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Abstract

In this paper we study the problem of the assignment of road paths to ve-
hicles. Due to the assumption that a low percentage of vehicles follow the
routes proposed by route guidance systems (RGS) and the increase of the
use of the same, the conventional RGS might shortly result obsolete.

Assuming a complete road network information at the disposal of RGSs,
their proposed paths are related with user optimization which in general can
be arbitrarily more costly than the system optimum. However, the user op-
timum is fair for the drivers of the same Origin-Destination (O-D) pair but
it doesn’t guarantee fairness for different O-D pairs. Contrary, the system
optimum can produce unfair assignments both for the vehicles of the same as
of different O-D pairs. This is the reason why, in this paper, we propose an
optimization model which bridges this gap between the user and system op-
timum, and propose a new mathematical programming formulation based on
Nash Welfare optimization which results in a good egalitarian and utilitar-
ian welfare for all O-D pairs. To avoid the issues with the lack of robustness
related with the centralized implementation, the proposed model is highly
distributed. We test the solution approach through simulation and compare
it with the conventional user- and system-optimization.
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1. Introduction

In this paper we treat the problem of the assignment of road network
paths to vehicles depending on the momentary traffic situation on the road
network. This problem is an open issue of present route guidance systems
(RGS) whose strong assumption is that a low percentage of road users fol-
low the proposed routes such that their influence on the change of traffic is
insignificant.

Drivers’ self-concerned behavior, together with the assumption that the
complete road network information is at the disposal of everyone, is related
to the user optimization and results in Wardrop equilibrium. The latter can
be arbitrarily more costly than the globally optimal traffic assignment. How-
ever, assuming that all the vehicle drivers share the same objective function,
the Wardrop equilibrium solution is fair for the drivers of the same Origin-
Destination (O-D) pair, i.e., the used paths for the same O-D pair have the
same value for a specific objective, e.g., minimizing total travel time. At the
contrary, the solution might not be fair for different O-D pairs, i.e., the ratio
of travel times between any two O-D pairs in the network of the same or
similar travel durations in uncongested network can be arbitrarily high.

Furthermore, due to the increase of the use of the RGSs, the assump-
tion on a low number of users is losing its legitimacy and the RGSs might
shortly result in the same or worse traveling times than in the case when
the RGS proposed path is not followed; the reason is that they direct all
their users of the same O-D pair to the same route(s) without considering
the dynamic component of an actual number of the drivers accepting to fol-
low those routes. The drawback of the system optimum, on the other hand,
which is calculated by minimizing total network cost, is that it can produce
unfair assignments both for the vehicles of the same and of different O-D
pairs.

In this paper, we study approaches that balance the requirements on eq-
uity and fairness both in the assignment of vehicles of the same O-D pair to
available paths, but also in the assignment of paths to different O-D pairs. By
considering different social welfare and fairness aspects in path assignment,
we intend to bridge the system optimization which assumes collaborative
road infrastructure users and user optimization which assumes selfish users
in traffic assignment. In the usage of the road network infrastructure, we
assume the existence of an interest group of rational agents whose presence
in the network represents the majority of the users such that the users who
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do not follow the proposed RGS represent insignificant influence on the road
congestion behavior. We try to optimize the behavior of the group mem-
bers such as to produce maximum benefit for the interest group as a whole
while not damaging individual group members. Furthermore, we propose an
optimization model which bridges the gap between the user and system opti-
mum, and propose a new mathematical programming formulation based on
Nash Welfare optimization which results in a good egalitarian and utilitarian
welfare.

To avoid the issues with the lack of robustness related with the central-
ized implementation, the proposed model is based on a highly distributed
decision making between the geographically distributed road network inter-
section agents and road users (vehicles’ drivers). In this way, we avoid the
necessity of a central coordinator and the road network decision making
structure represents well the network topology. The result is a light, dis-
tributed, geographically localized, and open multi-agent architecture such
that it can seamlessly grow and reconfigure itself based on the transport
network needs. Moreover, regarding the solution approach, dynamic traffic
assignment problem is a non-convex optimization problem which is at present
computationally tractable only for relatively small-scale examples. This is
why we apply the static traffic assignment approach.

In the proposed optimization model, we assume that every driver within
the interest group has at disposal all the network information regarding the
travel time from his/her origin (O) to destination (D), as well as the travel
times of other O-D pairs in real time. There is an assumption also that
every driver has the information on the travel times which would result if
he/she did not respect the route given by the system. However, there is an
important drawback of this assumption due to the high unpredictability of
future network behavior and related traffic congestion.

Once a vehicle driver is a member of the proposed route guidance sys-
tem, his/her behavior can significantly influence the efficiency of the system,
especially if a driver doesn’t respect the route recommendations of the sys-
tem. The developments of sensors and their integration on the roads allow
for the implementation of a monitoring technology so that the system can
identify the vehicles who behave contrary to the network traffic instructions
performed a priori and perform corrective actions on those vehicles. One of
the open issues is how to adapt to the changes of the vehicle self-concerned
behavior, when to incentivize them and when to expel them from the system.
We are aware of these issues but the treatment of this topic is out of scope

3



of this work. Thus, for simplicity but without loss of generality, we assume
that the users follow the system indications possibly incentivized by specific
mechanisms, for example, available in the State-of-the-Art works which we
mention in the following.

The rest of the paper is organized as follows. First, in Section 2 we discuss
the State of the Art models in traffic coordination, their drawbacks, and the
contribution of our work. In Section 3, we formally define the treated traffic
assignment problem. In Section 4, we explain the main features of our multi-
agent approach. The experiment setup description and results are presented
in Section 5. The paper ends with the main conclusions and directions for
future work in Section 6.

2. Related work and contribution of the paper

Multiple transportation network problem formulations and routing opti-
mization models related with different constraints related with transportation
modes, variable demand, user classes, stochasticity of travel delay, and dy-
namic aspects of congestion were studied and experimented in, e.g., [1, 2, 3].
Mathematical models of traffic assignment are usually based on Wardrop’s
principle which states that at equilibrium, flows are assigned to shortest paths
with respect to current (flow-dependent) travel cost. The Wardrop equilib-
rium can be viewed as an instance of a Nash equilibrium in a game with a
large number of players [4].

Evaluating the worst-case ratio of Nash equilibria to the system optimum
was first proposed in [5]. Papadimitriou in [6] introduces the notion of price
of anarchy which measures the user optimum inefficiency in terms of total
travel time, i.e. how bad is user-selfish with respect to the system-optimum
solution. In [7], it was shown that for the uncapacitated problem, the total
travel time associated to the user optimum is at most two times the minimum
travel time. This ratio falls to 4/3 for linear travel time functions. Opposedly,
in [8], Correa et al. present a family of instances with multiple sources and
a single sink for which the price of anarchy is unbounded, even in networks
with linear latencies. Furthermore, in [9], Correa et al. proved that, in the
case of nondecreasing and differentiable travel time functions, the worst-case
of user optimum inefficiency is independent of the network topology. Lin et
al. [10] prove for two-commodity networks related with Fibonacci numbers,
that both the worst-case severity of Braess’s paradox and the price of anarchy
for the maximum latency objective grow exponentially with the network
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size. This result indicates the importance of influencing and coordinating
the drivers’ behavior to reach higher system efficiency.

