
HAL Id: hal-01921631
https://hal.science/hal-01921631

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Corotational cut finite element method for real-time
surgical simulation: Application to needle insertion

simulation
Huu Phuoc Bui, Satyendra Tomar, Stéphane Pierre Alain Bordas

To cite this version:
Huu Phuoc Bui, Satyendra Tomar, Stéphane Pierre Alain Bordas. Corotational cut finite element
method for real-time surgical simulation: Application to needle insertion simulation. Computer Meth-
ods in Applied Mechanics and Engineering, 2018, �10.1016/j.cma.2018.10.023�. �hal-01921631�

https://hal.science/hal-01921631
https://hal.archives-ouvertes.fr

Corotational cut finite element method for real-time

surgical simulation: Application to needle insertion

simulation

Huu Phuoc Buia,b,∗, Satyendra Tomara, Stéphane P.A. Bordasa,c,∗

aInstitute of Computational Engineering, University of Luxembourg, Faculty of Sciences
Communication and Technology, Luxembourg

bLaboratoire de Mathématiques de Besançon (LMB) UMR CNRS 6623, Université de
Franche-Comté, Besançon, France

cInstitute of Mechanics and Advanced Materials, School of Engineering, Cardiff University,
UK

Abstract

We present the corotational cut Finite Element Method (FEM) for real-time

surgical simulation. The only requirement of the proposed method is a back-

ground mesh, which is not necessarily conforming to the boundaries/interfaces

of the simulated object. The details of the surface, which can be directly ob-

tained from binary images, are taken into account by a multilevel embedding

algorithm which is applied to elements of the background mesh that are cut by

the surface. Dirichlet boundary conditions can be implicitly imposed on the

surface using Lagrange multipliers, whereas traction or Neumann boundary

conditions, which is/are applied on parts of the surface, can be distributed to

the background nodes using shape functions. The implementation is verified

by convergences studies, of the geometry and of numerical solutions, which

exhibit optimal rates. To verify the reliability of the method, it is applied to

various needle insertion simulations (e.g. for biopsy or brachytherapy) into

brain and liver models. The numerical results show that, while retaining the

∗Corresponding authors:
Email addresses: huu-phuoc.bui@alumni.unistra.fr (Huu Phuoc Bui),

stephane.bordas@alum.northwestern.edu (Stéphane P.A. Bordas)

Preprint submitted to Elsevier

accuracy of the standard FEM, the proposed method can (1) make the dis-

cretisation independent from geometric description, (2) avoid the complexity

of mesh generation for complex geometries, and (3) provide computational

speed suitable for real-time simulations. Thereby, the proposed method is

very suitable for patient-specific simulations as it improves the simulation

accuracy by automatically, and properly, taking the simulated geometry into

account, while keeping the low computational cost.

Keywords:

Cut finite element method, Unfitted FEM, Corotational CutFEM, Needle

insertion, Real-time simulation

1. Introduction

Nowadays real-time simulation plays an important role in different fields:

graphic animation [1], fracture of stiff materials [2], and surgical training

and simulation [3, 4, 5, 6], to name a few. In the medical context, surgical

simulations are not only useful for training, but also helpful for pre-operative

planning, and intra-operative guidance. Surgical simulations have to take

into account interactions between a surgeon or an interventional radiologist

with a deformable organ via surgical instruments (e.g. a needle), and also

interactions between the organ with its neighbouring structures. To be useful

in real-life situations, it is required that the computations are performed

in real-time. To achieve real-time performance, some advanced solvers, e.g.

GPU-based computation [7], or asynchronous solver [6], can be used. The

computational time can also be reduced by using coarse meshes. However,

using coarse meshes, some geometric details are often lost. Simulations using

coarse meshes are thus only suitable for targeted surgical training which relies

more on visual reality than on actual one. Such simulations fall short for

surgical planning or guidance where computations must provide accurate

results. A model order reduction technique can also be used to solve system

equations with significantly less time but it results in lower accuracy [8]. To

2

reduce the computational effort, Quesada et al [9] propose a computational

parametric meta-model which is computed offline, and is only evaluated

online.

Medical simulations have to deal with complex anatomical structures,

e.g. prostate, blood vessel, liver, brain, brain ventricle, etc. When the

patient-specific geometry is considered, the mesh of the organ needs to be

reconstructed since the organ geometry is different from one patient to an-

other. Misra and coworkers [10] have shown that the geometry of the organ

and boundary conditions surrounding the organ are the most important

factors influencing the organ deformation, and thus have a direct impact

on the accuracy of simulation and planning. And when supercomputers or

parallel computation is not considered, in order to response to real-time

simulation requirements, computations involving interactions with surgical

tools and/or cutting operations are performed on coarse meshes while ap-

plying pre-computed deformation from fine meshes, see e.g., [4]. However,

these coarse and fine meshes may not conform to each other, resulting in

different geometric descriptions and different boundary conditions, and thus

the question of simulation accuracy demands further investigation.

The use of geometric description in a computational method, so that

the users only need to provide a background mesh which is not necessarily

conforming to the boundary geometry of the simulated object, can dramat-

ically reduce computational cost of preprocessing. This is the idea behind

the fictitious domain method [11, 12], or the cut finite element method (Cut-

FEM) [13]. The extended finite element method (XFEM) [14, 15], and the

generalised finite element method (GFEM) [16] have been developed to deal

with crack surfaces, or material interfaces evolving during simulation. These

approaches allow for computation of coupled physical processes on distinct

subregions of the total volume, and do not require an absolute conformity

between the meshes from mesh construction as in [17, 18]. In the context

of real-time patient-specific surgical simulations, using a unified geometric

3

description in a finite element code can help in (1) reducing preprocessing

cost of mesh generation, and (2) implicitly improving accuracy of simulation

and planning (compared to the situation in which coarse meshes are employed

in an inappropriate manner to achieve real-time requirements).

The main contribution of our paper is to propose the corotational CutFEM

approach which is suitable for real-time patient specific simulations. The

corotational model [19] is widely used for the treatment of large rotations of

soft tissues, see e.g., [7, 20, 21, 22, 23, 24]. By using the proposed methodology,

geometries of simulated objects can be captured automatically. We also show

that, for a given accuracy, using the proposed method is computationally more

advantageous than employing the standard FEM. On the implementation

aspect of the method, we propose the so-called multilevel embedding approach

to correctly integrate implicit boundaries of the simulated organ, and to

accurately capture implicit interfaces of e.g., a tumour. The implementation

is verified by convergence studies, which exhibit optimal rates. We use

Lagrange multipliers to impose Dirichlet boundary conditions on implicit

boundaries, whereas traction or Neumann boundary conditions, which is/are

applied on parts of the surface, can be distributed to the background nodes

using shape functions. We demonstrate the performance of the corotational

CutFEM through various applications: from needle insertion simulations (e.g.

for biopsy or brachytherapy) to simulation of electrode lead implantation in

Deep Brain Stimulation (DBS) procedure. The algorithm is implemented in

the open-source SOFA framework [25] 1.

The remaining of the paper is organised as follows. In Section 2, we

describe the formulation of the needle insertion problem into soft tissues,

together with its discrete form. We then present the geometry discretisation of

cut elements, and the algorithm for multilevel embedding approach to correctly

integrate implicit boundaries/interfaces. It is then followed by the discussion

1https://www.sofa-framework.org

4

on implementation aspects. Next, a corotational formulation for CutFEM

is briefly introduced. It is followed by the description of how boundary

conditions are applied on implicit surfaces. This section is concluded with the

discussion on solving the system equations with constraints. Numerical results

are presented in Section 3, which demonstrate the capabilities of the approach

through various needle insertion problems into liver and brain models. Finally,

conclusions are drawn in Section 4.

2. Methods

2.1. Problem setting

In the context of needle insertion into soft tissue, we model both, the

needle and the tissue, as dynamic deformable objects. Creating a good quality

conforming mesh, when the tissue is modelled as heterogeneous material with

complex internal structures, or when the tissue has a complex geometry, is a

very complicated and challenging task. To overcome this burden, CutFEM

has been proposed as it does not require conforming meshes. Figure 1a

schematically shows a problem in which an interface is immersed into a

tissue geometry for simulating e.g. a tumour geometry. Figure 1b shows a

problem in which the tissue is simulated with an implicit boundary (i.e. the

computational mesh is not fitted to the tissue geometry).

ū

t̄

λ
−λ

Γu

Γt

Γ
∂Ω

(a) Immersed interface problem.

∂Ω

ū
Γu

t̄
Γt

λ
−λ

Ω

(b) Implicit boundary problem.

Figure 1: Two dimensional representation of the problems studied in the paper.

