

f3 = x2 − x3

f4 = f1 × f2

f5 = f4 × f3

f5 = 0

falsetrue

Fig. 2. An algebraic computation tree

• Rωk,0 = {(x1, . . . , xk , . . .) ∈ Rω | xk , 0}.

Definition 31 (treeings). A treeing is an acyclic and finite graphing, i.e. a graphing F
for which there exists a finite graphing representative T with set of control states ST =
{0, . . . , s} and such that every edge of T is state-increasing, i.e. for each edge e of source
Se , for all x ∈ Se ,

πST(α(me)(x) > πST(x),

where πST denotes the projection onto the control states space.
A computational graphing is a graphingT with distinguished states ⊤, ⊥ which admits a

finite representative such that each edge e has its source equal to one among Rω , Rωk⩾0,
Rωk⩽0, R

ω
k>0, R

ω
k<0, R

ω
k=0, and Rωk,0.

A computational treeing is a treeing T which is a computational graphing with the
distinguished states ⊤, ⊥ being incomparable maximal elements of the state space.

Definition 32 (Algebraic computation trees, [10]). An algebraic computation tree on Rn is
a binary tree T with a function that assigns:

• to any vertex v with only one son (simple vertex) an operational instruction of the
form

fv = fvi ◦ fvj
fv = c ◦ fvi

fv =
√
fvi

, Vol. 1, No. 1, Article . Publication date: November 2019.

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

:20 Luc Pellissier and Thomas Seiller

where ◦ ∈ {+,−,×, /}, vi ,vj are ancestors of v and c ∈ R is a constant;
• to any vertex v with two sons a test instruction of the form

fvi > 0
fvi = 0
fvi ⩾ 0

where vi is an ancestor of v or fvi ∈ {x1, . . . , xn};
• to any leaf an output YES or NO.

LetW ⊆ Rn be any set and T be an algebraic computation tree. We say that T computes
the membership problem forW if for all x ∈ Rn , the traversal of T following x ends on a
leaf labelled YES if and only if x ∈W .
We can define the amc of algebraic computation trees. The underlying space is Rω and

the acting monoid is generated by addi (j,k), subi (j,k), multi (j,k), divi (j,k), addi (c, j),
subi (c, j), multi (c, j), divi (c, j), sqrti (j), for i, j,k ∈ ω and c ∈ R acting on Rω as follows:

• α(addi (j,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j + xk , xi+1, . . .);
• α(subi (j,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j − xk , xi+1, . . .);
• α(multi (j,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j × xk , xi+1, . . .);
• α(divi (j,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j/xk , xi+1, . . .) if xk , 0;
• α(addi (c,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, c + xk , xi+1, . . .);
• α(subi (c,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, c − xk , xi+1, . . .);
• α(multi (c,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, c × xk , xi+1, . . .);
• α(divi (c,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, c/xk , xi+1, . . .) if xk , 0;
• α(sqrti (k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1,

√
xk , xi+1, . . .) if xk ⩾ 0.

Definition 33. Let T be a computational treeing on the amc of algebraic computational
trees. The set of inputs In(T) (resp. outputs Out(T)) is the set of integers k (resp. i) such
that there exists an edge e in T :

• either e is realised by one of addi (j,k), addi (k, j), subi (j,k), subi (k, j), multi (j,k),
multi (k, j), divi (j,k), divi (k, j) addi (c,k), subi (c,k), multi (c,k), divi (c,k), sqrti (k);

• or the source of e is one among Rωk⩾0, R
ω
k⩽0, R

ω
k>0, R

ω
k<0, R

ω
k=0, and Rωk,0.

The input space In(T) of a treeing T on the amc of algebraic computational trees is
defined as the set of indices k ∈ ω belonging to In(T) but not to Out(T).

Definition 34. Let T be a treeing on the amc of computational trees, and let n be an
integer larger than the maximal element in In(T). We say thatT computes the membership
problem forW ⊆ Rn if for all (x1, . . . , xn) ∈ Rn , the successful iterations of T on the
subspace {(y1, . . . ,yn, . . .) ∈ Rω | ∀1 ⩾ i ⩾ n,yi = xi } × {0} reach the state ⊤ if and only
if x ∈W .

Remark. Consider two elements a,b, in {(y1, . . . ,yn, . . .) ∈ Rω | ∀1 ⩾ i ⩾ n,yi = xi }×{0}.
One can easily check that πS(T n(a)) = ⊤ if and only if πS(T n(b)) = ⊤, where πS is the
projection onto the state space and T n(a) represents the n-th iteration of T on a. It is
therefore possible to consider only a standard representative of (x1, . . . , xn) ∈ Rn , for
instance (x1, . . . , xn, 0, 0, . . .) ∈ Rω , to decide whether (x1, . . . , xn) ∈ Rn is accepted by T .

, Vol. 1, No. 1, Article . Publication date: November 2019.

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

PRAMs over integers do not compute maxflow efficiently :21

Definition 35. Let T be an algebraic computation tree on Rn , and T ◦ be the associated
directed acyclic graph, built from T by merging all the leaves tagged YES in one leaf ⊤
and all the leaves tagged NO in one leaf ⊥. Suppose the internal vertices are numbered
{n + 1, . . . ,n + ℓ}; the numbers 1, . . . ,n being reserved for the input.
We define [T] as the graphing with control states {n + 1, . . . ,n + ℓ,⊤,⊥} and where

each internal vertex i of T ◦ defines either:

• a single edge of source Rω realized by:
– (addi (j,k), i 7→ t) if i is associated to fvi = fvj + fvk and t is the son of i;
– (subi (j,k), i 7→ t) if i is associated to fvi = fvj − fvk and t is the son of i;
– (multi (j,k), i 7→ t) if i is associated to fvi = fvj × fvk and t is the son of i;
– (addi (c,k), i 7→ t) if i is associated to fvi = c + fvk and t is the son of i;
– (subi (c,k), i 7→ t) if i is associated to fvi = c − fvk and t is the son of i;
– (multi (c,k), i 7→ t) if i is associated to fvi = c × fvk and t is the son of i;

• a single edge of source {(x1, . . . , xn+ℓ, . . .) ∈ Rω | xk , 0} realized by:
– (divi (j,k), i 7→ t) if i is associated to fvi = fvj /fvk and t is the son of i;
– (divi (c,k), i 7→ t) if i is associated to fvi = c/fvk and t is the son of i;

• a single edge of source Rωk⩾0 × {i} realized by (sqrti (k), i 7→ t) if i is associated to
fvi =

√
fvk and t is the son of i;

• a pair of edges:
– one of source Rωk>0 × {i} realized by (Id, i 7→ j) and one of source Rωk⩽0} × {i}

realized by (Id, i 7→ k) if i is associated to fvi > 0 and its two sons are j and k ;
– one of source Rωk⩾0×{i} realized by (Id, i 7→ j) and one of source Rωk<0×{i} realized
by (Id, i 7→ k) if i is associated to fvi ⩾ 0 and its two sons are j and k ;

– one of source Rωk=0×{i} realized by (Id, i 7→ j) and one of source Rωk,0×{i} realized
by (Id, i 7→ k) if i is associated to fvi > 0 and its two sons are j and k ;

Proposition 36. Let α be the amc of algebraic computation trees. Then any algebraic com-

putation treeT is faithfully interpreted as an α -graphing [T]. I.e.T computes the membership

problem forW ⊆ Rn if and only if [T] computes the membership problem forW .

Moreover, [T] is a computational treeing, and for any computational treeing G computing

themembership problem forW ⊆ Rn , there exists an algebraic computation treeTW computing

the membership problem forW .

Proof. A computation tree defines a graphing [T], and the natural graphing representa-
tive obtained from the inductive definition of [T] is clearly a treeing because T is a tree.
That this treeing represents faithfully the computational tree T raises no difficulty.
Let us now show that the membership problem of a subsetW ⊆ Rn that can be decided

by a computational treeing is also decided by an algebraic computational tree T . We prove
the result by induction on the number of states of the computational treeing. The initial
case is when T the set of states is exactly {1,⊤,⊥} with the order defined by 1 < ⊤ and
1 < ⊥ and no other relations. This computational treeing has at most 2 edges, since it is
deterministic and the source of each edge is a subset among Rω , Rωk⩾0, R

ω
k⩽0, R

ω
k>0, R

ω
k<0,

Rωk=0, and Rωk,0.

