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New predictions from the logotropic model

Pierre-Henri Chavanis
Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France

In a previous paper [P.H. Chavanis, Eur. Phys. J. Plus 130, 130 (2015)] we have introduced a
new cosmological model that we called the logotropic model. This model involves a fundamental
constant Λ which is the counterpart of Einstein’s cosmological constant in the ΛCDM model. The
logotropic model is able to account, without free parameter, for the constant surface density of the
dark matter halos, for their mass-radius relation, and for the Tully-Fisher relation. In this paper,
we explore other consequences of this model. By advocating a form of “strong cosmic coincidence”
we predict that the present proportion of dark energy in the Universe is Ωde,0 = e/(1 + e) ' 0.731
which is close to the observed value. We also remark that the surface density of dark matter
halos and the surface density of the Universe are of the same order as the surface density of the
electron. This makes a curious connection between cosmological and atomic scales. Using these
coincidences, we can relate the Hubble constant, the electron mass and the electron charge to the
cosmological constant. We also suggest that the famous numbers 137 (fine-structure constant) and
123 (logotropic constant) may actually represent the same thing. This could unify microphysics and
cosmophysics. We study the thermodynamics of the logotropic model and find a connection with
the Bekenstein-Hawking entropy of black holes if we assume that the logotropic dark fluid is made
of particles of mass mΛ ∼ ~

√
Λ/c2 = 2.08 × 10−33 eV/c2 (cosmons). In that case, the universality

of the surface density of the dark matter halos may be related to a form of holographic principle
(the fact that their entropy scales like their area). We use similar arguments to explain why the
surface density of the electron and the surface density of the Universe are of the same order and
justify the empirical Weinberg relation. Finally, we combine the results of our approach with the
quantum Jeans instability theory to predict the order of magnitude of the mass of ultralight axions
m ∼ 10−23 eV/c2 in the Bose-Einstein condensate dark matter paradigm.

PACS numbers: 95.30.Sf, 95.35.+d, 95.36.+x, 98.62.Gq, 98.80.-k

I. INTRODUCTION

The nature of dark matter and dark energy remains
one of the greatest mysteries of modern cosmology. Dark
matter is responsible for the flat rotation curves of the
galaxies and dark energy is responsible for the acceler-
ated expansion of the Universe. It is found that dark
energy represents about 70% of the energy content of the
present Universe while the proportions of dark matter
and baryonic matter are 25% and 5% respectively.

In a previous paper [1] (see also [2, 3]) we have in-
troduced a new cosmological model that we called the
logotropic model. In this model, there is no dark matter
and no dark energy. There is just a single dark fluid.
What we call “dark matter” actually corresponds to its
rest-mass energy and what we call “dark energy” corre-
sponds to its internal energy.1

Our model does not contain any arbitrary parameter so
that it is totally constrained. It involves a fundamental
constant Λ which is the counterpart of Einstein’s cos-
mological constant [4] in the ΛCDM (cold dark matter)
model and which turns out to have the same value. Still
the logotropic model is fundamentally different from the

1 Many models try to unify dark matter and dark energy. They
are called unified dark energy and dark matter (UDE/M) models.
However, the interpretation of dark matter and dark energy that
we give in Refs. [1, 2] is new and original.

ΛCDM model.
On the large (cosmological) scales, the logotropic

model is indistinguishable from the ΛCDM model up to
the present epoch [1–3]. The two models will differ in
the far future, in about 25 Gyrs years, after which the
logotropic model will become phantom (the energy den-
sity will increase as the Universe expands) and present
a Little Rip (the energy density and the scale factor will
become infinite in infinite time) contrary to the ΛCDM
model in which the energy density tends towards a con-
stant (de Sitter era).

On the small (galactic) scales, the logotropic model is
able to solve some of the problems encountered by the
ΛCDM model [1, 2]. In particular, it is able to account,
without free parameter, for the constant surface density
of the dark matter halos, for their mass-radius relation,
and for the Tully-Fisher relation.

In this paper, we explore other consequences of this
model. By advocating a form of “strong cosmic coin-
cidence”, stating that the present value of the dark en-
ergy density ρde,0 is equal to the fundamental constant
ρΛ appearing in the logotropic model, we predict that
the present proportion of dark energy in the Universe is
Ωde,0 = e/(1 + e) = 0.731 which is close to the observed
value 0.691 [5]. The consequences of this result, which
implies that our epoch is very special in the history of
the Universe, are intriguing and related to a form of an-
thropic cosmological principle [6].

We also remark that the universal surface density of
dark matter halos (found from the observations [7] and
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predicted by our model [1, 2]) and the surface density
of the Universe are of the same order of magnitude as
the surface density of the electron. This makes a curi-
ous connection between cosmological and atomic scales.
Exploiting this coincidence, we can relate the Hubble
constant, the electron mass and the electron charge to
the cosmological constant Λ. We also argue that the
famous numbers 137 (fine-structure constant) and 123
(logotropic constant) may actually represents the same
thing. This may be a hint for a theory of unification of
microphysics and cosmophysics. Speculations are made
in the Appendices to try to relate these interconnections
to a form of holographic principle [8] stating that the en-
tropy of the electron, the entropy of dark matter halos,
and the entropy of the Universe scales like their area as
in the case of the entropy of black holes [9, 10].

II. THE LOGOTROPIC MODEL

A. Unification of dark matter and dark energy

The Friedmann equations for a flat universe without
cosmological constant are [11]:

dε

dt
+ 3

ȧ

a
(ε+ P ) = 0, H2 =

(
ȧ

a

)2

=
8πG

3c2
ε, (1)

where ε(t) is the energy density of the Universe, P (t) is
the pressure, a(t) is the scale factor, and H = ȧ/a is the
Hubble parameter.

For a relativistic fluid experiencing an adiabatic evo-
lution such that Td(s/ρ) = 0, the first law of thermody-
namics reduces to [11]:

dε =
P + ε

ρ
dρ, (2)

where ρ(t) is the rest-mass density of the Universe. Com-
bined with the equation of continuity (1), we get

dρ

dt
+ 3

ȧ

a
ρ = 0⇒ ρ =

ρ0

a3
, (3)

where ρ0 is the present value of the rest-mass density (the
present value of the scale factor is taken to be a0 = 1).
This equation, which expresses the conservation of the
rest-mass, is valid for an arbitrary equation of state.

For an equation of state specified under the form P =
P (ρ), Eq. (2) can be integrated to obtain the relation
between the energy density ε and the rest-mass density
ρ. We obtain [1]:

ε = ρc2 + ρ

∫ ρ P (ρ′)

ρ′2
dρ′ = ρc2 + u(ρ). (4)

We note that u(ρ) can be interpreted as an internal en-
ergy density [1]. Therefore, the energy density ε is the
sum of the rest-mass energy ρc2 and the internal energy
u(ρ).

B. The logotropic dark fluid

We assume that the Universe is filled with a single dark
fluid described by the logotropic equation of state [1]:

P = A ln

(
ρ

ρP

)
, (5)

where ρP = c5/~G2 = 5.16 × 1099 g m−3 is the Planck
density and A is a new fundamental constant of physics,
with the dimension of an energy density, which is the
counterpart of the cosmological constant Λ in the ΛCDM
model (see below). Using Eqs. (4) and (5), the relation
between the energy density and the rest-mass density is

ε = ρc2 −A ln

(
ρ

ρP

)
−A = ρc2 + u(ρ). (6)

The energy density is the sum of two terms: a rest-
mass energy term ρc2 = ρ0c

2/a3 that mimics the en-
ergy density εm of dark matter and an internal en-
ergy term u(ρ) = −A ln (ρ/ρP ) − A = −P (ρ) − A =
3A ln a−A ln(ρ0/ρP )−A that mimics the energy density
εde of dark energy. This decomposition leads to a nat-
ural, and physical, unification of dark matter and dark
energy and elucidates their mysterious nature.