5

Let Ω represent the tissue domain, and ∂Ω denote its boundary. The

tissue undergoes an imposed displacement ū on the boundary part Γu, and

a traction force t̄ on the boundary part Γt. The governing equation of the

problem reads

divσ + b̂+ λ = ρü in Ω, (1a)

σ · n = t̄ on Γt, (1b)

u = ū on Γu, (1c)

where u is the displacement field of the object, σ is the Cauchy stress tensor,

b̂ is the generalised body force vector, ρ is the mass density, ü is the second

partial derivative of u with respect to time, n denotes the outward unit

normal vector on Γt, and λ denotes the interaction force between the needle

and the tissue. Within the dynamic behaviour consideration, the generalised

body force b̂ is expressed as

b̂ = b̄− cu̇, (2)

where b̄ is the body force per unit volume, −cu̇ expresses the resistance

opposite to the motion velocity u̇, and c is the viscosity parameter which can

be considered to be numerically given value [26], see Section 2.2.

The strain, which is a deformation measure, is expressed through the

displacement as

ε =
1

2

(
∇u+ (∇u)T

)
. (3)

In this paper, we employ a linear elastic material based on corotational

formulation, see also Section 2.4, so that the stress-strain relationship is

expressed as

σ = λdiv(u)I + 2µε, (4)

where λ and µ are the Lamé’s coefficients, and I denotes the identity matrix.

The Lamé’s coefficients are computed from the Young’s modulus E and

6

Poisson’s ratio ν as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (5)

The interaction force λ is defined from the interaction law between the

needle and the tissue. Three type of constraints between the needle and

the tissue are defined during needle insertion simulations: constraint for

puncturing at tissue surface, constraint at needle tip, and constraints along

the needle shaft, see [27, 28] for details. For the sake of completeness, these

constraints are recalled here. When the needle has not been penetrated into

the tissue yet, the contact between them verifies the Kuhn-Tucker condition

in the direction n (normal to tissue surface)

δn ≥ 0; λtsn ≥ 0; δn · λtsn = 0, (6)

where λtsn stands for the normal component of the constraint on the tissue

surface, δn denote the distance between the needle tip and the tissue surface in

the direction n. This condition expresses the fact that the contact force only

exists when the needle tip is in contact with the tissue surface (δn = 0). In the

tangential direction, a frictional contact is expressed through the Coulomb’s

friction law

λtst < µfλ
ts
n (stick); λtst = µfλ

ts
n (slip), (7)

with µf denoting the coefficient of friction. When the normal component of

the constraint is greater than the tissue puncture strength λp0 , which is read

λtsn > λp0 , (8)

the needle tip can penetrate into the tissue.

Once inside the tissue, at the needle tip, a constraint is defined between

the latter and the tissue. This constraint expresses the phenomenon that the

tip is stuck, or can cut and advance inside the tissue. The condition for this

7

constraint reads

λntn < µλntt + λc0 (stick); λntn ≥ µλntt + λc0 (cut and slip), (9)

where n now denotes the normal direction which is the direction of the needle

shaft at the tip, the superscript nt indicates the constraint at the needle tip,

λc0 is the cutting strength of the tissue.

Since the needle shaft should follow the trajectory created inside the tissue

by the needle tip when the latter advances, constraints along the trajectory

are defined between the tissue and the needle shaft which fulfil the Coulomb’s

friction law

λnsn < µλnst (stick); λnsn = µλnst (slide), (10)

where the superscript ns indicates the constraints along the needle shaft.

These three types of constraint are schematically illustrated in Figure 2.

It is noted that the total interaction force between the needle and the tissue,

at each time step, is nothing different from the normal force fn computed at

a cross-section of the needle model which has not been penetrated into the

tissue yet, as illustrated in Figure 2.

n

t

nnn

ttt t

d d d

fn

fn

Figure 2: Schematic representation of constraint at the tissue surface λts (shown by
red colour), constraints defined along needle shaft λns (illustrated by green colour), and
constraint at the needle tip λnt (depicted by blue colour). These constraints are defined on
a corresponding local frame nt, and they are located at the corresponding constraint points
separated by a distance d. The interaction force between the needle and the tissue is simply
represented by the normal force fn of the needle model, computed at the non-penetrated
(according to the tissue) cross-section of the needle shaft.

8

2.2. Weak form and FEM discretisation

For the numerical studies in the following, we employ homogeneous bound-

ary condition on the Dirichlet boundary Γu i.e. ū = 0. We denote the Sobolev

space in three dimensions as (H1(Ω))3, and then define the space of admissible

displacements V as

V = {v ∈ (H1(Ω))3 : v = 0 on Γu}. (11)

To begin with, for the sake of simplicity, we omit the interaction force λ in

Equation (1a), and only consider the tissue/needle without any interaction

with the other. The constraints for the interaction force will be dealt later.

By multiplying Equation (1a) by a test function v ∈ V , and integrating by

parts on the domain Ω, we obtain∫
Ω

divσ · v dΩ +

∫
Ω

b · v dΩ =

∫
Ω

ρü · v dΩ. (12)

After performing the integration by parts to the integrand of the first term

of the left-hand side in Equation (12), and noting that v vanishes on the

boundary part ΓD, we end up with this variational formulation
Find a displacement u ∈ V such that, ∀v ∈ V ,∫

Ω

ρü · v dΩ +

∫
Ω

σ(u) : ε(v) dΩ +

∫
Ω

cu̇ · v dΩ︸ ︷︷ ︸
q(u,v)

=

∫
Ω

b̄ · v dΩ +

∫
Γt

t̄ · v dΓ︸ ︷︷ ︸
l(v)

(13)

To solve the problem described by Equation (13) numerically, we need to

transform the continuous variational problem (13) to a discrete variational

one. This is performed by introducing a finite-dimensional space, denoted by

Vh ⊂ V . It is noted that in the CutFEM framework, for tissue deformation

simulations, the space Vh is defined on the mesh obtained from elements

located inside the tissue surface and from elements cut by the tissue surface,

9

see Section 2.3. The problem now reads{
Find a displacement uh ∈ Vh such that, ∀vh ∈ Vh,

q(uh,vh) = l(vh).
(14)

The space Vh is constructed from a mesh Ωh obtained by spatially discretising

the domain Ω into ne finite elements Ωe, e = 1, 2, . . . , ne, using nn nodes. For

each element Ωe, we define an interpolation function (called shape function),

denoted by N e = [N e
j], j = 1, 2, . . . ,me with me the number of nodes of the

element e. Mathematically, these are linear (P 1) elements in three-dimensions.

By integrating every term of Equation (14), and then assembling for the

whole domain Ωh, we obtain the following discrete problem, in which the

subscript h is dropped for the sake of simplicity (see, e.g., [29, 30])

Mü+Cu̇+Ku = f ext, (15)

where M is the mass matrix, K is the stiffness matrix, C is the damping

matrix, and f ext is the external force vector of the whole system. These

quantities are assembled from the corresponding element quantities: M e =∫
Ωe
N eTρN e dΩ, Ce =

∫
Ωe
N eT cN e dΩ, Ke =

∫
Ωe
BeTEBe dΩ, in which Be

is the strain-displacement matrix computed from the derivative of the shape

function N e, and E is the fourth order tensor describing the stress-strain

relationship σ = E : ε. Moreover, f eext is computed from the body force b̄

and the traction t̄ acting on the element e. In this paper, a lumped mass

matrix is employed, where a diagonal mass matrix (from the mass density

ρ) is integrated over the volume of each element. The stiffness matrix K is

computed using the corotational FEM for both, the needle and the tissue,

see Section 2.4. In practice, it is difficult to determine the damping matrix

C as knowledge of viscous parameter c is lacking. In our simulation, we

employ Rayleigh damping which is a linear combination of stiffness and mass

10

matrices, see [31]

C = αM + βK. (16)

We set α = 0.01, and β = 0.1 in our simulations.

The relation (15) can be rewritten as

Ma = f(x,v), (17)

where x, v = u̇, and a = ü, represent the position, velocity, and acceleration,

respectively, and f(x,v) = f ext −Ku − Cv represents the net force (the

difference of the external and internal forces) applied to the object. It is

noted that we will use corotational formulation, see [32], to better capture

the tissue/needle deformation under large rotational deformation, see also

[33], which often occurs in surgical simulations. Therefore, the system term

Ku is computed from the contribution of each element as will be described

in Section 2.4.

For temporal discretisation of Equation (17), i.e. to numerically solve the

problem in time, an implicit backward Euler scheme [34] is used to discretize

the velocity and position as follows

u̇t+τ = u̇t + τ üt+τ ; ut+τ = ut + τ u̇t+τ , (18)

where τ denotes the time step. Inserting Equation (18) into Equation (17)

yields the final discrete system

(M + τC + τ 2K)︸ ︷︷ ︸
A

dv = τf(xt,vt)− τ 2Kvt︸ ︷︷ ︸
b

(19)

or simply Adv = b, where dv = vt+τ −vt. Note that here we use b to denote

the right-hand side of Equation (19), and it does not mean the generalised

body force described in Equation (1a).

