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In a previous paper [P.H. Chavanis, Eur. Phys. J. Plus 130, 130 (2015)] we have introduced a new cosmological model that we called the logotropic model. This model involves a fundamental constant Λ which is the counterpart of Einstein's cosmological constant in the ΛCDM model. The logotropic model is able to account, without free parameter, for the constant surface density of the dark matter halos, for their mass-radius relation, and for the Tully-Fisher relation. In this paper, we explore other consequences of this model. By advocating a form of "strong cosmic coincidence" we predict that the present proportion of dark energy in the Universe is Ω de,0 = e/(1 + e) 0.731 which is close to the observed value. We also remark that the surface density of dark matter halos and the surface density of the Universe are of the same order as the surface density of the electron. This makes a curious connection between cosmological and atomic scales. Using these coincidences, we can relate the Hubble constant, the electron mass and the electron charge to the cosmological constant. We also suggest that the famous numbers 137 (fine-structure constant) and 123 (logotropic constant) may actually represent the same thing. This could unify microphysics and cosmophysics. We study the thermodynamics of the logotropic model and find a connection with the Bekenstein-Hawking entropy of black holes if we assume that the logotropic dark fluid is made of particles of mass mΛ ∼ √ Λ/c 2 = 2.08 × 10 -33 eV/c 2 (cosmons). In that case, the universality of the surface density of the dark matter halos may be related to a form of holographic principle (the fact that their entropy scales like their area). We use similar arguments to explain why the surface density of the electron and the surface density of the Universe are of the same order and justify the empirical Weinberg relation. Finally, we combine the results of our approach with the quantum Jeans instability theory to predict the order of magnitude of the mass of ultralight axions m ∼ 10 -23 eV/c 2 in the Bose-Einstein condensate dark matter paradigm.

I. INTRODUCTION

The nature of dark matter and dark energy remains one of the greatest mysteries of modern cosmology. Dark matter is responsible for the flat rotation curves of the galaxies and dark energy is responsible for the accelerated expansion of the Universe. It is found that dark energy represents about 70% of the energy content of the present Universe while the proportions of dark matter and baryonic matter are 25% and 5% respectively.

In a previous paper [1] (see also [2,3]) we have introduced a new cosmological model that we called the logotropic model. In this model, there is no dark matter and no dark energy. There is just a single dark fluid. What we call "dark matter" actually corresponds to its rest-mass energy and what we call "dark energy" corresponds to its internal energy. 1 Our model does not contain any arbitrary parameter so that it is totally constrained. It involves a fundamental constant Λ which is the counterpart of Einstein's cosmological constant [4] in the ΛCDM (cold dark matter) model and which turns out to have the same value. Still the logotropic model is fundamentally different from the 1 Many models try to unify dark matter and dark energy. They are called unified dark energy and dark matter (UDE/M) models. However, the interpretation of dark matter and dark energy that we give in Refs. [1,2] is new and original.

ΛCDM model. On the large (cosmological) scales, the logotropic model is indistinguishable from the ΛCDM model up to the present epoch [1][2][3]. The two models will differ in the far future, in about 25 Gyrs years, after which the logotropic model will become phantom (the energy density will increase as the Universe expands) and present a Little Rip (the energy density and the scale factor will become infinite in infinite time) contrary to the ΛCDM model in which the energy density tends towards a constant (de Sitter era).

On the small (galactic) scales, the logotropic model is able to solve some of the problems encountered by the ΛCDM model [1,2]. In particular, it is able to account, without free parameter, for the constant surface density of the dark matter halos, for their mass-radius relation, and for the Tully-Fisher relation.

In this paper, we explore other consequences of this model. By advocating a form of "strong cosmic coincidence", stating that the present value of the dark energy density ρ de,0 is equal to the fundamental constant ρ Λ appearing in the logotropic model, we predict that the present proportion of dark energy in the Universe is Ω de,0 = e/(1 + e) = 0.731 which is close to the observed value 0.691 [5]. The consequences of this result, which implies that our epoch is very special in the history of the Universe, are intriguing and related to a form of anthropic cosmological principle [START_REF] Barrow | The Anthropic Cosmological Principle[END_REF].

We also remark that the universal surface density of dark matter halos (found from the observations [START_REF] Donato | [END_REF] and predicted by our model [1,2]) and the surface density of the Universe are of the same order of magnitude as the surface density of the electron. This makes a curious connection between cosmological and atomic scales. Exploiting this coincidence, we can relate the Hubble constant, the electron mass and the electron charge to the cosmological constant Λ. We also argue that the famous numbers 137 (fine-structure constant) and 123 (logotropic constant) may actually represents the same thing. This may be a hint for a theory of unification of microphysics and cosmophysics. Speculations are made in the Appendices to try to relate these interconnections to a form of holographic principle [8] stating that the entropy of the electron, the entropy of dark matter halos, and the entropy of the Universe scales like their area as in the case of the entropy of black holes [9,10].

II. THE LOGOTROPIC MODEL A. Unification of dark matter and dark energy

The Friedmann equations for a flat universe without cosmological constant are [START_REF] Weinberg | Gravitation and Cosmology[END_REF]:

d dt + 3 ȧ a ( + P ) = 0, H 2 = ȧ a 2 = 8πG 3c 2 , (1) 
where (t) is the energy density of the Universe, P (t) is the pressure, a(t) is the scale factor, and H = ȧ/a is the Hubble parameter. For a relativistic fluid experiencing an adiabatic evolution such that T d(s/ρ) = 0, the first law of thermodynamics reduces to [START_REF] Weinberg | Gravitation and Cosmology[END_REF]:

d = P + ρ dρ, (2) 
where ρ(t) is the rest-mass density of the Universe. Combined with the equation of continuity (1), we get

dρ dt + 3 ȧ a ρ = 0 ⇒ ρ = ρ 0 a 3 , (3) 
where ρ 0 is the present value of the rest-mass density (the present value of the scale factor is taken to be a 0 = 1). This equation, which expresses the conservation of the rest-mass, is valid for an arbitrary equation of state.

For an equation of state specified under the form P = P (ρ), Eq. ( 2) can be integrated to obtain the relation between the energy density and the rest-mass density ρ. We obtain [1]:

= ρc 2 + ρ ρ P (ρ ) ρ 2 dρ = ρc 2 + u(ρ). (4) 
We note that u(ρ) can be interpreted as an internal energy density [1]. Therefore, the energy density is the sum of the rest-mass energy ρc 2 and the internal energy u(ρ).

B. The logotropic dark fluid

We assume that the Universe is filled with a single dark fluid described by the logotropic equation of state [1]:

P = A ln ρ ρ P , (5) 
where ρ P = c 5 / G 2 = 5.16 × 10 99 g m -3 is the Planck density and A is a new fundamental constant of physics, with the dimension of an energy density, which is the counterpart of the cosmological constant Λ in the ΛCDM model (see below). Using Eqs. ( 4) and ( 5), the relation between the energy density and the rest-mass density is

= ρc 2 -A ln ρ ρ P -A = ρc 2 + u(ρ). (6) 
The energy density is the sum of two terms: a restmass energy term ρc 2 = ρ 0 c 2 /a 3 that mimics the energy density m of dark matter and an internal energy term u(ρ) = -A ln (ρ/ρ P ) -A = -P (ρ) -A = 3A ln a -A ln(ρ 0 /ρ P ) -A that mimics the energy density de of dark energy. This decomposition leads to a natural, and physical, unification of dark matter and dark energy and elucidates their mysterious nature.