, Vol. 1, No. 1, Article . Publication date: November 2019.

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

:22 Luc Pellissier and Thomas Seiller

Wefirst treat the case when there is only one edge of sourceRn . An element (x1, . . . , xn) ∈
Rn is decided by T if the main representative ((x1, . . . , xn, 0, . . .), 1) is mapped to ⊤. Since
there is only one edge of source the whole space, either this edge maps into the state ⊤
and the decided subsetW is equal to Rn , or it maps into ⊥ and the subsetW is empty. In
both cases, there exists an algebraic computational tree decidingW . For the purpose of the
proof, we will however construct a specific algebraic computation tree, namely the one
that first computes the right expression and then accepts or rejects. I.e. if the only edge is
mapping into ⊤ (resp. ⊥) is realised by an elementm in the amc of algebraic computation
trees which can be written as a product of generators д1, . . . ,дk , we construct the tree of
height k + 1 that performs (in that order) the operations corresponding to д1, д2, etc., and
then answers "yes" (resp. "no").
Now, the case where there is one edge of source a strict subspace, e.g. Rωk⩾0 (all other

cases are treated in a similar manner) and mapping into ⊤ (the other case is treated by
symmetry). First, let us remark that if there is no other edge, one could very well add an
edge to T mapping into ⊥ and realised by the identity with source the complementary
subspace Rωk<0. We build a tree as follows. First, we test whether the variable xk is greater
or equal to zero; this node has two sons corresponding to whether the answer to the test is
"yes" or "no". We now construct the two subtrees corresponding to these two sons. The
branch corresponding to "yes" is described by the edge of source Rωk⩾0: we construct the
tree of height k + 1 performing the operations corresponding to the generators д1, д2, etc.
whose product defined the realiserm of e , and then answers "yes" (resp. "no") if the edge e
maps into the state ⊤ (resp. ⊥). Similarly, the other subtree is described by the realiser of
the edge of source Rωk<0.
The result then follows by induction, plugging small subtrees as described above in place

of the leaves of smaller subtrees. □

6.4 Entropic co-trees and k-th computational forests
Definition 37 (k-th entropic co-tree). Consider a deterministic graphing representative
T , and fix an element ⊤ of the set of control states. We can define the k-th entropic co-tree
of T along ⊤ and the state cover inductively:

• k = 0, the co-tree coT0(T) is simply the root nϵ = Rn × {⊤};
• k = 1, one considers the preimage of nϵ through T , i.e. T −1(Rn × {⊤}) the set of all
non-empty sets α(me)

−1(Rn × {⊤}) and intersects it pairwise with the state cover,
leading to a finite family (of cardinality bounded by the number of states multiplied
by the number of edges fo T) (nie)i defined as ni = T −1(nϵ) ∩ Rn × {i}. The first
entropic co-tree coT1(T) of T is then the tree defined by linking each nie to nϵ with
an edge labelled byme ;

• k + 1, suppose defined the k-th entropic co-tree of T , defined as a family of elements
nπe where π is a finite sequence of states of length at most k and e a sequence of edges
ofT of the same length, and where nπe and nπ ′

e′ are linked by an edge labelled f if and
only if π ′ = π .s and e′ = f .e where s is a state and f an edge of T . We consider the
subset of elements nπe′ where π is exactly of length k , and for each such element we
define new nodes nπ .se .e′ defined as α(me)

−1(nπe′) ∩ Rn × {s} when it is non-empty. The

, Vol. 1, No. 1, Article . Publication date: November 2019.

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

PRAMs over integers do not compute maxflow efficiently :23

k + 1-th entropic co-tree coTk+1(T) is defined by extending the k-th entropic co-tree
coTk (T), adding the nodes nπ .se .e′ and linking them to nπe′ with an edge labelled by e .

Remark. The co-tree can alternatively be defined non-inductively in the following way:
the nπe for π is a finite sequence of states and e a sequence of edges ofT of the same length
by nϵϵ = Rn × {⊤} and

nπ .se.e =
[
α(me)

−1(nπe)
]
∩ [Rn × {s}]

The k-th entropic co-tree of T along ⊤ has as vertices the non-empty sets nπe for π and e
of length at most k and as only edges, links nπ .se.e → nπe labelled byme .

This definition formalises a notion that appears more or less clearly in the work of
Lipton and Steele, and of Ben-Or, as well as in the proof by Mulmuley. The nodes for
paths of length k in the k-th co-tree corresponds to the k-th cell decomposition, and the
corresponding path defines the polynomials describing the semi-algebraic set decided by
a computational tree. The co-tree can be used to reconstruct the algebraic computation
treeT from the graphing representative [T], or constructs some algebraic computation tree
(actually a forest) that approximates the computation of the graphing F under study when
the latter is not equal to [T] for some tree T .

Definition 38 (k-th computational forest). Consider a deterministic graphing T , and fix
an element ⊤ of the set of control states. We define the k-th computational forest of T
along ⊤ and the state cover as follows. Let coTk (T) be the k-th entropic co-tree of T . The
k-th computational forest of T is defined by regrouping all elements nπe . ®e ′ of lengthm: if
the set Nm

e = {nπe . ®e ′ ∈ coTk (T) | len(π) = m} is non-empty it defines a new node Nm
e .

Then one writes down an edge from Nm
e to Nm−1

e ′ , labelled by e , if and only if there exists
ns .π
e .e ′. ®f

∈ Nm
e such that nπ

e ′. ®f
∈ Nm−1

e ′ .

One checks easily that the k-th computational forest is indeed a forest: an edge can exist
between Nm

e and N n
f only when n =m + 1, a property that forbids cycles. The following

proposition shows how the k-th computational forest is linked to computational trees.

Proposition 39. IfT is a computational tree of depth k , the k-th computational forest of [T]
is a tree which defines straightforwardly a graphing (treeing) representative of T .

We now state and prove an easy bound on the size of the entropic co-trees.

Proposition 40 (Size of the entropic co-trees). LetT be a graphing representative, Card(E)
its number of edges. The number of nodes of its k-th entropic co-tree coTk (T), as a function
n(k) of k , is asymptotically bounded by 2k+12Card(E).h([G])

, i.e. n(k) = O(2k+1).

Proof. The number of elements nπe . ®e ′ of lengthm in coTk (T) is equal to the number of
elements in them-th cell decomposition ofT , and is therefore bounded by д(m) = 2m2h([T])
by Theorem 23. The size of coTk (T) is thus bounded by 2k+12(h([T]). □

, Vol. 1, No. 1, Article . Publication date: November 2019.

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

:24 Luc Pellissier and Thomas Seiller

6.5 The theorem Ben-Or
We now use Ben-Or proof technique to obtain a bound on the number of connected
components of the subsetsW ⊆ Rn whose membership problem is computed by a graphing
in less than a given number of iterations.
This theorem specialises to the original theorem by Ben-Or relating the number of

connected components of a setW and the depth of the algebraic computational trees that
compute the membership problem forW .

Theorem 41. Let G be a computational graphing representative with edges realised only

by generators of the amc of algebraic computational trees, and Card(E) its number of edges.

Suppose G computes the membership problem forW ⊆ Rn in k steps, i.e. for each element

of Rn , πS(Gk (x)) = ⊤ if and only if x ∈W . ThenW has at most 2h0([G])+132k+n+1
connected

components.

Proof. If G computes the membership problem forW in k steps, it meansW can be
described as the union of the subspaces corresponding to the nodes nπe with π of length k
in coTk (T). Now, each such subspace is an algebraic set, as it can be described by a set of
polynomials as follows.
We define a system of equations (Eei)i for each node nπe of the entropic co-tree coTk (T).