When taking into account the interaction between the needle and the

11

tissue, Equation (19) is rewritten as

Adv = b+HTλ, (20)

in which HT provides the direction of the constraints. The interaction

constraint λ, between the needle and the tissue, is computed using Lagrange

multipliers, see Section 2.6. To understand the matrix H, we suppose that

the needle is going to have contact with the tissue surface at the point

P , as illustrated in Figure 3. When they have been in contact, the relative

displacement between the needle tip Q and the contact point P in the direction

of the contact n vanishes

δn = (uP − uQ) · n = 0. (21)

Furthermore, the displacement at the contact point P on the tissue surface

can be interpolated from the nodal displacements of the corresponding tri-

angle. Also, the displacement of the needle tip can be interpolated from the

corresponding needle element (1D element embedded in 3D space, described

later)

uP =
∑
i

N1
i (P)ui; uQ =

∑
i

N2
i (Q)ui, (22)

where N1
i , and N2

i are the shape functions defined for the elements of the

tissue surface and the needle, respectively. By introducing Equation (22) into

Equation (21), we can write

H1u1 −H2u2 = 0, (23)

in which u1, and u2 are the nodes involving due to contact of the tissue

surface and of the needle, respectively. By a similar approach, we can write

the interaction force due to contact applied to the involving nodes on the

12

tissue and the needle as

H1Tλ = −H2Tλ, (24)

with λ the interaction force in the contact space. It is noted that, when using

CutFEM for simulation of soft tissue, the tissue surface is not conforming

to the computational mesh, the force H1Tλ is again interpolated into the

involving nodes of the computational mesh, see also Section 2.5.

P

Qy

z
x

n

Figure 3: Schematic representation of contact between the needle (shown by red colour)
and the tissue surface (shown by black colour).

After solving (20) for dv, the position and velocity for needle and tissue

are updated as

vt+τ = dv + vt; xt+τ = xt + τvt+τ . (25)

The tissue domain is discretised by a tetrahedron mesh. For the tetrahedra

that intersect with the immersed interface/implicit boundary, an embedded

element set is employed to facilitate the integration, see Section 2.3.

Since the length of the needle is much greater than the dimensions of

its cross section, it can be safely assumed that the cross section, which is

normal to the mid-line (i.e. the neutral line) of the needle, remain planar and

normal to the mid-line during deformation. This makes it possible to use the

Euler-Bernoulli beam theory [35] to describe the behaviour of the needle. The

13

needle is then discretised by one dimensional elements, and suitable shape

functions (C1 continuous, e.g. Hermite) are employed for the interpolation

of the displacement field so that the bending behaviour of the needle is well

taken into account. By this, each node of the elements used for the needle

has 6 degrees of freedom (3 translations and 3 rotations).

2.3. Geometry discretisation for immersed/implicit boundaries

The discretisation technique presented here is applicable for both, fictitious

domain problems [11, 36] and nonconforming interface problems, see, e.g.

[37].

2.3.1. Geometry discretisation

In fictitious domain or nonconforming interface approaches, the boundary

of a given domain is embedded into a computational mesh. The latter is

used to approximate the solution of the governing PDEs. In general, the

boundary surface of the given domain is represented by a very fine mesh, and

the boundary surface mesh and the computational mesh are not assumed

to be conforming. In fictitious domain method, the governing equations

are integrated only on the inside volume (i.e. Ω2, see Figure 4a) bounded

by the surface boundary, whereas in interface problems, during integration,

different mechanical properties are assigned to the outside volume Ω1 and

inside volume Ω2, which are separated by the surface, see Figure 4a. The

domain is discretised by a mesh which is nonconforming with respect to the

surface Γ, as schematically shown in Figure 4b.

In order to accurately integrate on a given domain, the elements are

firstly classified into three categories: cut elements, inside elements (i.e.

inside of Γ) and outside elements (i.e. outside of Γ), see Figure 4c. To

facilitate integration, each cut element is then embedded with a sub-element

set consisting of elements which are conforming with the surface Γ. It is

important to note that the sub-element set is only used for integration purpose,

and since the degrees of freedom of the cut elements are still defined only

14

Ω1

Ω2

Γ

(a) (b) (c)

Figure 4: Two dimensional representation of the problem domains (a), the domains
are nonconformingly discretised with respect to the surface Γ (b), the cut elements are
highlighted by yellow colour whereas all inside elements of the volume Ω2 are highlighted
by red colour, the remaining elements are marked as outside (i.e. outside of Γ) elements
(c).

on their nodes, the sub-element embedding approach does not affect the

approximation properties of the discretisation at all.

To identify the cut elements, we use the level-set method [38]. Figure 5

schematically shows an element which is potentially cut by the interface. To

know if the element is cut by the interface, we define the level-set function

as a signed distance function from the nodes of the element to the interface,

and check the sign of that function. An edge PiPj of the element is cut by

the interface if and only if

δ(Pi) · δ(Pj) < 0, (26)

where Pi and Pj denote the position of the two ends of the edge, and δ is the

signed distance defined from the points to the interface, see Figure 5. The

intersection between the interface and an edge is approximated by the zero

level-set. When Equation (26) is fulfilled, the barycentric coordinate of the

intersection reads

ξ =
|δ(Pi)|

|δ(Pi)|+ |δPj|
, (27)

15

and the position of the intersection is computed as

P = (1− ξ)Pi + ξPj. (28)

P3

P1

P2

P ′1P ′2

n

δ(x)

δ(P1) < 0

δ(P3) < 0

δ(P2) > 0

Figure 5: Schematic representation of intersection computation between a triangle and
a discretised surface. An embedded subtriangulation is performed on the element for
integration purpose.

In general applications, the immersed interface has a complex geometry,

and it is not necessarily a convex surface, see Figure 9a for a liver surface

as an example. Therefore, using the level set function to identify the inside

and outside elements may not be efficient, especially when the elements are

far from the interface. In Section 2.3.4, an efficient algorithm is presented

to identify inside and outside elements when the cut elements are already

marked using the level-set method. Moreover, in Section 2.3.4, the details of

embedding each cut element by a conforming subtriangulation for integration

purpose is presented.

2.3.2. Refinement for invalid cut elements

In Section 2.3.1, we assume that elements of the background mesh are

cut by the surface interface with valid cases: i.e. the intersection between a

tetrahedron element and the surface is either a triangle or a quadrilateral, see

Figure 9b. The number of intersection between the surface and the element

edges is either 3 or 4. However, invalid cutting cases arise when, for example,

16

an edge of an element is cut by the surface with more than one intersection,

or there are only two, or more than 4 edges of a tetrahedron, which are cut

by the surface. These invalid cases can arrive when a coarse background

mesh is used together with a curved interface surface. Figures 6a, 6b, and

6c schematically show, in two dimensions, some invalid cut cases between a

triangle and an interface curve.

To overcome this issue, one solution, as in [39], is to recursively embed

the invalid cut element with a set of sub-elements until all (sub) cut elements

are valid, see Figures 6d, 6e, and 6f. In what follows, this procedure is called

refinement. However, it is important to note that the invalid cut element is not

actually refined since we do not introduce any new degree of freedom into the

background mesh. The number of level of refinement needed to get all valid

cut elements depends not only on the coarseness of the background mesh and

curvature of the interface surface, but also on the relative location between

the cut element and the surface. In Figures 6d, 6e, only one refinement level is

needed in order to get valid cut elements, whereas in Figure 6f, two refinement

levels are necessary. Once we get all valid cut elements, they are embedded

by a conforming subtriangulation as usual for integration reason, described

above. Figures 6g, 6h, and 6i show the conforming embedded elements for

valid cut (sub) elements.

As an example to demonstrate the implemented algorithm which works

on tetrahedra, Figure 7a shows a spherical surface which is immersed into

a background mesh, and valid and invalid cut elements with the spherical

surface are embedded with sub-tetrahedra shown in Figure 7c. Figure 7b

shows four levels of refinement needed to capture the intersections between

an invalid cut tetrahedron and the spherical surface.

