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ABSTRACT
In this paper, we study the local linear convergence properties of a versatile class
of Primal–Dual splitting methods for minimizing composite non-smooth convex op-
timization problems. Under the assumption that the non-smooth components of
the problem are partly smooth relative to smooth manifolds, we present a uni-
fied local convergence analysis framework for these methods. More precisely, in our
framework we first show that (i) the sequences generated by Primal–Dual splitting
methods identify a pair of primal and dual smooth manifolds in a finite number of
iterations, and then (ii) enter a local linear convergence regime, which is charac-
terized based on the structure of the underlying active smooth manifolds. We also
show how our results for Primal–Dual splitting can be specialized to cover existing
ones on Forward–Backward splitting and Douglas–Rachford splitting/ADMM (al-
ternating direction methods of multipliers). Moreover, based on these obtained local
convergence analysis result, several practical acceleration techniques are discussed.
To exemplify the usefulness of the obtained result, we consider several concrete nu-
merical experiments arising from fields including signal/image processing, inverse
problems and machine learning, etc. The demonstration not only verifies the local
linear convergence behaviour of Primal–Dual splitting methods, but also the insights
on how to accelerate them in practice.

KEYWORDS
Primal–Dual splitting, Forward–Backward splitting, Douglas–Rachford/ADMM
Partial Smoothness, Local Linear Convergence.
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1. Introduction

1.1. Composed optimization problem

In various fields such as inverse problems, signal and image processing, statistics and
machine learning etc., many problems are (eventually) formulated as structured op-
timization problems (see Section 6 for some specific examples). A typical example of
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these optimization problems, given in its primal form, reads

min
x∈Rn

R(x) + F (x) + (J ∨+ G)(Lx), (PP)

where (J ∨+ G)(·) def
= infv∈Rm J(·) +G(·−v) denotes the infimal convolution of J andG.

Throughout, we assume the following:
(A.1) R,F ∈ Γ0(Rn) with Γ0(Rn) being the class of proper convex and lower semi-

continuous functions on Rn, and ∇F is (1/β
F

)-Lipschitz continuous for some
β
F
> 0,

(A.2) J,G ∈ Γ0(Rm), and G is β
G

-strongly convex for some β
G
> 0.

(A.3) L : Rn → Rm is a linear mapping.

(A.4) 0 ∈ ran(∂R+∇F +L∗(∂J�∂G)L), where ∂J�∂G
def
= (∂J−1 +∂G−1)−1 is the

parallel sum of the subdifferential ∂J and ∂G, and ran(·) denotes the range
of a set-valued operator. See Remark 3 for the reasoning of this condition.

The main difficulties of solving such a problem are that the objective function is non-
smooth, the presence of the linear operator L and the infimal convolution. Consider
also the Fenchel-Rockafellar dual problem [41] of (PP),

min
v∈Rm

J∗(v) +G∗(v) + (R∗ ∨+ F ∗)(−L∗v). (PD)

The classical Kuhn-Tucker theory asserts that a pair (x?, v?) ∈ Rn × Rm solves (PP)-
(PD) if it satisfies the monotone inclusion

0 ∈
[
∂R L∗

−L ∂J∗

](
x?

v?

)
+

[
∇F 0

0 ∇G∗
](

x?

v?

)
. (1)

One can observe that in (1), the composition of the linear operator and the infimal
convolution is decoupled, hence providing possibilities to achieve full splitting. This is
a key property used by all Primal–Dual algorithms we are about to review. In turn,
solving (1) provides a pair of points that are solutions to (PP) and (PD) respectively.

More complex forms of (PP) involving for instance a sum of infimal convolutions
can be tackled in a similar way using a product space trick, as we will see in Section 5.

1.2. Primal–Dual splitting methods

Primal–Dual splitting methods to solve more or less complex variants of (PP)-(PD)
have witnessed a recent wave of interest in the literature [12,13,16,18,21,28,48]. All
these methods achieve full splitting, they involve the resolvents of R and J∗, the
gradients of F and G∗ and the linear operator L, all separately at various points
in the course of iteration. For instance, building on the work of [3], the now-popular
scheme proposed in [13] solves (PP)-(PD) with F = G∗ = 0. The authors in [28]
have shown that the Primal–Dual splitting method of [13] can be seen as a proximal
point algorithm (PPA) in Rn × Rm endowed with a suitable norm. Exploiting the
same idea, the author in [21] considered (PP) with G∗ = 0, and proposed an iterative
scheme which can be interpreted as a Forward–Backward (FB) splitting again under
an appropriately renormed space. This idea is further extended in [48] to solve more
complex problems such as that in (PP). A variable metric version was proposed in [19].
Motivated by the structure of (1), [12] and [18] proposed a Forward–Backward-Forward
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scheme [46] to solve it.
In this paper, we focus the unrelaxed Primal–Dual splitting method summarized

in Algorithm 1, which covers [13,16,21,28,48]. Though we omit the details here for
brevity, our analysis and conclusions carry through to the method proposed in [12,18].

Algorithm 1: A Primal–Dual splitting method

Initial: Choose γ
R
, γ

J
> 0 and θ ∈ [−1,+∞[. For k = 0, x0 ∈ Rn, v0 ∈ Rm;

repeat xk+1 = proxγ
R
R(xk − γR∇F (xk)− γRL∗vk),

x̄k+1 = xk+1 + θ(xk+1 − xk),
vk+1 = proxγ

J
J∗(vk − γJ∇G∗(vk) + γ

J
Lx̄k+1),

(2)

k = k + 1;

until convergence;

Remark 1.
(i) Algorithm 1 is somehow an interesting extension to the literature given the choice

of θ that we advocate. Indeed, the range [−1,+∞[ is larger than the one proposed
in [28], which is [−1, 1]. It encompasses the Primal–Dual splitting method in [48]
when θ = 1, the one in [21] when moreover G∗ = 0. When both F = G∗ = 0, it
reduces to the Primal–Dual splitting method proposed in [13,28].

(ii) It can also be verified that Algorithm 1 covers the Forward–Backward (FB) split-
ting [37] (J∗ = G∗ = 0), Douglas–Rachford (DR) splitting [24] (if F = G∗ = 0,
L = Id and γ

R
= 1/γ

J
) as special cases; see Section 4 for a discussion or [13]

and references therein for more details. Exploiting this relation, in Section 4, we
build connections with the results provided in [34,35] for FB-type methods and
DR/ADMM. It also should be noted that, DR splitting is the limiting case of
the Primal–Dual splitting [13], and the global convergence result of Primal–Dual
splitting does not apply to DR.

1.3. Contributions

In the literature, most studies on the convergence rate of Primal–Dual splitting meth-
ods mainly focus on the global behaviour [9,10,13,14,22,33]. For instance, it is now
known that the (partial) duality gap decreases sublinearly (pointwise or in ergodic
sense) at the rate O(1/k) [9,13]. This can be accelerated to O(1/k2) on the iterates
sequence under strong convexity of either the primal or the dual problem [10,13]. Lin-
ear convergence is achieved if both R and J∗ are strongly convex [10,13]. However,
in practice, local linear convergence of the sequence generated by Algorithm 1 has
been observed for many problems in the absence of strong convexity (as confirmed
by our numerical experiments in Section 6). None of the existing theoretical analysis
was able to explain this behaviour so far. Providing the theoretical underpinnings of
this local behaviour is the main goal pursued in this paper. Our main findings can be
summarized as follows.

Finite time activity identification For Algorithm 1, let (x?, v?) be a Kuhn-Tucker
pair, i.e. a solution of (1). Under a non-degeneracy condition, and provided that
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both R and J∗ are partly smooth relative to C2-smooth manifolds, respectively MR
x?

and MJ∗
v? near x? and v? (see Definition 2.8), we show that the generated primal-

dual sequence {(xk, vk)}k∈N which converges to (x?, v?) will identify in finite time the
manifoldMR

x? ×MJ∗
v? (see Theorem 3.2). In plain words, this means that after a finite

number of iterations, say K, we have xk ∈MR
x? and vk ∈MJ∗

v? for all k ≥ K.

Local linear convergence Capitalizing on this finite identification result, we first
show in Proposition 3.4 that the globally non-linear iteration (2) locally linearizes along
the identified smooth manifolds, then we deduce that the convergence of the sequence
becomes locally linear (see Theorem 3.7). The rate of linear convergence is character-
ized precisely based on the properties of the identified partly smooth manifolds and
the involved linear operatorL.

Moreover, when F = G∗ = 0, L = Id and R, J∗ are locally polyhedral around
(x?, v?), we show that the convergence rate is parameterized by the cosine of the largest
principal angle (see Definition 2.5) between the tangent spaces of the two manifolds
at (x?, v?) (see Lemma 3.5). This builds a clear connection between the results in this
paper and those we drew in our previous works on DR and ADMM [35,36].

1.4. Related work

For the past few years, an increasing attention has been paid to investigate the local
linear convergence of first-order proximal splitting methods in the absence of strong
convexity. This has been done for instance for FB-type splitting [2,11,26,29,45], and
DR/ADMM [4,8,23] for special objective functions. In our previous work [32,34–36],
based on the powerful framework provided by partial smoothness, we unified all the
above-mentioned work and provide even stronger claims.

To the best of our knowledge, we are aware of only one recent paper [44] which
investigated finite identification and local linear convergence of a Primal–Dual splitting
method to solve a very special instance of (PP). More precisely, they assumed R to be
gauge, F = 1

2 || · ||
2 (hence strong convexity of the primal problem), G∗ = 0 and J the

indicator function of a point. Our work goes much beyond this limited case. It also
deepens our current understanding of local behaviour of proximal splitting algorithms
by complementing the picture we started in [34,35] for FB and DR methods.

Paper organization The rest of the paper is organized as follows. Some useful pre-
requisites, including partial smoothness, are collected in Section 2. The main contribu-
tions of this paper, i.e. finite time activity identification and local linear convergence
of Primal–Dual splitting under partial smoothness are the core of Section 3. Several
discussions on the obtained result are delivered in Section 4. Section 5 extends the re-
sults to the case of more than one infimal convolution. In Section 6, we report various
numerical experiments to support our theoretical findings.

2. Preliminaries

Throughout the paper, N is the set of non-negative integers, Rn is a n-dimensional
real Euclidean space equipped with scalar product 〈·, ·〉 and associated norm || · ||. Idn
denotes the identity operator on Rn, where n will be dropped if the dimension is clear
from the context.
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Sets For a nonempty convex set C ⊂ Rn, denote aff(C) its affine hull, and par(C)
the smallest subspace parallel to aff(C). Denote ιC the indicator function of C, and
PC the orthogonal projection operator onto the set.

Functions The sub-differential of a function R ∈ Γ0(Rn) is a set-valued operator,

∂R : Rn ⇒ Rn, x 7→
{
g ∈ Rn|R(x′) ≥ R(x) + 〈g, x′ − x〉,∀x′ ∈ Rn

}
, (3)

which is maximal monotone (see Definition 2.2). For R ∈ Γ0(Rn), the proximity oper-
ator of R is

proxR(x)
def
= argminz∈Rn

1
2
||z − x||2 +R(z). (4)

Given a function J ∈ Γ0(Rm), its Legendre-Fenchel conjugate is defined as

J∗(y) = sup
v∈Rm

〈v, y〉 − J(v). (5)

Lemma 2.1 (Moreau Identity [39]). Let J ∈ Γ0(Rm), then for any v ∈ Rm and γ > 0,

v = proxγJ(v) + γproxJ∗/γ(v/γ). (6)

Using the Moreau identity, it is straightforward to see that the update of vk in Algo-
rithm 1 can be obtained also from proxJ/γ

J
.