This is done inductively on the size of the path ®e , keeping track of the last modifications
of each register. I.e. we define both the system of equations (Eei)i and a function h(e) :
Rω + ⊥ → ω (which is almost everywhere null)8. For an empty sequence, the system of
equations is empty, and the function h(ϵ) is constant, equal to 0.
Suppose now that ®e ′ = (e1, . . . , em, em + 1), with ®e = (e1, . . . , em), and that one already

computed (Eei)i⩾m and the function h(e). We now consider the edge em+1 and let (r , r ′) be
its realizer. We extend the system of equations (Eei)i⩾m by a new equation Em+1 and define
the function h(e′) as follows:

• if r = addi (j,k), h(e′)(x) = h(e)(x)+ 1 if x = i , and h(e′)(x) = h(e)(x) otherwise; then
Em+1 is xh(e

′)(i)
i = xh(e

′)(j)
j + xh(e

′)(k)
k ;

• if r = subi (j,k), h(e′)(x) = h(e)(x)+ 1 if x = i , and h(e′)(x) = h(e)(x) otherwise; then
Em+1 is xh(e

′)(i)
i = xh(e

′)(j)
j − xh(e

′)(k)
k ;

• if r = multi (j,k), h(e′)(x) = h(e)(x) + 1 if x = i , and h(e′)(x) = h(e)(x) otherwise;
then Em+1 is xh(e

′)(i)
i = xh(e

′)(j)
j × xh(e

′)(k)
k ;

• if r = divi (j,k), h(e′)(x) = h(e)(x)+ 1 if x = i , and h(e′)(x) = h(e)(x) otherwise; then
Em+1 is xh(e

′)(i)
i = xh(e

′)(j)
j /xh(e

′)(k)
k ;

• if r = addi (c,k), h(e′)(x) = h(e)(x)+ 1 if x = i , and h(e′)(x) = h(e)(x) otherwise; then
Em+1 is xh(e

′)(i)
i = c + xh(e

′)(k)
k ;

• if r = subi (c,k), h(e′)(x) = h(e)(x)+ 1 if x = i , and h(e′)(x) = h(e)(x) otherwise; then
Em+1 is xh(e

′)(i)
i = c − xh(e

′)(k)
k ;

• if r = multi (c,k), h(e′)(x) = h(e)(x) + 1 if x = i , and h(e′)(x) = h(e)(x) otherwise;
then Em+1 is xh(e

′)(i)
i = c × xh(e

′)(k)
k ;

8The use of ⊥ is to allow for the creation of fresh variables not related to a register.

, Vol. 1, No. 1, Article . Publication date: November 2019.

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

PRAMs over integers do not compute maxflow efficiently :25

• if r = divi (c,k), h(e′)(x) = h(e)(x)+ 1 if x = i , and h(e′)(x) = h(e)(x) otherwise; then
Em+1 is xh(e

′)(i)
i = c/xh(e

′)(k)
k ;

• if r = sqrti (k), h(e′)(x) = h(e)(x) + 1 if x = i , and h(e′)(x) = h(e)(x) otherwise; then

Em+1 is xh(e
′)(i)

i =

√
xh(e

′)(k)
k ;

• if r = Id, the source of the edge eq is of the form {(x1, . . . , xn+ℓ) ∈ Rn+ℓ | P(xk)}× {i}.
– If P(xk) is xk , 0, h(e′)(x) = h(e)(x) + 1 if x = ⊥, and h(e′)(x) = h(e)(x) otherwise
then Em+1 is xh(e

′)(⊥)
⊥ xh(e

′)(k)
k − 1 = 0;

– otherwise we set h(e′) = h(e) and Em+1 equal to P .
We now consider the system of equations (Ei)ki=1 defined from the path e of length k

corresponding to a node nπe of the k-th entropic co-tree of G. This system consists in k
equations of degree at most 2 and containing at most k +n variables, counting the variables
x0

1, . . . , x
0
n corresponding to the initial registers, and adding at most k additional variables

since an edge of ®e introduces at most one fresh variable. By by Theorem 26 one obtains
that the defined semi-algebraic set has at most 2.32k+n−1 connected components. Since
the number of vertices nπe is bounded by 2h0([G]) by Theorem 24, we have that the set
W whose membership problem is decided by G has at most 2h0([G])+132k+n+1 connected
components. □

This theorem extends to the case of general computational graphings by considering
the algebraic degree of the graphing.

Definition 42 (Algebraic degree). The algebraic degree of an element of the amc is the
minimal number of generators needed to express it.
The algebraic degree of a graphing is the maximum of the algebraic degrees of the

realisers of its edges.

If an edge is realised by an elementm of algebraic degree D, then the method above
applies by introducing the D new equations corresponding to the D generators used to
definem. The general result then follows.

Theorem 43. Let G be a computational graphing representative, Card(E) its number of

edges, and D its algebraic degree. Suppose G computes the membership problem forW ⊆ Rn

in k steps, i.e. for each element of Rn , πS(Gk (x)) = ⊤ if and only if x ∈W . ThenW has at

most 2h0([G])+132kD+n+1
connected components.

Corollary 44 ([10, Theorem 5]). LetW ⊆ Rn be any set, and let N be the maximum of

the number of connected components ofW and Rn \W .

An algebraic computation tree computing the membership problem for W has height

Ω(logN).

Proof. Let T be an algebraic computation tree computing the membership problem for
W , and consider the computational treeing [T]. Let d be the height of T ; by definition of
[T] the membership problem forW is computed in exactly d steps. Thus, by the previous
theorem,W has at most 2h0([T])+132d+n+1 connected components. As the interpretation of
an algebraic computational tree, h0([T]) is at most equal to 2. Hence N ⩽ 233n+132d , i.e.
d = Ω(logN). □

, Vol. 1, No. 1, Article . Publication date: November 2019.

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

:26 Luc Pellissier and Thomas Seiller

We immediately deduce an application that will be useful to us in the remainder. Let
m ∈ N and 0 < x < 2m . Let k ∈ N be such that 1 ⩽ k ⩽ m. We call

⌊
x

2k−1

⌋
− 2

⌊
x
2k

⌋
the

k-th bit of x .

Lemma 45. An algebraic computation tree computing the k-th bit of x has height Ω(log(m−

k)).

Proof. Let

W =
{
x ∈ R |

⌊ x

2k−1

⌋
− 2

⌊ x
2k

⌋
= 1

}
W is the disjoint union ofm − k + 1 intervals, and so is its complement in]0; 2m[. So, by
Theorem 44, any algebraic computation tree computing the k-th bit has height Ω(logm −

k). □

7 SRAMS AND PRAMS
7.1 Random Access Machines (srams)
In this paper, we will consider algebraic parallel random access machines, that act not on
strings of bits, but on integers. In order to define those properly, we first define the notion
of (sequential) random access machine (sram) before considering their parallelisation.
A sram command is a pair (ℓ, I) of a label (or line) ℓ ∈ N⋆ and a command I among the

following:
Commands := skip; Xi B c; Xi B Xj ◦ Xk;

Xi B Xj; Xi B ♯Xj; ♯Xi B Xj;
if Xi = 0 goto ℓ else ℓ′;

where i, j ∈ N, ◦ ∈ {+,−,×, /}, c ∈ Z is a constant and ℓ, ℓ′ ∈ N⋆ are labels.
A sram machine M is then a finite set of commands such that the set of labels is

{1, 2, . . . , |M |}, with |M | the length ofM . Wewill denote the commands inM by (i, InstM (i)),
i.e. InstM (i) denotes the i-labelled command.
The semantics of sram machines is quite straightforward: a configuration is represented

as a pair (i,σ) where i is the current label and σ : N → Z – an eventually null function –
represent the state of the registers. Then the commands above are easily interpreted as a
transition to the label i + 1 (except in case of the conditional) and an updated function σ .
E.g. a ♯Xi B Xj command induces the following transition: (i,σ) → (i + 1,σ [σ (j)/σ (i)]),
while a Xi B ♯Xj command induces the transition (i,σ) → (i + 1,σ [σ (σ (j))/i]).