2.3.3. Stabilisation by moving background nodes

There may be situations in which an element is cut by the surface with a

very small intersection, as schematically shown in Figure 8a. These situations

can strongly affect the stability of the system matrix. To remedy this stability

17

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Schematic representation of invalid cut elements in two dimensions: (a), (b), (c);
refinements lead to valid cut elements: (d), (e), (f). Valid cut elements are embedded with
a subtetrahedron set (shown in green colour) for integration purpose: (g), (h), (i).

issue, we propose to move the concerned node by a random distance, which

is proportional to the element size, defined by the vector

d = −1

2
β · le · n, (29)

18

(a) (b) (c)

Figure 7: A sphere is immersed into a background mesh (a), an invalid cut element is
embedded with sub-tetrahedra after refinement (b), and finally all, invalid and valid, cut
elements, intersected with the spherical surface, are embedded with sub-tetrahedra, with
or without refinement, respectively, for integration reason (c).

with 0 < β < 1 a random variable, le the element size, and n the outward

unit normal of the surface. In practice, β is set between 0.1 and 0.9 which

can efficiently overcome the issue. This approach is schematically shown in

Figure 8b.

We define a criterion to detect when the intersection between an element

and a surface is small, and thus the moving node approach is applied. This

criterion reads
Vi
Ve

< α, (30)

where Vi is the volume of the smaller part of the element cut by the surface,

and Ve is the total volume of the element. In this study, we set α to 0.05, i.e.,

when the volume of the smaller part of the element is less than 5% of the

total volume of the element, we move the node.

It is important to note that this moving node approach is also applicable

when refinement method described in Section 2.3.2 fails to determine valid

cut elements. In fact, if after five levels of refinement, invalid cut elements are

still present, we simply move, by a distance vector expressed in Equation (29),

the element node which is closest to the intersection between the element and

19

the surface.

(a) (b)

d

Figure 8: When an element is cut by the surface with a small intersection (a), the concerned
node is moved by a distance proportional to the element size (b).

2.3.4. Implementation aspects

To discuss the implementation aspects, as a starting point, we assume

that an arbitrary surface is immersed into a computational background mesh.

An example of a liver surface being immersed in a computational tetrahedron

mesh is shown in Figure 9a.

Since the interface surface is arbitrary, and may be concave, due to the

change of orientation of the outward normal of the surface, it may not be

efficient to use only level-set function to distinguish between three types

of elements described above. Moreover, to mark those elements which are

far from the surface, using the distance function as level-set function, in

combination with outward normal of the surface, raises the ineffectiveness

of the algorithm. To remedy this issue, we mark different types of elements

using the following approach, see also Figure 10a.

Step 1 Using level-set function (as described in Section 2.3.1), mark the cut

elements by checking the potential intersections between each triangle

of the surface mesh with immediate neighboring elements (tetrahedra)

of the triangle. Label these elements by 1,

20

Step 2 Mark the outside elements by propagating the marking procedure,

starting from the elements located at the boundary ∂Ω of the domain

until a cut element is reached. Label these elements by 0,

Step 3 Mark the remaining elements as inside. Label these elements by 2.

(a)

Triangle Quadrilateral

(b)

Figure 9: A liver surface is immersed in a computational tetrahedron mesh (a), and
intersection cases between a surface and a tetrahedron (b).

To identify which tetrahedra are located around each triangle of the

surface, to check for potential intersections in Step 1, and to classify the

tetrahedra located at the boundary domain ∂Ω (for marking procedure to

propagate from) in Step 2, we use the following approach. We first compute

the bounding box of the domain. The bounding box is then subdivided into

subcubes, as shown in Figure 10a. All subcubes which are incident to each

triangle of the surface, see Figure 10b, are then computed. All tetrahedra

which are incident to each subcube are also figured out, see Figure 10c. From

these two data structures, all cut elements can be marked because one can

easily access the tetrahedra around each triangle on the surface to check

for intersections. On the other hand, to propagate marking procedure for

outside elements, all tetrahedra located at the boundary ∂Ω can also be easily

accessed from the boundary subcubes.

Figure 11 shows three type of tetrahedra marked when a liver surface is

immersed in a tetrahedron mesh.

21

∂Ω

2 inside

1 cut

0 outside

(a)

surface

(b) (c)

Figure 10: Subdivision of the bounding box (a), subcubes incident to each triangle of the
interface are computed (b), elements incident to a subcube are marked (c).

(a) (b) (c)

Figure 11: Three type of tetrahedra are marked when a liver surface is immersed in a
computational tetrahedron mesh: cut element (a), inside elements (b) and outside elements
(c).

Once all cut elements are identified, to facilitate the integration, a set

of sub-tetrahedra with conforming nodes (regarding the interface surface) is

embedded in each cut tetrahedron. There are only two kinds of intersection

between a surface and a tetrahedron: a triangular intersection or a quadrilat-

eral intersection, see Figure 9b. Therefore, it is sufficient to employ a set of

eight tetrahedra to embed for each cut tetrahedron, see Figure 12a. This set

is called the template set. Depending on each real case, where the tetrahedron

is cut by a surface with a triangular intersection or a quadrilateral one, the

template set is rotated and then mapped into the cut tetrahedron geometry

using the mapped mesh method [40, 27]. It is noted that the template nodes

22

4, 5, 6, 7, 8, 9, see Figure 12a, are located at the middle of their corresponding

edges. Having determined the real intersections between the cut tetrahedron

and the interface, as described in Section 2.3.1, if any edge is intersected by

the interface surface, the corresponding midpoint is moved to match the real

intersection.

(a) (b)

Figure 12: A set of eight template tetrahedra (a). Depending on whether the intersection
between a surface and a cut tetrahedron is a triangular section or a quadrilateral one, the
template is rotated and then mapped in the cut tetrahedron geometry (b).

Once a template set is embedded for each cut tetrahedron, the last step

consists in computing the relative location (inside or outside) of the sub-

tetrahedra of the template with respect to the interface surface. For this

purpose, we again use the same level-set method which was used for computing

the relative location (inside or outside) of the tetrahedra. Figure 13 shows

the sub-tetrahedra which are marked inside and outside with respect to the

liver surface.

As described in Section 2.3.2, when an invalid cut element arises, it is

recursively embedded with a tetrahedron set from a predefined template. It

results in a tree data structure as schematically shown in Figure 14. To

efficiently handle this type of data structure in implementation, we use a

STL-like C++ tree class http://tree.phi-sci.com/. Using this container,

it allows to recursively add embedded elements as children of the cut element

(regarded as parent) very easily. The container also provides different kinds

23

http://tree.phi-sci.com/

(a) (b)

Figure 13: Once a template tetrahedron set is embedded for each cut tetrahedron, using
the level-set method, sub-tetrahedra are marked as inside (a) or outside (b) with respect
to the interface surface.

of iterators to access desired elements efficiently.

2.3.5. Numerical integration

For those elements that are fully contained in the domain Ω1 or Ω2, see

Figure 4a, integration of element stiffness and mass matrices are performed

normally, as in classical FEM. Only for cut elements, the integration is split

into two parts which are related to the inside and outside sub-tetrahedra

with respect to the interface. A two dimensional schematic representation of

the integration using natural coordinates on reference element is shown in

Figure 15.

The stiffness matrix of the cut element reads

Ke = KΩ1
e + KΩ2

e , (31)

where KΩ1
e and KΩ2

e denote the stiffness contributions of the part belonging

to Ω1 and Ω2, respectively, to the element e. The stiffness matrix on each

part is computed by summing the contributions from their sub-elements. For

24

Figure 14: Schematic representation of a tree data structure obtained when cut elements
are embedded with a subtetrahedron set or when an invalid cut element is recursively
refined to get all valid cut elements before embedding with a subtetrahedron set. The
elements of the background mesh are indexed at level 0, while embedded elements are
indexed at subsequent levels.

example, the stiffness matrix KΩ2
e reads

KΩ2
e =

∑
s∈Ωk

2

∫
Ωk

2

BT
s E2Bs dΩk

2 =
∑
s∈Ωk

2

Np∑
i=1

Bs(ξi)
TE2Bs(ξi)ωidet(J(ξi)), (32)

in which Bs is the strain displacement matrix of the sub-element s, E2 is

the material stiffness tensor of the domain Ω2, ξi and ωi are the quadrature

coordinates and the corresponding weight parameters, Np is the number

of quadrature points used, and J is the Jacobian matrix of the coordinate

transformation. Since the stiffness matrix should be expressed on the cut

(parent) element where the degrees of freedom are defined, we must compute

25

P3

P1

P2

interface
n

Ω2

Ω1

ξ

η

0 1

1

ξ

η

0 1

1

ξi xi
ξ̂i

xi = χ(ξi)
ξ̂i = χ−1

p (xi)

Natural coordinates used
for the cut (parent)
tetrahedron

Natural
coordinates used
for subtetrahedron

Figure 15: Integration on cut elements. Note that the degrees of freedom are only defined
on the element nodes P1, P2 and P3. χ and χp are the coordinate mapping from the
reference element to the physical sub-element, and to the physical cut (parent) element,
respectively.

the strain displacement matrix Bp of the parent element at the quadrature

point ξ̂i corresponding to the physical coordinates xi of the sub-element, see

Figure 15. So, Equation (32) reads

KΩ2
e =

∑
p∈Ωk

2

Np∑
i=1

Bp(ξ̂i)
TE2Bp(ξ̂i)ωidet(J(ξ̂i)), (33)

where Bp is the strain displacement matrix defined on the parent element

P1P2P3.