Some of the available State-of-the-Art theoretical models and methods
for infrastructure resource assignment and coordination can be found in, e.g.,
[1, 2, 9, 11, 12]. One of the tools for mechanism design of agent systems are
auctions [13]. The implementation usually requires solving a combinatorial
non-linear optimization problem which is in general NP-hard and intractable
for complex networks [14]. However, with certain relaxations, the latter
can be modeled as a convex optimization problem [1, 15]. Computational
optimization auctions are methods that are similar to the Gauss-Seidel and
Jacobii methods, see, e.g., [16]. This approach is well suited for massive
parallelization, whereby each node is a processor adjusting its own variables
on the basis of local information communicated by adjacent processors/nodes
[13].

For comparison, in the traffic management of Internet links, it is possible
to substantially increase network throughput, limit link overloads, and make
a network robust to resource failures by optimizing administrative weights
of links [17, 18]. Routers can compute shortest paths to each other and
thus make routing tables by using the information on the topology of the
network and the administrative weights of links. If there are several shortest
path links for a specific O-D pair, the traffic is split equally according to the
ECMP (equal-cost multi-path) principle.

In real-world transport networks on public roads, it is difficult to imple-
ment system-optimized network models since individual objective functions
are usually contrary to one another and decision makers act frequently self-
ishly. The issue of incentives to align local vehicle and global infrastructure
objectives is an actual topic, e.g., [19, 20, 21].

The tradeoff between efficiency and fairness was considered in [22]. Sev-
eral managerial prescriptions were developed for the selection problem based
on this trade-off. In [23], Jahn et al. consider the static traffic assignment
problem and propose a route-guidance system model for system optimal rout-
ing of traffic flow with explicit integration of user constraints considering a
fixed maximum deviation of the assigned paths costs in respect to the opti-
mal ones. Additive constraints guarantee that user travel times of the system
optimum are not so far away from user travel times obtained with the user
optimum model. Simulations results show superior fairness compared to the
pure system optimum. This model was further theoretically studied in [24].
A strong assumption is that the driver acceptance of paths is assumed for all

5



the paths without considering any additional fairness issue.
Since the dynamic traffic assignment problem is at present computation-

ally tractable only for relatively small-scale instances, e.g., [25, 26], in our
paper we concentrate on the (system optimal) static traffic assignment prob-
lem which is similar to operations research minimum cost flow (MCF) prob-
lem with multiple sources and sinks in a directed graph with arc-capacities.
Even though there are different centralized algorithms for the MCF problem
[27, 28, 29], efficient distributed and decentralized system optimization meth-
ods which will allow for an efficient usage of state-of-the-art road infrastruc-
ture sensory technology taking into account the rationality of self-concerned
vehicle drivers are still scarce.

While most of the works concentrate on the scenarios with intrinsic Wardrop
equilibrium (see, e.g., [30]), we propose an optimization model based on
system-optimization including relevant fairness features in interaction with
vehicles. Furthermore, to the best of our knowledge, all of the State-of-the-
Art approaches for driver incitement to behave in line with system optimiza-
tion rely on central decision maker who coordinates the road prices (see, e.g.,
[31, 32]). The realization of such a system might not be viable due to the
road network proprietary and political issues but also due to the question-
able users acceptance since those methods do not actually respond to the
fairness issues among different vehicles, thus treating all the drivers on the
road arcs independently of the past dynamics of their network usage and
fairness among O-D pairs.

Even though the idea of road network management and computation dis-
tribution is not new, to the best of our knowledge, the solutions with Qual-
ity of Solution (QoS) guarantees are lacking. In [33], a control procedure
implementable in a decentralized architecture with limited network informa-
tion for real-time route guidance in congested vehicular traffic networks was
presented. The decentralized approach envisions a set of local controllers
distributed in the network, where every controller has a limited network
view based on local detectors, and thus utilizes this information to guide
the within-territory vehicles to their individual destinations. The assign-
ment procedure is driven by informed local search procedure with heuristics.
However, this approach doesn’t have Quality of Solution (QoS) guarantees
and can be arbitrarily away from the system optimum. While in Jahn et al.
[23], the vehicles are seen only as flow particles, in our paper, we consider
vehicles as agents bidding on their paths and keeping track of their historical
assignment of paths.
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In this work, we propose a distributed network traffic assignment ap-
proach and negotiation between vehicles and road infrastructure based on a
market-oriented model and auctions, both with QoS guarantees. The pro-
posed approach is complementary to distributed traffic control strategies such
as coordinated traffic lights, see, e.g., [34].

To sum up, the main contribution of our work is the distributed multi-
agent architecture for traffic assignment where the optimization function is
based on the maximization of Nash social welfare with included path fairness
and O-D envy-freeness constraints. Furthermore, vehicles are seen as active
participants in path assignment tracking their path assignment dynamics and
are not seen as indifferent particles of the flow as is the case in the related
work.

3. Problem formulation and definitions

We consider a road network without traffic rules in static flow condi-
tions where flow represents a traffic pattern at steady state. Even though
this assumption is very strong, it can be made in the time windows when
traffic exhibits a flow-like behavior, e.g. in rush hours. If real-time traffic
information is available from the road and intersection network to individual
vehicles, and the latter two can communicate and negotiate vehicle routes
over the network, it becomes possible to provide vehicles with route selection
based on the individual preferences (e.g., travel time, fuel consumption, or
CO2 emissions, etc.) considering global traffic optimization.

Furthermore, we assume that the vehicle demand for a specific time win-
dow is known at the beginning of the window and is expressed through a
static vehicle flow. In this view, each vehicle is seen as a unit element (par-
ticle) of the total flow. This can be performed through a reservation system
where each vehicle reserves its O-D pair and the relatively short time range
in which it starts the travel at its origin. We assume that the variations of
the O-D pair traffic demands are negligible in an observed time window.

Moreover, we assume a real-time monitoring of the vehicles behavior
through infrastructure (road and intersections) cameras. Real-time traffic
monitoring permits us recognizing the vehicles acceptance of the suggested
route.