Parallel Random Access Machines (prams). Based on the notion of sram, we are now
able to consider their parallelisation, namely prams. A pram machineM is simply given
as a finite sequence of sram machinesM1, . . . ,Mp , where p is the number of processors of
M . Each processorMi has access to its own, private, set of registers (Xik)k⩾0 and a shared
memory represented as a set of registers (X0

k)k⩾0.
As usual, one has to deal with conflicts when several processors try to access the shared

memory simultaneously. We here chose to work with the crew discipline, i.e. Concurrent
Read, Exclusive Write, implemented as follows: at a given step at which several processors

, Vol. 1, No. 1, Article . Publication date: November 2019.

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

PRAMs over integers do not compute maxflow efficiently :27

try to write in the shared memory, only the processor with the smallest index will be
allowed to do so.

7.2 The sram action
We now define the sram action. As we intend to consider prams, we consider from the
begining the memory of a sram to be separated in two infinite blocks Zω , intended to
represent both shared and a private memory cells. The underlying space is X = Zω × Zω .
The set of generators is defined following the possible actions of an sram on the memory:
consti (c), addi (j,k), subi (j,k), multi (j,k), eucdivi (j,k), copy(i, j), copy(♯i, j), copy(i, ♯j).
Each of the generator acts as follows (we do not distinguish the two kinds of memory and
suppose the indices unique here):

• α(consti (c))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, c, xi+1, . . .);
• α(addi (j,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j + xk , xi+1, . . .);
• α(subi (j,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j − xk , xi+1, . . .);
• α(multi (j,k))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j × xk , xi+1, . . .)
• for α(eucdivi (j,k)),

(x1, . . . , xi−1, xi , xi+1, . . .) 7→

(x1, . . . , xi−1,b, xi+1, . . .) such that x j = bxk + r

and 0 ⩽ r < xk
if xk , 0

(x1, . . . , xi−1, 0, xi+1, . . .) else

• α(copy(i, j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j , xi+1, . . .);
• α(copy(♯i, j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, xx j , xi+1, . . .);
• α(copy(i, ♯j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xxi−1, x j , xxi+1, . . .).
srammachines can be represented as graphings w.r.t. this action; intuitively the encoding

works as follows. The notion of control state allows to represent the notion of line in the
program. Then, the action just defined allows for the representation of all commands but
the conditionals. The conditionals are represented as follows: depending on the value of
Xi one wants to jumps either to the line ℓ or to the line ℓ′; this is easily modelled by two
different edges of respective sources H(i) = {®x | xi = 0} and H(i)c = {®x | xi , 0}.

Definition 46. Let M be a sram machine. We define [M] as the graphing with set of
control states {0, 1, . . . , L, L + 1} where each line ℓ defines:

• either a single edge e of source X × {ℓ} and realised by:
– (Id, ℓ 7→ ℓ + 1) if InstM (ℓ) is skip;
– (consti (c), ℓ 7→ ℓ + 1) if InstM (ℓ) is Xi B c;
– (addi (j,k), ℓ 7→ ℓ + 1) if InstM (ℓ) is Xi B Xj + Xk;
– (subi (j,k), ℓ 7→ ℓ + 1) if InstM (ℓ) is Xi B Xj − Xk;
– (multi (j,k), ℓ 7→ ℓ + 1) if InstM (ℓ) is Xi B Xj × Xk;
– (copy(i, j), ℓ 7→ ℓ + 1) if InstM (ℓ) is Xi B Xj;
– (copy(i, ♯j), ℓ 7→ ℓ + 1) if InstM (ℓ) is Xi B ♯Xj;
– (copy(♯i, j), ℓ 7→ ℓ + 1) if InstM (ℓ) is ♯Xi B Xj;

• a single edge e of source H(k) × {ℓ} and realised by (eucdivi (j,k), ℓ 7→ ℓ + 1) if
InstM (ℓ) is Xi B Xj/Xk;

, Vol. 1, No. 1, Article . Publication date: November 2019.

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

:28 Luc Pellissier and Thomas Seiller

• or, if the line is a conditional if Xi = 0 goto ℓ0 else ℓ1, a pair e, ec of edges of re-
spective sources H(i) × {ℓ} and H(i)c × {ℓ} and realised by respectively (Id, ℓ 7→ ℓ0)
and (Id, ℓ 7→ ℓ1).

If a graphing T in the amc of prams has a distinguished control state ⊤, we say that T
accepts x ∈ Zd if T accepts ((d, x1, . . . , xd , 0, . . .), (0, . . .), (0, . . .), . . .).
One can now easily check that the representation of the machine M as a graphing is

sound.

Theorem 47. The representation of srams as graphings is sound.

Proof. The proof is an easy verification that the interpretation of commands in the
graphing do coincide with the semantics of these commands. □

7.3 The crew of the sram action: prams
We can now define amc of prams and thus the interpretations of prams as abstract programs.
For each integer p, we define the amc crewk (α) for α is the amc for srams defined in the
previous section. This allows the consideration of up to p parallel srams. The interpretation
of such a sram with p processors is then defined by considering a set of states equal to
L1 × L2 × · · · × Lp where for all i the set Li is the set of labels of the i-th processor.
Now, to deal with arbitrary large prams, i.e. with arbitrarily large number of processors,

one considers the following amc defined as a direct limit.

Definition 48 (The amc of prams). Let α : M ↷ X × X be the sram amc. The amc of
prams is defined as lim

−−→
crewk (α), where crewk−1(α) is identified with a restriction of

crewk (α) through crewk−1(α)(m1, . . . ,mk−1) 7→ crewk (α)(m1, . . . ,mk−1, 1).

Remark that the underlying space of the pram amc is defined as the union ∪n∈ωZω ×

(Zω)n which we will write Zω × (Zω)(ω).
The fact that the crew operation on actions does define the semantics of the crew

discipline for concurrent read/write should be clear from the definitions. As a consequence,
Theorem 47 the interpretation of prams as graphings is sound.

Theorem 49. The representation of prams as graphings is sound.

7.4 The entropic co-trees of a pram
A pram defines a family of entropic co-trees by using Def. 37. These co-trees are in the
amc of prams, which we designed to be similar to the amc of algebraic computation trees.
The three main differences are:

• the amc of prams acts on Zω × (Zω)(ω), while that algebraic computational trees acts
on Rd ;

• an action of the amc of prams with p processors is a tuple of p actions in the amc of
srams;

• the euclidian division in the amc of prams can not be translated straightforwardly.
We will handle this difficulties separately, by introducing an amc of prams over R and

translating a treeing in the amc of prams into a treeing in the amc of prams over R, and
then by adapting the proofs of Section above to this amc.

, Vol. 1, No. 1, Article . Publication date: November 2019.

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

PRAMs over integers do not compute maxflow efficiently :29

prams over R. The amc of srams over R is defined as the amc of srams, but the underlying
space is Rω × Rω × Rω , where we interpret the first two copies as public and the third
as private, and the generator corresponding to euclidian division is replaced by the real
division. we introduce the second public copy so as to be able to have fresh variables:
indeed, we cannot define the set of memory cells that a program can use, due to the indirect
addressing ♯Xi B Xj.
Explicitly the set of generators is given by: consti (c), addi (i, j), subi (i, j), multi (i, j),

divi (i, j), copy(i, j), copy(♯i, j), copy(i, ♯j) that act by:
• α(consti (c))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, c, xi+1, . . .);
• α(addi (i, j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, xi + x j , xi+1, . . .);
• α(subi (i, j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, xi − x j , xi+1, . . .);
• α(multi (i, j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, xi × x j , xi+1, . . .)
• α(divi (i, j)) = (x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, xi/x j , xi+1, . . .) if x j , 0;
• α(copy(i, j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, x j , xi+1, . . .);
• α(copy(♯i, j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xi−1, xx j , xi+1, . . .) if x j ∈ ω;
• α(copy(i, ♯j))(x1, . . . , xi−1, xi , xi+1, . . .) = (x1, . . . , xxi−1, x j , xxi+1, . . .) if xi ∈ ω.

The amc of pram over R is then defined as the limit of the crew of this amc, just as in the
Z case, and so acts on Rω × Rω × (Rω)(ω).
We do not define the prams in this amc, as we are just interested in it to translate treeings.

If a graphingT in the amc of prams over R has a distinguished control state ⊤, we say that
T accepts x ∈ Rd if T accepts ((d, x1, . . . , xd , 0, . . .), (0, . . .), (0, . . .), . . .).