Since, in our model, the rest-mass energy of the dark
fluid mimics dark matter, we identify ρ0c

2 with the
present energy density of dark matter. We thus set
ρ0c

2 = Ωm,0ε0, where ε0/c
2 = 3H2

0/8πG is the present
energy density of the Universe and Ωm,0 is the present
fraction of dark matter (we also include baryonic mat-
ter). As a result, the present internal energy of the dark
fluid, u0 = ε0 − ρ0c

2, is identified with the present dark
energy density εde,0 = Ωde,0ε0 where Ωde,0 = 1− Ωm,0 is
the present fraction of dark energy. Applying Eq. (6) at
the present epoch (a0 = 1), we obtain the identity

A =
εde,0

ln
(
ρP c2

εde,0

)
+ ln

(
Ωde,0

1−Ωde,0

)
− 1

. (7)

At that stage, we can have two points of view. We can
consider that this equation determines the constant A as
a function of ε0 and Ωde,0 that are both obtained from the
observations [5]. This allows us to determine the value
of A. This is the point of view that we have adopted
in our previous papers [1, 2] and that we adopt in Sec.
II D below. However, in the following section, we present
another point of view leading to an intriguing result.

C. Strong cosmic coincidence and prediction of
Ωde,0

Let us recall that, in our model, A is considered as a
fundamental constant whose value is fixed by Nature. As
a result, Eq. (7) relates Ωde,0 to ε0 for a given value of
A. A priori, we have two unknowns for just one equa-
tion. However, we can obtain the value of Ωde,0 by the
following argument.
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We can always write the constant A under the form

A =
ρΛc

2

ln
(
ρP
ρΛ

) . (8)

This is just a change of notation. Eq. (8) defines a
new constant, the cosmological density ρΛ, in place of
A. From the cosmological density ρΛ, we can define an
effective cosmological constant Λ by2

ρΛ =
Λ

8πG
. (9)

Again this is just a change of notation. Therefore, the
fundamental constant of our model is either A, ρΛ or
Λ (equivalently). We now advocate a form of “strong
cosmic coincidence”. We assume that the present value
of the dark energy density is equal to ρΛc

2, i.e.,

εde,0 = ρΛc
2. (10)

Since, in the ΛCDM model, εde is a constant usually
measured at the present epoch our postulate implies
that ρΛc

2 coincides with the cosmological density in the
ΛCDM model and that Λ, as defined by Eq. (9), coin-
cides with the ordinary cosmological constant. This is
why we have used the same notations. Now, comparing
Eqs. (7), (8) and (10) we obtain ln [Ωde,0/(1− Ωde,0)] −
1 = 0 which determines Ωde,0. We find that

Ωth
de,0 =

e

1 + e
' 0.731 (11)

which is close to the observed value Ωobs
de,0 = 0.691 [5].

This agreement is puzzling. It relies on the “strong cos-
mic coincidence” of Eq. (10) implying that our epoch
is very special. This is a form of anthropic cosmological
principle [6]. This may also correspond to a fixed point
of our model. In order to avoid philosophical issues, in
the following, we adopt the more conventional point of
view discussed at the end of Sec. II B.

D. The logotropic constant B

We can rewrite Eq. (8) as

A = BρΛc
2 with B =

1

ln (ρP /ρΛ)
. (12)

Again, this is just a change of notation defining the di-
mensionless number B. We shall call it the logotropic

2 We stress that our model is different from the ΛCDM model
so that Λ is fundamentally different from Einstein’s cosmological
constant [4]. However, it is always possible to introduce from the
constant A an effective cosmological density ρΛ and an effective
cosmological constant Λ by Eqs. (8) and (9).

constant since it is equal to the inverse of the logarithm of
the cosmological density normalized by the Planck den-
sity (see Appendix A). We note that A can be expressed
in terms of B (see below) so that the fundamental con-
stant of our model is either A, ρΛ, Λ, or B. In the fol-
lowing, we shall express all the results in terms of B. For
example, the relation (6) between the energy density and
the scale factor can be rewritten as

ε

ε0
=

Ωm,0

a3
+ (1− Ωm,0)(1 + 3B ln a). (13)

Combined with the Friedmann equation (1) this equa-
tion determines the evolution of the scale factor a(t) of
the Universe in the logotropic model. This evolution has
been studied in detail in [1–3].
Remark: Considering Eq. (13), we see that the ΛCDM

model is recovered for B = 0. According to Eq. (12) this
implies that ρP → +∞, i.e., ~ → 0. Therefore, the
ΛCDM model corresponds to the semiclassical limit of
the logotropic model. The fact that B is intrinsically
nonzero implies that quantum mechanics (~ 6= 0) plays
some role in our model in addition to general relativity.
This may suggest a link with a theory of quantum gravity.

E. The value of B from the observations

The fundamental constant (A, ρΛ, Λ, or B) appearing
in our model can be determined from the observations
by using Eq. (7). We take Ωde,0 = 0.6911 and H0 =
2.195 × 10−18 s−1 [5]. This implies ε0/c

2 = 3H2
0/8πG =

8.62 × 10−24 g m−3 and εde,0/c
2 = Ωde,0ε0/c

2 = 5.96 ×
10−24 g m−3. Since ln [Ωde,0/(1− Ωde,0)] − 1 = −0.195
is small as compared to ln(ρP c

2/εde,0) = 283, we can
write in very good approximation A as in Eq. (8) with
ρΛ ' εde,0/c

2 as in Eq. (10). Therefore,

ρΛ =
3Ωde,0H

2
0

8πG
= 5.96× 10−24 g m−3 (14)

and

Λ = 3Ωde,0H
2
0 = 1.00× 10−35 s−2 (15)

are approximately equal to the cosmological density and
to the cosmological constant in the ΛCDM model. From
Eq. (12) we get

B =
1

ln(ρP /ρΛ)
' 1

123 ln(10)
' 3.53× 10−3. (16)

As discussed in our previous papers [1–3], B is essentially
the inverse of the famous number 123 (see Appendix A).
Finally,

A = B ρΛc
2 = 1.89× 10−9 g m−1 s−2. (17)

From now on, we shall view B given by Eq. (16) as
the fundamental constant of the theory. Therefore, ev-
erything should be expressed in terms of B and the other
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fundamental constants of physics defining the Planck
scales. First, we have

ρΛ

ρP
=
G~Λ

8πc5
= e−1/B = 1.16× 10−123. (18)

Then,

A

ρP c2
= Be−1/B = 4.08× 10−126. (19)

The logotropic equation of state (5) can be written as
P/ρP c

2 = Be−1/B ln(ρ/ρP ). Using Eq. (10) and εde,0 =
Ωde,0ε0, we get

ε0
ρP c2

=
1

Ωde,0
e−1/B = 1.67× 10−123. (20)

Finally, using Eq. (1),

tPH0 =

(
8π

3Ωde,0

)1/2

e−1/2B = 1.18× 10−61, (21)

where tP = (~G/c5)1/2 = 5.391 × 10−44 s is the Planck
time. In the last two expressions, we can either consider
that Ωde,0 is “predicted” by Eq. (11) or take its measured
value. To the order of accuracy that we consider, this
does not change the numerical values.