In this paper, we use linear tetrahedra. Therefore, the strain displacement

matrix is constant across the element volume, and ωi = 1/6, det(J) = 6Vk

with Vk the sub-element volume, see e.g. [41] for more details. Thereby, we

get

KΩ2
e =

∑
Ωk

2

BT
p E2BpVk. (34)

The computation for KΩ1
e can be done using the same concept. Also, inte-

gration over cut elements for the mass matrices is performed by the same

26

procedure.

2.4. Corotational formulation for CutFEM

In many surgical simulations, tissues undergo large displacements and

rotations, see e.g. [42, 43]. Using linear elasticity for modelling of soft tissues

results in artifacts for large rotational deformation [33]. To overcome this

issue, we compute the stiffness matrix using the corotational formulation as in

[32], in which the rigid motion can be extracted from the total finite element

displacements.

Indeed, the system term Ku of Equation (17) is computed by assembling

the element internal force, denoted by f ie. In the following, the superscript i

is dropped for simplicity. The element displacement vector ue is computed

from the rotated current configuration and the initial one as

ue = RT
e xe − x0e, (35)

where Re stands for the element rotation matrix of the element local frame

with respect to its initial orientation, being updated at each time step. The

corotated element internal force is then computed as

fe = ReKeue. (36)

Using polar decomposition, the element rotation matrix Re is computed from

the element deformation gradient Fe as follows

Re ·Ue = Fe, (37)

where Ue is the right stretch tensor that is responsible for deformation. The

element deformation gradient Fe is computed as

Fe = Pn ·N
′
, (38)

27

where Pn is the element nodal coordinates, and N
′

is the derivative of shape

functions. For tetrahedron element, Pn and N
′

are 3× 4 and 4× 3 matrices,

respectively

Pn =

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 , (39)

N
′
=


∂N1

∂x
∂N1

∂y
∂N1

∂z
∂N2

∂x
∂N2

∂y
∂N2

∂z
∂N3

∂x
∂N3

∂y
∂N3

∂z
∂N4

∂x
∂N4

∂y
∂N4

∂z

 . (40)

The corotational formulation is summarised in Figure 16. For elements

cut by the surface, since degrees of freedom are only defined on their nodes

(not on nodes of subelements), see also Section 2.3.5, the element rotation

matrix Re is still computed by the procedure described above.

2.5. Boundary conditions on immersed surfaces

When using immersed surface, one needs to impose Neumann and Dirichlet

boundary conditions on the immersed surface, which does not conform with the

computational mesh. For the Neumann boundary condition, a force applied

on the surface is barycentrically mapped onto the nodes of the element from

the computational mesh which contains the applied point of that force, see

Figure 17.

The concept of this approach is based on the master-slave scheme [44].

In this scheme, the displacement of a point on the surface can be seen as a

mapping of the displacement of the computational mesh, which is given by

uS = JuM , (41)

where uS is the displacement of the surface (considered as slave), uM is the

displacement of the computational mesh (regarded as master), and J denotes

28

RT
e xe − x0e

fe = Ke(R
T
e xe − x0e)

Re

fe = ReKe(R
T
e xe − x0e)

Undeformed configuration Deformed configuration

Figure 16: By using corotational formulation, the rigid body motion is removed from the
element deformation.

P3

P1

P2

Q

P3

P1

P2

Q3

Q2

Q1

(a) (b)

xi

Figure 17: A force Q applied on the surface at point xi (a), is barycentrically mapped into
the nodes of the element from the computational mesh containing xi (b).

the matrix containing barycentric coordinates (the relative coordinates) of

the considered point on the surface with respect to the computational mesh.

29

For example, if the slave point is located at the centroid of the triangle, the

relationship described by Equation (41) is explicitly expressed as

[
uS

vS

]
=

(
1/3 0 1/3 0 1/3 0

0 1/3 0 1/3 0 1/3

)


u1

v1

u2

v2

u3

v3


, (42)

where u and v are two components of the displacement in two dimensional

space, the subscripts 1, 2, and 3 denote three nodes of the triangle.

By applying the principle of virtual work

uTMQM = uTSQS, (43)

where QS and QM are the forces applied on the surface, and the equivalent

forces applied at the computational mesh, respectively. By substituting

Equation (41) into Equation (43), one obtains

QM = JTQS. (44)

Dirichlet boundary conditions at some nodes i on the surface, can be

imposed as uiS = ū, where ū is the prescribed displacement. Taking into

account Equation (41), the Dirichlet boundary condition can be expressed as

JuM = ū. (45)

Using Lagrange multipliers, one can easily impose the prescribed displacement

30

on the computational mesh by solving the system equation set(
A JT

J 0

){
uM

λ

}
=

{
b

ū

}
, (46)

where λ stands for Lagrange multipliers used for Dirichlet boundary condi-

tions.

2.6. Solving system equations with constraints

To solve the system equations with constraints, there are several prominent

approaches, each with their own advantages and disadvantages. The penalty

method, where the respective matrix entries are multiplied by some large

value, suffers from the uncertainty of the penalty parameter (weight). By

using a very small value, the constraints may not be accurately imposed, and

using a high value may lead to an ill-conditioned system (and thus directly af-

fecting the computational time). The Nitsche’s method is problem-dependent

since it requires a penalization parameter for stability. Compared to these

two approaches, the Lagrange multiplier method offers some advantages. It

offers excellent generality and accuracy (no dependence on the problem), and

it is almost insensitive to the user’s choice (no parameter to choose). However,

this method is no panacea either. Using Lagrange multiplier method, we have

to solve for additional unknowns. Nevertheless, in our implementation for La-

grange multiplier method, we do not solve the system matrix with constraints

by inverting the whole system (augmented with Lagrange multipliers) since

it renders the stiffness matrix indefinite. Instead, we solve the constraints in

three steps, as described in the following: i) solve the unconstrained system,

ii) solve for constraints, and iii) update the solution when Lagrange multipliers

are available. These steps are detailed in Algorithm 1. Note that, solving the

system equations by using this approach is also relevant for parallelization,

which is crucial for real-time simulations. We also remark that we do not

employ any stabilization technique in the proposed Lagrange multiplier’s

31

approach, such as that used in [11]. As stated in Section 2.2, for the tissue

we employ C0-nonconforming three-dimensional linear elements, and for the

needle we utilise C1-conforming one-dimensional linear beam elements (see the

end of Section 2.2). The numerical results presented in Section 3, and those

presented in [27, 28], show that the proposed Lagrange multiplier approach,

together with this choice of spaces, delivers converging results, and that it

does not suffer from any locking or instability issues. We intend to conduct a

rigorous mathematical analysis of the proposed method in our future work.

The interaction between the needle (denoted by subscript 1) and the tissue

(denoted by subscript 2) can be expressed by the following equation set
A1 0 HT

1

0 A2 HT
2

H1 H2 0



dv1

dv2

λi

 =


b1

b2

0

 , (47)

where λi is the Lagrange multiplier representing the interaction between the

needle and the tissue.

We can see that, Equation (47) describing the interaction between the

needle and the tissue, and Equation (46) expressing the constraints used for

Dirichlet condition on implicit boundaries, have the same general form(
A JT

J 0

){
x

λ

}
=

{
b

c

}
. (48)

Equation (48) can be reformulated as

x = A−1b︸ ︷︷ ︸
xfree

−A−1JTλ︸ ︷︷ ︸
xcor

, (49a)

JA−1JT︸ ︷︷ ︸
W

λ = J A−1b︸ ︷︷ ︸
xfree

−c, (49b)

in which, xfree can be seen as the solution of the unconstrained system

32

Ax = b, xcor is the corrective solution due to constraints, which can be seen

as the solution of the system Axcor = JTλ. Here W denotes the compliance

matrix. As described in [28], to be able to solve the Equation (48) in real

time, we use the advanced method described in Algorithm 1.

Algorithm 1 Algorithm for solving the system equation with constraints
(Equation (48)). L denotes a lower unit triangular matrix, and D is a diagonal
matrix.

1: LDLT ← decompose(A) . (Cholesky decomposition)
2: xfree ← solveCholesky(Axfree = b) . (Solve unconstrained problem)
3: λ← solve(Wλ = Jxfree − c) . (Solve for constraints, see (49b))
4: xcor ← solveCholesky(Axcor = JTλ) . (Compute corrective solution)
5: x← xfree − xcor . (Update solution, see (49a))

Therefore, three main steps for solving Equation (48) can be summarised

as

Step 1: Decompose the matrix A, and solve for xfree, described by Lines 1

and 2 of Algorithm 1,

Step 2: Use xfree, solve for Lagrange multipliers λ described in Line 3,

Step 3: Solve for the corrective solution xcor, and update the solution x,

described in Lines 4 and 5.