Starting from the above stated assumptions, let G = (N,A) be a con-
nected digraph representing the road network where N is the set of n nodes
representing intersections including origin and destination nodes and A is the
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set of m arcs a = (i, j), i, j ∈ N and i 6= j, representing uni-directional roads
connecting intersection i with j. Furthermore, to simplify the notation, we
assume that there is at most one arc in each direction between any pair of
nodes. For every arc (i, j) ∈ A, there is an arc cost function fij(xij), which
without the loss of generality, we assume is proportional to an average travel
time function Tij(xij). The latter is the travelling time that on average is ex-
perienced by a vehicle when traversing arc (i, j) ∈ A, with xij ≥ 0 being the
flow of vehicles in a unit time period on that arc, which is limited from above
by the arc capacity uij ≥ 0 being the maximum arc flow. Tij(xij) is in gen-
eral an increasing nonlinear function because of the effects of congestion on
the arc travel time. Different functions can be considered, but for simplicity
and without loss of generality, we consider the average travel time function
proposed for normal use by the U.S. Federal Highway Administration traffic
assignment model: Tij(xij) = tij(1 + 0.15(xij/uij)

4) [35].
We assume that there are nO origin nodes O, and nD destination nodes

D, nO, nD ≤ n. Let w represent a generic O-D pair agent and W the set of all
O-D pair agents such that w ∈ W . Let R be a nO × nD matrix representing
O-D demands where Rod = Rw entry indicates the demand of vehicles in unit
time period which request to leave origin node o ∈ O to go to destination
node d ∈ D.

Let Pw denote the set of available paths acceptable in terms of duration
cost for each O-D pair w ∈ W taking into account fairness considerations.
Furthermore, let PW be the set of all such paths. By acceptable in terms of
duration cost, we mean the paths for O-D pair considering the upper bound
in respect to the minimum duration among the paths for that O-D pair.

All the path flows in P̄W can be gathered in the global path flow vector
xW = (x1, . . . , xr), where r = |PW |. Moreover, we define a feasible flow xw
as a subvector of flows of paths k ∈ P̄w. For describing the vehicle flows over
the whole road network in terms of path flows, we introduce the [|W | ∗ |PW |]
O-D pair-path incidence matrix Ψ with rows indexed by w ∈ W and columns
indexed by paths k ∈ P̄W .

Let xk be the flow along path k ∈ Pw, then the constraints among path
flows and O-D demands can be stated as:∑

k∈Pw

ψwk · xk = Rw, ∀w ∈ W. (1)

Furthermore, let Φ be the [|A| ∗ |PW |] arc-path incidence matrix. It follows
that the capacity constraints for each arc a ∈ A in the network can be
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expressed as: ∑
w∈W

∑
k∈Pw

φa,k · xk ≤ ua ,∀a ∈ A. (2)

Formulating the above problem in terms of the paths along which passes the
flow makes the flow conservation constraints at nodes unnecessary.

Finally, path duration cost fk(xk, {xl}l∈L(k)) of each path k ∈ Pw, where
w ∈ W is the sum of the duration costs of its arcs fij(xij), i.e., fk(xk, {xl}l∈L(k)) =∑

(i,j)∈k fij(xij) and is strictly convex. Since the arc duration cost fij(xij) is
influenced by the total number of vehicles passing through the arc, path du-
ration cost depends not only on a local path flow xk but also on flows of other
paths {xl}l∈L(k), where L(k) is the set of paths that use the same arc(s) as
path k and are therefore coupled with it. Similarly, we introduce the set
of O-D pairs M(w) which paths use one or more same arc(s) as O-D pair
w ∈ W and are therefore coupled with it.

3.1. Social Welfares considered

The requirements on equity and fairness emerge not only in the assign-
ment of vehicles of the same O-D pair to available paths, but also in the as-
signment of paths to different O-D pairs. In this paper, we study approaches
that will balance those requirements in both settings.

The objective is to minimize the combination of the costs associated with
the flows on the used paths such that we keep track of the related fairness
considerations among the paths assigned to the vehicles of the same and
different O-D pairs.

We concentrate on the equity and efficiency of the allocation, and in this
light observe the behavior of the utilitarian and Nash social welfare, and
Pareto efficiency. In the following we explain the reasons behind this choice.

Criteria of equity include fairness and no-envy criteria. Inspired by the
envy-minimization criterion introduced in [36], we introduce a normalized
mean path duration cost γw(xw, {xl}l∈M(w)) of agent w ∈ W :

γw(xw, {xl}l∈M(w)) = |P̄w|

√∏
k∈P̄w

fk · xk. (3)

We use a geometric mean since it “normalizes” the paths being averaged,
so that none of the paths dominates the weighting, and a given percentage
change in any of the paths has the same effect on the geometric mean. In the
following, to simplify the notation, we will use Ck = m

√
fk · xk when needed.
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We propose the following envy criterion for O-D agents. An allocation θ
is α-envy-free, where α is a maximum tolerance factor for non-enviousness
such that 0 < α ≤ 1 if:

γw ≥ γαw′ , ∀w,w′ ∈ W |w 6= w′. (4)

In other words, there is no agent w′ that envies any other agent w for paying
less than αth power of the cost paid by w′.

Note that an α-envy-free allocation does not always exist for a given
α > 0, but similarly to [36], allocation θ is more envy-free than allocation θ′

if α(θ) > α(θ′).
Now, let us define the maximum latency Lmax(xW ) of a feasible flow xW

as:

Lmax(xW ) = max{γw : w ∈ W}. (5)

The maximum latency problem defined in this way consists of minimizing
the cost in (5) associated to the commodity of maximum normalized mean
path duration cost, ı.e., the multi-commodity flow that minimizes the maxi-
mum normalized mean path duration cost among all the O-D pairs and thus
optimizes the egalitarian welfare. This approach provides a good solution
when the minimum requirements of all agents should be satisfied.

Unfortunately, by optimizing the system based on the worst-off perfor-
mance, we deteriorate the system efficiency and thus, the utilitarian welfare.
From the overall system efficiency point of view, we can use utilitarian social
welfare which sums up the agents’ individual utilities in a given allocation
and thus gives us a measure of the overall and average benefit for the sys-
tem. However, optimizing the utilitarian social welfare is not acceptable in
the systems which success is based on self-concerned users’ acceptance. This
is because in utilitarian systems, the optimum is payed by (usually a few)
worst off agents. The latter, however, might not comply with paying the
price of the system optimality (see, e.g., [37]).