F. Generalized logotropic models

Recently, the original logotropic model corresponding
to a purely logarithmic equation of state P = A ln(ρ/ρ∗)
[1–3] has been generalized to an expression of the form
P = A(ρ/ρ∗)

−n ln(ρ/ρ∗) where n is a free parameter
[12–14]. Interestingly, this equation of state is similar to
the Anton-Schmidt [15] equation of state for crystalline
solids in the Debye approximation [16]. In that case,
the index n can be written as n = −1/6 − γG where γG
is the so-called Grüneisen [17] parameter. The original
logotropic model is recovered for n = 0. The authors
of [12] compared the predictions of the generalized lo-
gotropic model with cosmological observations and found
that B ' 3.54 × 10−3 and n = −0.147+0.113

−0.107. This con-
firms the robustness of the value of the fundamental con-
stant B = 3.53× 10−3 introduced in [1, 2]. On the other
hand, up to the error bars, the value of n is close to
n = 0, corresponding to the logotropic model (see also
[3]). This suggests that the logotropic model tends to be
selected among more general families of models contain-
ing additional parameters {n}. What is crucial in the
logotropic model is the logarithmic factor ln(ρ/ρ∗). Very
generally, we could consider an equation of state of the
form P = An(ρ) ln(ρ/ρ∗) with An(ρ)→ cte when n→ 0.
In the present paper, we stick to the original logotropic
model [1–3] but it would be interesting to see how the re-
sults are modified in more general circumstances [12–14].

III. PREVIOUS PREDICTIONS OF THE
LOGOTROPIC MODEL

The interest of the logotropic model becomes appar-
ent when it is applied to dark matter halos [1, 2]. We
assume that dark matter halos are described by the lo-
gotropic equation of state of Eq. (5) with A = 1.89 ×
10−9 g m−1 s−2 (or B = 3.53 × 10−3). At the galactic
scale, we can use Newtonian gravity.

A. Surface density of dark matter halos

It is an empirical evidence that the surface density of
galaxies has the same value

Σobs
0 ≡ ρ0rh ' 295 g m−2 ' 141M�/pc2 (22)

even if their sizes and masses vary by several orders of
magnitude (up to 14 orders of magnitude in luminosity)
[7]. Here ρ0 is the central density and rh is the halo radius
at which the density has decreased by a factor of 4. The
logotropic model predicts that the surface density of the
dark matter halos is the same for all the halos (because
A is a universal constant) and that it is given by [1, 2]

Σth
0 =

(
A

4πG

)1/2

ξh =

(
B

32

)1/2
ξh
π

c
√

Λ

G
, (23)

where ξh = 5.8458... is a pure number arising from
the Lane-Emden equation of index n = −1 expressing
the condition of hydrostatic equilibrium of logotropic
spheres.3 Numerically,

Σth
0 = 278 g m−2 ' 133M�/pc2, (24)

which is very close to the observational value (22). The
fact that the surface density of dark matter halos is deter-
mined by the effective cosmological constant Λ (usually
related to the dark energy) tends to confirm that dark
matter and dark energy are just two manifestations of
the same dark fluid, as we have assumed in our model.
Remark: The dimensional term c

√
Λ/G in Eq. (23) can

be interpreted as representing the surface density of the
Universe (see Appendix B). We note that this term alone,

c
√

Λ/G = 14200 g m−2 = 6800M�/pc2, is too large to

3 The logotropic spheres [1, 2], like the isothermal spheres and
some polytropic spheres [18], have an infinite mass. This im-
plies that the logotropic equation of state cannot describe dark
matter halos at infinitely large distances. Nevertheless, it may
describe the inner region of dark matter halos and this is suffi-
cient to determine their surface density. The stability of bounded
logotropic spheres has been studied in [19] by analogy with the
stability of bounded isothermal and polytropic spheres [20–22]
and similar results have been obtained. In particular, bounded
logotropic spheres are stable provided that the density contrast
is not too large.
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account precisely for the surface density of dark matter
halos so that the prefactor (B/32)1/2(ξh/π) = 0.01955
is necessary to reduce this number. It is interesting to
remark that the term c

√
Λ/G arises from classical gen-

eral relativity while the prefactor ∝ B1/2 has a quantum
origin as discussed at the end of Sec. II D. Actually, we
will see that it is related to the fine-structure constant α
[see Eq. (33) below].

B. Mass-radius relation

There are interesting consequences of the preceding re-
sult. For logotropic halos, the mass of the halos calcu-
lated at the halo radius rh is given by [1, 2]

Mh = 1.49 Σ0r
2
h. (25)

This determines the mass-radius relation of dark matter-
halos. On the other hand, the circular velocity at the
halo radius is v2

h = GMh/rh = 1.49Σ0Grh. Since the
surface density of the dark matter halos is constant, we
obtain

Mh

M�
= 198

(
rh
pc

)2

,
( vh

km s−1

)2

= 0.852
rh
pc
. (26)

The scalings Mh ∝ r2
h and v2

h ∝ rh (and also the prefac-
tors) are consistent with the observations.

C. The Tully-Fisher relation

Combining the previous equations, the logotropic
model leads to the Tully-Fisher [23] relation v4

h ∝ Mh

or, more precisely,(
Mb

v4
h

)th

=
fb

1.49Σth
0 G

2
= 46.4M�km−4s4, (27)

where fb = Mb/Mh ∼ 0.17 is the cosmic baryon fraction
[24]. The predicted value from Eq. (27) is close to the

observed one
(
Mb/v

4
h

)obs
= 47± 6M�km−4s4 [24].

Remark: The Tully-Fisher relation is sometimes justi-
fied by the MOND (Modification of Newtonian dynam-
ics) theory [25] which predicts a relation of the form
v4
h = Ga0Mb between the asymptotic circular velocity

and the baryon mass, where a0 is a critical acceleration.
Our results imply ath

0 = 1.62×10−10 m s−2 which is close
to the value aobs

0 = (1.3±0.3)×10−10 m s−2 obtained from
the observations [24]. Combining Eqs. (25) and (27),
we first get ath

0 = (1.49/fb)GΣth
0 = GMh/(fbr

2
h) which

shows that a0 can be interpreted as the surface gravity
of the galaxies GΣ0 (which corresponds to Newton’s ac-
celeration GMh/r

2
h) or as the surface gravity of the Uni-

verse (see Appendix C). Then, using Eqs. (15) and (23),

we obtain ath
0 = (1.49/fb)(B/32)1/2(ξh/π)c

√
Λ ' H0c/4

which explains why a0 is of the order of H0c [2]. We em-
phasize, however, that we do not use the MOND theory
in our approach and that the logotropic model assumes
the existence of a dark fluid.

D. The mass M300

The logotropic equation of state also explains the
observation of Strigari et al. [26] that all the dwarf
spheroidals (dSphs) of the Milky Way have the same to-
tal dark matter mass M300 contained within a radius
ru = 300 pc, namely Mobs

300 ' 107M� The logotropic
model predicts the value [1, 2]

M th
300 =

4πΣth
0 r

2
u

ξh
√

2
= 1.82× 107M�, (28)

which is in very good agreement with the observational
value.

IV. A CURIOUS CONNECTION BETWEEN
ATOMIC AND COSMOLOGICAL SCALES

A. The surface density of the electron

The classical radius of the electron re can be ob-
tained qualitatively by writing that the electrostatic en-
ergy of the electron, e2/re, is equal to its rest-mass en-
ergy mec

2. Recalling the value of the charge of the elec-
tron e = 4.80 × 10−13 g1/2 m3/2 s−1 and its mass me =
9.11×10−28 g, we obtain re = e2/mec

2 = 2.82×10−15 m.
As a result, the surface density of the electron is4

Σe =
me

r2
e

=
m3
ec

4

e4
= 115 g/m2 = 54.9M�/pc2, (29)

which is of the same order of magnitude as the surface
density of dark matter halos from Eq. (22). This coinci-
dence is amazing in view of the different scales (atomic
versus cosmological) involved. More precisely, we find
Σe = σΣth

0 with σ ' 0.413. Of course, the value of σ
depends on the precise manner used to define the surface
density of the electron, or its radius, but the important
point is that this number is of order unity.