It is noted that the compliance matrix W = JA−1JT is computed from the

decomposition LDLT of the matrix A, and this computation is parallelized

on GPU, as proposed in [6, 28].

3. Results

In this section, we present numerical results with the following goals:

1. To measure the convergence of the proposed implicit boundary method

as compared to its conforming counterpart (classical FEM) in terms of

33

the ability to reproduce the geometry of the organ/domain. This is the

focus of Section 3.1, and partly of Section 3.2.

2. To measure the ability of the implicit boundary method in dealing with

boundary conditions which are not imposed upon the mesh, but upon an

implicitly defined boundary. This is the focus of Section 3.2-Section 3.4.

3.1. Convergence study

Before proceeding to study the convergence of the numerical solution

obtained using CutFEM, we first study how accurately the non-polygonal

geometry is approximated in CutFEM. In order to measure the ability of

the method to represent the exact geometry, we compute the volume of the

geometry discretised by CutFEM. Since the input of the geometry of the organ,

e.g., liver or brain, is given in a discretised form, we compare the volume

obtained using CutFEM against the volume obtained from the discretised

surface. We consider the discretised surface of a spherical geometry with the

diameter d = 1.4. As shown in Figure 18, the volume error, between the

volume obtained from the discretised surface (Ve = 1.40005) and the volume

V of the sphere discretised by CutFEM (based on the embedded discretised

surface), converges with an optimal rate, which is approximatively the same

rate as the L2 norm of the displacement error.

In order to verify the reliability of the solution obtained using CutFEM,

now we study the convergence of the solution under mesh refinement. We

consider two cases, a tensile test and a bending test. As shown in Figure 19, a

beam is studied with a spherical surface being embedded inside. As mentioned

above, the spherical surface, with the diameter d = 1.4, is given in the

discretised form. At one end, the beam is subjected to a uniform horizontal

pressure (tensile) or a uniform vertical pressure (bending), while the other

end is clamped. For the convergence study, the linear elastic constitutive law

is used. The mechanical properties, namely, the Young’s modulus and the

Poisson’s ratio, are denoted by E and ν, respectively. For the material outside

34

1

0.68

Figure 18: Convergence of the volume of the sphere, discretised by CutFEM from the
embedded discretised surface, as compared to the exact volume obtained from the discretised
surface (Ve = 1.40005), under background mesh refinement.

the sphere we denote them by E1, ν1, and for the material inside the sphere

we denote them by E2 and ν2. The dimension of the beam is 6×2×2 mm. In

order to compare the convergences rate of the tests with the theoretical ones,

we use the same mechanical properties for the material inside and outside

the sphere surface. We set thus E1 = E2 = 1000 MPa, and ν1 = ν2 = 0.1.

The convergence is studied by computing the solution of the tensile and

bending tests employing the tetrahedral meshes consisting of 7 × 3 × 3,

13× 5× 5, 25× 9× 9, and 49× 17× 17 nodes. We propose to use the solution

from the classical FEM when employing a very fine mesh (97 × 33 × 33

nodes) as the reference solution. We then study the convergence of the error

between the CutFEM solution and the reference FEM solution. This error is

measured by using both, the L2 norm and the energy norm. The L2 norm of

the displacement error reads

‖η‖L2 =

√∫
Ω

(uh − ur)2 dΩ∫
Ω
u2
r dΩ

, (50)

35

where uh denotes the displacement solution of the CutFEM, and ur denotes

the reference solution of the classical FEM. The energy norm is defined as

‖η‖Energy =

√∫
Ω

(σh − σr) · (εh − εr) dΩ∫
Ω
σr · εr dΩ

, (51)

where σh and εh denote the stress and strain of the CutFEM, respectively,

and σr and εr denote their reference values obtained from the classical FEM

on a very fine mesh.

Figure 19: A beam is clamped at the right end (marked by the red points), and is subjected
to, at the left end (marked by the green triangles), a uniform horizontal pressure (the
tensile case) or a uniform vertical pressure (for bending case). A sphere surface is immersed
inside the beam geometry.

1

0.64

1
0.3

(a)

1
0.66

1

0.3

(b)

Figure 20: Convergence rates under mesh refinement for the tensile test (a), and for the
bending test (b).

For tensile and bending tests, Figure 20 shows the convergence rates in

36

the L2 norm and the energy norm versus the number of DOFs. It is observed

that for both tests, the rates of convergence of the L2 norm and the energy

norm agree well with the theoretical rates. Indeed, for 3D problems using

linear elements, the L2 norm of the displacement error is of order O(N−2/3),

while the energy norm converges with an order of O(N−1/3), where N denotes

the total number of the degrees of freedom.

3.2. A comparison with FEM

The aim is to compare displacement simulation results obtained from the

CutFEM using non-conforming meshes with those obtained from the classical

FEM using conforming meshes. We carry out the study on two different

geometries: the simple beam geometry with an immersed sphere as shown in

Figure 19, and the more complex liver geometry as shown in Figure 9a.

For the beam geometry, the dimensions and the mechanical properties

are same as those used in Section 3.1. The displacement measured at the

centre of the left end of the beam is employed to compare between the

CutFEM (where the sphere is modelled implicitly) and the classical FEM.

The beam is subjected to a uniformly distributed pressure q = −5 N/mm2

in the vertical direction at the left end, whereas it is clamped at the right

end. Under various mesh refinements, Figure 21 shows the displacement of

the point during simulations using the CutFEM and the classical FEM. It is

observed that, with the same number of degrees of freedom used, the results

obtained from the CutFEM perfectly agree with that of the classical FEM.

Also, under mesh refinement, the displacement asymptotically convergences

to the solution of the fine mesh.

For the liver, due to its complex geometry, in order to apply the same

boundary conditions acting on different conforming meshes (used for FEM),

and on different non-conforming ones (used for the CutFEM), a homogeneous

Dirichlet boundary condition is implicitly applied to the model through the

points located on an imaginary cutting section, shown by the points in blue

colour in Figure 22, whereas a uniformly distributed pressure q = −1 N/mm2

37

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

D
is

pl
ac

em
en

t

Step

CutFEM, 1334 DOFs
FEM, 1334 DOFs

CutFEM, 3701 DOFs
FEM, 3701 DOFs

CutFEM, 7133 DOFs
FEM, 7133 DOFs

CutFEM, 10215 DOFs
FEM, 10215 DOFs

Figure 21: Displacement (in mm) measured at the centre of the left end of the beam during
simulations by the CutFEM and the classical FEM.

is implicitly applied to the model in the vertical direction through the mesh

shown by green colour in Figure 22. The displacement is measured at the point

inside the liver shown by the grey colour in Figure 22. For these simulations,

Young’s modulus and Poisson’s ratio are 1000, and 0.4 respectively.

Figure 23 shows the displacement of the point shown in Figure 22. It

is observed that, at the same mean size of the elements used, the results

obtained from the CutFEM agrees well with those of the classical FEM. It is

noted that the number of degrees of freedom is not used as the same input

during the comparison between the CutFEM and the classical FEM since,

with respect to the liver geometry, it does not characterise the same mesh

resolution between conforming mesh (used for FEM) and the non-conforming

mesh (used for CutFEM). Instead, the mean element size l is employed (see

Figure 23).

We now briefly discuss the computational cost of CutFEM vs FEM. We

38

Figure 22: Liver is implicitly clamped at the points shown in blue colour, and is implicitly
subjected to a uniformly distributed vertical pressure acting on the mesh shown in green
colour. During the simulations, the displacement is measured at the point shown by the
grey colour.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70

D
is

pl
ac

em
en

t
[×

10
0]

Step

FEM, 𝑙 = 0.0201869
CutFEM, 𝑙 = 0.0210735

FEM, 𝑙 = 0.0118351
CutFEM, 𝑙 = 0.0117359

FEM, 𝑙 = 0.00635283
CutFEM, 𝑙 = 0.0059953

FEM, 𝑙 = 0.00362476
CutFEM, 𝑙 = 0.00343567

Figure 23: Displacement measured (in cm) at the point shown in Figure 22 during
simulations by the CutFEM, and by FEM. Different mesh resolutions are denoted by
different values of l.

consider the liver model for this comparison. For the simulation performed

by FEM using a mesh with the mean mesh size l = 0.00635283, compared to

39

that performed by CutFEM using a mesh with l = 0.0059953, we observe a

very good agreement on the displacement, see Figure 23. However, the use of

CutFEM is more advantageous than the use of FEM since the computational

times needed to solve the system equation by using FEM and CutFEM are

983.41 ms and 429.85 ms, respectively. Thus, for this mesh size, CutFEM is

faster than FEM by a factor of approximately 2.3.