From a treeing of pram to a treeing of pram over R. We can associate to every treeing
in the amc of prams a treeing in the amc of prams over R, that, limited to the integers,
decide the same set.
In what follow, we will distinguish the copies on which a pram acts by writing ®x =

((x1, . . .), (y1, . . .), (z
i
1)0≤i) ∈ Rω × Rω × (Rω)(ω) the different elements.

Definition 50. Let T be a treeing in the amc of prams with control states S , and suppose
that its edges labelled with eucdivi (j,k) are numbered 1, . . . , t .
We define the real mate R(T) as the treeing with control states S × {1, 2, 3} where the

n-th vertex labelled eucdivi (j,k) : a → b is replaced by the vertices:
• one of source a ∩ {®x | y2n ≥ 0} and labelled by identity;
• one of source a ∩ {®x | y2n < xk } and labelled by the identity;
• one of source a labelled by suby2n+1(j,y2n)
• one of source a labelled by divi (y2n+1,k)

where the state moves in all these operations in its new component.

The real mate allows to compute the euclidian division when restricted to integers, by
adding new variables and relations between them.

Theorem 51. Let T be a pram with p processors, that ends in k steps.

The real mate of its k-th entropic co-tree is a treeing Q in the amc of prams over R such

that:

• Q is of height at most 4k ;

, Vol. 1, No. 1, Article . Publication date: November 2019.

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

:30 Luc Pellissier and Thomas Seiller

• ∀x ∈ Zd , Q accepts x if and only if T accepts x ;
• the subspace accepted by this treeing can be defined by a set of (2p)4k polynomial

equations of degree at most 24k
.

Proof. The only point that needs to be developed is the last one: we traverse the tree
and add equations as for the algebraic computation trees. □

We remark here that we could add a square root instruction to our prams, just as in the
algebraic computation trees.

8 ALGEBRAIC SURFACES FOR AN OPTIMIZATION PROBLEM
8.1 Geometric Interpretation of Optimization Problems
We start by showing how decision problems of a particular form induce a binary partition
of the space Zd : the points that are accepted and those that are rejected. Intuitively, the
machine decides the problem if the partition it induces refines the one of the problem.
We will consider problems of a very specific form: decisions problems in Z3 associated

to optimization problems. Let Popt be an optimization problem on Rd . Solving Popt on
an instance t amounts to optimizing a function ft (·) over a space of parameters. We
note MaxPopt(t) this optimal value. An affine function Param : [p;q] → Rd is called a
parametrization of Popt. Such a parametrization defines naturally a decision problem Pdec:
for all (x,y, z) ∈ Z3, (x,y, z) ∈ Pdec iff z > 0, x/z ∈ [p;q] and y/z ≤ MaxPopt ◦Param(x/z).
In order to study the geometry of Pdec in a way that makes its connection with Popt clear,

we consider the ambient space to be R3, and we define the ray [p] of a pointp as the half-line
starting at the origin and containing p. The projection Π(p) of a point p on a plane is the
intersection of [p] and the affine plane A1 of equation z = 1. For any point p ∈ A1, and all
p1 ∈ [p], Π(p1) = p. It is clear that for (p,p ′,q) ∈ Z2 × N+, Π((p,p ′,q)) = (p/q,p ′/q, 1).
The cone [C] of a curveC is the set of rays of points of the curve. The projection Π(C) of

a surface or a curveC is the set of projections of points inC . We note Front the frontier set

Front = {(x,y, 1) ∈ R3 | y = MaxPopt ◦ Param(x)}.

and we remark that

[Front] = {(x,y, z) ∈ R2 × R+ | y/z = MaxPopt ◦ Param(x/z)}.

Finally, a machineM decides the problem Pdec if the sub-partition of accepting cells in
Z3 induced by the machine is finer than the one defined by the problem’s frontier [Front]
(which is defined by the equation y/z ≤ MaxPopt ◦ Param(x/z)).

8.2 Parametric Complexity
We now further restrict the class of problems we are interested in: we will only consider
Popt such that Front is simple enough. Precisely:

Definition 52. We say that Param is an affine parametrization of Popt if Param; MaxPopt
is

• convex
• piecewise linear, with breakpoints λ1 < · · · < λρ

, Vol. 1, No. 1, Article . Publication date: November 2019.

1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

PRAMs over integers do not compute maxflow efficiently :31

• such that the (λi)i and the (MaxPopt ◦ Param(λi))i are all rational.
The (parametric) complexity ρ(Param) is defined as the number of breakpoints of

Param; MaxPopt.

An optimization problem that admits an affine parametrization of complexity ρ is thus
represented by a surface [Front] that is quite simple: the cone of the graph of a piecewise
affine function, constituted of ρ segments. We say that such a surface is a ρ-fan. This
restriction seems quite serious when viewed geometrically. Nonetheless, many optimization
problems admit such a parametrization. Before giving examples, we introduce another
measure of the complexity of a parametrization.

Definition 53. Let Popt be an optimization problem and Param be an affine parametriza-
tion of it. The bitsize of the parametrization is themaximum of the bitsizes of the numerators
and denominators of the coordinates of the breakpoints of Param; MaxPopt.
In the same way, we say that a ρ-fan is of bitsize β if all its breakpoints are rational and

the bitsize of their coordinates is lesser thant β .

Theorem 54 (Murty [36], Carstensen [12]).

(1) there exists an affine parametrization of bitsize O(n) and complexity 2Ω(n) of combina-

torial linear programming, where n is the total number of variables and constraints of

the problem.

(2) there exists an affine parametrization of bitsize O(n2) and complexity 2Ω(n) of the
maxflow problem for directed and undirected networks, where n is the number of nodes

in the network.

We refer the reader to Mulmuley’s paper [34, Thm. 3.1.3] for proofs, discussions and
references.

8.3 Algebraic Surfaces
An algebraic surface in R3 is a surface defined by an equation of the form p(x,y, z) = 0
where p is a polynomial. If S is a set of surfaces, each defined by a polynomial, the total
degree of S is defined as the sum of the degrees of polynomials defining the surfaces in S .
Let K be a compact of R3 delimited by algebraic surfaces and S be a finite set of algebraic

surfaces, of total degree δ . We can assume that K is actually delimited by two affine planes
of equation z = µ and z = 2µz and the cone of a rectangle {(x,y, 1) | |x |, |y | ⩽ µx ,y }, by
taking any such compact containing K and adding the surfaces bounding K to S . S defines
a partition of K by considering maximal compact subspaces of K whose boundaries are
included in surfaces of S . Such elements are called the cells of the decomposition associated
to S .
The cell of this partition can have complicated shapes: in particular, a cell can have a

arbitrarily high number of surfaces of S as boundaries. We are going to refine this partition
into a partition ColS whose cells are all bounded by cones of curves and at most two
surfaces in S .

, Vol. 1, No. 1, Article . Publication date: November 2019.

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440

:32 Luc Pellissier and Thomas Seiller

Fig. 3. A torus and the projection of its silhouette

8.4 Collins’ decomposition
We define the silhouette of a surface defined by the equation p(x,y, z) = 0 by:{

p(x,y, z) = 0
x
∂p
∂x + y

∂p
∂y + z

∂p
∂z = 0.

The silhouette of a surface is the curve on the surface such that all points (x,y, z) of the
silhouette are such that the ray [(x,y, z)] is orthogonal to the tangent plane of the surface
on (x,y, z).
Up to infinitesimal perturbation of the coefficients of the polynomials, we can assume

that the surfaces of S have no integer points in K .
Π(K) = {Π(x) | x ∈ K} is a compact of the affine plane A1. Let us consider the set Π(S)

of curves in Π(K) containing:
• the projection of the silhouettes of surfaces in S ;
• the projection of the intersections of surfaces in S and of the intersection of surfaces
in S with the planes z = µ(1 + n

6δ), n ∈ {1, . . . , 6δ − 1}, where δ is the total degree of
S ;

• vertical lines of the form {(x,a, 1) | |x | ≤ 2β+1} for a a constant such that such lines
pass through:
– all intersections among the curves;
– all singular points of the curves;
– all critical points of the curves with a tangent supported by ®ey .