3.1.1. Problem formulation with utilitarian objective function

Average normalized latency of a feasible flow xW is expressed as

Lavg(xW ) =
1

|W |
·
∑
w∈W

γw. (6)
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By minimizing average normalized latency in (6) we approach the normalized
utilitarian welfare optimization problem which results in a system optimal
solution. The latter augmented with envy-freeness constraints, denoted by
(P ), can be expressed as:

(P ) :

min f(xW ) =
∑
w∈W

γw(xw, {xl}l∈M(w)) =
∑
w∈W

|Pw|

√∏
k∈Pw

∑
a∈A

fa(xa) · φak · xk

(7)
subject to: ∑

w∈W

∑
k∈Pw

φak · xk ≤ ua , ∀a ∈ A (8)

γw ≥ γαw′ , ∀w,w′ ∈ W |w 6= w′ (9)

∑
k∈Pw

ψwk · xk = Rw, ∀w ∈ W (10)

xk ≥ 0 , ∀k ∈ Pw, w ∈ W. (11)

Capacity constraints (8) limit the total flow across all O-D pairs on each
arc a ∈ A. Furthermore, (9) is a constraint on envy-free O-D pair paths and
γw is calculated as in (3) while constraints (10) on the fulfillment of O-D
demand among path flows force the sum of path flows of each commodity
w ∈ W to be equal to the commodity demand.

The objective of (7) is, therefore, to achieve a requested normalized ve-
hicle path flow over arcs a ∈ A of minimum cost such that each vehicle goes
through one route from its origin and terminates at the destination position
with the constraints on arc flow (8), envy-freeness (9), O-D demand (10),
and admissible paths in PW (11) satisfied.

3.1.2. Nash product and Pareto efficiency

The balance between egalitarian and utilitarian social welfare is given by
the maximization of the Nash product which is the product of the agents’
individual utilities. A high Nash value, when it is defined in terms of benefits,
is an indication of both good utility value and a good egalitarian value, ı.e.
allocation solutions with a high Nash value are both locally and globally good
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solutions. Furthermore, Nash product combines utilitarian and egalitarian
social welfare since it reaches the maximum when the utilities realized are
high and distributed equally over all the agents. However, Nash product
optimization doesn’t work when defined through the minimization of the
overall cost since it is sufficient that only one of the agents realizes the cost
close to zero for it to have the overall value close to zero. This is why we
propose reciprocal values of the costs which multiplied together will result in
high Nash product values.

• Nash social welfare:

maxN(xW ) =
∏
w∈W

1

γw

or equivalently,

maxN(xW ) = −
∑
w∈W

log γw . (12)

The mathematical programming model with included envy-freeness and
fairness parameters is then:

(N) :

min z(xW ) =
∑
w∈W

log γw =
∑
w∈W

log

[
|Pw|

√∏
k∈P̄w

∑
a∈A

fa(xa) · φakxk
]

(13)

subject to: ∑
w∈W

∑
k∈Pw

φak · xk ≤ ua , ∀a ∈ A (14)

γw ≥ γαw′ , ∀w,w′ ∈ W |w 6= w′ (15)

∑
k∈Pw

ψwk · xk = Rw, ∀w ∈ W (16)

xk ≥ 0 , ∀k ∈ Pw, w ∈ W . (17)

Furthermore, we study also Pareto efficiency of the found solutions. The
definition of Pareto efficiency is as follows. An allocation θ ∈ Θ is Pareto
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superior to an allocation θ′ ∈ Θ iff for every O-D agent w ∈ W , and for
the costs f θw(xw) of used paths in the path assignment θ, where f θw(xw) =∑

k f
k(xk), the following is satisfied: f θw(xw) ≤ f θ

′
w (xw), where xw > 0. In

other words, we say that we can Pareto-improve an allocation θ′ if there
exists another allocation θ such that in θ at least one agent is better off
and nobody is worse off. Furthermore, an allocation is Pareto efficient if no
Pareto improvement is possible, i.e., iff there exists no allocation θ′ ∈ Θ that
is Pareto superior to θ. In the same light, an allocation is Pareto-inefficient
if it is possible to make some agent better off without making other agents
worse off. However, Pareto efficient allocations do not always exist and when
they do, it makes sense for the system manager to choose a solution from the
nondominated set. Generally, however, the set of nondominated solutions is
too large to be presented to the system manager for the final path assignment
choice. Hence, we need tools that help the decision maker focus on his
preferred solutions (or alternatives).

4. Proposed multi-agent vehicle- infrastructure negotiation model

The route guidance multi-agent architecture is made of three different
agent categories: vehicles, vehicle travel route origins, and intersection agents.
No a priori global assignment information is available and the information is
exchanged among the vehicles, O-D agents and intersection agents through
the neighbor to neighbor communication. The vehicles exchange the infor-
mation only with the closest intersection agent by the means of which they
are represented in the route guidance system. In this way, we obtain a dy-
namic network which can dynamically recalculate vehicle routes based on the
actual traffic load and vehicle demand.

To decompose the network optimization problem, the route guidance ar-
chitecture is divided in two layers as shown in Figure 1. On the upper
layer, Nash social welfare maximization problem with included envy-freeness
and fairness constraints (13)–(17) is decomposed at four levels to reach a
subproblem which can be optimized individually locally by every O-D pair
independently of other O-D pairs.

At the upper layer, vehicle agents inform of their traveling preferences
the intersection agent closest to the origin of their travel (origin agent o).
Based on the total demand for each time period expressed in terms of vehicle
flow per time unit, each origin agent o tries to achieve a sufficient number
of shortest paths considering fairness for all its destinations do. Those desti-
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Figure 1: Proposed two-layer MAS architecture with the decision making models for each
layer
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nations are requested by the vehicles starting the travel on o and the paths
are computed through, e.g., k-shortest path routing algorithm [38]. Since
problem (13)–(17) is not easily decomposable and O-D objective functions
are dependent on each other, we use dual decomposition at four levels where
each origin agent o then negotiates for each of its O-D pairs path flows, path,
envy-freeness, consistency, and demand distribution dual prices. Intersection
agents, on the other hand, distributively optimize arcs’ prices influenced by
the arcs congestion obtained through O-D paths flow requests.

Interconnected intersection “auctioneer” agents iteratively calculate arcs’
shadow prices in terms of arc penalty λ minimizing the congestion effects. La-
grange multipliers are calculated through a distributed dual-decomposition
based algorithm which decouples coupled objectives (7) and coupled con-
straint sets (8) that are not readily decomposable. On the other hand, each
origin agent calculates shortest paths to its destinations with arcs’ prices
updated and given by the intersection agents, envy-freeness prices ζ, con-
sistency dual prices ξ, and vehicle demand distribution over paths prices µ
and thus decides upon the amount of vehicles to be routed on assigned paths
depending on the arcs’ prices. The network decomposition method used here
was inspired by [16].

After the traffic assignment is made for O-D pairs on the first level of the
multi-agent architecture, the latter decide, on the second level, of the vehicles’
assignment to the paths based on relevant social welfare parameters that
guarantee equality through an iterative auction. The negotiation through
auctions at the second level is local between each origin agent and the vehicles
starting their travel at that origin. The vehicle disutility is seen as a function
of travel time as a ratio between some nominal and the real travel time.

In the following, we give more details on the decision making model of
intersection, origin and vehicle agents.