3.3. Needle insertion simulations

Having established the accuracy and reliability of CutFEM simulations as

compared to the classical FEM, we now employ the CutFEM approach for

needle insertion problems.

3.3.1. Immersed interface

The needle, which is initially inclining at an angle of 3.5 degrees, is

inserted into a phantom tissue with a simple geometry, as shown in Figure 24.

We simulate a spherical inclusion (can be considered as a tumor) which is

implicitly immersed in the tissue phantom. The dimension of the tissue

phantom is 6 × 2 × 2, while the radius of the inclusion is 0.7. The length

of the needle is 2.8, and its cross section radius is 0.05. Young’s modulus

and Poisson’s ratio of the needle is set to 20 000 and 0.2, respectively. These

parameters for the phantom tissue are E1 = 1 000 and ν = 0.4. The Poisson’s

ratio of the inclusion is also set to 0.4, however, in order to investigate the

effect of the inclusion stiffness on the needle-tissue interaction force profile,

the Young’s modulus of the inclusion E2 is varied with respect to that of the

phantom tissue by a factor of 1, 2, 4 and 8. The penetration strength at the

tissue surface is set to 1, and the frictional coefficient between the tissue and

the needle shaft is set to 0.5.

Figure 25 shows the needle-tissue interaction force with respect to the

displacement of the needle tip, with different ratios E2/E1. It is observed that

when the needle tip reaches the tissue surface, the interaction force between the

needle and the tissue occurs. This interaction force continuously increases and

40

Figure 24: Schematic illustration of a needle insertion simulation into a simple tissue
geometry. The needle is initially inclining at an angle of 3.5 degrees.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5

Fo
rc

e

Displacement

E2 = E1
E2 = 2E1
E2 = 4E1
E2 = 8E1

Figure 25: Force displacement curves, with varying Young’s modulus ratio E2/E1, when
the needle is inserted into the soft tissue model. When the needle tip displacement reaches
about 3, the needle is retracted, and thus generating negative needle-tissue interaction
force; at the stage when the needle is completely retracted from the tissue, the interaction
force vanishes.

when it reaches the tissue surface penetration strength, the needle penetrates

into the tissue. It also reveals that the closer to the inclusion the needle tip

is, the more different the interaction force profiles are obtained when the

ratio E2/E1 is varied. This is indeed logical due to the higher stiffness of the

inclusion as compared to that of the tissue. When the displacement of the

needle tip reaches 3, the needle is continuously retracted until completely out

41

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5

Fo
rc

e

Displacement

coarse
finer
even finer

Figure 26: Force displacement curves, with varying mesh size (coarse mesh: 498 DOFs,
finer mesh: 1575 DOFs, even finer mesh: 3183 DOFs) but for fixed Young’s modulus ratio
E2/E1 = 8, when the needle is inserted into the soft tissue model.

of the tissue. During retraction process, the interaction force changes its sign,

and is negative, as observed in Figure 25. The same conclusion about the

effect of inclusion-tissue stiffness ratio on the interaction force profile can be

drawn during the retraction phase as during the insertion stage.

In Figure 26, we present the results of mesh refinement study during

needle-tissue interaction, while keeping the ratio E2/E1 = 8 fixed. The curve

profiles are qualitatively the same as of those curves presented in Figure 25.

Moreover, it shows that when the mesh is refined, the proposed Lagrange

multiplier method delivers convergent results (the difference between the red

and green curves is smaller than that between the blue and red curves).

3.3.2. Fictitious boundary

We now consider a comparison between a needle insertion simulation into

a liver using implicit/fictitious boundaries (CutFEM), and with those using

42

explicit/conforming boundaries (classical FEM). The goal is to show the

performance of the CutFEM approach in dealing with Dirichlet boundary

conditions defined implicitly on the surface, and in dealing with the interaction

between the needle tip and the implicit surface (a kind of Neumann boundary

conditions), as compared to those dealt explicitly by FEM. For the liver,

Young’s modulus and Poisson’s ratio are set as 1 200 kPa and 0.4, respectively.

For the needle, the same parameters as above are used. The background mesh

used for simulation with CutFEM, and the boundary conditions applied to

the liver surface, are shown in Figure 27. The point, where the displacement

is measured during the insertion and the retraction of the needle, is also

shown in Figure 27.

Figure 27: Background mesh used for the simulation of the liver behaviour during needle
insertion and retraction. Some constraints, implicitly defined on the liver surface using
Lagrange multipliers, are shown by the blue points. During the simulation, the displacement
is measured at a point located near the needle shaft.

As can be seen in Figure 28, the displacement results obtained by CutFEM

agree well with those obtained by classical FEM.

3.4. Electrode implantation simulation in Deep Brain Stimulation

The CutFEM is now employed to simulate an electrode lead implantation,

using in Deep Brain Stimulation (DBS) procedure. We also take into account

43

−0.1

−0.05

0

0.05

0.1

0.15

0 100 200 300 400 500 600

D
is

pl
ac

em
en

t
[c

m
]

Step

CutFEM
FEM

Figure 28: Displacement measured at the point during insertion and retraction, using
CutFEM and standard FEM. The vertical dash line indicates the moment when the needle
is starting to be retracted.

the brain shift phenomenon, which occurs due to the leak of cerebro-spinal

fluid when a craniotomy is performed. The goal of the simulation is to insert

an electrode inside the brain until it reaches the target, e.g., subthalamic

nucleus (STN) area for treatment of Parkinson’s disease. To do that, a

cannula is inserted together with the electrode lead through a hole drilled

in the skull. When they reach the STN area, the cannula is retracted while

keeping the electrode lead inside. As in [43], frictional interactions between

the brain tissue with the cannula and electrode lead are simulated. Young’s

modulus of 6 kPa and Poisson’s ratio of 0.45 are set to the brain tissue. The

cannula and electrode lead are set with Young’s modulus of 10 GPa, and with

Poisson’s ratio of 0.3.

The input background mesh used for the CutFEM simulation of brain

behaviour is shown in Figure 29a. We consider simple boundary conditions

for the brain tissue. Indeed, brain tissue around the optic nerves and the

44

brainstem are considered to be clamped. Moreover, bilateral interaction

constraints are considered between the brain surface and the skull. It is noted

that these constraints are implicitly applied on the brain surface, as described

in Section 2.5. During simulation, the displacement is measured at the point

in the STN area as shown in Figure 29b.

(a) (b)

Figure 29: Input background mesh used for simulation of brain behaviour (a); during
simulation, the brain has interaction with the skull, and the displacement is measured at
the point shown in green colour (b).

Figure 30 shows the brain deformation at different stages of the simulation.

The horizontal lines in Figure 30 help to show the differences of the brain

deformation due to brain shift, and due to cannula insertion. The displacement

of the STN target due to brain shift, and due to cannula insertion and full

retraction, is presented in Figure 31. It reveals that the brain shift is the

origin of the STN displacement which is stabilised about 1.1 cm. When

the cannula is inserted inside the brain tissue, due to frictional interaction

between them, the displacement of the STN target increases. The cannula is

undergoing retraction immediately after the cannula tip has reached the STN

45

target. This induces the decreasing of the STN displacement before the STN

target is stabilised around the location, where the STN was found after the

brain shift stage.

Figure 30: Brain at initial state (a), brain deformation due to brain shift (b), brain
deformation due to cannula insertion (c). The blue horizontal line helps to visualise the
brain deformation due to brain shift occurring after a craniotomy, whereas the green line
helps to visualise the brain deformation due to the cannula insertion.

These results show that the CutFEM, even with a nonconforming mesh,

is able to simulate the behaviour of the brain while it is in interactions with

the skull, the cannula, and the electrode lead. This makes the discretisation

as independent as possible from the geometric description. We believe that

with such a tool, the patient-specific simulations (in terms of geometries,

for instance) can be performed, particularly in the context of real-time

simulations.

4. Conclusions

A corotational formulation of the CutFEM has been proposed. Using

Lagrange multipliers, we have shown the methods to implicitly apply Dirichlet

boundary conditions on the immersed surface, which is not conformed to the

background mesh used for the simulations. We verified the implementation

by studying convergences through a tensile test and a bending one. We also

46

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300 350 400

D
is

pl
ac

em
en

t
[m

]

Step

B
ra

in
 s

h
if
t

st
a
g
e

C
a
n
n

u
la

in
se

rt
io

n

C
a
n
n

u
la

 r
e
tr

a
ct

io
n

Figure 31: Displacement of the STN target due to brain shift, and due to cannula insertion
and retraction.

demonstrated the performance of the CutFEM, compared to the classical

FEM, through needle insertion problems in medical simulations (e.g. for

biopsy or brachytherapy). We have shown that the interaction between the

tissue surface being implicitly defined, and the needle tip, to account for the

penetration phenomenon of the latter to the former (a kind of Neumann

boundary conditions) during simulations, is working properly, and refers

to the real-life situation. Also, by employing the CutFEM, it makes the

discretisation as independent as possible from the geometric description, and

also minimises the complexity of mesh generation, especially for complex

geometries. Because of the constraint of computational time in real-time

simulation context, while still preserving the geometric details, the use of

coarse meshes becomes possible by using CutFEM.