Π(S) defines a Collins decomposition [14] of Π(K). The intersection of any affine line
supported by ®ey of the plane with a region of this decomposition is connected if nonempty.
Let c be a cell in Π(S). It is enclosed by two curves in Π(K) and at most two vertical

lines. The curves can be parametrized by cmax : x 7→ max{y ∈ R | (x,y, 1) ∈ c} and
cmin : x 7→ min{y ∈ R | (x,y, 1) ∈ c}, which are both smooth functions. The volatility
of c is defined as the number of extrema of the second derivatives c ′′min and c ′′max on their
domains of definition.
This set of curves Π(S) can be lifted to a set of surfaces ColS (K) of K that contains:

, Vol. 1, No. 1, Article . Publication date: November 2019.

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

//
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh)
{
 var t=new Matrix4x4(mesh.transform);
 if(mesh.parent.name != "") {
 var parentTransform=fulltransform(mesh.parent);
 t.multiplyInPlace(parentTransform);
 return t;
 } else
 return t;
}

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
 var node=nodes.getByIndex(i);
 var name=node.name;
 var end=name.lastIndexOf(".")-1;
 if(end > 0) {
 if(name.charAt(end) == "\001") {
 var start=name.lastIndexOf("-")+1;
 if(end > start) {
 node.name=name.substr(0,start-1);
 var nodeMatrix=fulltransform(node.parent);
 var c=nodeMatrix.translation; // position
 var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
 bbnodes.push(node);
 bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
 }
 }
 }
}

var camera=scene.cameras.getByIndex(0);
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
 var T=new Matrix4x4();
 T.setView(zero,camera.position.subtract(camera.targetPosition),
 camera.up.subtract(camera.position));

 for(var j=0; j < bbcount; j++)
 bbnodes[j].transform.set(T.multiply(bbtrans[j]));
 runtime.refresh();
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

PRAMs over integers do not compute maxflow efficiently :33

• the surfaces of S ;
• the cones [s] of every curve s in Π(S);
• the planes bounding K ;
• 6δ − 2 dividing planes of equation z = µ(1 + n

6δ), n ∈ {1, . . . , 6δ − 1}.
The projection of a cell of ColS is a cell of Π(S). We say that a cell of ColS (K) is flat if none
of its boundaries are included in surfaces of S .
Let us call d(S) the number of cells in ColS (K).
Let c be a cell in ColS (K). Its volatility is defined as the volatility of its projection in Π(S).

8.5 Volatility and Separation
Definition 55. Let K be a compact of R3.
A finite set of surfaces S on K separates a ρ-fan Fan on K if the partition on Z3 ∩ K

induced by S is finer than the one induced by Fan.

Theorem 56. Let S be a finite set of algebraic surfaces of total degree δ , and Fan a ρ-fan of

bitsize β .
If S separates Fan, there exists a compact K and a cell of ColS (K) with volatility greater

than ρ/d(S).

In order to prove this theorem, we will build explicitely the compact K and this cell by
considering sample points on Fan and show in Lemma 58 a bound on the volatility of this
cell.
Let K be a compact delimited by the cone of a rectangle {(x,y, 1) | |x |, |y | ⩽ 2β+1} and

two planes of equation z = µ and z = 2µ, with µ > (6δ + 1)2β . We first remark that all
affine segments of Fan are in the rectangle base of K .
For each affine segment of Fan with endpoints (xi ,y1, 1) and (xi+1,yi+1, 1) let, for 0 <

k < 10d(S),yki be such that (xki ,y
k
i , 1) is in the affine segment, where xki =

(10d(S)−k)xi+kxi+1
10d(S) .

We remark that, as |xi − xi+1 | > 2−β , we have, for k,k ′, |xki − xk
′

i | > 2−β/10d(S).

Lemma 57. For all sample points (xki ,y
k
i , 1), there exists a flat cell in ColS that contains an

integer point of [(xki ,y
k
i , 1)].

Proof. Let (xki ,y
k
i , 1) be a sample point. [(xki ,y

k
i , 1)] is divided in N + 1 intervals by the

dividing planes. On the other hand, [(xki ,y
k
i , 1)] intersects surfaces of S in at most δ points,

by Bézout theorem. So, there exists an interval e of [(xki ,y
k
i , 1)] that is bounded by the

dividing planes and that do not intersect any surface in S . By construction, e is included in
a flat cell, and its projection on the z-axis has length µ/(6δ +1), so, as (xki ,y

k
i , 1) is of bitsize

β , (n2βxki ,n2βyki ,n2β) is, for all n ∈ N an integer point of the ray, so, as µ > (6δ + 1)2β , e
contains an integer point. □

So, for each affine segment of Fan, there exists a flat cell in ColS that contains integer
points in the ray of at least 10 sample points of the affine segment. Going further, there
exists a cell c of ColS that contains integer points in the ray of at least 10 sample points of
ρ/d(S) affine segments of Fan.

Lemma 58. The volatility of c is at least ρ/d(S).

, Vol. 1, No. 1, Article . Publication date: November 2019.

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

:34 Luc Pellissier and Thomas Seiller

This is achieved by applying the mean value theorem on the function Π(c)′max on pairs
of sample points. In particular, this proof uses no algebraic geometry.

Proof. Let e be a segment of Fan such that the ray of 10 of its sample points contain
an integer point in c . Let p = (x,y, z) be one of its integer point and Π(p) = (xp,yp, 1) its
projection, which is a sample point in Π(c). Let q = (x,y + 1, z). As Π(p) is in Fan, and
S separates Fan, q is not in c , and Π(q) = (xq,yq, 1) is not in Π(c). By Thalès theorem,
0 < yq−yp <

1
µ . So, asyq > Π(c)max(xp) > yp , we have in particular that 0 < Π(c)max(xp)−

yp <
1
µ .

So, the 10 sample points have coordinates that approximate the graph of Π(c)max with
an error bounded by 1

µ . Consider two of them p1 = (x1,y1, 1) and p2 = (x2,y2, 1), such
that x1 < x2. Let a be the slope of e (in particular a = (y2 − y1)/(x2 − x1). By the mean
value theorem, there exists α ∈ [x1, x2] such that Π(c)′max(α) =

Π(c)max(x2)−Π(c)max(x1)
x2−x1

. But
|Π(c)max(x2) − Π(c)max(x1)| ≤ |y2 −y1 | +

2
µ and |x2 − x1 | >

1
10d(S)2β . So, |Π(c)

′
max(α) − a | ≤

2 10d(S)2β
µ .

So, the function Π(c)′max is close to the value a, with error bounded, between all the
sample points. By applying the mean value theorem again, we get that there exists a point
in the interval such that Π(c)′′max is close to 0, with an error bounded by 2 10d(S)2β

µ .
In the same way, let e ′ be another segment of Fan such that the ray of 10 of its sample

points contain an integer point in c , of slope a′. Let two of them be p ′1 = (x ′
1,y

′
1, 1) and

p ′2 = (x ′
2,y

′
2, 1), and suppose x ′

2 > x ′
1 > x2. By the same reasoning as above, there exists

α ′ ∈ [x ′
1, x

′
2] such that |Π(c)′max(α

′) − a′ | ≤ 2 10d(S)2β
µ . By the mean value theorem, there

exists β ∈ [α,α ′] such that Π(c)′′max(β) =
Π(c)′max(α

′)−Π(c)′max(α)
α ′−α > 1

µ (|a − a′ | − 2 10d(S)2β
µ).

So, for each of the ρ/d(S) segments of Fan, we can exhibit a point such that Π(c)′′max is
close to zero, and for each successive segment, a point such that it is far. So Π(c)′′max has at
least ρ/d(S) extrema. □

8.6 Volatility and Degree
Mulmuley’s result follows from Thm. 56 and the two lemmas:

Lemma 59. Let S be a finite set of curves of total degree δ , and K be a compact. The cells of

the decomposition ColS of K have a volatility bounded by a polynomial in δ .