Operators Given a set-valued mapping A : Rn ⇒ Rn, its range is ran(A) = {y ∈
Rn : ∃x ∈ Rn s.t. y ∈ A(x)}, and graph is gph(A)

def
= {(x, u) ∈ Rn × Rn|u ∈ A(x)}.

Definition 2.2 (Monotone operator). A set-valued mapping A : Rn ⇒ Rn is called
monotone if,

〈x1 − x2, v1 − v2〉 ≥ 0, ∀(x1, v1) ∈ gph(A) and (x2, v2) ∈ gph(A). (7)

It is moreover maximal monotone if gph(A) can not be contained in the graph of any
other monotone operator.

Let β ∈]0,+∞[, B : Rn → Rn, then B is β-cocoercive if

〈B(x1)−B(x2), x1 − x2〉 ≥ β||B(x1)−B(x2)||2, ∀x1, x2 ∈ Rn, (8)

which implies that B is β−1-Lipschitz continuous.

For a maximal monotone operator A, (Id +A)−1 is called its resolvent. It is known
that for R ∈ Γ0(Rn), proxR = (Id + ∂R)−1 [6, Example 23.3].

Definition 2.3 (Non-expansive operator). An operator F : Rn → Rn is non-
expansive if

||F(x1)−F(x2)|| ≤ ||x1 − x2||, ∀x1, x2 ∈ Rn.
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For any α ∈]0, 1[, F is called α-averaged if there exists a non-expansive operator F ′
such that F = αF ′ + (1− α)Id.

The class of α-averaged operators is closed under relaxation, convex combination
and composition [6,20]. In particular when α = 1

2 , F is called firmly non-expansive.

Let S(Rn) = {V ∈ Rn×n|VT = V} the set of symmetric positive definite matrices
acting on Rn. The Loewner partial ordering on S(Rn) is defined as

∀V1,V2 ∈ S(Rn), V1 < V2 ⇐⇒ ∀x ∈ Rn, 〈(V1 − V2)x, x〉 ≥ 0,

that is, V1 − V2 is positive definite. Given any positive constant ν > 0, define Sν as

Sν
def
=
{
V ∈ S(Rn) : V < νId

}
, (9)

i.e. the set of symmetric positive definite matrices whose eigenvalues are bounded
below by ν. For any V ∈ Sν , define the following induced scalar product and norm,

〈x, x′〉V = 〈x, Vx′〉, ||x||V =
√
〈x, Vx〉, ∀x, x′ ∈ Rn.

By endowing the Euclidean space Rn with the above scalar product and norm, we
obtain the Hilbert space which is denoted by Rn

V
.

Lemma 2.4. Let the operators A : Rn ⇒ Rn be maximal monotone, B : Rn → Rn be
β-cocoercive, and V ∈ Sν . Then for γ ∈]0, 2βν[,

(i) (Id + γV−1A)−1 : Rn
V
→ Rn

V
is firmly non-expansive;

(ii) (Id− γV−1B) : Rn
V
→ Rn

V
is γ

2βν -averaged non-expansive;

(iii) (Id + γV−1A)−1(Id− γV−1B) : Rn
V
→ Rn

V
is 2βν

4βν−γ -averaged non-expansive.

Proof.
(i) See [19, Lemma 3.7(ii)];
(ii) Since B : Rn → Rn is β-cocoercive, given any x, x′ ∈ Rn, we have

〈x− x′, V−1B(x)− V−1B(x′)〉V ≥ β||B(x)−B(x′)||2

= β||V
(
V−1B(x)− V−1B(x′)

)
||2

= β||V1/2(V−1B(x)− V−1B(x′)))||2V
≥ βν||V−1B(x)− V−1B(x′)||2V,

which means that V−1B : Rn
V
→ Rn

V
is (βν)-cocoercive. The rest of the proof

follows [6, Proposition 4.33].
(iii) See [40, Theorem 3].

2.1. Angles between subspaces

Let T1 and T2 be two subspaces of Rn. Without the loss of generality, we assume

1 ≤ p def
= dim(T1) ≤ q def

= dim(T2) ≤ n− 1.

Definition 2.5 (Principal angles). The principal angles θk ∈ [0, π2 ], k = 1, ..., p be-
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tween subspaces T1 and T2 are defined by, with u0 = v0
def
= 0, and

cos(θk)
def
= 〈uk, vk〉 = max〈u, v〉 s.t. u ∈ T1, v ∈ T2, ||u|| = 1, ||v|| = 1,

〈u, ui〉 = 〈v, vi〉 = 0, i = 0, · · · , k − 1.

The principal angles θk are unique with 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θp ≤ π/2.

Definition 2.6 (Friedrichs angle). The Friedrichs angle θF ∈]0, π2 ] between the two
subspaces T1 and T2 is

cos
(
θF (T1, T2)

) def
= max〈u, v〉 s.t. u ∈ T1 ∩ (T1 ∩ T2)⊥, ||u|| = 1,

v ∈ T2 ∩ (T1 ∩ T2)⊥, ||v|| = 1.

The following lemma shows the relation between the Friedrichs and principal angles
whose proof can be found in [5, Proposition 3.3].

Lemma 2.7. The Friedrichs angle is the (d+1)th principal angle where d
def
= dim(T1∩

T2). Moreover, θF (T1, T2) > 0.

Remark 2. The principal angles can be obtained by the singular value decomposition
(SVD). For instance, let X ∈ Rn×p and Y ∈ Rn×q form the orthonormal basis for the
subspaces T1 and T2 respectively. Let UΣV T be the SVD of XTY ∈ Rp×q, then
cos(θk) = σk, k = 1, 2, . . . , p and σk corresponds to the kth largest singular value in Σ.

2.2. Partial smoothness

The concept of partial smoothness is first introduced in [31]. This concept, as well
as that of identifiable surfaces [49], captures the essential features of the geometry
of non-smoothness which are along the so-called active/identifiable manifold. Loosely
speaking, a partly smooth function behaves smoothly as we move along the identifiable
submanifold, and sharply if we move transversal to the manifold.

Let M be a C2-smooth embedded submanifold of Rn around a point x. To lighten
the notation, henceforth we state as C2-manifold for short. The natural embedding of
a submanifold M into Rn permits to define a Riemannian structure on M, and we
simply say M is a Riemannian manifold. TM(x) denotes the tangent space to M at
any point near x in M. More materials on manifolds are given in Section A.

Below is the definition of partly smoothness associated to functions in Γ0(Rn).

Definition 2.8 (Partly smooth function). Let R ∈ Γ0(Rn), and x ∈ Rn such that
∂R(x) 6= ∅. R is then said to be partly smooth at x relative to a setM containing x if

(i) Smoothness:M is a C2-manifold around x, R restricted toM is C2 around x;

(ii) Sharpness: The tangent space TM(x) coincides with Tx
def
= par(∂R(x))⊥;

(iii) Continuity: The set-valued mapping ∂R is continuous at x relative to M.
The class of partly smooth functions at x relative to M is denoted as PSFx(M).

Owing to the results of [31], it can be shown that under transversality assumptions,
the set of partly smooth functions is closed under addition and pre-composition by
a linear operator. Popular examples of partly smooth functions are summarized in
Section 6 whose details can be found in [34].
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The next lemma gives expressions of the Riemannian gradient and Hessian (see
Section A for definitions) of a partly smooth function.

Lemma 2.9. If R ∈ PSFx(M), then for any x′ ∈M near x,

∇MR(x′) = PTx′ (∂R(x′)).

In turn, for all h ∈ Tx′,

∇2
MR(x′)h = PTx′∇

2R̃(x′)h+ Wx′
(
h,PT⊥

x′
∇R̃(x′)

)
,

where R̃ is any smooth extension (representative) of R onM, and Wx(·, ·) : Tx×T⊥x →
Tx is the Weingarten map of M at x.

Proof. See [34, Fact 3.3].

3. Local linear convergence of Primal–Dual splitting methods

In this section, we present the main result of the paper, the local linear convergence
analysis of Primal–Dual splitting methods. We start with the finite activity identi-
fication of the sequence (xk, vk) generated by the methods, from which we further
show that the fixed-point iteration of Primal–Dual splitting methods locally can be
linearized, and the linear convergence follows naturally.

3.1. Finite activity identification

Let us first recall the result from [17,48], that under a proper renorming, Algorithm 1
can be written as Forward–Backward. Let θ = 1, from the definition of the proximity
operator (4), we have that (2) is equivalent to

−
[
∇F 0

0 ∇G∗
](

xk
vk

)
∈
[
∂R L∗

−L ∂J∗

](
xk+1

vk+1

)
+

[
Idn/γR −L∗
−L Idm/γJ

](
xk+1 − xk
vk+1 − vk

)
. (10)

Let K = Rn × Rm be a product space, Id the identity operator on K, and define the
following variable and operators

zk
def
=

(
xk
vk

)
, A

def
=

[
∂R L∗

−L ∂J∗

]
, B

def
=

[
∇F 0

0 ∇G∗
]
, V

def
=

[
Idn/γR −L∗
−L Idm/γJ

]
. (11)

It is easy to verify that A is maximal monotone [12], B is min{β
F
, β

G
}-cocoercive.

For V, denote ν = (1 −
√
γ
J
γ
R
||L||2) min{ 1

γ
J

, 1
γ
R

}, then V is symmetric and ν-positive

definite [19,48]. Define KV the Hilbert space induced by V.
Now (10) can be reformulated as

zk+1 = (V +A)−1(V−B)(zk) = (Id + V−1A)−1(Id−V−1B)(zk). (12)

Clearly, (12) is the FB splitting on KV [48]. When F = G∗ = 0, it reduces to the
metric PPA discussed in [13,28].
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Before presenting the finite time activity identification under partial smoothness,
we first recall the global convergence of Algorithm 1.

Lemma 3.1 (Convergence of Algorithm 1). Consider Algorithm 1 under assumptions
(A.1)-(A.4). Let θ = 1 and choose γ

R
, γ

J
such that

2 min{β
F
, β

G
} min

{
1

γJ
, 1

γR

}(
1−

√
γ
J
γ
R
||L||2

)
> 1, (13)

then there exists a Kuhn-Tucker pair (x?, v?) such that x? solves (PP), v? solves (PD),
and (xk, vk)→ (x?, v?).

Proof. See [48, Corollary 4.2].

Remark 3.
(i) Assumption (A.4) is important to ensure the existence of Kuhn-Tucker pairs.

There are sufficient conditions which ensure that (A.4) can be satisfied. For
instance, assuming that (PP) has at least one solution and some classical do-
main qualification condition is satisfied (see e.g. [18, Proposition 4.3]), assump-
tion (A.4) can be shown to be in force.

(ii) It is obvious from (13) that γ
J
γ
R
||L||2 < 1, which is also the condition needed in

[13] for convergence for the special case F = G∗ = 0. The convergence condition
in [21] differs from (13), however, γ

J
γ
R
||L||2 < 1 still is a key condition. The

values of γ
J
, γ

R
can also be made varying along iterations, and convergence of

the iteration remains under the rule provided in [19]. However, for the sake of
brevity, we omit the details of this case here.

(iii) Lemma 3.1 addresses global convergence of the iterates provided by Algorithm 1
only for the case θ = 1. For the choices θ ∈ [−1, 1[∪]1,+∞[, so far the corre-
sponding convergence of the iteration cannot be obtained directly, and a cor-
rection step as proposed in [28] for θ ∈ [−1, 1[ is needed so that the iteration
is a contraction. Unfortunately, such a correction step leads to a new iterative
scheme, different from (2); see [28] for more details.