Since, in our model, the rest-mass energy of the dark fluid mimics dark matter, we identify ρ 0 c 2 with the present energy density of dark matter. We thus set ρ 0 c 2 = Ω m,0 0 , where 0 /c 2 = 3H 2 0 /8πG is the present energy density of the Universe and Ω m,0 is the present fraction of dark matter (we also include baryonic matter). As a result, the present internal energy of the dark fluid, u 0 = 0 -ρ 0 c 2 , is identified with the present dark energy density de,0 = Ω de,0 0 where Ω de,0 = 1 -Ω m,0 is the present fraction of dark energy. Applying Eq. ( 6) at the present epoch (a 0 = 1), we obtain the identity A = de,0

ln ρ P c 2 de,0 + ln Ω de,0 1-Ω de,0 -1 . ( 7 
)
At that stage, we can have two points of view. We can consider that this equation determines the constant A as a function of 0 and Ω de,0 that are both obtained from the observations [5]. This allows us to determine the value of A. This is the point of view that we have adopted in our previous papers [1,2] and that we adopt in Sec. II D below. However, in the following section, we present another point of view leading to an intriguing result.

C. Strong cosmic coincidence and prediction of Ω de,0

Let us recall that, in our model, A is considered as a fundamental constant whose value is fixed by Nature. As a result, Eq. [START_REF] Donato | [END_REF] relates Ω de,0 to 0 for a given value of A. A priori, we have two unknowns for just one equation. However, we can obtain the value of Ω de,0 by the following argument.

We can always write the constant A under the form

A = ρ Λ c 2 ln ρ P ρΛ . (8) 
This is just a change of notation. Eq. ( 8) defines a new constant, the cosmological density ρ Λ , in place of A. From the cosmological density ρ Λ , we can define an effective cosmological constant Λ by2 

ρ Λ = Λ 8πG . ( 9 
)
Again this is just a change of notation. Therefore, the fundamental constant of our model is either A, ρ Λ or Λ (equivalently). We now advocate a form of "strong cosmic coincidence". We assume that the present value of the dark energy density is equal to ρ Λ c 2 , i.e.,

de,0 = ρ Λ c 2 . ( 10 
)
Since, in the ΛCDM model, de is a constant usually measured at the present epoch our postulate implies that ρ Λ c 2 coincides with the cosmological density in the ΛCDM model and that Λ, as defined by Eq. ( 9), coincides with the ordinary cosmological constant. This is why we have used the same notations. Now, comparing Eqs. ( 7), ( 8) and ( 10) we obtain ln [Ω de,0 /(1 -Ω de,0 )] -1 = 0 which determines Ω de,0 . We find that Ω th de,0 = e 1 + e 0.731 [START_REF] Weinberg | Gravitation and Cosmology[END_REF] which is close to the observed value Ω obs de,0 = 0.691 [5]. This agreement is puzzling. It relies on the "strong cosmic coincidence" of Eq. (10) implying that our epoch is very special. This is a form of anthropic cosmological principle [START_REF] Barrow | The Anthropic Cosmological Principle[END_REF]. This may also correspond to a fixed point of our model. In order to avoid philosophical issues, in the following, we adopt the more conventional point of view discussed at the end of Sec. II B.

D. The logotropic constant B

We can rewrite Eq. ( 8) as

A = Bρ Λ c 2 with B = 1 ln (ρ P /ρ Λ ) . ( 12 
)
Again, this is just a change of notation defining the dimensionless number B. We shall call it the logotropic constant since it is equal to the inverse of the logarithm of the cosmological density normalized by the Planck density (see Appendix A). We note that A can be expressed in terms of B (see below) so that the fundamental constant of our model is either A, ρ Λ , Λ, or B. In the following, we shall express all the results in terms of B. For example, the relation (6) between the energy density and the scale factor can be rewritten as

0 = Ω m,0 a 3 + (1 -Ω m,0 )(1 + 3B ln a). (13) 
Combined with the Friedmann equation (1) this equation determines the evolution of the scale factor a(t) of the Universe in the logotropic model. This evolution has been studied in detail in [1][2][3].

Remark: Considering Eq. ( 13), we see that the ΛCDM model is recovered for B = 0. According to Eq. ( 12) this implies that ρ P → +∞, i.e., → 0. Therefore, the ΛCDM model corresponds to the semiclassical limit of the logotropic model. The fact that B is intrinsically nonzero implies that quantum mechanics ( = 0) plays some role in our model in addition to general relativity. This may suggest a link with a theory of quantum gravity.

E. The value of B from the observations

The fundamental constant (A, ρ Λ , Λ, or B) appearing in our model can be determined from the observations by using Eq. [START_REF] Donato | [END_REF]. We take Ω de,0 = 0.6911 and H 0 = 2.195 × 10 -18 s -1 [5]. This implies 0 /c 2 = 3H 2 0 /8πG = 8.62 × 10 -24 g m -3 and de,0 /c 2 = Ω de,0 0 /c 2 = 5.96 × 10 -24 g m -3 . Since ln [Ω de,0 /(1 -Ω de,0 )] -1 = -0.195 is small as compared to ln(ρ P c 2 / de,0 ) = 283, we can write in very good approximation A as in Eq. ( 8) with ρ Λ de,0 /c 2 as in Eq. (10). Therefore,

ρ Λ = 3Ω de,0 H 2 0 8πG = 5.96 × 10 -24 g m -3 (14) 
and

Λ = 3Ω de,0 H 2 0 = 1.00 × 10 -35 s -2 (15) 
are approximately equal to the cosmological density and to the cosmological constant in the ΛCDM model. From Eq. ( 12) we get

B = 1 ln(ρ P /ρ Λ ) 1 123 ln(10) 3.53 × 10 -3 . ( 16 
)
As discussed in our previous papers [1][2][3], B is essentially the inverse of the famous number 123 (see Appendix A). Finally,

A = B ρ Λ c 2 = 1.89 × 10 -9 g m -1 s -2 . ( 17 
)
From now on, we shall view B given by Eq. ( 16) as the fundamental constant of the theory. Therefore, everything should be expressed in terms of B and the other fundamental constants of physics defining the Planck scales. First, we have

ρ Λ ρ P = G Λ 8πc 5 = e -1/B = 1.16 × 10 -123 . (18) 
Then,

A ρ P c 2 = Be -1/B = 4.08 × 10 -126 . ( 19 
)
The logotropic equation of state (5) can be written as P/ρ P c 2 = Be -1/B ln(ρ/ρ P ). Using Eq. ( 10) and de,0 = Ω de,0 0 , we get

0 ρ P c 2 = 1 Ω de,0 e -1/B = 1.67 × 10 -123 . (20) 
Finally, using Eq. ( 1),

t P H 0 = 8π 3Ω de,0 1/2 e -1/2B = 1.18 × 10 -61 , (21) 
where t P = ( G/c 5 ) 1/2 = 5.391 × 10 -44 s is the Planck time. In the last two expressions, we can either consider that Ω de,0 is "predicted" by Eq. ( 11) or take its measured value. To the order of accuracy that we consider, this does not change the numerical values.