Proof. Let c be a cell in ColS and д(x,y) = 0 be the equation of one of the boundaries
of Π(c) in the affine plane. The degree of д is bounded by the degree of the intersection of
surfaces in S . Any extrema x of f ′′, where f is a parametrizationy = f (x) of this boundary,
can be represented as a point (x,y,y(1),y(2),y(3)) in the 5-dimensional phase space that
satisfy polynomial equations of the form:

д(x,y) = 0, д1(x,y,y
(1)) = 0, д2(x,y,y

(1),y(2)) = 0

д3(x,y,y
(1),y(2),y(3)) = 0, y(3) = 0,

, Vol. 1, No. 1, Article . Publication date: November 2019.

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575

PRAMs over integers do not compute maxflow efficiently :35

where all the polynomials’ degrees are all bounded by the degree of the intersection of
surfaces in S (as they are the derivatives of д). So, by the Milnor–Thom theorem, such
points are in number polynomial in the total degree of the surfaces of S . □

Lemma 60. The number of cells d(S) of the Collins decomposition of S is polynomial in δ .

Proof. The intersection of the surfaces in S are algebraic varieties of number bounded
by δ , by the Milnor–Thom theorem. Moreover, so are the silhouettes of the surfaces, as
they are the intersection of two algebraic varieties of total degree smaller than δ . So, the
number of cells in ColS is bounded by the number of cells of S times the number of dividing
planes times the number of intersections, silhouettes and vertical lines they engender. □

Theorem 61 (Mulmuley). Let S be a finite set of algebraic surfaces of total degree δ .
There exists a polynomial P such that, for all ρ > P(δ), S does not separate ρ-fans.

9 THE RESULT ON PRAMS
Theorem 62. Let G be a deterministic graphing interpreting a pram with p processors.

There exists a polynomial P such that, for all ρ > P(2k+1pk), G does not separate ρ-fans in
k steps.

The definition of pram we considered is quite ideal in that the complexities are stated
without references to the size of the inputs. We can consider the length of an input to be
the minimal length of a binary word representing it. To account for the size of the input,
we can refine the model and consider that the memory locations do not contain natural
numbers but binary words whose lengths can be a parameter of the model. The approach
outlined here is very sensible to the fact that all computed quantities are polynomial in the
inputs, which would be wrong if we allowed for access of any arbitrary bit of the memory.
Mulmuley defines this model as the pram model without bit operations, by taking the point
of view that the integers stored in the memory really are binary words, whose individual
bits can not be accessed easily.
Here, we are able to compute arbitrary quotients by adding new phantom variables.

Our model is thus of pram without bit operations and arbitrary divisions, in Mulmuley’s
parlance.

Theorem 63. Let G be a deterministic graphing interpreting a pram with 2O ((logN)c)
pro-

cessors, where N is the length of the inputs and c any positive integer.

G does not decide maxflow in O((logN)c) steps.

Proof. Let n = N 2c and consider the problem 2 of Thm. 54 and its family of affine
parametrizations of bitsize O(n2) = O(N 4c) and complexity ρ(n) = 2Ω(n) = 2Ω(N 2c).
By Thm. 51, we know that the partition induced byG inO((logN)c) steps can be defined

by a set of (2 × 2O ((logN)c))4O ((logN)c) polynomial equations of degree at most 24O ((logN)c),
that is a set of total degree 2O ((logN)2c).
Let P be the polynomial of Thm. 62. For large enough values of N , ρ(n) is larger than

P(2O ((logN)2c)) = 2O ((logN)2c). So, G does not decide maxflow in O((logN)c) steps. □

, Vol. 1, No. 1, Article . Publication date: November 2019.

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620

:36 Luc Pellissier and Thomas Seiller

The problem of bit extraction. This result, just asMulmuley’s, does not translate to boolean
languages, and thus does not prove NC , Ptime. Indeed, the different bits constituting
a number cannot be accessed independently. As all the operations our prams can do are
polynomial, the proposition holds:

Proposition 64. Let k ∈ N.
The k-th bit of a k-bit operand can not be extracted in O(

√
k) time using 2O (

√
k)

processors.

Proof. See [34, Proposition 2.2.1] □

REFERENCES
[1] S. Aaronson and A. Wigderson. 2009. Algebrization: A New Barrier in Complexity Theory. ACM Trans.

Comput. Theory 1, 1, Article 2 (Feb. 2009), 54 pages. https://doi.org/10.1145/1490270.1490272
[2] R. L. Adler, A. G. Konheim, and M. H. McAndrew. 1965. Topological Entropy. Trans. Amer. Math. Soc. 114,

2 (1965), 309–319.
[3] C. Aubert, M. Bagnol, P. Pistone, and T. Seiller. 2014. Logic Programming and Logarithmic Space. In

APLAS. https://doi.org/10.1007/978-3-319-12736-1_3
[4] C. Aubert, M. Bagnol, and T. Seiller. 2016. Unary Resolution: Characterizing Ptime. In FOSSACS.
[5] C. Aubert and T. Seiller. 2016. Characterizing co-NL by a group action. Mathematical Structures in

Computer Science 26 (2016), 606–638. Issue 4. https://doi.org/10.1017/S0960129514000267
[6] C. Aubert and T. Seiller. 2016. Logarithmic Space and Permutations. Information and Computation 248

(2016), 2–21. https://doi.org/10.1016/j.ic.2014.01.018
[7] P. Baillot and K. Terui. 2009. Light types for polynomial time computation in lambda calculus. Information

and Computation 207, 1 (2009), 41 – 62. https://doi.org/10.1016/j.ic.2008.08.005
[8] T. Baker, J. Gill, and R. Solovay. 1975. Relativizations of the P = NP Question. SIAM J. Comput. 4, 4 (1975),

431–442. https://doi.org/10.1137/0204037
[9] S. Bellantoni and S. Cook. 1992. A new recursion-theoretic characterization of the polytime functions.

Computational Complexity 2 (1992).
[10] M. Ben-Or. 1983. Lower Bounds for Algebraic Computation Trees. In Proceedings of the Fifteenth Annual

ACM Symposium on Theory of Computing (STOC ’83). ACM, New York, NY, USA, 80–86. https://doi.org/
10.1145/800061.808735

[11] Nicolas Bourbaki. 1970. Algèbre – Chapitres 1 à 3. In Éléments de Mathématique. 1–644.
[12] P. J. Carstensen. 1983. The Complexity of Some Problems in Parametric Linear and Combinatorial Program-

ming. Ph.D. Dissertation. Ann Arbor, MI, USA.
[13] A. Cobham. 1965. The intrinsic computational difficulty of functions. In Proceedings of the 1964 CLMPS.
[14] G. E Collins. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decompostion.

In Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, May 20–23, 1975. Springer,
134–183.

[15] S. Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM Symposium

on Theory of Computing.
[16] Felipe Cucker. 1992. PR , NCR. Journal of Complexity 8, 3 (1992), 230 – 238. https://doi.org/10.1016/

0885-064X(92)90024-6
[17] D. Dobkin and R. J. Lipton. 1976. Multidimensional Searching Problems. SIAM J. Comput. 5, 2 (1976),

181–186. https://doi.org/10.1137/0205015
[18] J. Edmonds. 1965. Paths, trees and flowers. Canad. J. Math. 17 (1965), 449–467.
[19] L. R. Ford and D. R. Fulkerson. 1957. A simple algorithm for finding maximal network flows and an

application to the Hitchcock problem. Canadian Journal of Mathematics (1957), 210–218.
[20] L. Fortnow. 2009. The Status of the P Versus NP Problem. Commun. ACM 52, 9 (Sept. 2009), 78–86.

https://doi.org/10.1145/1562164.1562186
[21] J.-Y. Girard. 1989. Towards a Geometry of Interaction. Contemp. Math. 92 (1989), 69–108.