In a very recent paper [50], the authors also proved the convergence of the
Primal–Dual splitting method of [48] for the case of θ ∈ [−1, 1] with a proper
modification of the iterates. Since the main focus of this work is to investigate
local convergence behaviour, the analysis of global convergence of Algorithm 1
for any θ ∈ [−1,+∞[ is beyond the scope of this paper. Thus, we will mainly
consider the case θ = 1 in our analysis. Nevertheless, as we will see later, locally
θ > 1 could give faster convergence rate compared to the choice θ ∈ [−1, 1] for
certain problems. This points out a future direction of research to design new
Primal–Dual splitting methods.

Given a solution pair (x?, v?) of (PP)-(PD), we denoteMR
x? andMJ∗

v? the C2-smooth
manifolds that x? and v? live in respectively, and denote TRx? , T

J∗
v? the tangent spaces

of MR
x? ,MJ∗

v? at x? and v? respectively.

Theorem 3.2 (Finite activity identification). Consider Algorithm 1 under assump-
tions (A.1)-(A.4). Let θ = 1 and choose γ

R
, γ

J
based on Lemma 3.1. Thus (xk, vk)→

(x?, v?), where (x?, v?) is a Kuhn-Tucker pair that solves (PP)-(PD). If moreover
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R ∈ PSFx?(MR
x?) and J∗ ∈ PSFv?(MJ∗

v? ), and the non-degeneracy condition holds

−L∗v? −∇F (x?) ∈ ri
(
∂R(x?)

)
,

Lx? −∇G∗(v?) ∈ ri
(
∂J∗(v?)

)
.

(ND)

Then, there exists a large enough K ∈ N such that for all k ≥ K,

(xk, vk) ∈MR
x? ×MJ∗

v? .

Moreover,
(i) if MR

x? = x? + TRx?, then TRxk = TRx? and x̄k ∈MR
x? hold for k > K.

(ii) If MJ∗
v? = v? + T J

∗

v? , then T J
∗

vk = T J
∗

v? holds for k > K.

(iii) If R is locally polyhedral around x?, then ∀k ≥ K, xk ∈ MR
x? = x? + TRx?,

TRxk = TRx?, ∇MR
x?
R(xk) = ∇MR

x?
R(x?), and ∇2

MR
x?
R(xk) = 0.

(iv) If J∗ is locally polyhedral around v?, then ∀k ≥ K, vk ∈ MJ∗
v? = v? + T J

∗

v? ,
T J
∗

vk = T J
∗

v? , ∇MJ∗
v?
J∗(vk) = ∇MJ∗

v?
J∗(v?), and ∇2

MJ∗
v?
J∗(vk) = 0.

Remark 4.
(i) The non-degeneracy condition (ND) is a strengthened version of (1).
(ii) In general, we have no identification guarantees for xk and vk if the proximity

operators are computed approximately, even if the approximation errors are
summable, in which case one can still prove global convergence. The reason
behind this is that in the exact case, under condition (ND), the proximal mapping
of the partly smooth function R and that of its restriction to MR

x? locally agree
nearby x? (and similarly for J∗ and v?). This property can be easily violated if
approximate proximal mappings are involved, see [34] for an example.

(iii) Theorem 3.2 only states the existence of K after which the identification of the
sequences happens, but no bounds are provided. In [34,35], lower bounds of
K for the FB and DR methods are delivered. Though similar lower bounds
can be obtained for the Primal–Dual splitting method, the proof is not a simple
adaptation of that in [34] even if the Primal–Dual splitting method can be cast as
a FB splitting in an appropriate metric. Indeed, the estimate in [34] is intimately
tied to the fact that FB was applied to an optimization problem, while in the
context of Primal-Dual splitting, FB is applied to a monotone inclusion. Since,
moreover, these lower-bounds are only of theoretical interest, we decided to forgo
the corresponding details here for the sake of conciseness.

Proof of Theorem 3.2. From the definition of proximity operator (4) and the up-
dating of xk+1 in (2), we have

1

γR

(
xk − γR∇F (xk)− γRL∗vk − xk+1

)
∈ ∂R(xk+1),

which yields

dist
(
−L∗v? −∇F (x?), ∂R(xk+1)

)
≤ || − L∗v? −∇F (x?)− 1

γ
R

(xk − γR∇F (xk)− γRL∗vk − xk+1)||

≤
(

1

γR
+ 1

βF

)
||xk − x?||+ ||L||||vk − v?|| → 0.

10



Then similarly for vk+1, we have

1

γJ

(
vk − γJ∇G∗(vk) + γ

J
Lx̄k+1 − vk+1

)
∈ ∂J∗(vk+1),

and

dist
(
Lx? −∇G∗(v?), ∂J∗(vk+1)

)
≤ ||Lx? −∇G∗(v?)− 1

γ
J

(vk − γJ∇G∗(vk) + γ
J
Lx̄k+1 − vk+1)||

≤
(

1

γJ
+ 1

βG

)
||vk − v?||+ ||L||

(
(1 + θ)||xk+1 − x?||+ θ||xk − x?||

)
→ 0.

By assumption, J∗ ∈ Γ0(Rm), R ∈ Γ0(Rn), hence they are sub-differentially continuous
at every point in their respective domains [42, Example 13.30], and in particular at v?

and x?. It then follows that J∗(vk) → J∗(v?) and R(xk) → R(x?). Altogether with
the non-degeneracy condition (ND), shows that the conditions of [27, Theorem 5.3]
are fulfilled for 〈−Lx? +∇G∗(v?), ·〉+ J∗ and 〈L∗v? +∇F (x?), ·〉+R, and the finite
identification claim follows.

(i) In this case,MR
x? is an affine subspace, it is straight to have x̄k ∈MR

x? . Then as
R is partly smooth at x? relative to MR

x? , the sharpness property holds for all
nearby points in MR

x? [31, Proposition 2.10]. Thus for k large enough, we have
indeed Txk(MR

x?) = TRxk = TRx? as claimed.
(ii) Similar to (i).

(iii) It is immediate to verify that a locally polyhedral function around x? is indeed
partly smooth relative to the affine subspace x? + TRx? , and thus, the first claim
follows from (i). For the rest, it is sufficient to observe that by polyhedrality,
for any x ∈ MR

x? near x?, ∂R(x) = ∂R(x?). Therefore, combining local normal
sharpness [31, Proposition 2.10] and Lemma A.2 yields the second conclusion.

(iv) Similar to (iii).

3.2. Locally linearized iteration

Relying on the identification result, now we are able to show that the globally nonlinear
fixed-point iteration (12) can be locally linearized along the manifolds MR

x? ×MJ∗
v? .

As a result, the convergence rate of the iteration essentially boils down to analyzing
the spectral properties of the matrix obtained in the linearization.

Given a Kuhn-Tucker pair (x?, v?), define the following two functions

R(x)
def
= R(x) + 〈x, L∗v? +∇F (x?)〉, J∗(y)

def
= J∗(y)− 〈y, Lx? −∇G∗(v?)〉. (14)

We have the following lemma.

Lemma 3.3. Let (x?, v?) be a Kuhn-Tucker pair such that R ∈ PSFx?(MR
x?), J

∗ ∈
PSFx?(MJ∗

v? ). Denote the Riemannian Hessians of R and J∗ as

HR
def
= γ

R
PTRx?∇

2
MR

x?
R(x?)PTRx? and HJ∗

def
= γ

J
PT J∗v? ∇

2
MJ∗

v?
J∗(v?)PT J∗v? . (15)

Then HR and HJ∗ are symmetric positive semi-definite under either of the following
conditions:

(i) (ND) holds.

11



(ii) MR
x? and MJ∗

v? are affine subspaces.
Define,

WR
def
= (Idn +HR)−1 and WJ∗

def
= (Idm +HJ∗)

−1, (16)

then both WR and WJ∗ are firmly non-expansive.

Proof. See [35, Lemma 6.1].

For the smooth functions F and G∗, in addition to (A.1) and (A.2), for the rest of
the paper, we assume that

(A.5) F and G∗ locally are C2-smooth around x? and v? respectively.
Now define the restricted Hessians of F and G∗,

HF
def
= PTRx?∇

2F (x?)PTRx? and HG∗
def
= PT J∗v? ∇

2G∗(v?)PT J∗v? . (17)

Denote HF
def
= Idn − γRHF , HG∗

def
= Idm − γJHG∗ , L

def
= PT J∗v? LPTRx? and

M
PD

def
=

[
WRHF −γ

R
WRL

∗

γ
J
(1 + θ)WJ∗LWRHF − θγJWJ∗L WJ∗HG∗ − γRγJ (1 + θ)WJ∗LWRL

∗

]
. (18)

We have the following proposition.

Proposition 3.4 (Local linearization). Suppose that Algorithm 1 is run under the
identification conditions of Theorem 3.2, and moreover assumption (A.5) holds. Then
for all k large enough,

zk+1 − z? = M
PD

(zk − z?) + o(||zk − z?||). (19)

Remark 5.
(i) For the case of varying (γ

J
, γ

R
) along iteration, i.e. {(γ

J ,k, γR,k)}k. According
to the result of [34], (19) remains true if these parameters converge to some
constants such that condition (13) still holds.

(ii) Taking HG∗ = Idm (i.e. G∗ = 0) in (18), one gets the linearized iteration asso-
ciated to the Primal–Dual splitting method of [21]. If we further let HF = Idn,
this will correspond to the linearized version of the method in [13].

Proof of Proposition 3.4. From the update of xk in (2), we have

xk − γR∇F (xk)− γRL∗vk − xk+1 ∈ γR∂R(xk+1),

−γ
R
∇F (x?)− γ

R
L∗v? ∈ γ

R
∂R(x?).

Denote τRk the parallel translation from TRxk to TRx? . Then project on to corresponding
tangent spaces and apply parallel translation,

γ
R
τRk ∇MR

x?
R(xk+1) = τRk PTRx?xk+1(xk − γR∇F (xk)− γRL∗vk − xk+1)

= PTRx? (xk − γR∇F (xk)− γRL∗vk − xk+1)

+ (τRk PTRx?xk+1 − PTRx? )(xk − γR∇F (xk)− γRL∗vk − xk+1),

γ
R
∇MR

x?
R(x?) = PTRx? (−γ

R
∇F (x?)− γ

R
L∗v?),

12



which leads to

γ
R
τRk ∇MR

x?
R(xk+1)− γ

R
∇MR

x?
R(x?)

= PTR
x?

((xk − γR∇F (xk)− γ
R
L∗vk − xk+1)− (x? − γ

R
∇F (x?)− γ

R
L∗v? − x?))

+ (τRk PTR
x?
xk+1 − PTR

x?
)(−γ

R
∇F (x?)− γ

R
L∗v?)︸ ︷︷ ︸

Term 1

+ (τRk PTR
x?
xk+1 − PTR

x?
)((xk − γR∇F (xk)− γ

R
L∗vk − xk+1) + (γ

R
∇F (x?) + γ

R
L∗v?))︸ ︷︷ ︸

Term 2

.

(20)
Moving Term 1 to the other side leads to

γ
R
τRk ∇MR

x?
R(xk+1)− γ

R
∇MR

x?
R(x?)− (τRk PTRx?xk+1 − PTRx? )(−γ

R
∇F (x?)− γ

R
L∗v?)