F. Generalized logotropic models

Recently, the original logotropic model corresponding to a purely logarithmic equation of state P = A ln(ρ/ρ * ) [1][2][3] has been generalized to an expression of the form P = A(ρ/ρ * ) -n ln(ρ/ρ * ) where n is a free parameter [START_REF] Capozziello | [END_REF][13][14]. Interestingly, this equation of state is similar to the Anton-Schmidt [15] equation of state for crystalline solids in the Debye approximation [16]. In that case, the index n can be written as n = -1/6 -γ G where γ G is the so-called Grüneisen [17] parameter. The original logotropic model is recovered for n = 0. The authors of [START_REF] Capozziello | [END_REF] compared the predictions of the generalized logotropic model with cosmological observations and found that B

3.54 × 10 -3 and n = -0.147 +0.113 -0.107 . This confirms the robustness of the value of the fundamental constant B = 3.53 × 10 -3 introduced in [1,2]. On the other hand, up to the error bars, the value of n is close to n = 0, corresponding to the logotropic model (see also [3]). This suggests that the logotropic model tends to be selected among more general families of models containing additional parameters {n}. What is crucial in the logotropic model is the logarithmic factor ln(ρ/ρ * ). Very generally, we could consider an equation of state of the form P = A n (ρ) ln(ρ/ρ * ) with A n (ρ) → cte when n → 0. In the present paper, we stick to the original logotropic model [1][2][3] but it would be interesting to see how the results are modified in more general circumstances [START_REF] Capozziello | [END_REF][13][14].

III. PREVIOUS PREDICTIONS OF THE LOGOTROPIC MODEL

The interest of the logotropic model becomes apparent when it is applied to dark matter halos [1,2]. We assume that dark matter halos are described by the logotropic equation of state of Eq. ( 5) with A = 1.89 × 10 -9 g m -1 s -2 (or B = 3.53 × 10 -3 ). At the galactic scale, we can use Newtonian gravity.

A. Surface density of dark matter halos

It is an empirical evidence that the surface density of galaxies has the same value

Σ obs 0 ≡ ρ 0 r h 295 g m -2 141 M /pc 2 (22) 
even if their sizes and masses vary by several orders of magnitude (up to 14 orders of magnitude in luminosity) [START_REF] Donato | [END_REF]. Here ρ 0 is the central density and r h is the halo radius at which the density has decreased by a factor of 4. The logotropic model predicts that the surface density of the dark matter halos is the same for all the halos (because A is a universal constant) and that it is given by [1, 2]

Σ th 0 = A 4πG 1/2 ξ h = B 32 1/2 ξ h π c √ Λ G , (23) 
where ξ h = 5.8458... is a pure number arising from the Lane-Emden equation of index n = -1 expressing the condition of hydrostatic equilibrium of logotropic spheres. 3 Numerically,

Σ th 0 = 278 g m -2 133 M /pc 2 , (24) 
which is very close to the observational value (22). The fact that the surface density of dark matter halos is determined by the effective cosmological constant Λ (usually related to the dark energy) tends to confirm that dark matter and dark energy are just two manifestations of the same dark fluid, as we have assumed in our model.

Remark:

The dimensional term c √ Λ/G in Eq. ( 23) can be interpreted as representing the surface density of the Universe (see Appendix B). We note that this term alone, c √ Λ/G = 14200 g m -2 = 6800M /pc 2 , is too large to account precisely for the surface density of dark matter halos so that the prefactor (B/32) 1/2 (ξ h /π) = 0.01955 is necessary to reduce this number. It is interesting to remark that the term c √ Λ/G arises from classical general relativity while the prefactor ∝ B 1/2 has a quantum origin as discussed at the end of Sec. II D. Actually, we will see that it is related to the fine-structure constant α [see Eq. ( 33) below].

B. Mass-radius relation

There are interesting consequences of the preceding result. For logotropic halos, the mass of the halos calculated at the halo radius r h is given by [1,2] 

M h = 1.49 Σ 0 r 2 h . (25) 
This determines the mass-radius relation of dark matterhalos. On the other hand, the circular velocity at the halo radius is v 2 h = GM h /r h = 1.49Σ 0 Gr h . Since the surface density of the dark matter halos is constant, we obtain

M h M = 198 r h pc 2 , v h km s -1 2 = 0.852 r h pc . (26) 
The scalings M h ∝ r 2 h and v 2 h ∝ r h (and also the prefactors) are consistent with the observations.

C. The Tully-Fisher relation

Combining the previous equations, the logotropic model leads to the Tully-Fisher [23] 

relation v 4 h ∝ M h or, more precisely, M b v 4 h th = f b 1.49Σ th 0 G 2 = 46.4 M km -4 s 4 , (27) 
where f b = M b /M h ∼ 0.17 is the cosmic baryon fraction [24]. The predicted value from Eq. ( 27) is close to the observed one M b /v4 h obs = 47 ± 6 M km -4 s 4 [24].

Remark: The Tully-Fisher relation is sometimes justified by the MOND (Modification of Newtonian dynamics) theory [25] which predicts a relation of the form v 4 h = Ga 0 M b between the asymptotic circular velocity and the baryon mass, where a 0 is a critical acceleration.

Our results imply a th 0 = 1.62 × 10 -10 m s -2 which is close to the value a obs 0 = (1.3±0.3)×10 -10 m s -2 obtained from the observations [24]. Combining Eqs. ( 25) and ( 27), we first get

a th 0 = (1.49/f b )GΣ th 0 = GM h /(f b r 2 h
) which shows that a 0 can be interpreted as the surface gravity of the galaxies GΣ 0 (which corresponds to Newton's acceleration GM h /r 2 h ) or as the surface gravity of the Universe (see Appendix C). Then, using Eqs. ( 15) and ( 23), we obtain

a th 0 = (1.49/f b )(B/32) 1/2 (ξ h /π)c
√ Λ H 0 c/4 which explains why a 0 is of the order of H 0 c [2]. We emphasize, however, that we do not use the MOND theory in our approach and that the logotropic model assumes the existence of a dark fluid.

D. The mass M300

The logotropic equation of state also explains the observation of Strigari et al. [26] that all the dwarf spheroidals (dSphs) of the Milky Way have the same total dark matter mass M 300 contained within a radius r u = 300 pc, namely M obs 300 10 7 M The logotropic model predicts the value [1, 2]

M th 300 = 4πΣ th 0 r 2 u ξ h √ 2 = 1.82 × 10 7 M , (28) 
which is in very good agreement with the observational value.

IV. A CURIOUS CONNECTION BETWEEN ATOMIC AND COSMOLOGICAL SCALES

A. The surface density of the electron

The classical radius of the electron r e can be obtained qualitatively by writing that the electrostatic energy of the electron, e 2 /r e , is equal to its rest-mass energy m e c 2 . Recalling the value of the charge of the electron e = 4.80 × 10 -13 g 1/2 m 3/2 s -1 and its mass m e = 9.11 × 10 -28 g, we obtain r e = e 2 /m e c 2 = 2.82 × 10 -15 m. As a result, the surface density of the electron is 4

Σ e = m e r 2 e = m 3 e c 4 e 4 = 115 g/m 2 = 54.9 M /pc 2 , ( 29 
)
which is of the same order of magnitude as the surface density of dark matter halos from Eq. ( 22). This coincidence is amazing in view of the different scales (atomic versus cosmological) involved. More precisely, we find Σ e = σΣ th 0 with σ 0.413. Of course, the value of σ depends on the precise manner used to define the surface density of the electron, or its radius, but the important point is that this number is of order unity.