4.1. Upper layer distributed decision making model

In this Section, we present details for the Nash welfare optimization. Since
duration costs of paths k ∈ PW depend on a local vector variable xk but also
on other coupled paths’ flows {xl}l∈L(k), we tackle this issue by introducing
auxiliary variables and additional equality constraints, thus transferring the
coupling in the objective function to coupling in the constraints, which can
then be decoupled by dual decomposition and solved by introducing addi-
tional consistency pricing. We assume the presence of mutual communication
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among origin node agents such that they can exchange dual variable values
(pricing messages).

We first introduce auxiliary variables xkl into problem (13)–(17) for the
coupled arguments in the cost functions and additional equality constraints
to enforce consistency. The model becomes:

min
xk,xkl

z(xW ) =
∑
w∈W

1

|Pw|
log

[ ∏
k∈P̄w

∑
a∈A

fa(xa) · φak · xk
]

(18)

subject to: ∑
w∈W

∑
k∈Pw

φak · xk ≤ ua , ∀a ∈ A (19)

γw ≥ γαw′ , ∀w,w′ ∈ W |w 6= w′ (20)

xkl = xl, ∀k ∈ Pw, l ∈ L(k), w ∈ W (21)

∑
k∈Pw

ψwk · xk = Rw, ∀w ∈ W (22)

xk, xkl ≥ 0 , ∀k ∈ Pw, l ∈ L(k), w ∈ W, (23)

where xk, xkl are local flow variables at path k.
By exploitation of the decomposability structure we take a four-level dual

decomposition approach as seen in Figure 2. At the first level, the network
infrastructure agents define arcs’ dual variables (arcs’ prices) to handle flow
arc capacity constraints. At the second level, origin node agents negotiate
on the behalf of the O-D pairs originating from them, with other origin node
agents regarding the assignment of envy-free paths. At the third level, the
consistency subproblem is resolved within each cluster of the paths sharing
one or more arcs. The computation of the main problem is distributed into
|W | subproblems related to individual O-D pairs with included relaxed con-
sistency constraints. The flow distribution constraint is relaxed for every
O-D pair at the fourth level where for path k, only local variables with the
first subscript index k are used.
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Figure 2: Proposed four-level dual decomposition approach.

Lagrangean relaxation of problem (18)–(23) at the first level is then:

min
x
L1(x;λ) =

∑
w∈W

(
log

[
|Pw|

√∏
k∈P̄w

∑
a∈A

fa(xa) · φakxk
]

+

+
∑
a∈A

λa
∑
k∈Pw

φak · xk
)
−
∑
a∈A

λa · ua (24)

subject to:
γw ≥ γαw′ , ∀w,w′ ∈ W |w 6= w′ (25)

xkl = xl, ∀k ∈ Pw, l ∈ L(k), w ∈ W (26)∑
k∈Pw

ψwk · xk = Rw, ∀w ∈ W (27)

xk, xkl ≥ 0 , ∀k ∈ Pw, l ∈ L(k), w ∈ W, (28)

where λa ≥ 0 is the Lagrange multiplier (arc shadow price) associated with
the capacity constraint on arcs a ∈ A.
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If we let λk =
∑

a∈A λaφak be the aggregate path congestion price of those
arcs used by path k ∈ P̄w, and

Lw1 (xw,λ) = log

[
|Pw|

√∏
k∈P̄w

∑
a∈A

fa(xa) · φakxk
]

+
∑
k∈Pw

λk · xk (29)

be the wth contribution to (24) which is related only with the local variables
of w, then (24) can be rewritten as:

min
x
L1(x;λ) =

∑
w∈W

Lw1 (xw,λ)−
∑
a∈A

λa · ua . (30)

At the first higher level, the master problem is in charge of updating dual
variable λ. This update can be done by intersection agents who solve the
following dual problem:

max
λ

g1(λ) =
∑
w∈W

Lw1 (x̄w,λ)−
∑
a∈A

λa · ua (31)

subject to:
λ ≥ 0,

where x̄w is the value of the vector of variables related to O-D pair w in an
optimal solution of (24)–(28).

Solving problem (24)–(28) is equivalent to solving problem

min
∑
w∈W

Lw1 (xw;λ) (32)

subject to:
γw ≥ γαw′ , ∀w,w′ ∈ W |w 6= w′

xkl = xl, ∀k ∈ Pw, l ∈ L(k), w ∈ W∑
k∈Pw

ψwk · xk = Rw, ∀w ∈ W

xk, xkl ≥ 0 , ∀k ∈ Pw, l ∈ L(k), w ∈ W,

However, due to constraints (25) and (26), the latter subproblem cannot be
still resolved for each w ∈ W independently of other O-D pairs w′ ∈ W |w′ 6=
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w. This is why we continue with further two levels of decomposition until
reaching the stage at which every w ∈ W can resolve its local optimization
subproblem individually and independently of others.

Therefore, Lagrangean relaxation of problem (32) at the second level is:

min
x
L2

(
x; (λ, ζ)

)
=
∑
w∈W

(
Lw1 (xw,λ) +

∑
w′∈W |w′ 6=w

ζw,w′ · (α log γw′ − log γw)
)

(33)
subject to:

xkl = xl, ∀k ∈ Pw, l ∈ L(k), w ∈ W

∑
k∈Pw

ψwk · xk = Rw, ∀w ∈ W

xk, xkl ≥ 0 , ∀k ∈ Pw, l ∈ L(k), w ∈ W,

where ζw,w′ ≥ 0 is the Lagrange multiplier related with the envy-freeness
constraints (4.1).

At the second higher level, the following master problem is in charge of
updating dual variable ζ:

max
ζ
g2(λ, ζ) = L2

(
x̄, (λ, ζ)

)
(34)

subject to:
ζ ≥ 0,

where x̄ is the optimal solution of (33) for given λ and ζ.
If we let

Lw2 (xw; (λ, ζ)) = Lw1 (xw,λ) + log γw ·
∑

w′∈W |w′ 6=w

(
α · ζw′,w − ζw,w′

)
, (35)

then problem (33) can be decomposed at the third level into the following
independent subproblems, one for each O-D pair w ∈ W .

min
x
Lw3
(
xw; (λ, ζ, ξ)

)
= Lw2

(
xw; (λ, ζ)

)
+
∑
k∈P̄w

( ∑
l∈L(k)

ξklx
kl−

∑
l:k∈L(l)

ξlkx
k

)
(36)
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subject to: ∑
k∈Pw

ψwk · xk = Rw (37)

xk, xkl ≥ 0 , ∀k ∈ Pw, l ∈ L(k) (38)

where ξkl is the consistency price between path k and its coupled paths
l ∈ L(k).