= γ
R
τRk
(
∇MR

x?
R(xk+1) + (L∗v? +∇F (x?))

)
− γ

R

(
∇MR

x?
R(x?) + (L∗v? +∇F (x?))

)
= γ

R
PTRx?∇

2
MR

x?
R(x?)PTRx? (xk+1 − x?) + o(||xk+1 − x?||),

where Lemma A.2 is applied. Since xk+1 = proxγ
R
R(xk−γR∇F (xk)−γRL∗vk), proxγ

R
R

is firmly non-expansive and Idn − γR∇F is non-expansive (under the parameter set-
ting), then

||(xk − γR∇F (xk)− γRL∗vk − xk+1)− (x? − γ
R
∇F (x?)− γ

R
L∗v? − x?)||

≤ ||(Idn − γR∇F )(xk)− (Idn − γR∇F )(x?)||+ γ
R
||L∗vk − L∗v?||

≤ ||xk − x?||+ γ
R
||L||||vk − v?||.

(21)

Therefore, for Term 2, owing to Lemma A.1, we have

(τRk PTR
x?
xk+1 − PTR

x?
)((xk − γR∇F (xk)− γ

R
L∗vk − xk+1)− (x? − γ

R
∇F (x?)− γ

R
L∗v? − x?))

= o(||xk − x?||+ γ
R
||L||||vk − v?||).

Therefore, from (20), and apply xk − x? = PTRx? (xk − x?) + o(xk − x?) [32, Lemma 5.1]

to (xk+1 − x?) and (xk − x?), we get

(Idn +HR)(xk+1 − x?) + o(||xk+1 − x?||)
= (xk − x?)− γRPTRx? (∇F (xk)−∇F (x?))− γ

R
PTRx?L

∗(vk − v?)
+ o(||xk − x?||+ γ

R
||L||||vk − v?||).

Then apply Taylor expansion to ∇F , and apply [32, Lemma 5.1] to (vk − v?),

(Idn +HR)(xk+1 − x?)
= (Idn − γRHF )(xk − x?)− γRL∗(vk − v?) + o(||xk − x?||+ γ

R
||L||||vk − v?||).

(22)

Then invert (Idn +HR) and apply [32, Lemma 5.1], we get

xk+1 − x? = WRHF (xk − x?)− γRWRL
∗(vk − v?) + o(||xk − x?||+ γ

R
||L||||vk − v?||).

(23)
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Now from the update of vk+1

vk − γJ∇G∗(vk) + γ
J
Lx̄k+1 − vk+1 ∈ γJ∂J∗(vk+1),

v? − γ
J
∇G∗(v?) + γ

J
Lx? − v? ∈ γ

J
∂J∗(v?).

Denote τJ
∗

k+1 the parallel translation from T J
∗

vk+1
to T J

∗

v? , then

γ
J
τJ
∗

k+1∇MJ∗
v?
J∗(vk+1) = τJ

∗

k+1PT J∗vk+1
(vk − γJ∇G∗(vk) + γ

J
Lx̄k+1 − vk+1)

= PT J∗v? (vk − γJ∇G∗(vk) + γ
J
Lx̄k+1 − vk+1)

+ (τJ
∗

k+1PT J∗vk+1
− PT J∗v? )(vk − γJ∇G∗(vk) + γ

J
Lx̄k+1 − vk+1),

γ
J
∇MJ∗

v?
J∗(v?) = PT J∗v? (v? − γ

J
∇G∗(v?) + γ

J
Lx? − v?)

which leads to

γ
J
τJ
∗

k+1∇MJ∗
v?
J∗(vk+1)− γ

J
∇MJ∗

v?
J∗(v?)

= PTJ∗
v?

((vk − γJ∇G∗(vk) + γ
J
Lx̄k+1 − vk+1)− (v? − γ

J
∇G∗(v?) + γ

J
Lx? − v?))

+ (τJ
∗

k+1PTJ∗vk+1
− PTJ∗

v?
)(vk − γJ∇G∗(vk) + γ

J
Lx̄k+1 − vk+1)

= PTJ∗
v?

((vk − γJ∇G∗(vk) + γ
J
Lx̄k+1 − vk+1)− (v? − γ

J
∇G∗(v?) + γ

J
Lx? − v?))

+ (τJ
∗

k+1PTJ∗vk+1
− PTJ∗

v?
)(γ

J
Lx? − γ

J
∇G∗(v?))︸ ︷︷ ︸

Term 3

+ (τJ
∗

k+1PTJ∗vk+1
− PTJ∗

v?
)((vk − γJ∇G∗(vk) + γ

J
Lx̄k+1 − vk+1) + γ

J
(∇G∗(v?)− Lx?))︸ ︷︷ ︸

Term 4

.

(24)
Similarly to the previous analysis, for Term 3, move to the lefthand side of the
inequality and apply Lemma A.2,

γ
J
τJ
∗

k+1∇MJ∗
v?
J∗(vk+1)− γ

J
∇MJ∗

v?
J∗(v?)− (τJ

∗

k+1PTJ∗vk+1
− PTJ∗

v?
)(γ

J
Lx? − γ

J
∇G∗(v?))

= γ
J
τJ
∗

k+1(∇MJ∗
v?
J∗(vk+1)− (Lx? −∇G∗(v?)))− γ

J
(∇MJ∗

v?
J∗(v?)− (Lx? −∇G∗(v?)))

= γ
J
PTJ∗

v?
∇2
MJ∗

v?
J∗(v?)PTJ∗

v?
(vk+1 − v?) + o(||vk+1 − v?||).

Since θ ≤ 1, we have

||x̄k+1 − x?|| ≤ (1 + θ)||xk+1 − x?||+ θ||xk − x?||
≤ 2(||xk − x?||+ γ

R
||L||||vk − v?||) + ||xk − x?|| = 3||xk − x?||+ 2γ

R
||L||||vk − v?||.

Then for Term 4, since γ
J
γ
R
||L2|| < 1, proxγ

J
J∗ is firmly non-expansive and Idm −

γ
J
∇G∗ is non-expansive, we have

(τJ
∗

k+1PTJ∗vk+1
− PTJ∗

v?
)((vk − γJ∇G∗(vk) + γ

J
Lx̄k+1−vk+1)− (v? − γ

J
∇G∗(v?) + γ

J
Lx? − v?))

= o(||vk − v?||+ γ
J
||L||||xk − x?||).
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Therefore, from (24), apply [32, Lemma 5.1] to (vk+1 − v?) and (vk − v?), we get

(Idm +HJ∗)(vk+1 − v?)
= (Idm − γJHG∗)(vk − v?) + γ

J
L(x̄k+1 − x?) + o(||vk − v?||+ γ

J
||L||||xk − x?||).

(25)
Then similar to (23), we get from (25)

vk+1 − v? = WJ∗HG∗(vk − v?) + γ
J
WJ∗L(x̄k+1 − x?) + o(||vk − v?||+ γ

J
||L||||xk − x?||)

= WJ∗HG∗(vk − v?) + (1 + θ)γ
J
WJ∗L(xk+1 − x?)− θγJWJ∗L(xk − x?)

+ o(||vk − v?||+ γ
J
||L||||xk − x?||)

= WJ∗HG∗(vk − v?)− θγJWJ∗L(xk − x?)
+ (1 + θ)γ

J
WJ∗L

(
WRHF (xk − x?)− γRWRL

∗(vk − v?)
)

+ o(||xk − x?||+ γ
R
||L||||vk − v?||) + o(||vk − v?||+ γ

J
||L||||xk − x?||)

=
(
WJ∗HG∗ − (1 + θ)γ

J
γ
R
WJ∗LWRL

∗)(vk − v?)
+
(
(1 + θ)γ

J
WJ∗LWRHF − θγJWJ∗L

)
(xk − x?)

+ o(||xk − x?||+ γ
R
||L||||vk − v?||) + o(||vk − v?||+ γ

J
||L||||xk − x?||).

(26)
Now we consider the small o-terms. For the 2 small o-terms in (22) and (25). First,

let a1, a2 be two constants, then we have

|a1|+ |a2| =
√

(|a1|+ |a2|)2 ≤
√

2(a2
1 + a2

2) =
√

2

∥∥∥∥(a1

a2

)∥∥∥∥ .
Denote b = max{1, γ

J
||L||, γ

R
||L||}, then

(||vk − v?||+ γ
J
||L||||xk − x?||) + (||xk − x?||+ γ

R
||L||||vk − v?||)

≤ 2b(||xk − x?||+ ||vk − v?||) ≤ 2
√

2b

∥∥∥∥(xk − x?vk − v?
)∥∥∥∥ .

Combining this with (23) and (26), and ignoring the constants of the small o-term
leads to the claimed result.

Now we need to study the spectral properties of M
PD

. Let p
def
= dim(TRx?), q

def
=

dim(T J
∗

v? ) be the dimensions of the tangent spaces TRx? and T J
∗

v? respectively, define

SRx?
def
= (TRx?)

⊥ and SJ
∗

v?
def
= (T J

∗

v? )⊥. Assume that q ≥ p (alternative situations are
discussed in Remark 6). Let

L = XΣLY
∗

be the singular value decomposition of L, and define the rank as l
def
= rank(L). Clearly,

we have l ≤ p. Denote Mk
PD

the kth power of M
PD

.

Lemma 3.5 (Convergence property of M
PD

). The following holds for the matrix M
PD

:
(i) If θ = 1, then there exists a finite matrix M∞

PD
to which Mk

PD
converges, i.e.

M∞
PD

def
= lim

k→∞
Mk

PD
. (27)
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Moreover,

∀k ∈ N, Mk
PD
−M∞

PD
= (M

PD
−M∞

PD
)k and ρ(M

PD
−M∞

PD
) < 1.

Given any ρ ∈]ρ(M
PD
−M∞

PD
), 1[, there is K large enough such that for all k ≥ K,

||Mk
PD
−M∞

PD
|| = O(ρk).

(ii) If F = G∗ = 0, and R, J∗ are locally polyhedral around (x?, v?). Then given any
θ ∈]0, 1], M

PD
is convergent with

M∞
PD

=

[
Y

X

]0l
Idn−l

0l
Idm−l

[Y ∗ X∗

]
. (28)

Moreover, all the eigenvalues of M
PD
−M∞

PD
are complex with the spectral radius

ρ(M
PD
−M∞

PD
) =

√
1− θγ

R
γ
J
σ2

min < 1, (29)

where σmin is the smallest non-zero singular value of L.

Remark 6. We discuss in short several possible cases of (28) when F = G∗ = 0 and
R, J∗ are locally polyhedral around (x?, v?).

(i) If L = Id, then L = PT J∗v? PTRx? and σmin is the cosine value of the biggest principal

angle (yet strictly smaller than π/2) between tangent spaces TRx? and T J
∗

v? .
(ii) For the spectral radius formula in (29), let us consider the case of Arrow–Hurwicz

scheme [3], i.e. θ = 0. Let R, J∗ be locally polyhedral, and ΣL = (σj){j=1,...,l} be

the singular values of L, then the eigenvalues of M
PD

are

ρj =
1
2

(
(2− γ

R
γ
J
σ2
j )±

√
γ
R
γ
J
σ2
j (γRγJσ

2
j − 4)

)
, j ∈ {1, ..., l}, (30)

which apparently are complex (γ
R
γ
J
σ2
j ≤ γRγJ ||L||

2 < 1). Moreover,

|ρj | =
1
2

√
(2− γ

R
γ
J
σ2
j )

2 − γ
R
γ
J
σ2
j (γRγJσ

2
j − 4) = 1.

This implies that M
PD

has multiple eigenvalues with absolute values all equal to
1, then owing to the result of [5], we have M

PD
is not convergent.

Furthermore, for θ ∈ [−1, 0[, we have 1 − θγ
R
γ
J
σ2

min > 1 meaning that
M

PD
is not convergent, this implies that the correction step proposed in [28] is

necessary for θ ∈ [−1, 0]. Discussion on θ > 1 is left to Section 4.

Proof of Proposition 3.5.
(i) When θ = 1, M

PD
becomes

M
PD

=

[
WRHF −γ

R
WRL

∗

2γ
J
WJ∗LWRHF − γJWJ∗L WJ∗HG∗ − 2γ

R
γ
J
WJ∗LWRL

∗

]
(31)

Next we show that M
PD

is averaged non-expansive.

16



First define the following matrices

A =

[
HR/γR L∗

−L HJ∗/γJ

]
, B =

[
HF 0
0 HG∗

]
, V =

[
Idn/γR −L∗
−L Idm/γJ

]
, (32)

where we have A is maximal monotone [12], B is min{β
F
, β

G
}-cocoercive, and

V is ν-positive definite with ν = (1−
√
γ
J
γ
R
||L||2) min{ 1

γ
R

, 1
γ
J

}.
Now we have

V +A =

[
Idn+HR
γ
R

0

−2L Idm+HJ∗
γ
J

]
⇒ (V +A)−1 =

[
γ
R
WR 0

2γ
J
γ
R
WJ∗LWR γ

J
WJ∗

]
,

and V−B =

[
1
γ
R
HF −L∗

−L 1
γ
J
HG∗

]
. As a result, we get

(V +A)−1(V−B) =

[
γ
R
WR 0

2γ
J
γ
R
WJ∗LWR γ

J
WJ∗

][ 1
γ
R
HF −L∗

−L 1
γ
J
HG∗

]

=

[
WRHF −γ

R
WRL

∗

2γ
J
WJ∗LWRHF − γJWJ∗L WJ∗HG∗ − 2γ

J
γ
R
WJ∗LWRL

∗

]
,

which is exactly (31).
From Lemma 2.4 we know that M

PD
: KV → KV is averaged non-expansive,

hence it is convergent [6]. Then we have the induced matrix norm

lim
k→∞

||Mk
PD
−M∞

PD
||V = lim

k→∞
||M

PD
−M∞

PD
||kV = 0.

Since we are in the finite dimensional space and V is an isomorphism, then the
above limit implies that

lim
k→∞

||M
PD
−M∞

PD
||k = 0,

which means that ρ(M
PD
−M∞

PD
) < 1. The rest of the proof is classical using the

spectral radius formula, see e.g. [5, Theorem 2.12(i)].
(ii) When R and J∗ are locally polyhedral, then WR = Idn,WJ∗ = Idm, altogether

with F = 0, G = 0, for any θ ∈ [0, 1], we have

M
PD

=

[
Idn −γ

R
L∗

γ
J
L Idm − γRγJ (1 + θ)LL∗

]
. (33)

With the SVD of L, for M
PD

, we have

M
PD

=

[
Idn −γ

R
L∗

γ
J
L Idm − (1 + θ)γ

R
γ
J
LL∗

]
=

[
Y Y ∗ −γ

R
Y Σ∗

L
X∗

γ
J
XΣLY

∗ XX∗ − (1 + θ)γ
R
γ
J
XΣ2

L
X∗

]
=

[
Y

X

] [
Idn −γ

R
Σ∗
L

γ
J
ΣL Idm − (1 + θ)γ

R
γ
J
Σ2
L

]
︸ ︷︷ ︸

MΣ

[
Y ∗

X∗

]
.
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Since we assume that rank(L) = l ≤ p, then ΣL can be represented as

ΣL =

[
Σl 0l,n−l

0m−l,l 0m−l,n−l

]
,

where Σl = (σj)j=1,...,l. Back to MΣ, we have

MΣ =

 Idl 0l,n−l −γ
R

Σl 0l,m−l
0n−l,l Idn−l 0n−l,l 0n−l,m−l
γ
J
Σl 0l,n−l Idl − (1 + θ)γ

R
γ
J
Σ2
l 0l,m−l

0m−l,l 0m−l,n−l 0m−l,l Idm−l

 .
Let’s study the eigenvalues of MΣ,

|MΣ − ρIdm+n|

=

∣∣∣∣∣∣∣
(1− ρ)Idl 0l,n−l −γ

R
Σl 0l,m−l

0n−l,l (1− ρ)Idn−l 0n−l,l 0n−l,m−l
γ
J
Σl 0l,n−l (1− ρ)Idl − (1 + θ)γ

R
γ
J
Σ2
l 0l,m−l

0m−l,l 0m−l,n−l 0m−l,l (1− ρ)Idm−l


∣∣∣∣∣∣∣

= (1− ρ)m+n−2l

∣∣∣∣[(1− ρ)Idl −γ
R

Σl
γ
J
Σl (1− ρ)Idl − (1 + θ)γ

R
γ
J
Σ2
l

]∣∣∣∣ .
Since (−γ

R
Σl)((1 − ρ)Idl) = ((1 − ρ)Idl)(−γRΣl), then by [43, Theorem 3], we

have

|MΣ − ρIda+b| = (1− ρ)m+n−2l

∣∣∣∣[(1− ρ)Idl −γ
R

Σl
γ
J
Σl (1− ρ)Idl − (1 + θ)γ

R
γ
J
Σ2
l

]∣∣∣∣
= (1− ρ)m+n−2l

∣∣[(1− ρ)((1− ρ)Idl − (1 + θ)γ
R
γ
J
Σ2
l ) + γ

R
γ
J
ΣlΣl

]∣∣
= (1− ρ)m+n−2l

∣∣[(1− ρ)2Idl − (1− ρ)(1 + θ)γ
R
γ
J
Σ2
l + γ

R
γ
J
ΣlΣl

]∣∣
= (1− ρ)m+n−2l

∏l

j=1
(ρ2 − (2− (1 + θ)γ

J
γ
R
σ2
j )ρ+ (1− θγ

J
γ
R
σ2
j )).

For the eigenvalues ρ, clearly, except the 1’s, we have for j = 1, ..., l

ρj =
(2− (1 + θ)γ

J
γ
R
σ2
j )±

√
(1 + θ)2γ2

J
γ2
R
σ4
j − 4γ

J
γ
R
σ2
j

2
.

Since γ
J
γ
R
σ2
j ≤ γJγR ||L||

2 < 1, then ρj are complex and

|ρj | =
1
2

√(
2− (1 + θ)γ

J
γ
R
σ2
j

)2 − ((1 + θ)2γ2
J
γ2
R
σ4
j − 4γ

J
γ
R
σ2
j

)
=
√

1− θγ
J
γ
R
σ2
j < 1.

As a result, we also obtain the M∞
PD

, which reads

M∞
PD

=

[
Y

X

]0l
Idn−l

0l
Idm−l

[Y ∗ X∗

]
.
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Corollary 3.6. Suppose that Algorithm 1 is run under the identification conditions
of Theorem 3.2, and moreover assumption (A.5) holds. Then the following holds

(i) the linearized iteration (19) is equivalent to

(Id−M∞
PD

)(zk+1−z?) = M
PD

(Id−M∞
PD

)(zk−z?)+o((Id−M∞
PD

)||zk−z?||). (34)

(ii) If moreover R, J∗ are locally polyhedral around (x?, v?), and F,G∗ are quadratic,
then M∞

PD
(zk − z?) = 0 for all k large enough, and (34) becomes

zk+1 − z? = (M
PD
−M∞

PD
)(zk − z?). (35)

Proof. See [35, Corollary 5.1].

3.3. Local linear convergence

Finally, we are able to present the local linear convergence result.

Theorem 3.7 (Local linear convergence). Suppose that Algorithm 1 is run under the
identification conditions of Theorem 3.2, and moreover assumption (A.5) holds. Then:

(i) given any ρ ∈]ρ(M
PD
−M∞

PD
), 1[, there exists a K large enough such that ∀k ≥ K,

||(Id−M∞
PD

)(zk − z?)|| = O(ρk−K). (36)

(ii) If moreover, R, J∗ are locally polyhedral around (x?, v?), and F,G∗ are quadratic,
then there exists a K large enough such that for all k ≥ K, we have directly

||zk − z?|| = O(ρk−K), (37)

for ρ ∈ [ρ(M
PD
−M∞

PD
), 1[.

Proof. See [35, Theorem 5.1].

Remark 7.
(i) Similar to Proposition 3.4 and Remark 5, the above result remains hold if (γ

J
, γ

R
)

are varying yet convergent. However, the local rate convergence of ||zk−z?|| will
depends on how fast {(γ

J ,k, γR,k)}k converge, that means, if they converge at
a sublinear rate, then the convergence rate of ||zk − z?|| will eventually become
sublinear. See [35, Section 8.3] for the case of Douglas–Rachford splitting method.

(ii) When F = G∗ = 0 and both R and J∗ are locally polyhedral around the (x?, v?),
then the convergence rate of the Primal–Dual splitting method is controlled by
θ and γ

J
γ
R

as shown in (29); see the upcoming section for a detailed discussion.
For general situations (i.e. F,G∗ are nontrivial and R, J∗ are general partly

smooth functions), the factors that contribute to the local convergence rate are
much more complicated, such as the Riemannian Hessians of R, J∗.

4. Discussions

In this part, we present several discussions on the obtained local linear convergence
result, including the effects of θ ≥ 1, local oscillation and connections with FB and
DR methods.
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To make the discussion easier to deliver, for the rest of this section we focus on the
case where F = G∗ = 0, i.e. the Primal–Dual splitting method of [13], and moreover
R, J∗ are locally polyhedral around the Kuhn-Tucker pair (x?, v?). Under such setting,
the matrix defined in (18) becomes

M
PD

def
=

[
Idn −γ

R
L∗

γ
J
L Idm − (1 + θ)γ

J
γ
R
LL∗

]
. (38)

4.1. Choice of θ

Owing to Lemma 3.5, the matrix M
PD

in (38) is convergent for θ ∈]0, 1], see Eq. (28),
with the spectral radius

ρ(M
PD
−M∞

PD
) =

√
1− θγ

R
γ
J
σ2

min < 1, (39)

with σmin being the smallest non-zero singular value of L.
In general, given a solution pair (x?, v?), σmin is fixed, hence the spectral radius

ρ(M
PD
− M∞

PD
) is simply controlled by θ and the product γ

J
γ
R

. To make the local
convergence rate as faster as possible, it is obvious that we need to make the value
of θγ

J
γ
R

as big as possible. Recall in the global convergence of Primal–Dual splitting
method or the result from [13], that γ

J
γ
R
||L||2 < 1. Denote σmax the biggest singular

value of L. It is then straightforward that γ
J
γ
R
σ2

max ≤ γJγR ||L||
2 < 1 and moreover

ρ(M
PD
−M∞

PD
) =

√
1− θγ

R
γ
J
σ2

min

>
√

1− θ(σmin/||L||)2 ≥
√

1− θ(σmin/σmax)2.
(40)

If we define cnd
def
= σmax/σmin the condition number of L, then we have

ρ(M
PD
−M∞

PD
) >

√
1− θ(1/cnd)2.

To this end, it is clear that θ = 1 gives the best convergence rate for θ ∈ [−1, 1]. Next
let us look at what happens locally if we choose θ > 1.The spectral radius formula (39)
implies that bigger value of θ yields smaller spectral radius ρ(M

PD
−M∞

PD
). Therefore,

locally we should choose θ as big as possible. However, there is an upper bound of θ
which is discussed below.

Following Remark 6, let ΣL = (σj){j=1,...,l} be the singular values of L, let ρj be the
eigenvalue of M

PD
−M∞

PD
, we have known that ρj is complex with

ρj =
1
2

(
(2− (1 + θ)γ

R
γ
J
σ2
j )±

√
(1 + θ)2γ2

R
γ2
J
σ4
j − 4γ

R
γ
J
σ2
j

)
, |ρj | =

√
1− θγ

R
γ
J
σ2
j .

Now let θ > 1, to ensure |ρj | make sense for all j ∈ {1, ..., l}, there must holds

1− θγ
R
γ
J
σ2

max ≥ 0⇐⇒ θ ≤ 1
γ
R
γ
J
σ2

max

,

which means that θ indeed is bounded from above.
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Unfortunately, since L = PTRx?LPT J∗v? , the upper bound can be only obtained if we

had the solution pair (x?, v?). However, in practice one can use back-tracking or the
Armijo-Goldstein-rule to find the proper θ. See Section 6.4 for an illustration of online
searching of θ. It should be noted that such updating rule can also be applied to γ

J
, γ

R

since we have ||L|| ≤ ||L||. Moreover, it should be noted that in practice one can choose
to enlarge either θ or γ

J
γ
R

as they will have very similar acceleration outcome.

Remark 8. It should be noted that the above discussion on the effect of θ > 1 may
only valid for the case F = 0, G∗ = 0, i.e. the Primal–Dual splitting method of [13]. If
F and/or G∗ are not vanished, then locally, θ < 1 may give faster convergence rate.

4.2. Oscillations

For the inertial Forward–Backward and FISTA [7] methods, it is shown in [34] that
they locally oscillate when the inertia momentum are too high (see [34, Section 4.4]
for more details). When solving certain type of problems (i.e. F = G∗ = 0 and R, J∗

are locally polyhedral around the solution pair (x?, v?)), the Primal–Dual splitting
method also locally oscillates (see Figure 6 for an illustration). As revealed in the proof
of Lemma 3.5, all the eigenvalues of M

PD
−M∞

PD
in (38) are complex. This means that

locally the sequences generated by the Primal–Dual splitting iteration may oscillate.
For σmin, the smallest non-zero singular of L, one of its corresponding eigenvalues

of M
PD

reads

ρσmin
=

1
2

(
(2− (1 + θ)γ

J
γ
R
σ2

min) +
√

(1 + θ)2γ2
R
γ2
J
σ4

min − 4γ
J
γ
R
σ2

min

)
,

and (1 + θ)2γ2
R
γ2
J
σ4

min − 4γ
J
γ
R
σ2

min < 0. Denote ω the argument of ρσmin
, then

cos(ω) =
2− (1 + θ)γ

J
γ
R
σ2

min√
1− θγ

J
γ
R
σ2

min

. (41)

The oscillation period of the sequence ||zk−z?|| is then exactly π
ω . See Figure 6 for an

illustration.

4.3. Relations with FB and DR/ADMM

In this part, we discuss the relation between the obtained result and our previ-
ous work on local linear convergence of Forward–Backward [32,34] and Douglas–
Rachford/ADMM [35,36].

4.3.1. Forward–Backward splitting

For problem (PP), when J = G∗ = 0, Algorithm 1 reduces to, denoting γ = γ
R

and
β = β

F
,

xk+1 = proxγR
(
xk − γ∇F (xk)

)
, γ ∈]0, 2β[, (42)

which is the non-relaxed FB splitting [37] with constant step-size.
Let x? ∈ Argmin(R + F ) be a global minimizer to which {xk}k∈N of (42) con-

verges, the non-degeneracy condition (ND) for identification then becomes −∇F (x?) ∈
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ri(∂R(x?)) which recovers the conditions of [34, Theorem 4.11]. Following the notations

of Section 3, define M
FB

def
= WR(Idn − γHF ), we have for all k large enough

xk+1 − x? = M
FB

(xk − x?) + o(||xk − x?||).

From Theorem 3.7, we obtain the following result for the FB splitting method, for the
case γ being fixed. Denote Mx? the manifold that x? lives in.

Corollary 4.1. For problem (PP), let J = G∗ = 0 and suppose that (A.1) holds
and Argmin(R + F ) 6= ∅, and the FB iteration (42) creates a sequence xk →
x? ∈ Argmin(R + F ) such that R ∈ PSFx?(Mx?), F is C2 near x?, and condition
−∇F (x?) ∈ ri(∂R(x?)) holds. Then

(i) given any ρ ∈]ρ(M
FB
−M∞

FB
), 1[, there exists a K large enough such that for all

k ≥ K,

||(Id−M∞
FB

)(xk − x?)|| = O(ρk−K). (43)

(ii) If moreover, R are locally polyhedral around x?, there exists a K large enough
such that for all k ≥ K, we have directly

||xk − x?|| = O(ρk−K), (44)

for ρ ∈ [ρ(M
FB
−M∞

FB
), 1[.

Proof. Owing to [6], M
FB

is 2β
4β−γ -averaged non-expansive, hence convergent. The

convergence rates in (43) and (44) are straightforward from Theorem 3.7.

The result in [32,34] required a so-called restricted injectivity (RI) condition, which
means that HF should be positive definite. Moreover, this RI condition was removed
only when J is locally polyhedral around x? (e.g. see [34, Theorem 4.9]). Here, we
show that neither RI condition nor polyhedrality are needed to show local linear
convergence. As such, the analysis on this paper generalizes that of [34] even for
FB splitting. However, the price of removing those conditions is that the obtained
convergence rate is on a different criterion (i.e. ||(Id−M∞

FB
)(xk − x?)||) other than the

sequence itself directly (i.e. ||xk − x?||).

4.3.2. Douglas–Rachford splitting and ADMM

Let F = G∗ = 0 and L = Id, then problem (PP) becomes

min
x∈Rn

R(x) + J(x).

For the above problem, below we briefly show that DR splitting is the limiting case of
Primal–Dual splitting by letting γ

R
γ
J

= 1. First, for the Primal–Dual splitting scheme
of Algorithm 1, let θ = 1 and change the order of updating the variables, we obtain
the following iteration vk+1 = proxγ

J
J∗(vk + γ

J
x̄k)

xk+1 = proxγ
R
R(xk − γRvk+1)

x̄k+1 = 2xk+1 − xk.
(45)
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Then apply the Moreau’s identity (6) to proxγ
J
J∗ , let γ

J
= 1/γ

R
and define zk+1 =

xk − γRvk+1, iteration (45) becomesuk+1 = proxγ
R
J(2xk − zk)

zk+1 = zk + uk+1 − xk
xk+1 = proxγ

R
R(zk+1),

(46)

which is the non-relaxed DR splitting method [24]. At convergence, we have uk, xk →
x? = proxγ

R
R(z?) where z? is a fixed point of the iteration. See also [13, Section 4.2].

Specializing the derivation of (18) to (45) and (46), we obtain the following two
linearized fixed-point operator for (45) and (46) respectively

MPD =

[
Idn −γ

R
PTRx?PT J∗v?

γ
J
PT J∗v? PTRx? Idn − 2γ

J
γ
R

PT J∗v? PTRx?PT J∗v?

]
,

MDR =

[
Idn −γ

R
PTRx?PT J∗v?

1
γR

PT J∗v? PTRx? Idn − 2PT J∗v? PTRx?PT J∗v?

]
.

Owing to (ii) of Lemma 3.5, MPD,MDR are convergent. Let ω be the largest principal
angle (yet smaller than π/2) between tangent spaces TRx? and T J

∗

v? , then we have the
spectral radius of MPD −M∞PD reads ((i) of Remark 6),

ρ(MPD −M∞PD) =
√

1− γ
J
γ
R

cos2(ω)

≥
√

1− cos2(ω) = sin(ω) = cos(π/2− ω).
(47)

Suppose that the Kuhn-Tucker pair (x?, v?) is unique, and moreover that R and J
are polyhedral. Therefore, we have that if J∗ is locally polyhedral near v? along v? +
T J
∗

v? , then J is locally polyhedral near x? around x? + T Jx? , and moreover there holds
T Jx? = (T J

∗

v? )⊥. As a result, the principal angles between TRx? , T
J∗
v? and the ones between

TRx? , T
J
x? are complementary, which means that π/2−ω is the Friedrichs angle between

tangent spaces TRx? , T
J
x? . Thus, following (47), we have

ρ(MPD −M∞PD) =
√

1− γ
J
γ
R

cos2(ω) ≥ cos(π/2− ω) = ρ(MDR −M∞DR).

We emphasise the fact that such connection can be drawn only for the polyhedral
case, which justifies the different analysis carried in [35,36]. In addition, for DR we
were able to characterize situations where finite convergence provably occurs, while
this is not (yet) the case for Primal–Dual splitting even for R and J∗ being locally
polyhedral around (x?, v?) and F = G∗ = 0 but L is non-trivial.

5. Multiple infimal convolutions

In this section, we consider problem (PP) with more than one infimal convolution. Le
m ≥ 1 be a positive integer. Consider the problem of solving

min
x∈Rn

R(x) + F (x) +
∑m

i=1(Ji ∨+ Gi )(Lix), (Pm
P)
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where (A.1) holds for R and F , and for every i = 1, ...,m the followings are hold:
(A’.2) Ji , Gi ∈ Γ0(Rmi ), with Gi being differentiable and βG,i -strongly convex for

βG,i > 0.
(A’.3) Li : Rn → Rmi is a linear operator.
(A’.4) The condition 0 ∈ ran(∂R+∇F +

∑m
i=1 L

∗
i (∂Ji�∂Gi )Li ) holds.

The dual problem of (Pm
P) reads,

min
v1∈Rm1 ,...,vm∈Rmm

(R∗ ∨+ F ∗)
(
−
∑m

i=1 L
∗
i vi

)
+
∑m

i=1

(
J∗i (vi ) +G∗i (vi )

)
. (Pm

D)

Problem (Pm
P) is considered in [19,48], and a Primal–Dual splitting algorithm is

proposed there which is an extension of Algorithm 1 using a product space trick, see
Algorithm 2 hereafter for details. In both schemes in [19,48], θ is set as 1.

Algorithm 2: A Primal–Dual splitting method

Initial: Choose γ
R
, (γ

Ji
)i > 0. For k = 0, x0 ∈ Rn, vi ,0 ∈ Rmi , i ∈ {1, ...,m};

repeat 
xk+1 = proxγ

R
R

(
xk − γR∇F (xk)− γR

∑
i L
∗
i vi ,k

)
x̄k+1 = 2xk+1 − xk
For i = 1, ...,m⌊
vi ,k+1 = proxγ

Ji
J∗i

(
vi ,k − γJi

∇G∗i (vi ,k) + γ
Ji
Li x̄k+1

)
,

(48)

k = k + 1;

until convergence;

5.1. Product space

The following result is taken from [19]. Define the product space K = Rn × Rm1 ×
· · · × Rmm , and let Id be the identity operator on K. Define the following operators

A
def
=

 ∂R L∗1 · · · L∗m
−L1 ∂J1

...
. . .

−Lm ∂Jm

,B def
=

∇F ∇G∗1
. . .

∇G∗m

,V def
=


Idn
γ
R

−L∗1 · · · −L∗m
−L1

Idm1
γ
J1

...
. . .

−Lm
Idmm
γ
Jm

.
(49)

Then A is maximal monotone, B is min{β
F
, β

G1
, ..., β

Gm
}-cocoercive, and V is sym-

metric and ν-positive definite with ν = (1−
√
γ
R

∑
i γJi
||Li ||2) min{ 1

γ
R

, 1
γ
J1

, ..., 1
γ
Jm
}. Define

zk = (xk, v1,k, · · · , vm,k)
T , then it can be shown that (48) is equivalent to

zk+1 = (V +A)−1(V−B)zk = (Id + V−1A)−1(Id−V−1B)zk. (50)
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5.2. Local convergence analysis

Let (x?, v?1, ..., v
?
m) be a Kuhn-Tucker pair. Define the following functions

J∗i (vi )
def
= J∗i (vi )− 〈vi , Lix

? −∇G∗i (v?i )〉, vi ∈ Rmi , i ∈ {1, ...,m}, (51)

and the Riemannian Hessian of each J∗i ,

HJ∗i

def
= γ

Ji
P
T
J∗i
v?i

∇2

M
J∗i
v?i

J∗i (v?i )P
T
J∗i
v?i

and WJ∗i

def
= (Idmi +HJ∗i

)−1, i ∈ {1, ...,m}. (52)

For each i ∈ {1, ...,m}, owing to Lemma 3.3, we have that WJ∗i
is firmly non-expansive

if the non-degeneracy condition (NDm) holds. Now suppose
(A’.5) F locally is C2-smooth around x? and G∗i locally is C2 around v?i .

Define the restricted HessianHG∗i

def
= P

T
J∗i
v?i

∇2G∗i (v?i )P
T
J∗i
v?i

. DefineHG∗i

def
= Idmi−γJ∗i HG∗i ,

Li
def
= P

T
J∗i
v?i

Li PTRx? , and the matrix

M
PD

def
=


W
R
HF −γ

R
W
R
L∗1 · · · −γ

R
W
R
L∗m

γ
J∗1
WJ∗1

L1(2WRHF − Idn) WJ∗1
(HG∗1

− 2γ
J∗1
γ
R
L1WRL

∗
1)

.

.

.
. .
.

γ
J∗m
WJ∗m

Lm (2WRHF − Idn) · · · WJ∗m
(HG∗m

− 2γ
J∗m
γ
R
LmWRL

∗
m )

.
(53)

Using the same strategy of the proof of Lemma 3.5, one can show that M
PD

is conver-
gent, which again is denoted as M∞

PD
, and ρ(M

PD
−M∞

PD
) < 1.

Corollary 5.1. Consider Algorithm 2 under assumptions (A.1) and (A’.2)-(A’.5).
Choose γ

R
, (γ

Ji
)i > 0 such that

2 min{β
F
, β

G1
, ..., β

Gm
}min

{
1
γ
R

, 1
γ
J1

, ..., 1
γ
Jm

}(
1−

√
γ
R

∑
i γJi
‖Li‖2

)
> 1. (54)

Then (xk, v1,k, ..., vm,k) → (x?, v?1, ..., v
?
m), where x? solves (Pm

P) and (v?1, ..., v
?
m)

solve (Pm
D). If moreover R ∈ PSFx?(MR

x?) and J∗i ∈ PSFv?i (MJ∗i
v?i

), i ∈ {1, ...,m}, and
the non-degeneracy condition holds

−
∑

i L
∗
i v
?
i −∇F (x?) ∈ ri

(
∂R(x?)

)
Lix

? −∇G∗i (v?) ∈ ri
(
∂J∗i (v?)

)
, ∀i ∈ {1, ...,m}.

(NDm)

Then,
(i) there exists K > 0 such that for all k ≥ K,

(xk, v1,k, ..., vm,k) ∈MR
x? ×M

J∗1
v?1
× · · · ×MJ∗m

v?m
.

(ii) Given any ρ ∈]ρ(M
PD
−M∞

PD
), 1[, there exists a K large enough such that for all

k ≥ K,

||(Id−M∞
PD

)(zk − z?)|| = O(ρk−K). (55)
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If moreover, R, J∗1 , ..., J
∗
m are locally polyhedral around (x?, v?1, ..., v

?
m), then we

have directly have ||zk − z?|| = O(ρk−K).

Proof. Owing to [19], condition (54) guarantees the convergence of the algorithm.
(i) the identification result follows naturally from Theorem 3.2.
(ii) the result follows Proposition 3.4, Corollary 3.6 and Theorem 3.7. First, for the

update of xk of (48), we have

xk+1 − x?

= WRHF (xk − x?)− γRWR

∑
i L
∗
i (vi,k − v?i ) + o(||xk − x?||+ γ

R

∑
i ||Li ||||vi,k − v?i ||).

(56)
Then the update of vi ,k+1, for each i = 1, ...,m , similar to (26), we get

vi,k+1 − v?i =
(
W
J∗i
HG∗i

− (1 + θ)γJi
γRWJ∗i

LiWRL
∗
i
)
(vi,k − v?i )

+
(
2γJi

W
J∗i
LiWRHF − γJi

W
J∗i
Li
)
(xk − x?)

+ o(||xk − x?||+ γR
∑

i ||Li ||||vi,k − v?i ||) + o(||vi,k − v?i ||+ γJi
||Li ||||xk − x?||).

(57)

Now consider the small o-terms. For the 2 small o-terms in (22) and (25). First,
let a0, a1, ..., am be m + 1 constants, then we have∑m

i=0|ai | =
√

(
∑m

i=0|ai |)2 ≤
√

(m + 1)
∑m

i=0 |ai |2 =
√

m + 1||(a0, ..., am)T ||.

Denote b = max{1,
∑

iσi ||Li ||, γR ||L1||, ..., γR ||Lm ||}, then∑
i (||vi ,k − v?i ||+ σi ||Li ||||xk − x?||) + (||xk − x?||+ γ

R

∑
i ||Li ||||vi ,k − v?i ||)

≤ 2b(||xk − x?||+
∑

i ||vi ,k − v?i ||) ≤ 2b
√

m + 1||zk − z?||.

Combining this with (56) and (57), and ignoring the constants of the small o-
term, we have that the fixed-point iteration (50) is equivalent to

zk+1 − z? = M
PD

(zk − z?) + o(||zk − z?||).

The rest of the proof follows the proof of Theorem 3.7.

6. Numerical experiments

In this section, we verify our theoretical results on several concrete examples arising
from fields including inverse problem, signal/image processing and machine learning.

6.1. Examples of partly smooth function

Table 1 provides some examples of partly smooth functions that will be used in this
section, whose more details can be found in [34, Section 5] and the references therein.
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Table 1. Examples of partly smooth functions. For x ∈ Rn and some subset of indices b ⊂ {1, . . . , n}, xb is the

restriction of x to the entries indexed in b. DDIF stands for the finite differences operator.

Function Expression Partial smooth manifold
`1-norm ||x||1 =

∑n
i=1 |xi| M = Tx =

{
z ∈ Rn : Iz ⊆ Ix

}
, Ix =

{
i : xi 6= 0

}
`1,2-norm

∑m
i=1 ||xbi || M = Tx =

{
z ∈ Rn : Iz ⊆ Ix

}
, Ix =

{
i : xbi 6= 0

}
`∞-norm maxi={1,...,n} |xi| M = Tx =

{
z ∈ Rn : zIx ∈ Rsign(xIx )

}
, Ix =

{
i : |xi| = ||x||∞

}
TV semi-norm ||x||TV = ||DDIFx||1 M = Tx =

{
z ∈ Rn : ID

DIF
z ⊆ ID

DIF
x

}
, ID

DIF
x = {i : (DDIFx)i 6= 0}

Nuclear norm ||x||∗ =
∑r
i=1 σ(x) M =

{
z ∈ Rn1×n2 : rank(z) = rank(x) = r

}
, σ(x) singular values of x

The `1, `∞-norms and the anisotropic TV semi-norm are polyhedral functions, hence
their Riemannian Hessian are simply 0. The `1,2-norm is not polyhedral yet partly
smooth relative to a subspace, the nuclear norm is partly smooth relative to the set of
fixed-rank matrices, which on the other hand is curved, the Riemannian of these two
functions are non-trivial and can be found in [47] and references therein.

6.2. Linear inverse problems

Given an object xob ∈ Rn, often times we can not access it directly, but through the
observation model,

b = Kxob, (58)

where b ∈ Rm is the observation, K : Rn → Rm is some linear operator. A more
complicated situation is when the observation is contaminated by noise, namely, b =
Kxob + w, where w ∈ Rm is the noise.

The operator K usually is ill-conditioned or even singular, hence recovering or ap-
proximating xob from (58) in general is ill-posed. However, usually some prior knowl-
edge of xob can be available. Thus, a popular approach to recover xob from b is via
regularization, by solving

min
x∈Rn

R(x) + J(Kx− b), (59)

where
– R ∈ Γ0(Rn) is the regularizer based on the prior information, e.g. `1, `1,2, `∞-

norms, nuclear norm;
– J ∈ Γ0(Rm) enforces fidelity to the observations. Typically J = ι0 when there is

no noise, i.e. w = 0.
Clearly, (59) is a special instance of (PP) with F = G∗ = 0. Thus Algorithm 1 can be
applied to solve it.

We consider problem (59) with R being `1, `1,2, `∞-norms, and nuclear norm.
K ∈ Rm×n is generated uniformly at random with independent zero-mean standard
Gaussian entries. The settings of the experiments are:

`1-norm (m,n) = (48, 128), ||xob||0 = 8;
`1,2-norm (m,n) = (48, 128), xob has 3 non-zero blocks of size 4;
`∞-norm (m,n) = (63, 64), |I(xob)| = 8;

Nuclear norm (m,n) = (500, 1024), xob ∈ R32×32 and rank(xob) = 4.

Figure 1 displays the profile of ||zk−z?|| as a function of k, and the starting point of the
dashed line is the iteration number at which the active partial smoothness manifold
of MR

x? is identified (recall that MJ∗
v? = {0} which is trivially identified from the first

iteration). One can easily see that for the `1 and `∞-norms, Theorem 3.7 applies and
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our estimates are very tight, meaning that the dashed and solid lines has the same
slope. For the case of `1,2-norm and nuclear norm, though not optimal, our estimates
are very tight.
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(d) Nuclear norm

Figure 1. Observed (solid) and predicted (dashed) convergence profiles of Algorithm 1 in terms of ||zk−z?||.
(a) `1-norm. (b) `∞-norm. (c) `1,2-norm. (d) Nuclear norm. The starting point of the dashed line is the iteration

at which the active manifold of J is identified.

6.3. Total variation based denoising

In this part, we consider several total variation based denoising examples, for the first
two examples, we consider the observation b = xob + w, where xob is a piecewise-
constant vector, and w is an unknown noise supposed to be either uniform or sparse.
The goal is to recover xob from b using the prior information on xob (i.e. piecewise-
smooth) and w (uniform or sparse). To achieve this goal, a popular and natural ap-
proach in the signal processing literature is to solve

min
x∈Rn

||D
DIF
x||1 subject to ||b− x||p ≤ τ, (60)

where p = +∞ for uniform noise, and p = 1 for sparse noise, and τ > 0 is a parameter
depending on the noise level.