B. Relation between α and B

By matching the two formulae ( 23) and ( 29), writing Σ e = σΣ th 0 , we get

Λ = 32π 2 Bξ 2 h σ 2 m 6 e c 6 G 2 e 8 = 32π 2 Bξ 2 h σ 2 α 4 m 6 e c 2 G 2 4 , (30) 
where we have introduced the fine-structure constant α in the second equality (see Appendix A). This expression provides a curious relation between the cosmological constant, the mass of the electron, and its charge. This relation is similar to Weinberg's empirical relation (see Appendix B) which can be written as [combining Eqs. ( 15) and (B3)]

Λ = 192π 2 µ 2 Ω de,0 m 6 e c 6 G 2 e 8 , (31) 
where µ 3.42. Note that in our formula (30), Λ appears two times: on the left hand side and in B (which depends logarithmically on Λ). This will have important consequences in the following.

Böhmer and Harko [27], by a completely different approach, found a similar relation5 

Λ = ν 2 G 2 m 6 e c 8 e 12 = ν α 6 G 2 m 6 e c 2 4 , (32) 
where ν 0.816 is of order unity. Their result can be obtained as follows. They first introduced a minimum mass m Λ ∼ √ Λ/c 2 = 2.08 × 10 -33 eV/c 2 interpreted as being the mass of the elementary particle of dark energy, called the cosmon. Then, they defined a radius R by the relation m Λ ∼ ρ Λ R 3 where ρ Λ = Λ/8πG is the cosmological density considered as being the lowest density in the Universe. Finally, they remarked that R ∼ 8.54 × 10 -15 m has typically the same value as the classical radius of the electron r e = e 2 /m e c 2 = 2.82×10 -15 m. Matching R and r e leads to the scaling of Eq. ( 32). We have then added a prefactor ν and adjusted its value in order to exactly obtain the measured value of the cosmological constant [5]. Since the approach of Böhmer and Harko [27] is essentially qualitative, and depends on the precise manner used to define the radius of the electron, their result can be at best valid up to a constant of order unity.

We would like now to compare the estimates from Eqs. (30) and [START_REF] Eddington | Fundamental Theory[END_REF]. At that stage, we can have two points of view. If we consider that comparing the prefactors is meaningless because our approach can only provide "rough" orders of magnitude, we conclude that Eqs. (30) and [START_REF] Eddington | Fundamental Theory[END_REF] are equivalent, and that they are also equivalent to Weinberg's empirical relation (B3). Alternatively, if we take the prefactors seriously into account (in particular the presence of B which depends on Λ) and match the formulae (30) and [START_REF] Eddington | Fundamental Theory[END_REF], we find an interesting relation between the fine-structure constant α and the logotropic constant B:

α = ν 32 1/2 ξ h σ π √ B 0.123 √ B. (33) 
Therefore, the fine-structure constant (electron charge normalized by the Planck charge) is determined by the logotropic constant B (logarithm of the cosmological density normalized by the Planck density) by a relation of the form α ∝ B 1/2 . This makes a connection between atomic scales and cosmological scales. This also suggests that the famous numbers 137 and 123 (see Appendix A) are related to each other, or may even represent the same thing. From Eq. ( 33), we have 6

137 12.3 √ 123. ( 34 
)
Remark: the logotropic constant B is related to the effective cosmological constant Λ by [see Eq. ( 18)]

B = 1 ln 8πc 5 G Λ . ( 35 
)
Using Eqs. ( 33) and ( 35), we can express the finestructure constant α as a function of the effective cosmological constant Λ or, using Eq. ( 21), as a function of the age of the Universe t Λ = 1/H 0 . We get

α = 0.123 ln 8πc 5 G Λ 1/2 = 0.123 √ 2 ln 8π 3Ω de,0 1/2 tΛ t P 1/2 . ( 36 
)
We emphasize the scaling 1/α ∝ (ln t Λ ) 1/2 . It is interesting to note that similar relations have been introduced in the past from pure numerology (see [29], P. 428). These relations suggest that the fundamental constants may change with time as argued by Dirac [30,31].

C. The mass and the charge of the electron in terms of B Using Eqs. ( 32), [START_REF] Feynman | QED: The Strange Theory of Light and Matter[END_REF] and (35), we find that the mass and the charge of the electron (or the fine-structure constant) are determined by the cosmological constant Λ according to

m e = 1 ν 1/6 α Λ 4 G 2 c 2 1/6 = 1.03 α Λ 4 G 2 c 2 1/6 = 9.11 × 10 -28 g, (37) 
α = e 2 c = ν 32 
1/2 ξ h σ π 1 ln 8πc 5 G Λ 1/2 = 0.123 ln 8πc 5 G Λ 1/2 = 1 137 . (38) 
Alternatively, using Eqs. ( 9), ( 18), ( 30) and ( 33), the normalized mass and the normalized charge of the electron 6 We note that the prefactors in Eqs. [START_REF] Feynman | QED: The Strange Theory of Light and Matter[END_REF] and [START_REF] Weinberg | [END_REF] appear to be close to 123/1000 and 123/10, where the number 123 appears again (!). We do not know whether this coincidence is fortuitous or if it bears a deeper significance than is apparent at first sight.

are determined by the logotropic constant B according to

m e M P = 8π ν 1/6 ν 32 1/2 ξ h σ π √ Be -1/(6B) = 0.217 √ Be -1/(6B) = 4.18 × 10 -23 , (39) 
e 2 q 2 P = ν 32

1/2 ξ h σ π √ B = 0.123 √ B = 7.29 × 10 -3 , ( 40 
)
where M P = ( c/G) 1/2 = 2.18 × 10 -5 g is the Planck mass and q P = ( c) 1/2 = 5.62×10 -12 g 1/2 m 3/2 s -1 is the Planck charge. These relations suggest that the mass and the charge of the electron (atomic scales) are determined by the effective cosmological constant Λ or B (cosmological scales). We emphasize the presence of the exponential factor e -1/(6B) in Eq. ( 39) explaining why the electron mass is much smaller than the Planck mass while the electron charge is comparable to the Planck charge [see Eq. ( 40)].

D. A prediction of B

If we match Eqs. ( 23) and (B2), or equivalently Eqs. ( 30) and (31), we obtain

B app = 1 6λ 2 ξ 2 h Ω de,0 . (41) 
Taking λ app = 1 (since we cannot predict its value) and Ω th de,0 = e/(1+e) [see Eq. ( 11)], we get B app = 6.67×10 -3 instead of B = 3.53 × 10 -3 . We recall that the value of B was obtained in Sec. II E from the observations. On the other hand, Eq. ( 41) gives the correct order of magnitude of B without any reference to observations, up to a dimensionless constant λ 1.41 of order unity. Considering that B is predicted by Eq. ( 41) implies that we can predict the values of Λ, H 0 , α, m e and e without reference to observations, up to dimensionless constants λ 1.41, ν 0.816 and σ 0.413 of order unity. We note, however, that even if these dimensionless constants (λ, ν, σ) are of order unity, their precise values are of importance since B usually appears in exponentials like in Eqs. ( 18), ( 21) and (39).