B. Relation between α and B

By matching the two formulae (23) and (29), writing
Σe = σΣth

0 , we get

Λ =
32π2

Bξ2
hσ

2

m6
ec

6G2

e8
=

32π2

Bξ2
hσ

2α4

m6
ec

2G2

~4
, (30)

4 We note that the Thomson cross-section σ = (8π/3)(e2/mec2)2

can be written as σ = (8π/3)r2
e giving a physical meaning to the

classical electron radius re. We also note that re can be written
as re = α~/mec = αλC where λC = ~/mec is the Compton
wavelength of the electron and α is the fine-structure constant α
[see Eq. (A1)]. Similarly, we can write Σe = (1/α2)m3

ec
2/~2.
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where we have introduced the fine-structure constant α
in the second equality (see Appendix A). This expres-
sion provides a curious relation between the cosmological
constant, the mass of the electron, and its charge. This
relation is similar to Weinberg’s empirical relation (see
Appendix B) which can be written as [combining Eqs.
(15) and (B3)]

Λ = 192π2µ2Ωde,0
m6
ec

6G2

e8
, (31)

where µ ' 3.42. Note that in our formula (30), Λ ap-
pears two times: on the left hand side and in B (which
depends logarithmically on Λ). This will have important
consequences in the following.

Böhmer and Harko [27], by a completely different ap-
proach, found a similar relation5

Λ = ν
~2G2m6

ec
8

e12
=

ν

α6

G2m6
ec

2

~4
, (32)

where ν ' 0.816 is of order unity. Their result can be ob-
tained as follows. They first introduced a minimum mass
mΛ ∼ ~

√
Λ/c2 = 2.08×10−33 eV/c2 interpreted as being

the mass of the elementary particle of dark energy, called
the cosmon. Then, they defined a radius R by the rela-
tion mΛ ∼ ρΛR

3 where ρΛ = Λ/8πG is the cosmological
density considered as being the lowest density in the Uni-
verse. Finally, they remarked that R ∼ 8.54 × 10−15 m
has typically the same value as the classical radius of the
electron re = e2/mec

2 = 2.82×10−15 m. Matching R and
re leads to the scaling of Eq. (32). We have then added
a prefactor ν and adjusted its value in order to exactly
obtain the measured value of the cosmological constant
[5]. Since the approach of Böhmer and Harko [27] is es-
sentially qualitative, and depends on the precise manner
used to define the radius of the electron, their result can
be at best valid up to a constant of order unity.

We would like now to compare the estimates from Eqs.
(30) and (32). At that stage, we can have two points
of view. If we consider that comparing the prefactors
is meaningless because our approach can only provide
“rough” orders of magnitude, we conclude that Eqs. (30)
and (32) are equivalent, and that they are also equiva-
lent to Weinberg’s empirical relation (B3). Alternatively,
if we take the prefactors seriously into account (in partic-
ular the presence of B which depends on Λ) and match
the formulae (30) and (32), we find an interesting relation
between the fine-structure constant α and the logotropic
constant B:

α =
( ν

32

)1/2 ξhσ

π

√
B ' 0.123

√
B. (33)

Therefore, the fine-structure constant (electron charge
normalized by the Planck charge) is determined by the

5 A closely related formula, involving the Hubble constant instead
of the cosmological constant, was first found by Stewart [28] in
1931 by trial and error.

logotropic constant B (logarithm of the cosmological den-
sity normalized by the Planck density) by a relation of
the form α ∝ B1/2. This makes a connection between
atomic scales and cosmological scales. This also suggests
that the famous numbers 137 and 123 (see Appendix A)
are related to each other, or may even represent the same
thing. From Eq. (33), we have6

137 ' 12.3
√

123. (34)

Remark: the logotropic constant B is related to the
effective cosmological constant Λ by [see Eq. (18)]

B =
1

ln
(

8πc5

G~Λ

) . (35)

Using Eqs. (33) and (35), we can express the fine-
structure constant α as a function of the effective cos-
mological constant Λ or, using Eq. (21), as a function of
the age of the Universe tΛ = 1/H0. We get

α =
0.123

ln
(

8πc5

G~Λ

)1/2 =
0.123

√
2 ln

[(
8π

3Ωde,0

)1/2
tΛ
tP

]1/2
. (36)

We emphasize the scaling 1/α ∝ (ln tΛ)1/2. It is interest-
ing to note that similar relations have been introduced in
the past from pure numerology (see [29], P. 428). These
relations suggest that the fundamental constants may
change with time as argued by Dirac [30, 31].

C. The mass and the charge of the electron in
terms of B

Using Eqs. (32), (33) and (35), we find that the mass
and the charge of the electron (or the fine-structure con-
stant) are determined by the cosmological constant Λ
according to

me =
1

ν1/6
α

(
Λ~4

G2c2

)1/6

= 1.03α

(
Λ~4

G2c2

)1/6

= 9.11× 10−28 g, (37)

α =
e2

~c
=
( ν

32

)1/2 ξhσ

π

1

ln
(

8πc5

G~Λ

)1/2 =
0.123

ln
(

8πc5

G~Λ

)1/2
=

1

137
. (38)

Alternatively, using Eqs. (9), (18), (30) and (33), the nor-
malized mass and the normalized charge of the electron

6 We note that the prefactors in Eqs. (33) and (34) appear to be
close to 123/1000 and 123/10, where the number 123 appears
again (!). We do not know whether this coincidence is fortuitous
or if it bears a deeper significance than is apparent at first sight.
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are determined by the logotropic constant B according
to

me

MP
=

(
8π

ν

)1/6 ( ν
32

)1/2 ξhσ

π

√
Be−1/(6B)

= 0.217
√
Be−1/(6B) = 4.18× 10−23, (39)

e2

q2
P

=
( ν

32

)1/2 ξhσ

π

√
B = 0.123

√
B = 7.29× 10−3, (40)

where MP = (~c/G)1/2 = 2.18 × 10−5 g is the Planck
mass and qP = (~c)1/2 = 5.62×10−12 g1/2 m3/2 s−1 is the
Planck charge. These relations suggest that the mass and
the charge of the electron (atomic scales) are determined
by the effective cosmological constant Λ or B (cosmologi-
cal scales). We emphasize the presence of the exponential
factor e−1/(6B) in Eq. (39) explaining why the electron
mass is much smaller than the Planck mass while the
electron charge is comparable to the Planck charge [see
Eq. (40)].

D. A prediction of B

If we match Eqs. (23) and (B2), or equivalently Eqs.
(30) and (31), we obtain

Bapp =
1

6λ2ξ2
hΩde,0

. (41)

Taking λapp = 1 (since we cannot predict its value) and
Ωth

de,0 = e/(1+e) [see Eq. (11)], we get Bapp = 6.67×10−3

instead of B = 3.53 × 10−3. We recall that the value
of B was obtained in Sec. II E from the observations.
On the other hand, Eq. (41) gives the correct order of
magnitude of B without any reference to observations,
up to a dimensionless constant λ ' 1.41 of order unity.
Considering that B is predicted by Eq. (41) implies that
we can predict the values of Λ, H0, α, me and e without
reference to observations, up to dimensionless constants
λ ' 1.41, ν ' 0.816 and σ ' 0.413 of order unity. We
note, however, that even if these dimensionless constants
(λ, ν, σ) are of order unity, their precise values are of
importance since B usually appears in exponentials like
in Eqs. (18), (21) and (39).