At the third higher level, we have the master problem in charge of up-
dating dual variable ξ to solve the dual problem:

max
ξ
g3(λ, ζ, ξ) =

∑
w∈W

Lw3
(
x̄w; (λ, ζ, ξ)

)
(39)

subject to:
ξ ≥ 0,

where x̄w is the optimal solution for problem (36)–(38) for given λ, ζ, and
ξ.

Note that in subproblem (36)–(38), only variables with the first subscript
index k belonging to w are used. Since there is still constraint (37), it makes
sense to further Lagrangean decompose problem (36)–(38) into another mas-
ter and subproblem.

Therefore and finally, Lagrangean relaxation of problem (36)–(38) at the
fourth level is:

min
xw

Lw4
(
xw; (λ, ζ, ξ, µw)

)
= Lw3

(
xw; (λ, ζ, ξ)

)
+µw

( ∑
k∈Pw

ψwk · xk−Rw

)
(40)

subject to:

xk, xkl ≥ 0 , ∀k ∈ Pw, l ∈ L(k), (41)

where µw ≥ 0 is the Lagrange multiplier associated with the constraint (37)
on distribution of demanded flow Rw over paths k ∈ Pw where w ∈ W .

The expanded version of problem (40)–(41) is:
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(I) :

min
x
Lw4
(
xw; (λ, ζ, ξ, µw)

)
=

1

|Pw|
·
(

log
∏

k∈|Pw|

(∑
a∈A

fa(xa) ·φakxk
))
·
(

1 +
∑

w′∈W |w′ 6=w

(
α · ζw′,w− ζw,w′

))
+

+
∑
k∈|Pw|

(∑
a∈A

λaφak · xk +
∑
l∈L(k)

ξklx
kl −

∑
l:k∈L(l)

ξlkx
k + µw · ψwk · xk

)
(42)

subject to:
xk, xkl ≥ 0 , ∀k ∈ Pw , l ∈ L(k). (43)

Then for each O-D pair w ∈ W we can solve locally and independently
for each path k ∈ P̄w the following problem:

min
xk,xkl

Lwk
4

(
xk,xkl; (λ, ζ, ξ, µw)

)
=

1

|Pw|
· log

(∑
a∈A

fa(xa) · φakxk
)
·
(

1 +
∑

w′∈W |w′ 6=w

(
α · ζw′,w − ζw,w′

))
+

+
∑
a∈A

λa · φak · xk +
∑
l∈L(k)

ξklx
kl −

∑
l:k∈L(l)

ξlkx
k + µw · ψwk · xk (44)

subject to:

xk, xkl ≥ 0, ∀l ∈ L(k), (45)

At the fourth higher level, we have the master problem in charge of up-
dating dual variables µw to solve the dual problem:

max
µw

gw4 (λ, ζ, ξ, µw) =
∑
k∈Pw

Lwk
4

(
x̄k, x̄kl; (λ, ζ, ξ, µw)

)
− µw ·Rw (46)

subject to:
µw ≥ 0 ,

where x̄k and x̄kl is the optimal solution of (44)–(45) for given λ, ζ, ξ, and
µw.

Furthermore, the solution (x̄k, x̄kl) = arg minLwk
4

(
xk,xkl; (λ, ζ, ξ, µw)

)
is

unique due to the strict concavity of Lw
k

4

(
xk,xkl; (λ, ζ, ξ, µw)

)
. It follows that
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the dual function gw4 (λ, ζ, ξ, µw) is differentiable and the following gradient
method updates can be used:

λa(t1 + 1) =

[
λa(t1)− τ1

(
ua −

∑
k:a∈P̄k

w,w∈W

x̄k(t1)

)]+

, ∀a ∈ A, (47)

ζw,w′(t2+1) =

[
ζw,w′(t2)−τ2

(
log γw(t2)−α log γw′(t2)

)]+

, ∀w,w′ ∈ W |w′ 6= w,

(48)

ξkl(t3 + 1) =

[
ξkl(t3)− τ3

(
xl(t3)− xkl(t3)

)]+

, ∀l ∈ L(k), (49)

µw(t4 + 1) =

[
µw(t4)− τ4

(
Rw −

∑
k∈Pw

xk(t4)

)]+

, ∀w ∈ W, (50)

where t1, t2, t3, t4 are the iteration indices at the first, second, third and fourth
level, respectively. Furthermore, τ1, τ2, τ3, τ4 > 0 are sufficiently small posi-
tive step sizes, and [•]+ denotes the projection onto the nonnegative orthant.

The dual variables λ(t1), ζ(t2), ξ(t3), and µ(t4) converge to their dual
optimal values as t1 →∞, t2 →∞, t3 →∞, and t4 →∞ respectively since
the duality gap for (7) is zero and the solution to (I) is unique. The primal
variable xW will also converge to the primal optimal value x̄W [16].

There are four decomposition levels in the proposed architecture, and four
time scales, one per each level. Convergence and stability are guaranteed if
the lower level master problems are solved on a faster time scale than the
higher level ones so that all the problems at a lower level have converged at
each iteration of a master problem. Therefore, duration of each time period of
the four levels of decomposition δt should be such that δt1 > δt2 > δt3 > δt4.
The inner minimization of every upper level is fully performed by repeatedly
updating the set of the lower level variables for each update of the upper
level variable (see Figure 2). The fourth level has the fastest time scale in
which the agent of the origin node from which O-D pair w originates updates
independently dual variable µw. Once the master problem of the fourth
level is solved for each w ∈ W , consistency dual prices can be exchanged at
the third level very quickly over local communication among the agents of
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the origin nodes from which originate O-D pairs that are coupled together.
Furthermore, on the second level, envy-freeness constraints are relaxed and
compared for all O-D pairs w ∈ W . Finally the first level has the slowest
time scale in which arcs’ dual prices are updated by road intersection agents.

Layer 1 calculations are done by executing the following Stage 1 and the
nested three stages.

Parameters and variables: Each origin agent o ∈ O maintains the value of
γw for each O-D pair w ∈ W originating at o, and all the dual prices
with the first index related with w and its paths k ∈ P̄w: ζw,w′ for all
w′ ∈ W |w 6= w′, ξk and ξkl where k ∈ P̄w and l ∈ L(k), and µw. On
the other hand, each intersection agent j ∈ N maintains the capacities
ua, duration costs fa, and dual price λa for each outgoing arc a ∈ A(j),
where A(j) is the set of outgoing arcs of node j.

Initialization: set t1, t2, t3, t4 = 0 and λa(0) = 0 for all a ∈ A, ζw,w′(0) = 0
for all w,w′ ∈ W |w 6= w′, ξk(0) = 0 and ξkl(0) = 0 for all k ∈ P̄w and
l ∈ L(k), and µw = 0. For each O-D pair w ∈ W originating at o,
each origin agent o ∈ O finds |P̄w| shortest paths for nominal arcs costs
(without traffic).