V. CONCLUSION

In this paper, we have developed the logotropic model introduced in [1,2]. In this model, dark matter corresponds to the rest mass energy of a dark fluid and dark energy corresponds to its internal energy. The ΛCDM model may be interpreted as the semiclassical limit → 0 of the logotropic model. We have first recalled that the logotropic model is able to predict (without free parameter) the universal value of the surface density of dark matter halos Σ 0 , their mass-radius relation M h -r h , the Tully-Fisher relation M b ∼ v 4 h and the value of the mass M 300 of dSphs. Then, we have argued that it also predicts the value of the present fraction of dark energy Ω de,0 . This arises from a sort of "strong cosmic coincidence" but this could also correspond to a fixed point of the model. Finally, we have observed that the surface density of the dark matter halos Σ 0 is of the same order as the surface density of the Universe Σ Λ and the surface density of the electron Σ e . This makes an empirical connection between atomic physics and cosmology. From this connection, we have obtained a relation between the fine-structure constant α ∼ 1/137 and the logotropic constant B ∼ 1/123. We have also expressed the mass m e and the charge -e of the electron as a function of B (or as a function of the effective cosmological constant Λ). Finally, we have obtained a prediction of the order of magnitude of B independent from the observations. In a sense, our approach which expresses the mass and the charge of the electron in terms of the cosmological constant is a continuation of the program initiated by Eddington [START_REF] Eddington | Fundamental Theory[END_REF] in his quest for a 'Fundamental Theory' of the physical world in which the basic interaction strengths and elementary particle masses would be prediced entirely combinatorically by simple counting processes [START_REF] Barrow | The Anthropic Cosmological Principle[END_REF]. In the Appendices, we try to relate these interconnections to a form of holographic principle [8] (of course not known at the time of Eddington) stating that the entropy of the electron, the dark matter halos, and the Universe scales like their area as in the case of black holes [9,10].

This paper has demonstrated that physics is full of "magic" and mysterious relations that are still not fully understood (one of them being the empirical Weinberg relation). Hopefully, a contribution of this paper is to reveal these "mysteries" and propose some tracks so as to induce further research towards their elucidation.

Appendix A: The constants α and B

There are two famous numbers in physics, 137 and 123, which respectively apply to atomic and cosmological scales.

At the atomic level, the fine-structure constant α, also known as Sommerfeld's constant [29], is a dimensionless physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. Its value is

α = e 2 c = e 2 q 2 P 1 137 7.30 × 10 -3 . (A1)
It can be seen as the square of the charge e = 4.80 × 10 -13 g 1/2 m 3/2 s -1 of the electron normalized by the Planck charge q P = ( c) 1/2 = 5.62 × 10 -12 g 1/2 m 3/2 s -1 . The quantum theory does not predict its value. The number 1/α 137 intrigued a lot of famous researchers including Born, Dirac, Eddington, Feynman, Hawking, Heisenberg, Landé, and Pauli among others [29]. Feynman writes [START_REF] Feynman | QED: The Strange Theory of Light and Matter[END_REF]: It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of God" wrote that number, and "we don't know how He pushed his pencil." At the cosmological level, there is another famous number B = 1 ln(ρ P /ρ Λ ) 1 123 ln (10) 3.53 × 10 -3 .

(A2)

It can be seen as the inverse of the logarithm of the cosmological -or dark energy -density ρ Λ = Λ/8πG = 5.96 × 10 -24 g m -3 (where Λ = 1.00 × 10 -35 s -2 is the cosmological constant), normalized by the Planck density ρ P = c 5 / G 2 = 5.16×10 99 g m -3 . This number appeared in connection to the so-called cosmological constant problem [START_REF] Weinberg | [END_REF]35], i.e., the fact that there is a difference of 123 orders of magnitude (ρ P /ρ Λ ∼ 10 123 ) between the Planck density ρ P and the cosmological density ρ Λ interpreted as the vacuum energy.

We have suggested in this paper that the two dimensionless constants α and B, or the two numbers 137 and 123, are related to each other [see Eqs. ( 33) and [START_REF] Weinberg | [END_REF]] and that, in some sense, they correspond to the same thing. If this idea is correct, it would yield a fascinating connection between atomic and cosmic physics. 

Σ Λ = M Λ 4πR 2 Λ = cH 0 8πG = 392 g m -2 = 188 M /pc 2 . (B1)
It can be written as Σ Λ = cH 0 /κc 4 where κ = 8πG/c 4 is Einstein's gravitational constant (which includes the 8π factor). Using Eq. ( 15), we obtain

Σ Λ = 1 8π 3Ω de,0 c √ Λ G . ( B2 
)
This relation shows that the surface density of the Universe provides the correct scale for the surface density of dark matter halos [see Eq. ( 23)]. We have Σ Λ = λΣ th 0 with λ 1.41.

Therefore, the surface density of the Universe is of the same order as the surface density of the dark matter halos which is also of the same order as the surface density of the electron (as we have previously observed). We have Σ Λ = µΣ e with µ = λ/σ 3.42. Matching Eqs. ( 29) and (B1), we get

m e = e 4 H 0 8πµGc 3 1/3 . ( B3 
)
This relation expresses the mass of the electron as a function of its charge and the Hubble constant. This mysterious relation is mentioned in the book of Weinberg [START_REF] Weinberg | Gravitation and Cosmology[END_REF] where it is obtained from purely dimensional arguments. 7 He observed that the term in the right hand side of Eq. (B3) has the dimension of a mass and that this mass, 1.37 × 10 -27 g (with µ app = 1), is of the order of the mass of the electron. The fact that relation (B3) expresses the commensurability of the surface density of the Universe and the surface density of the electron, as we observe here, may help elucidating its physical meaning (see Appendix C 4).

Remark: If the dark matter halos resulted from the balance between the gravitational attraction and the repulsion due to the dark energy, they would have a typical density M h /r 3 h ∼ ρ Λ . Actually, such an equilibrium is unstable as is well-known in the case of the Einstein static Universe. Therefore, the radius of dark matter halos must satisfy the constraint r h < (M h /ρ Λ ) 1/3 . Now, we have seen that their mass-radius relation scales as

M h ∼ (c √ Λ/G)r 2 h . We then find that the constraint r h < (M h /ρ Λ ) 1/3 is satisfied provided that M h < c 3 /G √ Λ.
Since the upper bound is of the order of the mass of the Universe, M Λ ∼ c 3 /G √ Λ, we conclude that the size of the dark matter halos is always much smaller than the critical size (r h ) crit = (M h /ρ Λ ) 1/3 as required for stability reasons.

where A = 4πR 2 is the area of the event horizon of the black hole and l P = (G /c 3 ) 1/2 = 1.62 × 10 35 m is the Planck length. The radius of a Schwarzschild black hole is connected to its mass by

R = 2GM c 2 . (C2)
The Hawking temperature [10] of a Schwarzschild black hole is

k B T = c 3 8πGM = c 4πR . ( C3 
)
The black hole entropy (C1) can be obtained from the Hawking temperature (C3) by using the thermodynamic relation

T -1 = dS BH /d(M c 2 ).
If we consider a Planck black hole of radius l P and mass M P , we find that its temperature is of the order of the Planck temperature T P = M P c 2 /k B = 1.42 × 10 32 K and its entropy S BH /k B ∼ 1.