, Vol. 1, No. 1, Article . Publication date: November 2019.

https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1007/978-3-319-12736-1_3
https://doi.org/10.1017/S0960129514000267
https://doi.org/10.1016/j.ic.2014.01.018
https://doi.org/10.1016/j.ic.2008.08.005
https://doi.org/10.1137/0204037
https://doi.org/10.1145/800061.808735
https://doi.org/10.1145/800061.808735
https://doi.org/10.1016/0885-064X(92)90024-6
https://doi.org/10.1016/0885-064X(92)90024-6
https://doi.org/10.1137/0205015
https://doi.org/10.1145/1562164.1562186

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665

PRAMs over integers do not compute maxflow efficiently :37

[22] J.-Y. Girard. 1995. Light Linear Logic. In Selected Papers from the International Workshop on Logical

and Computational Complexity (LCC ’94). Springer-Verlag, London, UK, UK, 145–176. http://dl.acm.org/
citation.cfm?id=648045.745202

[23] J-Y. Girard, A. Scedrov, and P. J. Scott. 1992. Bounded linear logic: a modular approach to polynomial-time
computability. Theor. Comput. Sci. 97, 1 (April 1992), 1–66. https://doi.org/10.1016/0304-3975(92)90386-T

[24] G. Gonthier, M. Abadi, and J.-J. Lévy. 1992. The Geometry of Optimal Lambda Reduction. In Proceedings

of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’92). ACM,
New York, NY, USA, 15–26. https://doi.org/10.1145/143165.143172

[25] J. Hartmanis and R. Stearns. 1965. On the computational complexity of algorithms. Trans. Amer. Math.

Soc. 117 (1965).
[26] J. E. Hofer. 1975. Topological entropy for noncompact spaces. The Michigan Mathematical Journal 21, 3

(1975), 235–242. https://doi.org/10.1307/mmj/1029001311
[27] W. A. Howard. 1980. The formulas-as-types notion of construction. In To H. B. Curry: Essays on

Combinatory Logic, Lambda Calculus, and Formalism, J. P. Seldin and J. R. Hindley (Eds.). Academic Press,
479–490.

[28] C. Ikenmeyer and G. Panova. 2017. Rectangular Kronecker coefficients and plethysms in geometric
complexity theory. Advances in Mathematics 319 (2017), 40 – 66. https://doi.org/10.1016/j.aim.2017.08.024

[29] A. Katok and B. Hasselblatt. 1997. Introduction to the Modern Theory of Dynamical Systems. Cambridge
University Press.

[30] Y. Lafont. 2004. Soft linear logic and polynomial time. Theor. Comput. Sci. 318, 1-2 (June 2004), 163–180.
https://doi.org/10.1016/j.tcs.2003.10.018

[31] D. Leivant and J.-Y. Marion. 1993. Lambda calculus characterizations of poly-time. Fundam. Inform. 19
(1993).

[32] S. Leivant and J.-Y. Marion. 1994. Ramified recurrence and computational complexity II: Substitution and
poly-space. Lecture Notes in Computer Science 933 (1994).

[33] John Milnor. 1964. On the Betti numbers of real varieties. In Proceedings of the American Mathematical

Society. 275. https://doi.org/10.2307/2034050
[34] K. Mulmuley. 1999. Lower Bounds in a Parallel Model without Bit Operations. SIAM J. Comput. 28, 4

(1999), 1460–1509. https://doi.org/10.1137/S0097539794282930
[35] K. D. Mulmuley. 2012. The GCT Program Toward the P vs. NP Problem. Commun. ACM 55, 6 (June 2012),

98–107. https://doi.org/10.1145/2184319.2184341
[36] K. G Murty. 1980. Computational complexity of parametric linear programming. Mathematical program-

ming 19, 1 (1980), 213–219.
[37] A. A. Razborov and S. Rudich. 1997. Natural Proofs. J. Comput. System Sci. 55, 1 (1997), 24 – 35.

https://doi.org/10.1006/jcss.1997.1494
[38] T. Seiller. 2012. Interaction Graphs: Multiplicatives. Annals of Pure and Applied Logic 163 (2012). https:

//doi.org/10.1016/j.apal.2012.04.005
[39] T. Seiller. 2015. Towards a Complexity-through-Realizability Theory. (2015).

http://arxiv.org/pdf/1502.01257.
[40] T. Seiller. 2016. Interaction graphs: Additives. Annals of Pure and Applied Logic 167 (2016). https:

//doi.org/10.1016/j.apal.2015.10.001
[41] T. Seiller. 2016. Interaction Graphs: Full Linear Logic. In IEEE/ACM Logic in Computer Science (LICS).

http://arxiv.org/pdf/1504.04152
[42] T. Seiller. 2017. Interaction Graphs: Graphings. Annals of Pure and Applied Logic 168, 2 (2017), 278–320.

https://doi.org/10.1016/j.apal.2016.10.007
[43] T. Seiller. 2017. Why Complexity Theorists Should Care About Philosophy. In Beyond Logic. Proceedings

of the Conference held in Cerisy-la-Salle, Jean Fichot and T. Piecha (Eds.). 381–393. https://doi.org/10.
15496/publikation-18676

[44] Thomas Seiller. 2018. Interaction Graphs: Nondeterministic Automata. ACM Transaction in Computational

Logic 19, 3 (2018).
[45] T. Seiller. 2018. Interaction Graphs: Probabilistic Automata. (2018). in preparation.

, Vol. 1, No. 1, Article . Publication date: November 2019.

http://dl.acm.org/citation.cfm?id=648045.745202
http://dl.acm.org/citation.cfm?id=648045.745202
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1145/143165.143172
https://doi.org/10.1307/mmj/1029001311
https://doi.org/10.1016/j.aim.2017.08.024
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.2307/2034050
https://doi.org/10.1137/S0097539794282930
https://doi.org/10.1145/2184319.2184341
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1016/j.apal.2012.04.005
https://doi.org/10.1016/j.apal.2012.04.005
https://doi.org/10.1016/j.apal.2015.10.001
https://doi.org/10.1016/j.apal.2015.10.001
http://arxiv.org/pdf/1504.04152
https://doi.org/10.1016/j.apal.2016.10.007
https://doi.org/10.15496/publikation-18676
https://doi.org/10.15496/publikation-18676

1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

:38 Luc Pellissier and Thomas Seiller

[46] J. M. Steele and A. Yao. 1982. Lower bounds for algebraic decision trees. Journal of Algorithms 3 (1982),
1–8. https://doi.org/10.1016/0196-6774(82)90002-5

[47] L. G. Valiant. 1979. The complexity of computing the permanent. Theoretical Computer Science 8, 2 (1979),
189 – 201. https://doi.org/10.1016/0304-3975(79)90044-6

[48] R. Williams. 2014. Nonuniform ACC Circuit Lower Bounds. J. ACM 61, 1, Article 2 (Jan. 2014), 32 pages.
https://doi.org/10.1145/2559903

[49] Andrew Chi-Chih Yao. 1997. Decision Tree Complexity and Betti Numbers. J. Comput. System Sci. 55, 1
(1997), 36 – 43. https://doi.org/10.1006/jcss.1997.1495

, Vol. 1, No. 1, Article . Publication date: November 2019.

https://doi.org/10.1016/0196-6774(82)90002-5
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1145/2559903
https://doi.org/10.1006/jcss.1997.1495

	Abstract
	1 Introduction
	2 Contents of the paper
	2.1 Computation models as graphings.
	2.2 Entropy
	2.3 Ben-Or's proof
	2.4 prams and the crew
	2.5 Mulmuley's geometrization
	2.6 The main result
	2.7 Conclusion

	3 Abstract Models of Computation, Abstract Progams
	4 The crew
	5 Entropy and Cells
	5.1 Topological Entropy
	5.2 Graphings and Entropy
	5.3 Cells Decomposition

	6 Algebraic Computation Trees and Ben-Or's technique
	6.1 Milnor-Thom theorem
	6.2 Algebraic decision trees
	6.3 Algebraic Computational Trees
	6.4 Entropic co-trees and k-th computational forests
	6.5 The theorem Ben-Or

	7 srams and prams
	7.1 Random Access Machines (srams)
	7.2 The sram action
	7.3 The crew of the sram action: prams
	7.4 The entropic co-trees of a pram

	8 Algebraic surfaces for an optimization problem
	8.1 Geometric Interpretation of Optimization Problems
	8.2 Parametric Complexity
	8.3 Algebraic Surfaces
	8.4 Collins' decomposition
	8.5 Volatility and Separation
	8.6 Volatility and Degree

	9 The result on prams
	References

	fd@main-1:

