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WKB ANALYSIS OF NON-ELLIPTIC NONLINEAR SCHR ÖDINGER EQUATIONS

We justify the WKB analysis for generalized nonlinear Schrödinger equations (NLS), including the hyperbolic NLS and the Davey-Stewartson II system. Since the leading order system in this analysis is not hyperbolic, we work with analytic regularity, with a radius of analyticity decaying with time, in order to obtain better energy estimates. This provides qualitative information regarding equations for which global well-posedness in Sobolev spaces is widely open.

i∂ t ψ + 1 2 ∂ 2 1 ψ - 1 2 ∂ 2 2 ψ ± |ψ| 2 ψ = 0, (x 1 , x 2 ) ∈ R 2 ,
appears in nonlinear optics (see e.g. [START_REF] Dumas | Variants of the focusing NLS equation: derivation, justification, and open problems related to filamentation[END_REF][START_REF] Sulem | The nonlinear Schrödinger equation, Self-focusing and wave collapse[END_REF]), but remains quite mysterious as far as analysis is concerned: it is locally well-posed in H s (R 2 ) for any s > 0, it is L 2 -critical, hence locally well-posed in L 2 (R 2 ) (with a suitable definition of local well-posedness in this critical case), but apart from the small data case, the global existence issue remains a delicate issue in such spaces, even though refined Strichartz estimates are available [START_REF] Rogers | A refinement of the Strichartz inequality on the saddle and applications[END_REF], because the conserved energy is not a positive functional,

E = ∂ 1 ψ 2 L 2 (R 2 ) -∂ 2 ψ 2 L 2 (R 2 ) ∓ ψ 4 L 4 (R 2 )
. Note that the sign of the nonlinearity is rather irrelevant, since we may exchange the roles of x 1 and x 2 . However, global existence in H s (R 2 ) for s > 0 is obtained through modulation approximation in [START_REF] Totz | Global well-posedness of 2D non-focusing Schrödinger equations via rigorous modulation approximation[END_REF]. On the other hand, global solutions under the form of spatial standing waves have been studied in [START_REF] Correia | Some L ∞ solutions of the hyperbolic nonlinear Schrödinger equation and their stability[END_REF][START_REF] Kevrekidis | Radial standing and self-similar waves for the hyperbolic cubic NLS in 2D[END_REF], along with their stability.

Similarly, the Davey-Stewartson system (1.2)

   i∂ t ψ + 1 2 ∂ 2 1 ψ - 1 2 ∂ 2 2 ψ = χ|ψ| 2 + ω∂ 1 φ ψ, (x 1 , x 2 ) ∈ R 2 , χ, ω ∈ R, ∂ 2 1 φ + ∂ 2 2 φ = ∂ 1 |ψ| 2 ,
is locally well-posed in the same spaces, L 2 -critical, and enjoys a Hamiltonian structure with an energy whose sign is indefinite. Indeed, (1.2) can be rewritten

i∂ t ψ + 1 2 ∂ 2 1 ψ - 1 2 ∂ 2 2 ψ = χ|ψ| 2 + ωK * |ψ| 2 ψ, 1
where the symmetric kernel is such that

K(ξ) = ξ 2 1 ξ 2 1 + ξ 2 2 .
On the other hand, for a suitable combination of the coefficients χ and ω, that is 2χ + ω = 0, (1.2) is completely integrable (see e.g. [START_REF] Ghidaglia | On the initial value problem for the Davey-Stewartson systems[END_REF][START_REF] Klein | Davey-Stewartson systems[END_REF]). Global well-posedness and scattering in L 2 for the defocusing case were recently established in this specific case thanks to inverse scattering and harmonic analysis techniques, see [START_REF] Nachman | A nonlinear Plancherel theorem with applications to global well-posedness for the defocusing Davey-Stewartson equation and to the inverse boundary value problem of Calderón[END_REF]. In this note, we justify the approximation of such equations in a high frequency regime, known as semi-classical limit, this giving some extra information concerning the dynamics associated to these equations.

1.2. Setting. We consider the equation, including both (1.1) and (1.2), (1.3) 

iε∂ t u ε + ε 2 2 D 2 u ε + iε β, ∇ g |u ε | 2 u ε = V u ε + J j=1 K j * |u ε | 2σj u ε ,
in the semi-classical limit ε → 0, where ε > 0, T > 0, d 1 is the spatial dimension, J 1, and (t, x) ∈ [0, T ] × E d . More specifically,

• u ε (t, x) ∈ C is the wave function • E d can be either R d or to the torus

T d = (R/2πZ) d , • D 2 = d j,k=1 η j,k ∂ j ∂ k = ∇, H∇ ,
where H = (η j,k ) 1 j,k d is a symmetric (not necessarily positive or invertible) real matrix, and •, • denotes the inner product on R d , • β = (β j ) 1 j d ∈ R d and g(s) = αs γ , where α ∈ R and γ ∈ N\{0}. We consider such a function g in order to simplify the notations, but our method also works if g is not a monomial. • For j ∈ {1, . . . , J}, σ j ∈ N\{0} is an integer, and K j denotes a tempered distribution with a bounded Fourier transform K j ∈ L ∞ (E d ). This covers the case where K = δ, typically as in (1.1).

• V = V (t, x) is a potential. V is supposed to be analytic in the x variable.
More precisely, we assume that V belongs to the space

L 2 T0 H +1/2 w0
for some T 0 > 0, w 0 > 0, > (d + 1)/2, a space that will be defined below. Our motivation for considering the case E d = T d lies in the fact that numerical simulations are often performed in a periodic box: unless suitable absorbing boundary conditions are imposed, the observed dynamics is that of (1.3) on T d , which is fairly different from the one on R d . Remark 1.1. In view of the assumption that is usually made on V in order to get H s solutions (namely, ∂ α V ∈ L ∞ for 2 |α| s, see e.g. [START_REF] Carles | WKB analysis for nonlinear Schrödinger equations with potential[END_REF]), it is reasonable to ask for analyticity of V in order to get analytic solutions.

Remark 1.2. In a similar fashion as we consider an external potential, our analysis exports to the magnetic case, where

D 2 = d j,k=1 η j,k (∂ j -iA j ) (∂ k -iA k ) ,
provided that the magnetic potentials A j are analytic (in the same sense as for V ).

The initial data that we consider are WKB states:

(1.4) u ε (0, x) = a ε 0 (x)e iφ ε 0 (x)/ε =: u ε 0 (x)
, where φ ε 0 : E d → R is a real-valued phase, and a ε 0 : E d → C is a possibly complexvalued amplitude. We emphasize that our approach is distinct from the polar decomposition known as Madelung transform, hence the possibility for the amplitude to be (or become) complex. Our goal is to understand the semi-classical limit of equation (1.3), that is to describe the behavior in the limit ε → 0 of the solutions to (1.3) with initial data (1.4). Generalizing the idea of [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF], we remark that if (φ ε , a ε ) solves the system (1.4). Therefore, we focus on (1.5). Note that φ ε , there, remains realvalued, while a ε will be complex-valued (even if a ε 0 is real), due to the term iεD 2 a ε , which is a remain of dispersive effects in the initial Schrödinger equation.

(1.5)                    ∂ t φ ε + 1 2 ∇φ ε , H∇φ ε + g(|a ε | 2 ) β, ∇φ ε + J j=1 K j * |a ε | 2σj + V = 0, φ ε |t=0 = φ ε 0 , ∂ t a ε + ∇φ ε , H∇a ε + 1 2 a ε D 2 φ ε + β, ∇ g(|a ε | 2 )a ε = iε 2 D 2 a ε , a ε |t=0 = a ε 0 , then u ε (t, x) = a ε (t, x)e iφ ε (t,x)/ε solves (1.3)-
Example 1.3. In the case of the hyperbolic NLS (1.1), d = 2 and the equations in (1.5) read

     ∂ t φ ε + 1 2 |∂ 1 φ ε | 2 -|∂ 2 φ ε | 2 ∓ |a ε | 2 = 0, ∂ t a ε + ∂ 1 φ ε ∂ 1 a ε -∂ 2 φ ε ∂ 2 a ε + 1 2 a ε ∂ 2 1 φ ε -∂ 2 2 φ ε = iε 2 ∂ 2 1 a ε -∂ 2 2 a ε .
Passing formally to the limit ε → 0, and setting ρ = |a| 2 , v = ∇φ, and ṽ = (∂ 1 φ, -∂ 2 φ) T , we find, respectively,

∂ t v j + v 1 ∂ 1 v j -v 2 ∂ 2 v j ∓ ∂ j ρ = 0, ∂ t ρ + ∂ 1 (ρv 1 ) -∂ 2 (ρv 2 ) = 0,    ∂ t ṽ + ṽ, ∇ ṽ ∓ ∂ 1 ρ -∂ 2 ρ = 0, ∂ t ρ + ∇, ρṽ = 0.
No special structure such as symmetry (ensuring the hyperbolicity of the system) seems to be available here. Because of this, we work with analytic regularity, since Sobolev regularity is hopeless in such a case (see [START_REF] Lerner | The onset of instability in first-order systems[END_REF][START_REF] Métivier | Remarks on the well-posedness of the nonlinear Cauchy problem[END_REF]).

In [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF], we have already addressed the issue of the semi-classical limit of (1.3) in the case where d = 1,

E d = R, D 2 = ∂ 2
x , where the nonlinearity is local (that is, K = δ) and where V = 0. We show that the method that was used in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF] Note that at least for the first three aspects evoked above, our approach provides results which can be established by following the same strategy as in [START_REF] Gérard | Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire[END_REF] (case x ∈ T d ) and [START_REF] Thomann | Instabilities for supercritical Schrödinger equations in analytic manifolds[END_REF] (case x ∈ R d ), based on the notion of analytic symbols, as developed by J. Sjöstrand [START_REF] Sjöstrand | Singularités analytiques microlocales[END_REF]. On the other hand, incorporating nonlocal nonlinearities seems to be easier when relying on a notion of (time dependent) analyticity based on Fourier analysis, as in [START_REF] Ginibre | Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions[END_REF] (and [START_REF] Mouhot | On Landau damping[END_REF] for the same idea in a different context); see the next subsection for more details.

1.3. The functional framework. For w 0 and 0, we consider the space

H w = {ψ ∈ L 2 (E d ), ψ H w < ∞},
where

ψ 2 H w :=        R d ξ 2 e 2w ξ | ψ(ξ)| 2 dξ if E d = R d , m∈Z d m 2 e 2w m | ψ(m)| 2 if E d = T d , with ξ = 1 + |ξ| 2
, and where the Fourier transform and series are defined by

ψ(ξ) = Fψ(ξ) = 1 (2π) d/2 R d ψ(y)e -i ξ,y dy if E d = R d , ψ(m) = Fψ(m) = 1 (2π) d/2 T d ψ(y)e -i m,y dy if E d = T d .
We obviously have the monotonicity property, (1.6) 0

w 1 w 2 =⇒ ψ H w 1 ψ H w 2 .
The interest of considering a time-dependent, decreasing, weight w is that energy estimates become similar to parabolic estimates, since

(1.7) d dt ψ 2 H w = 2 Re (ψ, ∂ t ψ) H w + 2 ẇ ψ 2 H +1/2 w
, where (•, •) H w denotes the natural inner product stemming from the above definition. We choose a weight w = w(t) = w 0 -M t, where w 0 > 0 and M > 0 are fixed. For T > 0, we work in spaces such as

C([0, T ], H w ) = ψ | F -1 e w(t) ξ ψ ∈ C([0, T ], H 0 ) = C([0, T ], H ) , where H = H (E d ) is the standard Sobolev space, or L 2 ([0, T ], H w ) = L 2 T H w = ψ | T 0 ψ(t) 2 H w(t) dt < ∞ .
Phases and amplitudes belong to spaces

Y w,T = C([0, T ], H w ) ∩ L 2 T H +1/2 w ,
and the fact that phase and amplitude do not have exactly the same regularity shows up in the introduction of the space

X w,T = Y +1 w,T × Y w,T
, which is reminiscent of the fact that in the case where the operator on the left hand side of (1.5) is hyperbolic (typically, starting from a defocusing cubic Schrödinger equation with the standard Laplacian), the good unknown is (∇φ ε , a ε ) rather than (φ ε , a ε ) (see [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF]). The space X w,T is endowed with the norm (φ, a) X w,T =|||φ||| +1,T +|||a||| ,T , where

(1.8) |||ψ||| 2 ,t = max sup 0 s t ψ(s) 2 H w(s) , 2M t 0 ψ(s) 2 H +1/2 w(s)
ds .

1.4. Main results. Our first result states local well-posedness for (1.5) in this functional framework. [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF], where w(t) = w 0 -M t and T = T ( ) < min (w 0 /M, T 0 ). Moreover, up to the choice of a possibly larger value for M (and consequently a smaller one for T ), we have the estimates

Theorem 1.4. Let w 0 > 0, > (d+1)/2, T 0 > 0, V ∈ L 2 T0 H +1/2 w0 and (φ ε 0 , a ε 0 ) ε∈[0,1] be a bounded family in H +1 w0 × H w0 . Then, provided M = M ( ) > 0 is chosen sufficiently large, for all ε ∈ [0, 1], there is a unique solution (φ ε , a ε ) ∈ X w,T to (1.
|||φ ε ||| 2 +1,T 4 φ ε 0 2 H +1 w 0 + max 1 j J a ε 0 4σj H w 0 + V 2 L 2 T 0 H +1/2 w 0 , |||a ε ||| 2 ,T 2 a ε 0 2 H w 0 .
An important aspect in the above statement is the fact that the local existence time T is uniform in ε ∈ [0, 1]. In view of the discussion in Subsection 1.2, this yields a uniform time of existence for the solution of (1.3). We emphasize that this property is not a consequence of the standard local well-posedness argument (based on a fixed point), which would yield a local existence time T ε = O(ε α ) for some α 1, while we recall that the a priori estimates do not make it possible to extend the local solution to much larger time. In other words, the formulation (1.5) is already helpful at the level of the life-span of the solution to (1.3).

Our second result states the convergence of the phase and of the complex amplitude as ε → 0.

Theorem 1.5. Let w 0 > 0, > (d + 1)/2, T 0 > 0, V ∈ L 2 T0 H +3/2 w0 , (φ 0 , a 0 ) ∈ H +2 w0 × H +1 w0 and (φ ε 0 , a ε 0 ) ε∈(0,1] bounded in H +1 w0 × H w0 such that r ε 0 := φ ε 0 -φ 0 H +1 w 0 + a ε 0 -a 0 H w 0 -→ ε→0 0.
Let M = M ( + 1) and T = T ( + 1), as defined as in Theorem 1.4. Then there is an ε-independent C > 0 such that for all ε ∈ (0, 1],

|||φ ε -φ||| +1,T +|||a ε -a||| ,T C (r ε 0 + ε)
, where (φ ε , a ε ) denotes the solution to (1.5) and (φ, a) is the solution to the formal limit of (1.5) as ε → 0 (1.9)

                   ∂ t φ + 1 2 ∇φ, H∇φ + g |a| 2 β, ∇φ + J j=1 K j * |a| 2σj + V = 0, φ |t=0 = φ 0 , ∂ t a + ∇φ, H∇a + 1 2 aD 2 φ + β, ∇ g |a| 2 a = 0, a |t=0 = a 0 ,
whose existence and uniqueness stem from Theorem 1.4.

However, regarding convergence of the wave function u ε , the previous result is not sufficient. Indeed, as fast as the initial data φ ε 0 and a ε 0 may converge as ε → 0, Theorem 1.5 at most guarantees that φ ε -φ = O(ε), which only ensures that a ε e iφ ε /ε -ae iφ/ε = O(1), due to the rapid oscillations. However, the above convergence result suffices to infer the convergence of quadratic observables: Corollary 1.6. Under the assumptions of Theorem 1.5, the position and momentum densities converge:

|u ε | 2 -→ ε→0 |a| 2 , and Im (εū ε ∂u ε ) -→ ε→0 |a| 2 ∂φ, in L ∞ ([0, T ]; L 1 ∩ L ∞ (E d )), where ∂ = ∂ j , for any j ∈ {1, • • • , d}.
In order to get a good approximation of the wave function a ε e iφ ε /ε , we have to approximate φ ε up to an error which is small compared to ε. It will be done by adding a corrective term to (φ, a). For this purpose, we consider the system obtained by linearizing (1.5) about (φ, a), solution to (1.9), (1.10)

                                 ∂ t φ 1 + ∇φ, H∇φ 1 + g |a| 2 β, ∇φ 1 + 2g |a| 2 β, ∇φ Re (aa 1 ) + 2 J j=1 σ j K j * |a| 2(σj -1) Re (aa 1 ) = 0, φ 1|t=0 = φ 10 , ∂ t a 1 + ∇φ, H∇a 1 + 1 2 a 1 D 2 φ + ∇a, H∇φ 1 + 1 2 aD 2 φ 1 + β, ∇ g |a| 2 a 1 + 2 β, ∇ ag |a| 2 Re (aa 1 ) = i 2 D 2 a, a 1|t=0 = a 10 .
Provided (φ 0 , a 0 ) ∈ H +3 w0 × H +2 w0 (which implies (φ, a) ∈ X +2 w,T according to Theorem 1.4) and (φ 10 , a 10 ) ∈ H +2 w0 × H +1 w0 , we will see that the solution to (1.10) belongs to X +1 w,T , and our final result is the following.

Theorem 1.7. Let w 0 > 0, > (d + 1)/2, T 0 > 0, V ∈ L 2 T0 H +5/2 w0 , (φ 0 , a 0 ) ∈ H +3 w0 × H +2 w0 , (φ 10 , a 10 ) ∈ H +2 w0 × H +1 w0 and (φ ε 0 , a ε 0 ) ε∈(0,1] bounded in H +1 w0 × H w0 such that r ε 1 := φ ε 0 -φ 0 -εφ 10 H +1 w 0 + a ε 0 -a 0 -εa 10 H w 0 = o(ε) as ε → 0.
Then, for M = M ( + 2) and T = T ( + 2) as in Theorem 1.4, there is an εindependent C > 0 such that for all ε ∈ (0, 1],

(1.11)

|||φ ε -φ -εφ 1 ||| +1,T +|||a ε -a -εa 1 ||| ,T C r ε 1 + ε 2
, where (φ ε , a ε ) denotes the solution to (1.5), (φ, a) is the solution to (1.9), and (φ 1 , a 1 ) is the solution to (1.10). In particular,

u ε -ae iφ1 e iφ/ε L ∞ ([0,T ];L 2 ∩L ∞ (E d )) = O r ε 1 ε + ε -→ ε→0 0.
Outline. In Section 2, we prove Theorem 1.4, by starting with a generalization of key estimates established in [START_REF] Ginibre | Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions[END_REF] to the periodic setting E d = T d . Theorem 1.5 is proved in Section 3, and the proof of Theorem 1.7 is sketched in the final Section 4.

Well-posedness

2.1.

A key bilinear estimate. The following proposition is proved in [START_REF] Ginibre | Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions[END_REF] in the case E d = R d in the context of long range scattering. We have used it in [START_REF] Carles | On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit II. Analytic regularity[END_REF][START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF] in the context of semi-classical analysis. We extend it here to the case

E d = T d .
Proposition 2.1. Let 0 and s > d/2. Then, for every

ψ 1 , ψ 2 ∈ H max( ,s) w , (2.1 
)

ψ 1 ψ 2 H w C ,s ψ 1 H w ψ 2 H s w + ψ 1 H s w ψ 2 H w , where 
C ,s =      2 (2π) d/2 1 • s L 2 (R d ) if E d = R d , 2 (2π) d/2 1 • s 2 (Z d ) if E d = T d .
We detail the proof only in the case E d = T d . The proof is analogous in the case E d = R d , and can be found in [START_REF] Ginibre | Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions[END_REF] (with different notations, though). Proposition 2.1 in the case E d = T d stems from the following sequence of lemmas. We skip the proofs of the most classical ones.

Lemma 2.2. For all m, n ∈ R d , m + n m + n . Lemma 2.3. If ψ 1 , ψ 2 ∈ L 2 (T d ), for all m ∈ Z d , ψ 1 ψ 2 (m) = 1 (2π) d/2 k∈Z d ψ 1 (k) ψ 2 (m -k) =: 1 (2π) d/2 ψ 1 * ψ 2 (m). Lemma 2.4. For , w 0, if ψ 1 , ψ 2 ∈ H w , then ψ 1 ψ 2 H w 2 (2π) d/2 • e w • | ψ 1 | * e w • | ψ 2 | 2 (Z d ) + e w • | ψ 1 | * • e w • | ψ 2 | 2 (Z d )
Proof. From Lemma 2.3,

ψ 1 ψ 2 2 H w 1 (2π) d m∈Z d   n∈Z d m e w m | ψ 1 (n)|| ψ 2 (m -n)|   2 .
From Lemma 2.2 and because for any m, n ∈ Z d , we have either n m /2 or m -n m /2, we deduce

ψ 1 ψ 2 2 H w 1 (2π) d m∈Z d   n∈Z d , n m /2 m e w n | ψ 1 (n)|e w m-n | ψ 2 (m -n)| + n∈Z d , m-n m /2 m e w n | ψ 1 (n)|e w m-n | ψ 2 (m -n)|   2 2 2 (2π) d m∈Z d   n∈Z d n e w n | ψ 1 (n)|e w m-n | ψ 2 (m -n)| + n∈Z d e w n | ψ 1 (n)| m -n e w m-n | ψ 2 (m -n)|   2 .
The result follows thanks to the triangle inequality in 2 (Z d ).

Lemma 2.5. If u ∈ 2 (Z d ) and v ∈ 1 (Z d ), then u * v ∈ 2 (Z d ), and u * v 2 (Z d ) u 2 (Z d ) v 1 (Z d )
Proof of Proposition 2.1. Let us estimate the first term in the bracket of the right hand side of the inequality in Lemma 2.4. The other term is treated similarly. According to Lemma 2.5, we have

• e w • | ψ 1 | * e w • | ψ 2 | 2 (Z d ) • e w • | ψ 1 | 2 (Z d ) e w • | ψ 2 | 1 (Z d ) • e w • | ψ 1 | 2 (Z d ) 1 • s 2 (Z d ) • s e w • | ψ 2 | 2 (Z d ) 1 • s 2 (Z d ) ψ 1 H w ψ 2 H s w ,
where we have also used the Cauchy-Schwarz inequality.

2.2. The iterative scheme. In this section, ε ∈ [0, 1] is fixed. To lighten the notations, we consider the case J = 1 (only one Fourier multiplier), and leave out the corresponding index: the proof shows that considering finitely many such terms is straightforward. Solutions to (1.5) are constructed as limits of the solutions of the iterative scheme (2.2)

                       ∂ t φ ε j+1 + 1 2 ∇φ ε j , H∇φ ε j+1 + g(|a ε j | 2 ) β, ∇φ ε j+1 = -K * |a ε j | 2σ -V, φ ε j+1|t=0 = φ ε 0 , ∂ t a ε j+1 + ∇φ ε j , H∇a ε j+1 + 1 2 (D 2 φ ε j )a ε j+1 + β, ∇ g(|a ε j | 2 ) a ε j+1 + h(|a ε j | 2 )a ε j β, ∇a ε j a ε j+1 = iε 2 D 2 a ε j+1 , a ε j+1|t=0 = a ε 0 ,
where h(s) = g(s)/s. The scheme is initialized with the time-independent pair (φ ε 0 , a ε 0 ) ∈ H +1 w0 × H w0 ⊂ X w,T for any T > 0. The scheme is well-defined: if > (d + 1)/2, for a given (φ ε j , a ε j ) ∈ X w,T , (2.2) defines (φ ε j+1 , a ε j+1 ). Indeed, in the first equation, φ ε j+1 solves a linear transport equation with smooth coefficients, which guarantees the existence of a solution

φ ε j+1 ∈ L ∞ T L 2 (see e.g [2, Section 3], or [1, Section II.C, Proposition 1.2]
). The same argument provides a solution a ε j+1 ∈ L ∞ T L 2 to the second equation in the case ε = 0. On the other hand, if ε > 0, the second equation is equivalent through the relation v ε j+1 = a ε j+1 e iφ ε j /ε to the equation

iε∂ t v ε j+1 + ε 2 2 D 2 v ε j+1 + W (t, x)v ε j+1 = 0, (2.3) with initial condition v ε j+1|t=0 = v ε 0 = a ε 0 e iφ ε 0 /ε ,
where

W = ∂ t φ ε j + 1 2 ∇φ ε j , H∇φ ε j + iε β, ∇ g |a ε j | 2 + iεh(|a ε j | 2 )a ε j β, ∇a ε j .
This is a linear Schrödinger like equation, with a second order operator D 2 which is not necessarily elliptic, and with a smooth and bounded external time-dependent potential W (t, x). Note that this external potential is complex-valued, so the existence of a solution for (2.3) is not quite standard. On the other hand, a fixed point argument applied to the map

Ψ : C([0, T ε ], L 2 ) -→ C([0, T ε ], L 2 ) u → e iεtD 2 /2 v ε 0 + i ε t 0 e iε(t-s)D 2 /2 [W (s)u(s)] ds, where 0 < T ε T , provides the existence of a C([0, T ε ], L 2 ) solution to (2.3), for some T ε > 0. We actually have v ε j+1 ∈ C([0, T ], L 2 ), since W ∈ L ∞ ([0, T ] × E d ).
The following lemma gives the estimates that will ensure that (φ ε j+1 , a

ε j+1 ) ∈ X w,T provided (φ ε j , a ε j ) ∈ X w,T . It is almost identical to Lemma 2.2 in [5]. Lemma 2.6. Let > (d + 1)/2 and T > 0. Let (φ, a) ∈ X w,T , ã ∈ Y +1 w,T and (F, G) ∈ L 2 ([0, T ], H +1/2 w × H -1/2 w ) such that ∂ t φ = F, φ(0) ∈ H +1 w0 , (2.4) ∂ t a = G + iθ 1 D 2 a + iθ 2 D 2 ã, a(0) ∈ H w0 , (2.5) where θ 1 , θ 2 ∈ R. Then |||φ||| 2 +1,T φ(0) 2 H +1 w 0 + 1 M |||φ||| +1,T √ 2M F L 2 T H +1/2 w , (2.6) |||a||| 2 ,T a(0) 2 H w 0 + 1 M |||a||| ,T √ 2M G L 2 T H -1/2 w + |θ 2 | 2M |||a||| ,T |||ã||| +1,T . (2.7)
Moreover, there exists C > 0 (that depends only on , not on w) such that

• If F = ∂ j ψ 1 ∂ k ψ 2 with ψ 1 , ψ 2 ∈ Y +1,T , then (2.8) 
√ 2M F L 2 T H +1/2 w C|||ψ 1 ||| +1,T |||ψ 2 ||| +1,T . • If F = 2n j=1 b j ∂ k ψ with n 1, ψ ∈ Y +1,T and b j ∈ Y ,T for all j, then (2.9) 
√ 2M F L 2 T H +1/2 w C   2n j=1 |||b j ||| ,T   |||ψ||| +1,T . • If F = K * 2n j=1 b j with n 1, b j ∈ Y ,T
for all j and K uniformly bounded, then

(2.10)

√ 2M F L 2 T H +1/2 w C   2n j=1 |||b j ||| ,T   . • If G = ∂ j ψ∂ k b with ψ ∈ Y +1,T and b ∈ Y ,T , then (2.11) √ 2M G L 2 T H -1/2 w C|||ψ||| +1,T |||b||| ,T . • If G = bD 2 ψ with ψ ∈ Y +1,T and b ∈ Y ,T , then (2.12) √ 2M G L 2 T H -1/2 w C|||ψ||| +1,T |||b||| ,T . • If G = 2n j=1 b j ∂ k b with n 1, b, b j ∈ Y ,T for all j, then (2.13) 
√ 2M G L 2 T H -1/2 w C   2n j=1 |||b j ||| ,T   |||b||| ,T .
Proof. The proof of (2.6) and (2.7) is identical to the one given in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF]. The new constraint > (d + 1)/2 plays no role here. Inequalities similar to (2.8)-(2.13) were proved in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF]. The only differences with [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF] 

K *   2n j=1 b j   H +1/2 w K L ∞ 2n j=1 b j H +1/2 w C 2n j=1 j-1 k=1 b k H w b j H +1/2 w 2n k=j+1 b k H w .
In order to prove (2.11)-(2.13), we use (2.1) with m = s = -1/2 > d/2 which is possible thanks to the assumption > (d+1)/2. Actually, even (2.11)-(2.13) can be proved under the condition > d/2, thanks to a refined version of Lemma 2.1 (see [START_REF] Carles | On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit II. Analytic regularity[END_REF]). However, since it is not useful in the sequel to sharpen this assumption, we choose to make the stronger assumption > (d+1)/2 for the sake of conciseness.

First step: boundedness of the sequence. In view of the equation satisfied by φ ε j+1 in (2.2), Lemma 2.6 yields

|||φ ε j+1 ||| 2 +1,T φ ε 0 2 H +1 w 0 + C M |||φ ε j+1 ||| 2 +1,T |||φ ε j ||| +1,T + C M |||φ ε j+1 ||| +1,T |||a ε j ||| 2σ ,T + C M |||φ ε j+1 ||| 2 +1,T |||a ε j ||| 2γ ,T + C M |||φ ε j+1 ||| +1,T √ 2M V L 2 T H +1/2 w .
As for a ε j+1 , we obtain in a similar way

|||a ε j+1 ||| 2 ,T a ε 0 2 H w 0 + C M |||a ε j+1 ||| 2 ,T |||φ ε j ||| +1,T + C M |||a ε j+1 ||| 2 ,T |||a ε j ||| 2γ ,T
. Up to the term with V in the first one, the last two estimates are exactly the ones we had in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF]. The proof of the boundedness of the sequence (φ ε j , a ε j ) in X w,T is quite similar to what was done in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF]. Indeed, under the assumption

(2.14) C M |||φ ε j ||| +1,T 1 4 , C M |||a ε j ||| 2γ ,T 1 4 , 
we have

1 4 |||φ ε j+1 ||| 2 +1,T φ ε 0 2 H +1 w 0 + 2C 2 M 2 |||a ε j ||| 4σ ,T + 4C 2 M V 2 L 2 T H +1/2 w (2.15) and 1 2 |||a ε j+1 ||| 2 ,T a ε 0 2 H w 0 . (2.16)
Note that the monotonicity property (1.6) implies

V L 2 T H +1/2 w V L 2 T 0 H +1/2 w 0 .
We next show by induction that, provided M is sufficiently large, we can construct a sequence (φ ε j , a ε j ) j∈N such that for every j ∈ N,

|||φ ε j ||| 2 +1,T 4 φ ε 0 2 H +1 w 0 + 8C 2 M 2 2 a ε 0 2 H w 0 2σ + 16C 2 M V 2 L 2 T 0 H +1/2 w 0 , (2.17) |||a ε j ||| 2 ,T 2 a ε 0 2 H w 0 . (2.18)
For that purpose, we choose M sufficiently large such that (2.14) holds for j = 0 and such that

4 φ ε 0 2 H +1 w 0 + 8C 2 M 2 2 a ε 0 2 H w 0 2σ + 16C 2 M V 2 L 2 T 0 H +1/2 w 0 M 2 16C 2 , (2.19) and (2 a ε 0 2 H w 0 ) γ M 4C . (2.20) 
Then, (2.17)-(2.18) hold for j = 0, since with

(φ ε 0 , a ε 0 )(t, x) = (φ ε 0 , a ε 0 )(x) indepen- dent of time, it is easy to check that |||φ ε 0 ||| +1,T = φ ε 0 H +1 w 0 and |||a ε 0 ||| ,T = a ε 0 H w 0
. Let j 0 and assume that (2.17)-(2.18) hold. Then (2.17)-(2.18) and (2.19)-(2.20) ensure that the condition (2.14) is satisfied, and therefore (2.15)-(2.16) hold, from which we infer easily that (2.17)-(2.18) are true for j replaced by j + 1 (for the estimate on the norm of V , we use here the fact that T T 0 and w w 0 ). Second step: convergence. For j 1, we set δφ ε j = φ ε j -φ ε j-1 , and δa ε j = a ε j -a ε j-1 . Then, for every j 1, we have

∂ t δφ ε j+1 + 1 2 ∇φ ε j , H∇δφ ε j+1 + ∇δφ ε j , H∇φ ε j + g |a ε j | 2 β, ∇δφ ε j+1 + g |a ε j | 2 -g |a ε j-1 | 2 β, ∇φ ε j + K * |a ε j | 2σ -|a ε j-1 | 2σ = 0. and ∂ t δa ε j+1 + ∇φ ε j , H∇δa ε j+1 + ∇δφ ε j , H∇a ε j + 1 2 δa ε j+1 D 2 φ ε j + 1 2 a ε j D 2 δφ ε j + β, ∇ g |a ε j | 2 δa ε j+1 + β, ∇ g |a ε j | 2 -g |a ε j-1 | 2 a ε j + h |a ε j | 2 β, ∇a ε j a ε j δa ε j+1 + h |a ε j | 2 β, ∇a ε j δa ε j a ε j + h |a ε j | 2 β, ∇δa ε j a ε j-1 a ε j + h |a ε j | 2 -h |a ε j-1 | 2 β, ∇a ε j-1 a ε j-1 a ε j = i ε 2 D 2 δa ε j+1 ,
Lemma 2.6 and the boundedness of (φ ε j , a ε j ) in X w,T imply like in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF] that for M large enough,

max |||δφ ε j+1 ||| 2 +1,T , |||δa ε j+1 ||| 2 ,T K M |||δφ ε j ||| 2 +1,T +|||δa ε j ||| 2 ,T
for some K > 0 which does not depend on ε provided (φ ε 0 , a ε 0 ) ε∈[0,1] is uniformly bounded in H +1 w0 × H w0 . We conclude as in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF] that provided > (d + 1)/2, possibly increasing M , (φ ε j , a ε j ) converges geometrically in X w,T as j → ∞. Uniqueness of the solution (φ ε , a ε ) to (1.5) follows from the same kind of estimates as the ones which prove the convergence.

First order approximation

As in the previous section, we assume J = 1 for the sake of conciseness.

Proof of Theorem 1.5. Next, assume that (φ 0 , a 0 ) ∈ H +2 w0 × H +1 w0 . Then, in view of Theorem 1.4, the solution (φ, a) to (1.9) belongs to X +1 w,T . Given ε > 0, if (φ ε 0 , a ε 0 ) ∈ H +1 w0 × H w0 , we denote by (φ ε , a ε ) the solution to (1.5). We also denote (δφ ε , δa ε ) = (φ ε -φ, a ε -a). Then, in the same fashion as above, we have

∂ t δφ ε + 1 2 ( ∇δφ ε , H∇φ ε + ∇φ, H∇δφ ε ) + g |a ε | 2 β, ∇δφ ε + g |a ε | 2 -g |a| 2 β, ∇φ + K * |a ε | 2σ -|a| 2σ = 0 and ∂ t δa ε + ∇δφ ε , H∇a ε + ∇φ, H∇δa ε + 1 2 δa ε D 2 φ ε + 1 2 aD 2 δφ ε + β, ∇ g |a ε | 2 δa ε + β, ∇ g |a ε | 2 -g |a| 2 a + h |a ε | 2 β, ∇a ε a ε δa ε + h |a ε | 2 β, ∇a ε δa ε a + h |a ε | 2 β, ∇δa ε |a| 2 + h |a ε | 2 -h |a| 2 β, ∇a |a| 2 = i ε 2 D 2 δa ε + i ε 2 D 2 a.
Like in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF], for some new constant k, Lemma 2.6 and Theorem 1.4 imply, for M large enough,

|||δφ ε ||| 2 +1,T k φ ε 0 -φ 0 2 H +1 w 0 + k M |||δa ε ||| 2 ,T , and 
|||δa ε ||| 2 ,T k a ε 0 -a 0 2 H w 0 + k M |||δφ ε ||| 2 +1,T + k M ε|||δa ε ||| ,T |||a||| +1,T .
Possibly increasing the value of M and adding the last two inequalities, we deduce

|||δφ ε ||| 2 +1,T +|||δa ε ||| 2 ,T C φ ε 0 -φ 0 2 H +1 w 0 + C a ε 0 -a 0 2 H w 0 + Cε 2 ,
hence Theorem 1.5. As for the choice of M , a careful examination of the previous inequalities shows that aside from the assumption M M ( + 1), which enables to estimate the source term, M can be chosen as in Theorem 1.4, namely such that M M ( ).

Proof of Corollary 1.6. Notice that, provided w 0,

(3.1) ψ H (E d ) ψ H w .
In particular, Sobolev embedding yields, for > (d + 1)/2 1,

ψ L ∞ (E d ) C ψ H w ,
where C is independent of w 0. With these remarks in mind, the L 1 estimates of Corollary 1.6 follow from Theorem 1.5 and Cauchy-Schwarz inequality, since

|u ε | 2 -|a| 2 L ∞ T L 1 = |a ε | 2 -|a| 2 L ∞ T L 1 a ε + a L ∞ T L 2 δa ε L ∞ T L 2 ,
and

Im (εū ε ∂u ε ) -|a| 2 ∂φ L ∞ T L 1 ε Im āε ∂a ε L ∞ T L 1 + |a ε | 2 ∂φ ε -|a| 2 ∂φ L ∞ T L 1 ε a ε 2 L ∞ T H 1 + a ε + a L ∞ T L 2 δa ε L ∞ T L 2 ∂φ L ∞ T L ∞ + a ε L ∞ T L ∞ a ε L ∞ T L 2 δφ ε L ∞ T H 1 .
The L ∞ estimates in space follow by replacing L 1 and L 2 by L ∞ in the above inequalities, and using Sobolev embedding again.

Convergence of the wave function

Again, we assume J = 1 for the sake of conciseness.

Proof of Theorem 1.7. Let > (d + 1)/2, and (φ 0 , a 0 ) ∈ H +2 w0 × H +1 w0 . Theorem 1.4 yields a unique solution (φ, a) ∈ X +1 w,T to (1.9). Let (φ 10 , a 10 ) ∈ H +1 w0 × H w0 . Note that (1.10) is a system of linear transport equations in the unknown (∇φ 1 , a 1 ), whose coefficients are smooth functions. The general theory of transport equations (see e.g. [2, Section 3]) then shows that (1.10) has a unique solution (φ 1 , a 1 ) ∈ C([0, T ], L 2 × L 2 ). We already know by this argument that the solution is actually more regular (in terms of Sobolev regularity), but we shall directly use a priori estimates in H w spaces. Indeed, Lemma 2.6 implies that (φ 1 , a 1 ) ∈ X w,T with, exactly as in [START_REF]WKB analysis of generalized derivative nonlinear Schrödinger equations without hyperbolicity[END_REF],

|||φ 1 ||| 2 +1,T φ 10 2 H +1 w 0 + C M |||φ 1 ||| 2 +1,T |||φ||| +1,T + C M |||φ 1 ||| 2 +1,T |||a||| 2γ ,T + C M |||φ 1 ||| +1,T |||φ||| +1,T |||a||| 2γ-1 ,T |||a 1 ||| ,T + C M |||φ 1 ||| +1,T |||a||| 2σ-1 ,T |||a 1 ||| ,T , along with |||a 1 ||| 2 ,T a 10 2 H w 0 + C M |||a 1 ||| ,T |||a||| ,T |||φ 1 ||| +1,T + C M |||a 1 ||| 2 ,T |||φ||| +1,T + C M |||a 1 ||| 2 ,T |||a||| 2γ ,T + C M |||a 1 ||| ,T |||a||| +1,T ,
for some C > 0.