Analogy between the Universe and a black hole

Using the results of Appendix B, we note that the radius of the Universe is related to its mass by

R Λ = 2GM Λ c 2 . (C4)
This expression coincides with the mass-radius relation (C2) of a Schwarzschild black hole. This coincidence has sometimes led people to say that the Universe is a black hole, or that we live in a black hole, although this analogy is probably too naive. Nevertheless, at least on a purely dimensional basis, we can use the analogy with black holes to define the entropy and the temperature of the Universe. In this manner, we get a temperature scale (temperature on the horizon)

k B T Λ = c 4πR Λ = H 0 4π ∼ √ Λ. ( C5 
)
Its value is T Λ ∼ 2.41 × 10 -29 K. The temperature can be written as

k B T Λ = 2 a Λ c , (C6) 
where

a Λ = GΣ Λ = GM Λ 4πR 2 Λ = c 2 8πR Λ = cH 0 8π ∼ c √ Λ (C7)
is the surface gravity of the Universe (similar relations apply to black holes). We note that Σ Λ = c 2 /8πGR Λ . We can also write

k B T Λ = m Λ c 2 , (C8) with m Λ ∼ √ Λ c 2 = 2.08 × 10 -33 eV/c 2 . (C9)
This mass scale is often interpreted as the smallest mass of the bosons predicted by string theory [37] or as the upper bound on the mass of the graviton [38]. 8 It can be contrasted from the mass scale

M Λ ∼ c 3 G √ Λ = 7.16 × 10 88 eV/c 2 , (C10) 
which is usually interpreted as the mass of the Universe. Thus m Λ and M Λ represent fundamental lower and upper mass scales. Their ratio is

M Λ m Λ ∼ c 5 G Λ ∼ ρ P ρ Λ ∼ e 1/B ∼ 10 123 , (C11) 
which exhibits the famous number 123 (see Appendix A).

On the other hand, our analogy between the Universe and a black hole leads to an entropy scale (entropy on the Hubble horizon):

S Λ = k B πc 3 R 2 Λ G = k B πc 5 G H 2 0 ∼ k B c 5 G Λ . ( C12 
)
We note that the entropy of the Universe can be written as

S Λ /k B ∼ M Λ m Λ ∼ Σ Λ R 2 Λ m Λ ∼ e 1/B ∼ 10 123 . (C13)
This entropy may be identified with the total entropy of the logotropic dark fluid (see the Appendix of [3] and Appendix E). It can be compared to the entropy of radiation [39]:

S rad /k B = 4 3 3Ω rad,0 8π 3/4 π 2 15 1/4 1 (H 0 t P ) 3/2 = 5.64 × 10 87 , (C14) 
obtained by using Eq. (E2) with P rad = rad /3, rad = σT 4 with σ = π 2 k 4 B /15c 3 3 (Stefan-Boltzmann constant), rad = Ω rad,0 0 /a 4 and Ω rad,0 = 9.24×10 -5 . They differ by about 36 orders of magnitude.

Remarks: We note that T Λ S Λ = (1/2)M Λ c 2 so the free energy of the Universe is

F Λ = M Λ c 2 -T Λ S Λ = (1/2)M Λ c 2 .
On the other hand, using Eqs. ( 18) and (39), we obtain the relations

m Λ M P ∼ e -1/(2B) = 3.40 × 10 -62 , (C15) 
m e m Λ ∼ √ Be 1/(3B) = 5.66 × 10 39 . (C16) Since m Λ ∼ ρ Λ r 3 e (see Sec. IV B) we have m e /m Λ ∼ ρ e /ρ Λ . The gravitational radius of the cosmon is r Λ = 2Gm Λ /c 2 ∼ G √ Λ/c 4 = 2.75 × 10 -96 m.

Entropy of logotropic dark matter halos

Let us define the entropy of a logotropic dark matter halo by

S ∼ k B N ∼ k B M h m Λ , (C17) 
where M h is the halo mass and m Λ is the mass of the hypothetical particle composing the logotropic dark fluid.

Using the mass-radius relation M h ∼ Σ 0 r 2 h of a logotropic dark matter halo, where Σ 0 ∼ c √ Λ/G is the universal surface density given by Eq. ( 23), we get

S ∼ k B c √ Λr 2 h Gm Λ . (C18)
Interestingly, the entropy given by Eq. (C18) scales like the surface r 2 h of the object, similarly to the black hole entropy (C1). 9 This may be connected to a form of holographic principle [8]. Matching the formulae (C1) and (C18), we find that m Λ corresponds to the mass given by Eq. (C9). Inversely, if we assume from the start that the logotropic dark fluid is composed of particles of that mass (cosmons), we find that the entropy of dark matter halos coincides with the entropy of black holes. 10 On the other hand, since the surface density of the Universe is of the same order as the surface density of dark matter halos, the previous formulae also apply to the Universe as a whole and return the results of Appendix C 2. This may be a form of justification, for reasons of self-consistency, of Eq. (C17).

Remark: If we alternatively define the entropy of dark matter halos by S ∼ k B M h /m e where m e is the electron mass and use M h ∼ Σ 0 r 2 h with Σ 0 ∼ Σ e , where Σ e is the surface density of the electron given by Eq. ( 29), we obtain

S ∼ k B r 2 h r 2 e , (C19) 
which is similar to the black hole entropy formula (C1) where the Planck length l P is replaced by the classical radius of the electron r e . It is not clear, however, if this formula is physically relevant.

Postulates: entropic principles

We can find a form of explanation of the different relations found in this paper by making the following two 9 Inversely, a manner to understand why the surface density of the dark matter halos has a universal value is to argue that their entropy given by Eq. (C17) should scale like r 2 h (see Appendix C 4). 10 Of course, we are not claiming that dark matter halos are black holes since they obviously do not fulfill the Schwarzschild relation (C2). However, they may have the same entropy as black holes expressed in terms of r h [see Eq. (C1)].

postulates.

Postulate 1: We postulate that the entropy of the electron, the entropy of dark matter halos and the entropy of the Universe (and possibly other objects) is given by

S ∼ k B c 3 R 2 G , (C20) 
like the Bekenstein-Hawking [9,10] entropy of black holes (C1), where R is the radius of the corresponding object. This may be connected to a form of holographic principle [8] stating that the entropy is proportional to the area (instead of the volume). Therefore,

S e /k B ∼ c 3 r 2 e G (electron) (C21) S/k B ∼ c 3 r 2 h G (dark matter) (C22) S Λ /k B ∼ c 3 R 2 Λ G (Universe) (C23)
Postulate 2: We postulate that the entropy of the electron, the entropy of dark matter halos and the entropy of the Universe (and possibly other objects) is also given by11 

S ∼ k B M m Λ , ( C24 
)
where M is the mass of the corresponding object and m Λ is the mass defined by Eq. (C9). Therefore,

S e /k B ∼ m e m Λ ∼ Σ e r 2 e m Λ ∼ 10 39 (electron) (C25) S/k B ∼ M h m Λ ∼ Σ 0 r 2 h m Λ (dark matter) (C26) S Λ /k B ∼ M Λ m Λ ∼ Σ Λ R 2 Λ m Λ ∼ 10 123 (Universe) (C27)
The comparison of Eqs. (C20) and (C24) directly implies that the surface density of the electron, the surface density of all the dark matter halos, and the surface density of the Universe is (approximately) the same and has the typical value

Σ ∼ M R 2 ∼ m Λ c 3 G ∼ m Λ M P Σ P ∼ c √ Λ G , (C28) 
where Σ P = (c 7 / G Remark: we have introduced the entropy of an electron [see Eqs. (C21) and (C25)] by analogy with the black hole entropy. If these ideas are physically relevant, a notion of thermodynamics for the electron (assuming that it is made of 10 39 subparticles of mass m Λ ) should be developed. Again, the analogy with black holes (although, of course, an electron is not a black hole) might be useful. In particular, from the entropy S e ∼ k B m e /m Λ , we may define the temperature of the electron by 1/T e = dS e /d(m e c 2 ) and get

k B T e ∼ m Λ c 2 ∼ √ Λ ∼ k B T Λ .
In this sense, the temperature of the electron turns out to coincide with the temperature of the Universe. The same argument applies to dark matter halos (with S ∼ k B M h /m Λ and 1/T = dS/d(M h c 2 )) leading again to T ∼ T Λ . Interestingly, similar relations are obtained in Appendix E from different arguments.