V. CONCLUSION

In this paper, we have developed the logotropic model
introduced in [1, 2]. In this model, dark matter corre-
sponds to the rest mass energy of a dark fluid and dark
energy corresponds to its internal energy. The ΛCDM
model may be interpreted as the semiclassical limit ~→ 0
of the logotropic model. We have first recalled that the
logotropic model is able to predict (without free param-
eter) the universal value of the surface density of dark

matter halos Σ0, their mass-radius relation Mh− rh, the
Tully-Fisher relation Mb ∼ v4

h and the value of the mass
M300 of dSphs. Then, we have argued that it also predicts
the value of the present fraction of dark energy Ωde,0.
This arises from a sort of “strong cosmic coincidence” but
this could also correspond to a fixed point of the model.
Finally, we have observed that the surface density of the
dark matter halos Σ0 is of the same order as the surface
density of the Universe ΣΛ and the surface density of the
electron Σe. This makes an empirical connection between
atomic physics and cosmology. From this connection, we
have obtained a relation between the fine-structure con-
stant α ∼ 1/137 and the logotropic constant B ∼ 1/123.
We have also expressed the mass me and the charge −e
of the electron as a function of B (or as a function of
the effective cosmological constant Λ). Finally, we have
obtained a prediction of the order of magnitude ofB inde-
pendent from the observations. In a sense, our approach
which expresses the mass and the charge of the electron
in terms of the cosmological constant is a continuation of
the program initiated by Eddington [32] in his quest for
a ‘Fundamental Theory’ of the physical world in which
the basic interaction strengths and elementary particle
masses would be prediced entirely combinatorically by
simple counting processes [6]. In the Appendices, we try
to relate these interconnections to a form of holographic
principle [8] (of course not known at the time of Edding-
ton) stating that the entropy of the electron, the dark
matter halos, and the Universe scales like their area as
in the case of black holes [9, 10].

This paper has demonstrated that physics is full of
“magic” and mysterious relations that are still not fully
understood (one of them being the empirical Weinberg
relation). Hopefully, a contribution of this paper is to
reveal these “mysteries” and propose some tracks so as
to induce further research towards their elucidation.

Appendix A: The constants α and B

There are two famous numbers in physics, 137 and
123, which respectively apply to atomic and cosmological
scales.

At the atomic level, the fine-structure constant α, also
known as Sommerfeld’s constant [29], is a dimensionless
physical constant characterizing the strength of the elec-
tromagnetic interaction between elementary charged par-
ticles. Its value is

α =
e2

~c
=
e2

q2
P

' 1

137
' 7.30× 10−3. (A1)

It can be seen as the square of the charge e = 4.80 ×
10−13 g1/2 m3/2 s−1 of the electron normalized by the
Planck charge qP = (~c)1/2 = 5.62× 10−12 g1/2 m3/2 s−1.
The quantum theory does not predict its value. The
number 1/α ' 137 intrigued a lot of famous researchers
including Born, Dirac, Eddington, Feynman, Hawking,
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Heisenberg, Landé, and Pauli among others [29]. Feyn-
man writes [33]: It’s one of the greatest damn mysteries
of physics: a magic number that comes to us with no un-
derstanding by man. You might say the “hand of God”
wrote that number, and “we don’t know how He pushed
his pencil.”

At the cosmological level, there is another famous num-
ber

B =
1

ln(ρP /ρΛ)
' 1

123 ln(10)
' 3.53× 10−3. (A2)

It can be seen as the inverse of the logarithm of the cos-
mological - or dark energy - density ρΛ = Λ/8πG =
5.96 × 10−24 g m−3 (where Λ = 1.00 × 10−35 s−2 is the
cosmological constant), normalized by the Planck density
ρP = c5/~G2 = 5.16×1099 g m−3. This number appeared
in connection to the so-called cosmological constant prob-
lem [34, 35], i.e., the fact that there is a difference of 123
orders of magnitude (ρP /ρΛ ∼ 10123) between the Planck
density ρP and the cosmological density ρΛ interpreted
as the vacuum energy.

We have suggested in this paper that the two dimen-
sionless constants α and B, or the two numbers 137 and
123, are related to each other [see Eqs. (33) and (34)]
and that, in some sense, they correspond to the same
thing. If this idea is correct, it would yield a fascinating
connection between atomic and cosmic physics.

Appendix B: Surface density of the Universe,
surface density of the electron and Weinberg’s

empirical relation

Using qualitative arguments, let us determine the sur-
face density of the Universe. The Hubble time (∼ age
of the Universe) is tΛ = 1/H0 = 14.4 billion years.
The Hubble radius (∼ radius of the visible Universe) is
RΛ = ctΛ = c/H0 = 1.37×1026 m. The present density of
the Universe is ε0/c

2 = 3H2
0/8πG = 8.62× 10−24 g m−3.

The Hubble mass (∼ mass of the Universe) is MΛ =
(4/3)π(ε0/c

2)R3
Λ = c3/2GH0 = 9.20 × 1055 g. Combin-

ing these relations, we find that the surface density of the
Universe is

ΣΛ =
MΛ

4πR2
Λ

=
cH0

8πG
= 392 g m−2 = 188M�/pc2. (B1)

It can be written as ΣΛ = cH0/κc
4 where κ = 8πG/c4 is

Einstein’s gravitational constant (which includes the 8π
factor). Using Eq. (15), we obtain

ΣΛ =
1

8π
√

3Ωde,0

c
√

Λ

G
. (B2)

This relation shows that the surface density of the Uni-
verse provides the correct scale for the surface density of
dark matter halos [see Eq. (23)]. We have ΣΛ = λΣth

0

with λ ' 1.41.

Therefore, the surface density of the Universe is of the
same order as the surface density of the dark matter halos
which is also of the same order as the surface density of
the electron (as we have previously observed). We have
ΣΛ = µΣe with µ = λ/σ ' 3.42. Matching Eqs. (29)
and (B1), we get

me =

(
e4H0

8πµGc3

)1/3

. (B3)

This relation expresses the mass of the electron as a func-
tion of its charge and the Hubble constant. This mys-
terious relation is mentioned in the book of Weinberg
[11] where it is obtained from purely dimensional argu-
ments.7 He observed that the term in the right hand side
of Eq. (B3) has the dimension of a mass and that this
mass, 1.37 × 10−27 g (with µapp = 1), is of the order of
the mass of the electron. The fact that relation (B3) ex-
presses the commensurability of the surface density of the
Universe and the surface density of the electron, as we
observe here, may help elucidating its physical meaning
(see Appendix C 4).
Remark: If the dark matter halos resulted from the

balance between the gravitational attraction and the re-
pulsion due to the dark energy, they would have a typi-
cal density Mh/r

3
h ∼ ρΛ. Actually, such an equilibrium

is unstable as is well-known in the case of the Einstein
static Universe. Therefore, the radius of dark matter ha-
los must satisfy the constraint rh < (Mh/ρΛ)1/3. Now,
we have seen that their mass-radius relation scales as
Mh ∼ (c

√
Λ/G)r2

h. We then find that the constraint rh <

(Mh/ρΛ)1/3 is satisfied provided that Mh < c3/G
√

Λ.
Since the upper bound is of the order of the mass of the
Universe, MΛ ∼ c3/G

√
Λ, we conclude that the size of

the dark matter halos is always much smaller than the
critical size (rh)crit = (Mh/ρΛ)1/3 as required for stabil-
ity reasons.