Problem (60) can also formulated into the form of (PP). Indeed, one can take
R = ι||b−·||

p
≤τ , J = || · ||1, F = G∗ = 0, and L = D

DIF
is the finite difference operator

(with appropriate boundary conditions). The proximity operators of R and J can
be computed easily. Clearly, both two indicator functions are polyhedral, and their
proximal operator are simple to compute.
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For both examples, we set n = 128 and xob is such that D
DIF
xob has 8 nonzero

entries. For p = +∞, w is generated uniformly in [−1, 1], and for p = 1, w is sparse
with 16 nonzero entries. The corresponding local convergence profiles are depicted in
Figure 2(a)-(b). Owing to polyhedrality, our rate predictions are again optimal.

k
50 100 150 200

kz
k
!

z
?
k

10-10

10-6

10-2

102

Practical observation
Theoretical estimation

(a) Sparse noise removal p = 1

k
1000 2000 3000 4000 5000 6000

kz
k
!

z
?
k

10-10

10-6

10-2

102

Practical observation
Theoretical estimation

(b) Uniform noise removal p =∞
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(c) Gaussian noise removal

Figure 2. Observed (solid) and predicted (dashed) convergence profiles of Primal–Dual (2) in terms of ||zk−
z?||. (a) Sparse noise removal. (b) Uniform noise removal. (c) Gaussian noise removal. The starting point of

the dashed line is the iteration at which the active manifold of J is identified.

We also consider an underdetermined linear regression problem b = Kxob + w.
We assume that the vector xob is group sparse and each non-zero group is piecewise
constant. This regression problem can then be approached by solving

min
x∈Rn

µ1||x||1,2 +
1
2
||Kx− b||2 + µ2||DDIF

x||1,

where µ1, µ2 > 0, || · ||1,2 promotes group sparsity, and ||D
DIF
· ||1 promotes piece-wise

constancy. This is again in the form of (PP), where R = µ1|| · ||1,2, F = 1
2
||K · −b||2,

J = µ2|| · ||1, G∗ = 0, and L = D
DIF

. For this example, we set xob ∈ R128 with 2
piecewise constant non-zeros blocks of size 8. The result is shown in Figure 2(c), the
estimate is again very sharp.

6.4. Choices of θ and γ
J
, γ

R

In this part, we present a comparison on different choices of θ and γ
J
, γ

R
to see their

influences on the finite identification and local linear convergence rate. Two examples
are consider for these comparisons, problem (59) with R being `1-norm and `1,2-norm.

Fixed θ For this comparison, we fix θ = 1 and consider 4 different cases of γ
J
γ
R
||L||2:

γ
J
γ
R
||L||2 ∈ {0.3, 0.6, 0.8, 0.99},

with γ
J

= γ
R

. The result is shown in Figure 3, and we have the following observations:
(i) The smaller the value of γ

J
γ
R
||L||2, the slower the iteration converges;

(ii) Bigger value of γ
R

leads to faster identification (since J∗ is globally C2-smooth,
so only the identification of R for this case).

Fixed γ
J
γ

R
||L||2 Now we turn to the opposite direction, fix γ

J
γ
R
||L||2 and change θ.

In the test, we fixed γ
J
γ
R
||L||2 = 0.9 and γ

J
= γ

R
, 5 different choices of θ are considered,
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Figure 3. Comparison of the choice of γJ , γR when θ is fixed.

which are

θ ∈ {0.5, 0.75, 1.0, 2.0},

plus the last one with Armijo-Goldstein-rule for updating θ adaptively. Although there
is no convergence guarantee for θ = 2.0, in the test it converges and we choose to put
it here as an illustration of the effects of θ > 1. The result is shown in Figure 4, and
we have the following observations

(i) Similar to the previous one, the smaller the value of θ, the slower the iteration
converges. Also, the Armijo-Goldstein-rule is the fastest of all.

(ii) Interestingly, the value of θ has no impacts to the identification of the iteration.
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Figure 4. Comparison of the choice of θ when γJ , γR are fixed.

Fixed θ and γ
J
γ

R
For the above comparisons, we fix γ

J
= γ

R
, so for this comparison,

we compare the different choices of them. We fix θ = 1 and γ
J
γ
R
||L||2 = 0.99, then we

choose

γ
R
∈ {0.25, 0.5, 1, 2} and γ

J
= 0.99

γR ||L||
2 .

Figure 5 shows the comparison result, we also have two observations:
(i) For the `1-norm, since both functions are polyhedral, local convergence rate are

the same for all choices of γ
R

, see (29) for the expression of the rate. The only
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difference is the identification speed, γ
R

= 0.25 gives the slowest identification,
however it uses almost the same number of iterations reaching the given accuracy.

(ii) For the `1,2-norm, on the other hand, the choice of γ
R

affects both the identi-
fication and local convergence rate. It can be observed that bigger γ

R
leads to

faster local rate, however, it does not mean that the bigger the better. In fact,
too big value will slow down the convergence.
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Figure 5. Comparison of fixed θ and γJ γR , but varying γR .

6.5. Oscillation of the method

We dedicate the last part of this section to demonstrate the oscillation behaviour
of the Primal–Dual splitting method when dealing with polyhedral functions. As we
have seen from the above experiments, oscillation of ||zk−z?|| happens for all examples
whose involved functions R, J∗ are polyhedral, even for the non-polyhedral `1,2-norm
(for the `∞-norm, the oscillation is not visible since the oscillation period is too small
compared to the number of iterations).

Now to verify our discussion in Section 4, we consider problem (59) with R being
`1-norm, and the result is shown in Figure 6. As revealed in (41), the argument of the
leading eigenvalue of M

PD
−M∞

PD
is controlled by θγ

J
γ
R

, so is the oscillation period.
Therefore, the value γ

J
γ
R

is tuned such that the oscillation period is an integer, and
π/ω = 12 for the example we tested. Figure 6 shows graphically the observed oscilla-
tion, apparently the oscillation pattern coincides well with the theoretical estimation.

7. Discussion and conclusion

In this paper, we studied local convergence properties of a class of Primal–Dual split-
ting methods when the involved non-smooth functions are moreover partly smooth.
In particular, we demonstrated that these methods identify the active manifolds in
finite time and then converge locally linearly at a rate that we characterized precisely.
We also built connections of the presented result to our previous work on Forward–
Backward splitting and Douglas–Rachford splitting/ADMM. Though we focused on
one class of Primal–Dual splitting methods, there are other Primal–Dual splitting
schemes, such as those in [12,18,25], to which our analysis and conclusions can be
straightforwardly extended.
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Appendix A. Riemannian Geometry

Let M be a C2-smooth embedded submanifold of Rn around a point x. With some
abuse of terminology, we shall state C2-manifold instead of C2-smooth embedded
submanifold of Rn. The natural embedding of a submanifold M into Rn permits to
define a Riemannian structure and to introduce geodesics on M, and we simply say
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M is a Riemannian manifold. We denote respectively TM(x) and NM(x) the tangent
and normal space of M at point near x in M.

Exponential map Geodesics generalize the concept of straight lines in Rn, preserving
the zero acceleration characteristic, to manifolds. Roughly speaking, a geodesic is
locally the shortest path between two points on M. We denote by g(t;x, h) the value
at t ∈ R of the geodesic starting at g(0;x, h) = x ∈ M with velocity ġ(t;x, h) =
dg
dt

(t;x, h) = h ∈ TM(x) (which is uniquely defined). For every h ∈ TM(x), there exists

an interval I around 0 and a unique geodesic g(t;x, h) : I →M such that g(0;x, h) = x
and ġ(0;x, h) = h. The mapping Expx : TM(x) → M, h 7→ Expx(h) = g(1;x, h) is
called Exponential map. Given x, x′ ∈ M, the direction h ∈ TM(x) we are interested
in is such that Expx(h) = x′ = g(1;x, h).

Parallel translation Given two points x, x′ ∈ M, let TM(x), TM(x′) be their cor-
responding tangent spaces. Define τ : TM(x)→ TM(x′) the parallel translation along
the unique geodesic joining x to x′, which is isomorphism and isometry w.r.t. the
Riemannian metric.

Riemannian gradient and Hessian For a vector v ∈ NM(x), the Weingarten
map of M at x is the operator Wx(·, v) : TM(x) → TM(x) defined by Wx(·, v) =
−PTM(x)dV [h] where V is any local extension of v to a normal vector field onM. The
definition is independent of the choice of the extension V , and Wx(·, v) is a symmetric
linear operator which is closely tied to the second fundamental form of M, see [15,
Proposition II.2.1].

Let J be a real-valued function which is C2 along the M around x. The covariant
gradient of J at x′ ∈M is the vector ∇MJ(x′) ∈ TM(x′) defined by

〈∇MJ(x′), h〉 =
d
dt
J
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′),

where PM is the projection operator onto M. The covariant Hessian of J at x′ is the
symmetric linear mapping ∇2

MJ(x′) from TM(x′) to itself which is defined as

〈∇2
MJ(x′)h, h〉 =

d2

dt2
J
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′). (A1)

This definition agrees with the usual definition using geodesics or connections [38]. Now
assume that M is a Riemannian embedded submanifold of Rn, and that a function
J has a C2-smooth restriction on M. This can be characterized by the existence of a
C2-smooth extension (representative) of J , i.e. a C2-smooth function J̃ on Rn such

that J̃ agrees with J onM. Thus, the Riemannian gradient ∇MJ(x′) is also given by

∇MJ(x′) = PTM(x′)∇J̃(x′), (A2)

and ∀h ∈ TM(x′), the Riemannian Hessian reads

∇2
MJ(x′)h = PTM(x′)d(∇MJ)(x′)[h] = PTM(x′)d

(
x′ 7→ PTM(x′)∇MJ̃

)
[h]

= PTM(x′)∇2J̃(x′)h+ Wx′
(
h,PNM(x′)∇J̃(x′)

)
,

(A3)
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where the last equality comes from [1, Theorem 1]. When M is an affine or linear

subspace of Rn, then obviouslyM = x+TM(x), and Wx′(h,PNM(x′)∇J̃(x′)) = 0, hence

(A3) reduces to ∇2
MJ(x′) = PTM(x′)∇2J̃(x′)PTM(x′); See [15,30] for more materials on

differential and Riemannian manifolds.
We have the following proposition characterizing the parallel translation and the

Riemannian Hessian of two close points in M.

Lemma A.1. Let x, x′ be two close points inM, denote TM(x), TM(x′) be the tangent
spaces of M at x, x′ respectively, and τ : TM(x′) → TM(x) be the parallel translation
along the unique geodesic joining from x to x′, then for the parallel translation we
have, given any bounded vector v ∈ Rn

(τPTM(x′) − PTM(x))v = o(||v||). (A4)

The Riemannian Taylor expansion of J ∈ C2(M) at x for x′ reads,

τ∇MJ(x′) = ∇MJ(x) +∇2
MJ(x)PTM(x)(x

′ − x) + o(||x′ − x||). (A5)

Proof. See [34, Lemma B.1 and B.2].

Lemma A.2. Let M be a C2-smooth manifold, x̄ ∈ M, R ∈ PSFx̄(M) and ū ∈
∂R(x̄). Let R̃ be a smooth representative of R on M near x, then given any h ∈ Tx̄,

(i) when M is a general smooth manifold, if there holds ū ∈ ri(∂R(x̄)), define the
function R(x) = R(x)− 〈x, ū〉, then

〈PTx̄∇2
MR(x̄)PTx̄h, h〉 ≥ 0. (A6)

(ii) if M is affine/linear, then we have directly,

〈PTx̄∇2
MR̃(x̄)PTx̄h, h〉 ≥ 0. (A7)

Proof. See [34, Lemma 4.3].
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