Appendix D: Large numbers and coincidences

The ratio between the electric radius of the electron r e = e 2 /m e c 2 and its gravitational radius r g = 2Gm e /c 2 is of the order of e 2 /Gm 2 e = 4.17 × 10 42 . This dimensionless number was computed by Weyl in 1919 [START_REF] Barrow | The Anthropic Cosmological Principle[END_REF][START_REF] Weyl | Raum-Zeit-Materie[END_REF]. He was the first to notice the presence of large dimensionless numbers in Nature. This led Eddington [START_REF] Eddington | Fundamental Theory[END_REF] and others to try to relate such large numbers to cosmological quantities. In particular, Eddington evaluated the total number of particles in the Universe and found N p ∼ 10 79 . He then tried to relate the basic interaction strenghts and elementary particle masses to this number. For example, it was observed by different authors that the following quantities are of the same order of magnitude (see Ref. which is one of the "coincidences" pointed out by Chandrasekhar [START_REF] Chandrasekhar | [END_REF].

In a sense, these results arise from the Weinberg relation (B3) that has been found by different authors (see footnote 7). Nevertheless we believe that our approach is original and may bring new light on the subject. In particular, we have proposed a form of common explanation of these different "coincidences" in terms of entropic principles (see Appendix C 4). Let us try to relate the results of the previous Appendices to the thermodynamics of the logotropic dark fluid.

We assume that the Universe is filled with a dark fluid at temperature T . From the first principle of thermodynamics, one can derive the thermodynamic equation [START_REF] Weinberg | Gravitation and Cosmology[END_REF]:

dP dT = 1 T ( + P ). (E1)
If the dark fluid is described by a barotropic equation of state of the form P = P ( ), Eq. (E1) can be integrated 12 The Eddington number corresponds typically to the number of protons in the Universe, N ∼ M Λ /mp, where mp is the proton mass (in Eq. (D2) we have replaced mp by me since we have not introduced the proton mass previously). Note that the Eddington number was introduced before dark matter and dark energy were discovered. If the dark fluid is made of cosmons of mass m Λ , the number of particles in the Universe is to obtain the relation T = T ( ) between the temperature and the energy density. On the other hand, the entropy of the dark fluid in a volume a 3 is given by [START_REF] Weinberg | Gravitation and Cosmology[END_REF] S = a 3 T (P + ). (E2)

N Λ = M Λ /m Λ ∼
From the Friedmann equations, one can show that the entropy of the Universe is conserved: dS/dt = 0 [START_REF] Weinberg | Gravitation and Cosmology[END_REF].

The previous results are general. Let us now apply them to the logotropic dark fluid. According to Eqs. ( 5) and ( 6), the equation of state P = P ( ) of the logotropic dark fluid is given by the inverse of [2,3] = ρ P e P/A c 2 -P -A.

(E3)

Eq. (E1) with Eq. (E3) can be easily integrated to give

T = ρ P c 2 K 1 - A ρc 2 , ( E4 
)
where K is a constant of integration and we have used Eq. ( 5). Substituting Eqs. (E3) and (E4) into Eq. (E2), and using Eqs. ( 3) and ( 5), we find that

S = K ρ 0 ρ P . ( E5 
)
We explicitly check on this expression that the entropy of the Universe is conserved. Furthermore, since the entropy is positive, we must have K > 0. Considering Eq. (E4), we note that the temperature is positive when ρ > ρ M = A/c 2 and negative when ρ < ρ M = A/c 2 , that is to say when the Universe becomes phantom [1,2]. 13 We can determine the constant K by assuming that the entropy of the logotropic dark fluid is given by

S ∼ k B M Λ m Λ ∼ 10 123 k B (E6)
as in Appendix C. Noting that the "true" entropy is obtained by multiplying Eq. (E2) by R 3 Λ (since we have taken a 0 = 1 at the present time), and comparing Eqs. (E5) and (E6), we obtain

K ∼ k B ρ P m Λ . ( E7 
)
As a result, the temperature of the logotropic dark fluid is given by

k B T ∼ m Λ c 2 1 - Bρ Λ ρ , ( E8 
)
13 This is a general result [42] which can be obtained from Eq. (E2) using the fact that the entropy is constant and positive. We see on Eq. (E2) that the sign of the temperature coincides with the sign of P + . As a result, the temperature is positive in a normal Universe (P > -) and negative in a phantom Universe (P < -).

where we have used Eq. ( 12). In the "early" Universe ρ ρ Λ we find that 14

T m Λ c 2 /k B = 2.41 × 10 -29 K. (E9)
In the late Universe ρ ρ Λ we find that

k B T ∼ -m Λ c 2 Bρ Λ /ρ ∝ -a 3 . (E10)
Remark: In Ref. [3] we have shown that the logotropic constant B could be interpreted as a dimensionless logotropic temperature

B = k B T L m Λ c 2 (E11)
in a generalized thermodynamical framework [1,2]. This shows that at least two temperatures exist for the logotropic dark fluid, a time-varying temperature T and a constant temperature T L . They become equal when

ρ * ρ Λ ∼ B 1 -B ∼ 3.54 × 10 -3 , (E12) corresponding to a * ∼ Ω m,0 Ω de,0 1 -B B 1/3 ∼ 5.01. ( E13 
)
Appendix F: The mass of the bosonic dark matter particle

It has been suggested that dark matter may be made of bosons (like ultralight axions) in the form of Bose-Einstein condensates (BECs). 15 We can use the results of the present paper to predict the mass m of the bosonic dark matter particle in terms of the cosmological constant Λ. We assume that the smallest and most compact dark matter halo that is observed corresponds to the ground state of a self-gravitating BEC (to fix the ideas we assume that this halo is the dSphs Fornax with a mass M ∼ 10 8 M and a radius R ∼ 1 kpc). For noninteracting bosons, it can be shown by solving the Gross-Pitaevskii-Poisson equations (see, e.g., Sec. III.B.1 of 14 We recall that the logotropic model, which is a unification of dark matter and dark energy, is not valid in the very early Universe corresponding to the big bang, the inflation era, and the radiation era. Therefore, the temperature m Λ c 2 corresponds to the temperature of the dark fluid in the matter era, i.e., when the rest-mass energy of the dark fluid overcomes its internal energy (see Sec. II). We emphasize that the temperature T of the logotropic dark fluid is different from the temperature of radiation and of any other standard temperature. We also note that the corresponding temperature in the ΛCDM model is not defined since Eq. (E1) breaks down when P = 0. 15 See, e.g., the bibliography of Refs. [43,44] for an exhaustive list of references. The possible connections between the BECDM model and the logotropic model will be investigated in a future paper [45]. [46]) that the mass (M h ) min , the radius (r h ) min and the central density (ρ 0 ) max of this ultracompact halo (ground state) are related to each other by the relations (F2)

On the other hand, the minimum mass of dark matter halos may be obtained from a quantum Jeans instability theory (see, e.g., Ref. [44]) giving the result