Appendix C: Analogy with black hole
thermodynamics

1. Black hole entropy

The Bekenstein-Hawking [9, 10] entropy of a
Schwarzschild black hole is given by

SBH =
1

4
kB

A

l2P
=
kBπc

3R2

G~
, (C1)

7 Weinberg considers this relation as “so far unexplained” and hav-
ing “a real though mysterious significance”. Similar relations
have been obtained in the past by Stewart [28], Eddington [32]
and others from purely heuristic arguments or from dimensional
analysis [6, 29, 36]. Their goal was to express the mass of the
elementary particles in terms of the fundamental constants of
Nature.
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where A = 4πR2 is the area of the event horizon of the
black hole and lP = (G~/c3)1/2 = 1.62 × 1035 m is the
Planck length. The radius of a Schwarzschild black hole
is connected to its mass by

R =
2GM

c2
. (C2)

The Hawking temperature [10] of a Schwarzschild black
hole is

kBT =
~c3

8πGM
=

~c
4πR

. (C3)

The black hole entropy (C1) can be obtained from the
Hawking temperature (C3) by using the thermodynamic
relation T−1 = dSBH/d(Mc2). If we consider a Planck
black hole of radius lP and mass MP , we find that
its temperature is of the order of the Planck tempera-
ture TP = MP c

2/kB = 1.42 × 1032 K and its entropy
SBH/kB ∼ 1.

2. Analogy between the Universe and a black hole

Using the results of Appendix B, we note that the ra-
dius of the Universe is related to its mass by

RΛ =
2GMΛ

c2
. (C4)

This expression coincides with the mass-radius relation
(C2) of a Schwarzschild black hole. This coincidence has
sometimes led people to say that the Universe is a black
hole, or that we live in a black hole, although this analogy
is probably too naive. Nevertheless, at least on a purely
dimensional basis, we can use the analogy with black
holes to define the entropy and the temperature of the
Universe. In this manner, we get a temperature scale
(temperature on the horizon)

kBTΛ =
~c

4πRΛ
=

~H0

4π
∼ ~
√

Λ. (C5)

Its value is TΛ ∼ 2.41 × 10−29 K. The temperature can
be written as

kBTΛ =
2~aΛ

c
, (C6)

where

aΛ = GΣΛ =
GMΛ

4πR2
Λ

=
c2

8πRΛ
=
cH0

8π
∼ c
√

Λ (C7)

is the surface gravity of the Universe (similar relations
apply to black holes). We note that ΣΛ = c2/8πGRΛ.
We can also write

kBTΛ = mΛc
2, (C8)

with

mΛ ∼
~
√

Λ

c2
= 2.08× 10−33 eV/c2. (C9)

This mass scale is often interpreted as the smallest mass
of the bosons predicted by string theory [37] or as the
upper bound on the mass of the graviton [38].8 It can be
contrasted from the mass scale

MΛ ∼
c3

G
√

Λ
= 7.16× 1088 eV/c2, (C10)

which is usually interpreted as the mass of the Universe.
Thus mΛ and MΛ represent fundamental lower and upper
mass scales. Their ratio is

MΛ

mΛ
∼ c5

G~Λ
∼ ρP
ρΛ
∼ e1/B ∼ 10123, (C11)

which exhibits the famous number 123 (see Appendix A).
On the other hand, our analogy between the Universe
and a black hole leads to an entropy scale (entropy on
the Hubble horizon):

SΛ =
kBπc

3R2
Λ

G~
=
kBπc

5

G~H2
0

∼ kBc
5

G~Λ
. (C12)

We note that the entropy of the Universe can be written
as

SΛ/kB ∼
MΛ

mΛ
∼ ΣΛR

2
Λ

mΛ
∼ e1/B ∼ 10123. (C13)

This entropy may be identified with the total entropy of
the logotropic dark fluid (see the Appendix of [3] and
Appendix E). It can be compared to the entropy of ra-
diation [39]:

Srad/kB =
4

3

(
3Ωrad,0

8π

)3/4(
π2

15

)1/4
1

(H0tP )3/2

= 5.64× 1087, (C14)

obtained by using Eq. (E2) with Prad = εrad/3, εrad =
σT 4 with σ = π2k4

B/15c3~3 (Stefan-Boltzmann con-
stant), εrad = Ωrad,0ε0/a

4 and Ωrad,0 = 9.24×10−5. They
differ by about 36 orders of magnitude.

Remarks: We note that TΛSΛ = (1/2)MΛc
2 so the

free energy of the Universe is FΛ = MΛc
2 − TΛSΛ =

(1/2)MΛc
2. On the other hand, using Eqs. (18) and

(39), we obtain the relations

mΛ

MP
∼ e−1/(2B) = 3.40× 10−62, (C15)

me

mΛ
∼
√
Be1/(3B) = 5.66× 1039. (C16)

Since mΛ ∼ ρΛr
3
e (see Sec. IV B) we have me/mΛ ∼

ρe/ρΛ. The gravitational radius of the cosmon is rΛ =

2GmΛ/c
2 ∼ G~

√
Λ/c4 = 2.75× 10−96 m.

8 It is simply obtained by equating the Compton wavelength of
the particle λc = ~/mc with the Hubble radius RΛ = c/H0 (the
typical size of the visible Universe) giving mΛ = ~H0/c2. Using
Eq. (15), we obtain Eq. (C9). By comparison, if we identify the
Compton wavelength λc = ~/mc with the Schwarzschild radius
rS ∼ Gm/c2 we get the Planck mass MP = (~c/G)1/2.
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3. Entropy of logotropic dark matter halos

Let us define the entropy of a logotropic dark matter
halo by

S ∼ kBN ∼ kB
Mh

mΛ
, (C17)

where Mh is the halo mass and mΛ is the mass of the
hypothetical particle composing the logotropic dark fluid.
Using the mass-radius relation Mh ∼ Σ0r

2
h of a logotropic

dark matter halo, where Σ0 ∼ c
√

Λ/G is the universal
surface density given by Eq. (23), we get

S ∼ kBc
√

Λr2
h

GmΛ
. (C18)

Interestingly, the entropy given by Eq. (C18) scales like
the surface r2

h of the object, similarly to the black hole
entropy (C1).9 This may be connected to a form of holo-
graphic principle [8]. Matching the formulae (C1) and
(C18), we find that mΛ corresponds to the mass given
by Eq. (C9). Inversely, if we assume from the start that
the logotropic dark fluid is composed of particles of that
mass (cosmons), we find that the entropy of dark matter
halos coincides with the entropy of black holes.10 On the
other hand, since the surface density of the Universe is of
the same order as the surface density of dark matter ha-
los, the previous formulae also apply to the Universe as a
whole and return the results of Appendix C 2. This may
be a form of justification, for reasons of self-consistency,
of Eq. (C17).

Remark: If we alternatively define the entropy of dark
matter halos by S ∼ kBMh/me where me is the electron
mass and use Mh ∼ Σ0r

2
h with Σ0 ∼ Σe, where Σe is

the surface density of the electron given by Eq. (29), we
obtain

S ∼ kB
r2
h

r2
e

, (C19)

which is similar to the black hole entropy formula (C1)
where the Planck length lP is replaced by the classical
radius of the electron re. It is not clear, however, if this
formula is physically relevant.

4. Postulates: entropic principles

We can find a form of explanation of the different re-
lations found in this paper by making the following two

9 Inversely, a manner to understand why the surface density of the
dark matter halos has a universal value is to argue that their
entropy given by Eq. (C17) should scale like r2

h (see Appendix
C 4).