Stage 1 (Primal-dual algorithm for solving problem (18)–(23))

Step 1.0 Set t1 := 0.
Each intersection agent j ∈ N sets λa(0) := 0 for each outgoing
arc a ∈ A(j) of node j ∈ N , and broadcasts them.

Step 1.1 Lagrangean problem (32) is solved by calling Stage 2 and
waiting for the broadcasted solution vector xw(λ) issued by the
agent of origin node o ∈ O from which O-D pair w originates, for
each w ∈ W .

Step 1.2 Each intersection agent j solves a part of master problem
(31) by updating dual variable λa(t1 + 1) of each outgoing arc
a ∈ A(j) with the gradient iterate (47), and broadcasts them.

Step 1.3 Set t1 := t1 + 1 and go to Step 1.1, until satisfying termi-
nation criteria.

Step 1.4 Take xW := {xw(λ)}w∈W as the solution of problem (18)–
(23)).
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Stage 2 (Primal-dual algorithm for solving problem (32))

Step 2.0 Set t2 := 0.
Each origin node agent o ∈ O sets ζww(0) := 0, for each w ∈ W
originating from origin node o and w ∈ W with w 6= w′, and
broadcasts them.

Step 2.1 Lagrangean problem (33) is solved by calling Stage 3 and
waiting for the broadcasted solution vector xw(λ, ζ) issued by the
agent of origin node o ∈ O from which O-D pair w originates, for
each w ∈ W .

Step 2.2 Each origin node agent o solves a part of master problem
(34) by updating dual variable ζww′(t2 + 1), for each w ∈ W orig-
inating from origin node o and w ∈ W with w 6= w′, with the
gradient iterate (48), and broadcasts them.

Step 2.3 Set t2 := t2 + 1 and go to Step 2.1, until satisfying termi-
nation criteria.

Step 2.4 Each origin node agent o ∈ O broadcasts xw(λ) := xw(λ, ζ)
as the flow subvector in the solution of problem (32), for each
w ∈ W originating from origin node o.

Stage 3 (Primal-dual algorithm for solving problem (33))

Step 3.0 Set t3 := 0.
Each origin node agent o ∈ O sets ξkl(0) := 0, for each path
k ∈ P̄w and l ∈ L(k), with w ∈ W originating from origin node o,
and broadcasts them.

Step 3.1 For each w ∈ W , Lagrangean problem (36)-(38) is solved
by calling Stage 4 and waiting for the broadcasted solution vector
xw(λ, ζ, ξ) issued by the agent of origin node o ∈ O from which
O-D pair w originates.

Step 3.2 Each origin node agent o solves a part of master problem
(39) by updating dual variable ξkl(t3 + 1), for each path k ∈ P̄w
and l ∈ L(k), with w ∈ W originating from origin node o, with
the gradient iterate (49), and broadcasts them.

Step 3.3 Set t3 := t3 + 1 and go to Step 3.1, until satisfying termi-
nation criteria.
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Step 3.4 Each origin node agent o ∈ O broadcasts xw(λ, ζ) := xw(λ, ζ, ξ)
as the flow subvector in the solution of problem (33), for each
w ∈ W originating from origin node o.

Stage 4 (Primal-dual algorithm for solving problem (36)-(38))

Step 4.0 Set t4 := 0. Each origin node agent o ∈ O sets µw(0) := 0, for
each O-D pair w ∈ W originating in origin node o, and broadcasts
them.

Step 4.1 Each origin node agent o ∈ O solves Lagrangean problem
(44)-(45), for each path k ∈ Pw with w ∈ W originating from
origin node o, and broadcasts solution value xk(λ, ζ, ξ, µw).

Step 4.2 Each origin node agent o solves master problem (46) by up-
dating dual variable µw(t4 + 1), for each O-D pair w ∈ W orig-
inating from origin node o, with the gradient iterate (50), and
broadcasts them.

Step 4.3 Set t4 := t4 + 1 and go to Step 4.1, until satisfying termina-
tion criteria.

Step 4.4 Each origin node agent o ∈ O broadcasts xw(λ, ζ, ξ) :=
{xk(λ, ζ, ξ, µw)}k∈P̄w

as the flow subvector in the solution of prob-
lem (36)-(38), for each w ∈ W originating from origin node o.

4.2. Lower layer: negotiation between vehicles and O-D agents

While in the former Sections, we were treating the allocation of paths
and flows to O-D pairs on the upper level of the architecture proposed in
Figure 1, in the following we study the architecture’s lower level: allocation
of available O-D paths to vehicles.

Each vehicle agent, v ∈ V , is described by the tuple

a = {wv, k, Sv, cv} , (51)

where wv is vehicle v‘s origin-destination pair, k ∈ Pwv is the path assigned
to vehicle v, and Sv is its satisfaction variable. Each vehicle objective is to
minimize cost of travel cv in terms of travel time. Satisfaction Sv is calculated
based on the past dynamics of the path assignment as stated in the following:

Sv = ν · Sv(t) + (1− ν) · Sv(t− 1) . (52)
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where ν ∈ [0, 1] is a weight given to the satisfaction in time period t. At
every time period t, vehicle satisfaction Sv(t) is evaluated in the following
way:

Sv(t) = 1− fk(t)

f spw (t)
, (53)

where fk(t) is the duration cost of the path assigned to vehicle v, and f spw (t)
is the O-D path with the minimum duration cost at time period t. Initially,
satisfaction Sv values are assumed nonnegative and equal for all vehicles.

In the iterative auction performed on the lower level, each vehicle bids
for its lowest cost path k ∈ Pwv . In complex road networks, there might
be multiple optimal paths, as the paths might have similar total costs over
different arcs, though computing all Pareto-optimal paths is in general NP -
hard. Those individual preferences are faced upon the disutilities of all the
bidding vehicles and the capacity of paths assigned to its O-D pair in the
iterative auction process.

The vehicle auction algorithm is initiated with a feasible solution assum-
ing that the demands on all paths are equal to zero. The auction is performed
in iterations. Origin agents assign paths to the vehicle agents optimizing the
social welfare parameters. The algorithm runs in iterations until the number
of unsatisfied agents is minimal. Let Vw be a set of vehicles within each O-D
pair w ∈ W . Then, the steps of the algorithm are as follows:

• Initially, i.e., at auction iteration h = 0, for each vehicle agent v ∈ Vw,
set Q(h = 0) of assignments is assumed empty and all path values
vPw,v(0) are set to zero.

During iteration h:

• each vehicle agent v receives path values vPw,v(h− 1) and assignments
Q(h− 1) from its origin agent.

• Each vehicle agent updates its local list of the assignments Qv(h) and
path values vPw,v(h) in the following way. To include the past satisfac-
tion into the assignment of paths, and balance satisfaction of vehicles,
we multiply vPw,v(h) with satisfaction Sv ∈ [0, 1]. In this way, vehicle
past satisfaction influences the overall system path assignment.

• If vehicle agent v is unassigned, it calculates the bid value and bids for
the path with the lowest cost using the following bidding and assign-
ment procedure.

26



4.2.1. Vehicle bidding for paths

To submit a bid, each vehicle agent v unassigned in its partial assignment
Qv(h):

• finds path p which offers the best possible value pv = arg minp∈Pw{cvp−
vpv(h)}, and calculates bid for path pv as follows: bvalpv(h) = valpvv(h)+
uv(h)−wv(h)+ε = cvpv−wv(h)+ε, where uv(h) = minp∈Pw{cvp−vpv(h)}
and wv(h) = minpi 6=pv∈Pw{cvpi−valpiv(h)} is the second best utility that
is, the best value over paths other than pv. If pv is the only path in Pw,
then wv(h) = − inf.

• raises the value of its preferred path by the bidding increment σv so
that it is indifferent between pv and the second best path, that is, it
sets vpvv(h) to vpvv(h) + σv(h), where σv(h) = vpv(h)− wv(h) + ε.

The bidding phase is over when all the unassigned agents calculate their bid.

4.2.2. Path assignment to vehicles

Let V (pv)(h) ⊆ Vw be the set of agents with bids pending for path pv.
Origin agent ocoord is responsible for the assignment of path pv.

Each agent v ∈ V (pv)(h), broadcasts its bid bvpv(h). Agent ocoord receives
the bids bkpv(h) of all agents k ∈ V (pv)(h), regarding pv. Following steps are
performed to resolve the assignment:

• Agent ocoord selects agent vpv = arg maxv∈V (pv)(h) bvpv with the highest
bid bvpvmax

= maxv∈V (p)(h) bvpv .

• If bvpvmax
≥ vpvv(h) + ε then vpvv(h) := bvpvmax

, the updated assignment
information is broadcasted to all the agents k ∈ V (pv) which update
their sets of assignments Qv by replacing the current agent assigned to
it (if any), with agent vpv .

• If bvpvmax
< vpvv(h) + ε then all bids for path pv are cleared, no reas-

signment or path value change is made.

If there are any unassigned agents left within V (pv), the assignment algorithm
starts again from the bidding phase within iteration h + 1. This process
terminates when each agent v ∈ Vw has a path assignment.
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5. Experiment

To illustrate the functionality of our proposed route guidance system
model, we test it on 10 simulated examples of connected randomly generated
Delaunay graphs with 50 nodes (representing intersections and in the same
time origins o ∈ O, and destinations d ∈ D) on a map sized [10 × 10], see
Figures 3 and 4. The simulated Delaunay graphs with distances between the
nodes satisfying the Euclidean triangle inequality represent simplified road
networks. The results were produced by the main program in Matlab calling
for CPLEX solver for variable optimization. The graphs were created by
Matlab delaunay function.

The origin-destination matrix contains demands between all 50 nodes
during a (morning or after-work) rush period. Each O-D pair agent w ∈ W
has as an objective the minimization of its normalized mean path duration
cost γw(xw, {xl}l∈M(w)). Time period durations of the architecture’s four
levels of decomposition were chosen to be δt1 = 15, δt2 = 10, δt3 = 5, and
δt4 = 1. By using a slower timescale on lower levels of subgradient updates,
we avoid the running of inner subgradient until convergence before updating
the outer subgradient. Maximum tolerance factor for non-enviousness α was
set to 0.4. A relative duality gap threshold on each level of decomposition
was set to ε = 0.05.

In the experiments, we are concerned about the dynamics of the vehicles’
average travel times in respect to the user optimum, system optimum and
the proposed optimization model. O-D pairs travel times are weighted by
the quantity of vehicles on each O-D pair in the calculation of the average
travel time.

The weight of each O-D pair is calculated in two ways: i) as the number of
vehicles on that O-D pair, in respect to the total number of vehicles leaving
from that origin, and ii) the number of vehicles on that O-D pair in respect
to the total number of vehicles of all O-D pairs. The latter approach is used
also for the total number of vehicles in each O-D pair. The calculated costs in
terms of travel time are unitary, calculated per kilometer of traveled distance
for each origin O.

We examine the traffic assignment solution in respect to 10 different distri-
butions of the vehicles on approximately 2500 origin-destination pairs. Fur-
thermore, we test the solution quality in terms of social welfare considering
individual vehicle travel times and influence of minimizing the maximum
travel times on the general throughput and efficiency of the network. We
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Figure 3: First example of the 10 simulated connected randomly generated Delaunay
graphs with 50 nodes (intersections) on a map sized [10× 10]

Figure 4: Second example of the 10 simulated connected randomly generated Delaunay
graphs with 50 nodes (intersections) on a map sized [10× 10]
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Figure 5: Obtained results of mean path duration cost γ

assume uniform distribution of vehicles on O-D pairs.
An initial feasible solution, needed to initialize all the implemented al-

gorithms, has been obtained by computing the shortest path tree from each
origin to all destinations. On each O-D pair shortest path, we put the entire
demand. We have adopted the lexicographic strategy for each O-D request
so that the origins are randomly considered.

As can be seen from Figure 5, the proposed method is better in most of
the cases in respect to the user-optimized network. However, for a very few
number of origins o, it gives worse results than Wardrop Equilibrium. For
those origins, monetary incentives are necessary for vehicles to behave inline
with the desired system performance. The gain in travelling cost of the most
of the O-D pairs is much higher than the loss of the few of the O-D pairs in
respect to the user-optimum so the increased system efficiency gives space
for incentivizing the worst-off agents.

Regarding the computation time, both system-optimum and our proposed
model show similar behavior. Average solution time on a computer with Intel
Core (1.6 GHz, 3 MB) processor and 4 GB of RAM was 56 seconds.
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6. Conclusions

In this work we studied the problem of fair and efficient traffic assignment
related with real-time and vehicle acceptance constraints. We proposed a
distributed multi-agent traffic model made of vehicles with RGSs, O-D, and
intersection agents. Vehicles, assumed selfish, negotiate over auctions with
O-D agents for route assignment, whereas O-D agents search for the shortest
O-D path over auctions with intersection agents. The latter assign the routes
based on the maximization of the network traffic flow considering the road
capacity constraints. In most of the cases, the mean path duration cost
is significantly better than in the user-optimization while still being fair.
For a minimal number of origins, the result is worse than in network user
optimization. For those O-D pairs, monetary incentives are necessary for
vehicles to behave inline with the desired system performance.

The State-of-the art toll-pricing methods can be applied also in the pro-
posed solution for incentivizing user acceptance of the proposed paths. How-
ever, the adaptations are necessary since we assume users in a closed prefer-
ence group. Further adaptation and development of new incentive methods
will be treated in the future work.
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