M J = 1 6 π π 3 2 ρ 1/3 dm,0 Gm 2 3/4 . ( F3 
)
For usually considered values of the boson mass, of the order of m ∼ 10 -22 eV/c 2 , the Jeans mass M J ∼ 10 7 M from Eq. (F3) is indeed of the order of magnitude of the minimum mass (M h ) min ∼ 10 8 M of observed dark matter halos. There may be, however, a numerical factor of order 10 between M J and (M h ) min . For that reason, we write (M h ) min = χM J with χ ∼ 10. Using Eq. (F3) with ρ dm,0 = (Ω dm,0 /Ω de,0 )ρ Λ = (Ω dm,0 /Ω de,0 )(Λ/8πG), we get (M h ) min = χ π 3 6 Ω dm,0 8Ω de,0 Comparing this expression with Eq. ( 23), we predict that the mass of the bosonic particle is given by m = χ 6 0.0234π 20 1458Bξ 2

h Ω dm,0 8Ω de,0

3/2 √ Λ c 2 = 15397χ 6 √ Λ c 2 . (F6)
We see that the mass of the bosonic dark matter particle is equal to the mass scale m Λ ∼ 10 -33 eV/c 2 given by Eq. (C9) multiplied by a huge numerical factor of order 10 10 (for χ ∼ 10). This gives m ∼ 10 -23 eV/c 2 which is the correct order of magnitude of the mass of ultralight axions usually advocated [47]. We note that this result has been obtained independently from the observations, except for the value of Λ and the other fundamental constants (Planck scales).

Appendix G: The proton mass

The maximum mass of neutron stars due to general relativity has been obtained by Oppenheimer and Volkoff [48] using the equation of state of an ideal Fermi gas at T = 0. It is given by

M OV max = 0.384 c G 3/2 1 m 2 n = 0.710 M , (G1) 
where m n = 1.675 × 10 -24 g is the neutron mass. It is not well-known 16 that, at the same period, Zwicky [50,51] Interestingly, this equation provides a relation between the fine-structure constant α and the ratio m e /m p between the electron mass and the proton mass (we have used m n m p ). This type of relationships has been proposed in the past by several authors [29] using heuristic arguments or pure numerology. Since we have related the electron mass and the electron charge (hence the finestructure constant) to the cosmological constant (see Sec. IV C), using Eq. (G3) we can also relate the proton mass to the cosmological constant. Using Eqs. (37), (38) and (G3), we find that the mass of the proton is determined by the cosmological constant Λ according to 

  Appendix B: Surface density of the Universe, surface density of the electron and Weinberg's empirical relation Using qualitative arguments, let us determine the surface density of the Universe. The Hubble time (∼ age of the Universe) is t Λ = 1/H 0 = 14.4 billion years. The Hubble radius (∼ radius of the visible Universe) is R Λ = ct Λ = c/H 0 = 1.37×10 26 m. The present density of the Universe is 0 /c 2 = 3H 2 0 /8πG = 8.62 × 10 -24 g m -3 . The Hubble mass (∼ mass of the Universe) is M Λ = (4/3)π( 0 /c 2 )R 3 Λ = c 3 /2GH 0 = 9.20 × 10 55 g. Combining these relations, we find that the surface density of the Universe is

2 e∼ N p ∼ M P m e 2 ∼ 4 ∼

 224 10 40 . (D1) These coincidences can be easily understood from our results(39) and[START_REF] Weyl | Raum-Zeit-Materie[END_REF] which express the mass and the charge of the electron in terms of the cosmological constant. For convenience, we shall replace the Eddington number by12 N e = M Λ m e ∼ e 2/(3B) ∼ 10 80 . 10 80 ∼ N e , (D6)

  Appendix E: Thermodynamics of the logotropic dark fluid

M h = 1 .91 ρ 0 r 3 h and M h r h = 1 .85 2 Gm 2 . 3 h 4 .

 112234 (F1)As a result, its surface density is given byΣ 0 = 0.153 G 2 m 4 M

1/4 3 / 2 Λ 1 / 4 Gm 3

 32143 

= k m n e 2 Gm p m e 3 / 2 =

 232 also attempted to determine the maximum mass of neutron stars interpreted as Schwarzschild's mass. He used heuristic arguments and obtained an expression of the formM Zwicky max 91 k M ,(G2)where m p = 1.673 × 10 -24 g is the proton mass and k is a dimensionless number assumed to be of order unity. Matching these two expressions (G1) and (G2), we get k = 7.80 × 10 -3 and

6 = 1 .= 23 . 7 e

 61237 67 × 10 -24 g. (G4) Alternatively, using Eqs. (39), (40) and (G3), the normalized mass of the proton is determined by the logotropic constant B according to -1/(6B) = 7.68 × 10 -20 .(G5)

  3 ) 1/2 = 8.33 × 10 64 g m -2 is the Planck surface density. Then, comparing this universal value with the surface density of the electron [see Eq.

	(29)], we obtain the Weinberg relation	
	Λ ∼	m 6 e G 2 c 6 e 8 .	(C29)

  10 123 giving another interpretation to the famous number 123 (see Appendix A). This number N Λ should supersede the Eddington number Np.

We stress that our model is different from the ΛCDM model so that Λ is fundamentally different from Einstein's cosmological constant[4]. However, it is always possible to introduce from the constant A an effective cosmological density ρ Λ and an effective cosmological constant Λ by Eqs. (8) and(9).

The logotropic spheres[1,2], like the isothermal spheres and some polytropic spheres[START_REF] Chandrasekhar | An Introduction to the Study of Stellar Structure[END_REF], have an infinite mass. This implies that the logotropic equation of state cannot describe dark matter halos at infinitely large distances. Nevertheless, it may describe the inner region of dark matter halos and this is sufficient to determine their surface density. The stability of bounded logotropic spheres has been studied in[START_REF] Chavanis | [END_REF] by analogy with the stability of bounded isothermal and polytropic spheres[20][21][22] and similar results have been obtained. In particular, bounded logotropic spheres are stable provided that the density contrast is not too large.

We note that the Thomson cross-section σ = (8π/3)(e 2 /mec 2 ) 2 can be written as σ = (8π/3)r 2 e giving a physical meaning to the classical electron radius re. We also note that re can be written as re = α /mec = αλ C where λ C = /mec is the Compton wavelength of the electron and α is the fine-structure constant α [see Eq. (A1)]. Similarly, we can write Σe = (1/α 2 )m 3 e c 2 / 2 .

A closely related formula, involving the Hubble constant instead of the cosmological constant, was first found by Stewart[28] in 1931 by trial and error.

It is simply obtained by equating the Compton wavelength of the particle λc = /mc with the Hubble radius R Λ = c/H 0 (the typical size of the visible Universe) giving m Λ = H 0 /c 2 . Using Eq. (15), we obtain Eq. (C9). By comparison, if we identify the Compton wavelength λc = /mc with the Schwarzschild radius r S ∼ Gm/c 2 we get the Planck mass M P = ( c/G) 1/2 .

Note that this relation is not satisfied by black holes since M BH ∝ R while S BH ∝ R 2 .

Appendix C: Analogy with black hole thermodynamics

Black hole entropy

The Bekenstein-Hawking [9,10] entropy of a Schwarzschild black hole is given by

C1) 7 Weinberg considers this relation as "so far unexplained" and having "a real though mysterious significance". Similar relations have been obtained in the past by Stewart [28], Eddington [START_REF] Eddington | Fundamental Theory[END_REF] and others from purely heuristic arguments or from dimensional analysis [START_REF] Barrow | The Anthropic Cosmological Principle[END_REF]29,36]. Their goal was to express the mass of the elementary particles in terms of the fundamental constants of Nature.