10 Of course, we are not claiming that dark matter halos are black
holes since they obviously do not fulfill the Schwarzschild relation
(C2). However, they may have the same entropy as black holes
expressed in terms of rh [see Eq. (C1)].

postulates.
Postulate 1: We postulate that the entropy of the elec-

tron, the entropy of dark matter halos and the entropy
of the Universe (and possibly other objects) is given by

S ∼ kBc
3R2

G~
, (C20)

like the Bekenstein-Hawking [9, 10] entropy of black holes
(C1), where R is the radius of the corresponding object.
This may be connected to a form of holographic principle
[8] stating that the entropy is proportional to the area
(instead of the volume). Therefore,

Se/kB ∼
c3r2

e

G~
(electron) (C21)

S/kB ∼
c3r2

h

G~
(dark matter) (C22)

SΛ/kB ∼
c3R2

Λ

G~
(Universe) (C23)

Postulate 2: We postulate that the entropy of the elec-
tron, the entropy of dark matter halos and the entropy
of the Universe (and possibly other objects) is also given
by11

S ∼ kB
M

mΛ
, (C24)

where M is the mass of the corresponding object and mΛ

is the mass defined by Eq. (C9). Therefore,

Se/kB ∼
me

mΛ
∼ Σer

2
e

mΛ
∼ 1039 (electron) (C25)

S/kB ∼
Mh

mΛ
∼ Σ0r

2
h

mΛ
(dark matter) (C26)

SΛ/kB ∼
MΛ

mΛ
∼ ΣΛR

2
Λ

mΛ
∼ 10123 (Universe) (C27)

The comparison of Eqs. (C20) and (C24) directly im-
plies that the surface density of the electron, the surface
density of all the dark matter halos, and the surface den-
sity of the Universe is (approximately) the same and has
the typical value

Σ ∼ M

R2
∼ mΛc

3

G~
∼ mΛ

MP
ΣP ∼

c
√

Λ

G
, (C28)

11 Note that this relation is not satisfied by black holes sinceMBH ∝
R while SBH ∝ R2.
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where ΣP = (c7/~G3)1/2 = 8.33 × 1064 g m−2 is the
Planck surface density. Then, comparing this universal
value with the surface density of the electron [see Eq.
(29)], we obtain the Weinberg relation

Λ ∼ m6
eG

2c6

e8
. (C29)

Remark: we have introduced the entropy of an elec-
tron [see Eqs. (C21) and (C25)] by analogy with the
black hole entropy. If these ideas are physically rele-
vant, a notion of thermodynamics for the electron (as-
suming that it is made of 1039 subparticles of mass
mΛ) should be developed. Again, the analogy with
black holes (although, of course, an electron is not a
black hole) might be useful. In particular, from the
entropy Se ∼ kBme/mΛ, we may define the temper-
ature of the electron by 1/Te = dSe/d(mec

2) and get

kBTe ∼ mΛc
2 ∼ ~

√
Λ ∼ kBTΛ. In this sense, the tem-

perature of the electron turns out to coincide with the
temperature of the Universe. The same argument ap-
plies to dark matter halos (with S ∼ kBMh/mΛ and
1/T = dS/d(Mhc

2)) leading again to T ∼ TΛ. Interest-
ingly, similar relations are obtained in Appendix E from
different arguments.

Appendix D: Large numbers and coincidences

The ratio between the electric radius of the electron
re = e2/mec

2 and its gravitational radius rg = 2Gme/c
2

is of the order of e2/Gm2
e = 4.17 × 1042. This dimen-

sionless number was computed by Weyl in 1919 [6, 40].
He was the first to notice the presence of large dimen-
sionless numbers in Nature. This led Eddington [32] and
others to try to relate such large numbers to cosmological
quantities. In particular, Eddington evaluated the total
number of particles in the Universe and found Np ∼ 1079.
He then tried to relate the basic interaction strenghts and
elementary particle masses to this number. For example,
it was observed by different authors that the following
quantities are of the same order of magnitude (see Ref.
[6], P. 224-231):

mec
2

~H0
∼ e2

Gm2
e

∼
√
Np ∼

(
MP

me

)2

∼ 1040. (D1)

These coincidences can be easily understood from our
results (39) and (40) which express the mass and the
charge of the electron in terms of the cosmological con-
stant. For convenience, we shall replace the Eddington

number by12

Ne =
MΛ

me
∼ e2/(3B) ∼ 1080. (D2)

Combining our results, we find

mec
2

~H0
∼ me

mΛ
∼ e1/(3B) ∼ 1040, (D3)

e2

Gm2
e

∼ e1/(3B) ∼ 1040, (D4)

MP

me
∼ e1/(6B) ∼ 1020, (D5)

leading to the relations from Eq. (D1). We also note
that

1

m4
e

(
~c
G

)2

∼
(
MP

me

)4

∼ 1080 ∼ Ne, (D6)

which is one of the “coincidences” pointed out by Chan-
drasekhar [41].

In a sense, these results arise from the Weinberg rela-
tion (B3) that has been found by different authors (see
footnote 7). Nevertheless we believe that our approach
is original and may bring new light on the subject. In
particular, we have proposed a form of common explana-
tion of these different “coincidences” in terms of entropic
principles (see Appendix C 4).

Appendix E: Thermodynamics of the logotropic
dark fluid

Let us try to relate the results of the previous Appen-
dices to the thermodynamics of the logotropic dark fluid.

We assume that the Universe is filled with a dark fluid
at temperature T . From the first principle of thermo-
dynamics, one can derive the thermodynamic equation
[11]:

dP

dT
=

1

T
(ε+ P ). (E1)

If the dark fluid is described by a barotropic equation of
state of the form P = P (ε), Eq. (E1) can be integrated

12 The Eddington number corresponds typically to the number of
protons in the Universe, N ∼ MΛ/mp, where mp is the proton
mass (in Eq. (D2) we have replaced mp by me since we have not
introduced the proton mass previously). Note that the Edding-
ton number was introduced before dark matter and dark energy
were discovered. If the dark fluid is made of cosmons of mass mΛ,
the number of particles in the Universe is NΛ = MΛ/mΛ ∼ 10123

giving another interpretation to the famous number 123 (see Ap-
pendix A). This number NΛ should supersede the Eddington
number Np.
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to obtain the relation T = T (ε) between the temperature
and the energy density. On the other hand, the entropy
of the dark fluid in a volume a3 is given by [11]

S =
a3

T
(P + ε). (E2)

From the Friedmann equations, one can show that the
entropy of the Universe is conserved: dS/dt = 0 [11].