Let > (d + 1)/2. For (φ 0 , a 0 ) ∈ H +3 w0 × H +2 w0 , (φ 10 , a 10 ) ∈ H +2 w0 × H +1 w0 and (φ ε 0 , a ε 0 ) ∈ H +1 w0 × H w0 , we consider:

• (φ, a) ∈ X +2
w,T the solution to (1.9). • (φ 1 , a 1 ) ∈ X +1 w,T the solution to (1.10). • (φ ε app , a ε app ) = (φ, a) + ε(φ 1 , a 1 ). • (φ ε , a ε ) ∈ X w,T the solution to (1.5).

We assume that φ ε 0 -φ 0 -εφ 10 H +1 w 0

= o(ε) and a ε 0 -a 0 -εa 10 H w 0 = o(ε). Set

δφ ε 1 = φ ε -φ ε app = φ ε -φ -εφ 1 = δφ ε -εφ 1 , δa ε 1 = a ε -a ε app = a ε -a -εa 1 = δa ε -εa 1 .
The equation satisfied by δφ ε 1 writes 

∂ t δφ ε 1 + ∇φ, H∇δφ
|||δφ ε 1 ||| 2 +1,T φ ε 0 -φ 0 -εφ 1,0 2 H +1 w 0 + C M |||δφ ε 1 ||| +1,T |||δφ ε 1 ||| +1,T + ε 2 +|||δa ε 1 ||| ,T .
We deduce, for M large enough, (1.11) follows. Like in the proof of Theorem 1.5, a careful examination of the inequalities that we have used shows that all the above estimates are valid provided that we assume M M ( ), the constant provided by Theorem 1.4, and also M max(M ( + 1), M ( + 2)) in order to estimate the source terms.

|||δφ ε 1 ||| 2 +1,T C φ ε 0 -φ 0 -
To complete the proof of Theorem 1.7, consider the point-wise estimate a ε e iφ ε /ε -ae iφ1 e iφ/ε |a ε -a| + |a ε | e iφ ε /ε -e i(φ+εφ1)/ε |a ε -a| + |a ε | 2 sin φ ε -φ -εφ 1 2ε

|δa ε | + 1 ε |a ε | |δφ ε 1 | .
We then conclude like in the proof of Corollary 1.6, by using Cauchy-Schwarz inequality, (3.1), and Sobolev embedding.
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 111 Motivation. The two-dimensional "hyperbolic" nonlinear Schrödinger equation,(1.1) 

ε 1 + 1 2 1 + 2 + |a ε | 2 -|a| 2 2 1 0( 1 -

 112211 ∇δφ ε , H∇δφ ε + g(|a| 2 ) β, ∇δφ ε g(|a ε | 2 ) -g(|a| 2 ) β, ∇δφ ε + g(|a ε | 2 ) -g(|a| 2 ) -2g (|a| 2 ) Re(aεa 1 ) β, ∇φ + K * |a ε | 2σ -|a| 2σ -2σ|a| 2σ-2 Re(aεa 1 ) = 0.Moreover, the Taylor formula yieldsg(|a ε | 2 ) -g(|a| 2 ) -2g (|a| 2 ) Re(aεa 1 ) = 2 Re(aδa ε 1 ) + |δa ε | 2 g |a| s)g |a| 2 + s |a ε | 2 -|a| 2 ds, (4.1) and the same identity holds for g replaced by f (r) = r σ . Thus, taking into account Theorem 1.4, which implies |||φ ε ||| +1,T , |||a ε ||| ,T = O(1), and Theorem 1.5, which implies |||δφ ε ||| +1,T , |||δa ε ||| ,T = O(ε), it follows from Lemma 2.6 that

  H∇δa ε 1 + ∇δφ ε 1 , H∇a + ∇δφ ε , H∇δa ε

	(4.2)					εφ 10	2 H +1 w 0	+	C M	ε 4 +	C M	|||δa ε 1 ||| 2 ,T .
	Similarly, δa ε 1 solves						
	∂ t δa ε 1 + ∇φ, + 1 2 aD 2 δφ ε 1 +	1 2	δa ε 1 D 2 φ +	1 2	δa ε D 2 δφ 1	=	iε 2 2	D 2 a 1 +	iε 2	D 2 δa ε 1 .
	From (4.1), Theorems 1.4 and 1.5, and Lemma 2.6, we deduce
	(4.3)	|||δa ε 1 ||| 2 ,T ≤ C a ε 0 -a 0 -εa 10	2 H w 0	+	C M	ε 4 +	C M	|||δφ ε 1 ||| 2 +1,T .
	Adding (4.2) and (4.3),						

ε + β, ∇ g(|a ε | 2 ) -g(|a| 2 ) -2εg (|a| 2 ) Re(aa 1 ) a + β, ∇ g(|a ε | 2 ) -g(|a| 2 ) εa 1 + β, ∇ g(|a ε | 2 )δa ε