The previous results are general. Let us now apply
them to the logotropic dark fluid. According to Eqs. (5)
and (6), the equation of state P = P (ε) of the logotropic
dark fluid is given by the inverse of [2, 3]

ε = ρP e
P/Ac2 − P −A. (E3)

Eq. (E1) with Eq. (E3) can be easily integrated to give

T =
ρP c

2

K

(
1− A

ρc2

)
, (E4)

where K is a constant of integration and we have used
Eq. (5). Substituting Eqs. (E3) and (E4) into Eq. (E2),
and using Eqs. (3) and (5), we find that

S = K
ρ0

ρP
. (E5)

We explicitly check on this expression that the entropy
of the Universe is conserved. Furthermore, since the en-
tropy is positive, we must have K > 0. Considering
Eq. (E4), we note that the temperature is positive when
ρ > ρM = A/c2 and negative when ρ < ρM = A/c2, that
is to say when the Universe becomes phantom [1, 2].13

We can determine the constant K by assuming that
the entropy of the logotropic dark fluid is given by

S ∼ kB
MΛ

mΛ
∼ 10123 kB (E6)

as in Appendix C. Noting that the “true” entropy is
obtained by multiplying Eq. (E2) by R3

Λ (since we have
taken a0 = 1 at the present time), and comparing Eqs.
(E5) and (E6), we obtain

K ∼ kB
ρP
mΛ

. (E7)

As a result, the temperature of the logotropic dark fluid
is given by

kBT ∼ mΛc
2

(
1− BρΛ

ρ

)
, (E8)

13 This is a general result [42] which can be obtained from Eq. (E2)
using the fact that the entropy is constant and positive. We see
on Eq. (E2) that the sign of the temperature coincides with
the sign of P + ε. As a result, the temperature is positive in a
normal Universe (P > −ε) and negative in a phantom Universe
(P < −ε).

where we have used Eq. (12). In the “early” Universe
ρ� ρΛ we find that14

T ' mΛc
2/kB = 2.41× 10−29 K. (E9)

In the late Universe ρ� ρΛ we find that

kBT ∼ −mΛc
2BρΛ/ρ ∝ −a3. (E10)

Remark: In Ref. [3] we have shown that the logotropic
constant B could be interpreted as a dimensionless lo-
gotropic temperature

B =
kBTL

mΛc2
(E11)

in a generalized thermodynamical framework [1, 2]. This
shows that at least two temperatures exist for the lo-
gotropic dark fluid, a time-varying temperature T and a
constant temperature TL. They become equal when

ρ∗
ρΛ
∼ B

1−B
∼ 3.54× 10−3, (E12)

corresponding to

a∗ ∼
(

Ωm,0

Ωde,0

1−B
B

)1/3

∼ 5.01. (E13)

Appendix F: The mass of the bosonic dark matter
particle

It has been suggested that dark matter may be made
of bosons (like ultralight axions) in the form of Bose-
Einstein condensates (BECs).15 We can use the results
of the present paper to predict the mass m of the bosonic
dark matter particle in terms of the cosmological con-
stant Λ. We assume that the smallest and most com-
pact dark matter halo that is observed corresponds to
the ground state of a self-gravitating BEC (to fix the
ideas we assume that this halo is the dSphs Fornax with
a mass M ∼ 108M� and a radius R ∼ 1 kpc). For non-
interacting bosons, it can be shown by solving the Gross-
Pitaevskii-Poisson equations (see, e.g., Sec. III.B.1 of

14 We recall that the logotropic model, which is a unification of
dark matter and dark energy, is not valid in the very early Uni-
verse corresponding to the big bang, the inflation era, and the
radiation era. Therefore, the temperature mΛc

2 corresponds to
the temperature of the dark fluid in the matter era, i.e., when the
rest-mass energy of the dark fluid overcomes its internal energy
(see Sec. II). We emphasize that the temperature T of the lo-
gotropic dark fluid is different from the temperature of radiation
and of any other standard temperature. We also note that the
corresponding temperature in the ΛCDM model is not defined
since Eq. (E1) breaks down when P = 0.

15 See, e.g., the bibliography of Refs. [43, 44] for an exhaustive list
of references. The possible connections between the BECDM
model and the logotropic model will be investigated in a future
paper [45].
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[46]) that the mass (Mh)min, the radius (rh)min and the
central density (ρ0)max of this ultracompact halo (ground
state) are related to each other by the relations

Mh = 1.91 ρ0r
3
h and Mhrh = 1.85

~2

Gm2
. (F1)

As a result, its surface density is given by

Σ0 = 0.153
G2m4M3

h

~4
. (F2)

On the other hand, the minimum mass of dark matter
halos may be obtained from a quantum Jeans instability
theory (see, e.g., Ref. [44]) giving the result

MJ =
1

6
π

(
π3~2ρ

1/3
dm,0

Gm2

)3/4

. (F3)

For usually considered values of the boson mass, of the
order of m ∼ 10−22 eV/c2, the Jeans mass MJ ∼ 107M�
from Eq. (F3) is indeed of the order of magnitude of
the minimum mass (Mh)min ∼ 108M� of observed dark
matter halos. There may be, however, a numerical factor
of order 10 between MJ and (Mh)min. For that reason,
we write (Mh)min = χMJ with χ ∼ 10. Using Eq. (F3)
with ρdm,0 = (Ωdm,0/Ωde,0)ρΛ = (Ωdm,0/Ωde,0)(Λ/8πG),
we get

(Mh)min = χ
π3

6

(
Ωdm,0

8Ωde,0

)1/4 ~3/2Λ1/4

Gm3/2
. (F4)

Substituting this expression into Eq. (F2), we obtain

Σ0 = 0.153χ3 π
9

216

(
Ωdm,0

8Ωde,0

)3/4 ~1/2Λ3/4

Gm1/2
. (F5)

Comparing this expression with Eq. (23), we predict that
the mass of the bosonic particle is given by

m = χ6 0.0234π20

1458Bξ2
h

(
Ωdm,0

8Ωde,0

)3/2 ~
√

Λ

c2
= 15397χ6 ~

√
Λ

c2
.

(F6)
We see that the mass of the bosonic dark matter particle
is equal to the mass scale mΛ ∼ 10−33 eV/c2 given by
Eq. (C9) multiplied by a huge numerical factor of order
1010 (for χ ∼ 10). This gives m ∼ 10−23 eV/c2 which is
the correct order of magnitude of the mass of ultralight
axions usually advocated [47]. We note that this result
has been obtained independently from the observations,
except for the value of Λ and the other fundamental con-
stants (Planck scales).

Appendix G: The proton mass

The maximum mass of neutron stars due to general
relativity has been obtained by Oppenheimer and Volkoff

[48] using the equation of state of an ideal Fermi gas at
T = 0. It is given by

MOV
max = 0.384

(
~c
G

)3/2
1

m2
n

= 0.710M�, (G1)

where mn = 1.675 × 10−24 g is the neutron mass. It
is not well-known16 that, at the same period, Zwicky
[50, 51] also attempted to determine the maximum mass
of neutron stars interpreted as Schwarzschild’s mass. He
used heuristic arguments and obtained an expression of
the form

MZwicky
max = kmn

(
e2

Gmpme

)3/2

= 91 kM�, (G2)

where mp = 1.673 × 10−24 g is the proton mass and k
is a dimensionless number assumed to be of order unity.
Matching these two expressions (G1) and (G2), we get
k = 7.80× 10−3 and

α =
e2

~c
= 13.4

mpme

m2
n

' 13.4
me

mp
. (G3)

Interestingly, this equation provides a relation between
the fine-structure constant α and the ratio me/mp be-
tween the electron mass and the proton mass (we have
used mn ' mp). This type of relationships has been
proposed in the past by several authors [29] using heuris-
tic arguments or pure numerology. Since we have related
the electron mass and the electron charge (hence the fine-
structure constant) to the cosmological constant (see Sec.
IV C), using Eq. (G3) we can also relate the proton mass
to the cosmological constant. Using Eqs. (37), (38) and
(G3), we find that the mass of the proton is determined
by the cosmological constant Λ according to

mp =
13.4

ν1/6

(
Λ~4

G2c2

)1/6

= 13.9

(
Λ~4

G2c2

)1/6

= 1.67× 10−24 g. (G4)

Alternatively, using Eqs. (39), (40) and (G3), the nor-
malized mass of the proton is determined by the lo-
gotropic constant B according to

mp

MP
= 13.4

(
8π

ν

)1/6

e−1/(6B)

= 23.7 e−1/(6B) = 7.68× 10−20. (G5)
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