Two kinds of applications using the CutFEM have been studied in this

paper: i) immersed interfaces, and ii) fictitious boundaries. The immersed

interfaces are useful for simulations of heterogeneity of tissues, e.g., when

47

tumors or internal structures of tissues are considered. Simulations using

fictitious boundaries are suitable for applications in which the tissue geometries

are complex, and by using the CutFEM, it is possible to integrate only the

material inside the tissue surface while using a nonconforming mesh to its

boundaries.

In the presented work, for the discretisation of simulated domains, we

limited ourselves to linear elements. Another limitation is the embedding of

linear subelements for the cut elements to facilitate numerical integration.

By doing this, we still cannot precisely capture the surface geometries. For

more accurate integration of implicit geometries, one can use higher order

elements, as proposed in [45, 39]. We note that the isogeometric analysis,

in the spirit of integrating finite element analysis and CAD design tools by

using higher-order spline/NURBS basis functions from CAD geometry, could

also be used for surgical simulations. We intend to study this approach in

our future work. The interested readers are referred to [46] for pioneering

work on isogeometric analysis, and a very recent work [47] on recovery-based

error estimation and adaptivity over hierarchical T-meshes.

Acknowledgements

Stéphane Bordas, Satyendra Tomar and Huu Phuoc Bui thank partial

funding for their time provided by the European Research Council Starting In-

dependent Research Grant (ERC Stg grant agreement No. 279578) RealTCut

“Towards real time multiscale simulation of cutting in non-linear materials

with applications to surgical simulation and computer guided surgery”. We

are also grateful for the funding from the Luxembourg National Research

Fund (INTER/FWO/15/10318764).

The funding from the University of Strasbourg Institute for Advanced

Study (BPC 14/Arc 10138) for the first author is gratefully acknowledged.

Huu Phuoc Bui would particularly like to thank Dr. Davide Baroli, Dr. Li-

onel Untereiner, Dr. Paul Hauseux, Prof. Thomas-Peter Fries, Dr. Franz

48

Chouly, Prof. Alexei Lozinski, and Prof. Stéphane Cotin for many helpful

discussions.

References

[1] S. R. Musse, D. Thalmann, Hierarchical model for real time simulation of

virtual human crowds, IEEE Transactions on Visualization and Computer

Graphics 7 (2) (2001) 152–164. doi:10.1109/2945.928167.

[2] M. Müller, L. McMillan, J. Dorsey, R. Jagnow, Real-Time Simulation of

Deformation and Fracture of Stiff Materials, Springer Vienna, Vienna,

2001, pp. 113–124. doi:10.1007/978-3-7091-6240-8_11.

[3] S. Cotin, H. Delingette, N. Ayache, Real-time elastic deformations of soft

tissues for surgery simulation, IEEE Transactions on Visualization and

Computer Graphics 5 (1) (1999) 62–73. doi:10.1109/2945.764872.

[4] S. Cotin, H. Delingette, N. Ayache, A hybrid elastic model for real-

time cutting, deformations, and force feedback for surgery training

and simulation, The Visual Computer 16 (8) (2000) 437–452. doi:

10.1007/PL00007215.

[5] C. Monserrat, U. Meier, M. Alcaiz, F. Chinesta, M. Juan, A new approach

for the real-time simulation of tissue deformations in surgery simulation,

Computer Methods and Programs in Biomedicine 64 (2) (2001) 77 – 85.

doi:https://doi.org/10.1016/S0169-2607(00)00093-6.

[6] H. Courtecuisse, J. Allard, P. Kerfriden, S. P. Bordas, S. Cotin, C. Duriez,

Real-time simulation of contact and cutting of heterogeneous soft-tissues,

Medical Image Analysis 18 (2) (2014) 394 – 410.

[7] H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Y. Lee, S. Cotin,

GPU-based real-time soft tissue deformation with cutting and haptic

feedback, Progress in Biophysics and Molecular Biology 103 (2) (2010)

49

http://dx.doi.org/10.1109/2945.928167
http://dx.doi.org/10.1007/978-3-7091-6240-8_11
http://dx.doi.org/10.1109/2945.764872
http://dx.doi.org/10.1007/PL00007215
http://dx.doi.org/10.1007/PL00007215
http://dx.doi.org/https://doi.org/10.1016/S0169-2607(00)00093-6

159 – 168, special Issue on Biomechanical Modelling of Soft Tissue Motion.

doi:https://doi.org/10.1016/j.pbiomolbio.2010.09.016.

[8] S. Niroomandi, I. Alfaro, D. Gonzlez, E. Cueto, F. Chinesta, Real-time

simulation of surgery by reduced-order modeling and x-fem techniques,

International Journal for Numerical Methods in Biomedical Engineering

28 (5) (2012) 574–588. doi:10.1002/cnm.1491.

[9] C. Quesada, D. Gonzlez, I. Alfaro, E. Cueto, F. Chinesta, Computational

vademecums for real-time simulation of surgical cutting in haptic envi-

ronments, International Journal for Numerical Methods in Engineering

108 (10) (2016) 1230–1247. doi:10.1002/nme.5252.

[10] S. Misra, K. Macura, K. Ramesh, A. Okamura, The importance of organ

geometry and boundary constraints for planning of medical interventions,

Medical Engineering & Physics 31 (2) (2009) 195 – 206. doi:https:

//doi.org/10.1016/j.medengphy.2008.08.002.

[11] E. Burman, P. Hansbo, Fictitious domain finite element methods using

cut elements: I. A stabilized Lagrange multiplier method, Computer

Methods in Applied Mechanics and Engineering 199 (41) (2010) 2680–

2686. doi:10.1016/j.cma.2010.05.011.

[12] E. Burman, P. Hansbo, Fictitious domain finite element methods us-

ing cut elements: II. A stabilized Nitsche method, Applied Numerical

Mathematics 62 (4) (2012) 328–341.

[13] E. Burman, S. Claus, P. Hansbo, M. G. Larson, A. Massing, CutFEM:

Discretizing geometry and partial differential equations, International

Journal for Numerical Methods in Engineering 104 (7) (2015) 472–501.

doi:10.1002/nme.4823.

[14] T. Belytschko, T. Black, Elastic crack growth in finite elements with mini-

mal remeshing, International Journal for Numerical Methods in Engineer-

50

http://dx.doi.org/https://doi.org/10.1016/j.pbiomolbio.2010.09.016
http://dx.doi.org/10.1002/cnm.1491
http://dx.doi.org/10.1002/nme.5252
http://dx.doi.org/https://doi.org/10.1016/j.medengphy.2008.08.002
http://dx.doi.org/https://doi.org/10.1016/j.medengphy.2008.08.002
http://dx.doi.org/10.1016/j.cma.2010.05.011
http://dx.doi.org/10.1002/nme.4823

ing 45 (5) (1999) 601–620. doi:10.1002/(SICI)1097-0207(19990620)

45:5<601::AID-NME598>3.0.CO;2-S.

[15] N. Moës, J. Dolbow, T. Belytschko, A finite element method for

crack growth without remeshing, International Journal for Numerical

Methods in Engineering 46 (1) (1999) 131–150. doi:10.1002/(SICI)

1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.

[16] T. Strouboulis, I. Babuka, K. Copps, The design and analysis of

the generalized finite element method, Computer Methods in Ap-

plied Mechanics and Engineering 181 (1) (2000) 43 – 69. doi:https:

//doi.org/10.1016/S0045-7825(99)00072-9.

[17] G. Tabor, P. G. Young, T. B. West, A. Benattayallah, Mesh con-

struction from medical imaging for multiphysics simulation: Heat

transfer and fluid flow in complex geometries, Engineering Appli-

cations of Computational Fluid Mechanics 1 (2) (2007) 126–135.

arXiv:http://dx.doi.org/10.1080/19942060.2007.11015187, doi:

10.1080/19942060.2007.11015187.

[18] M. Moumnassi, S. Belouettar, E. Béchet, S. P. Bordas, D. Quoirin,

M. Potier-Ferry, Finite element analysis on implicitly defined domains:

An accurate representation based on arbitrary parametric surfaces, Com-

puter Methods in Applied Mechanics and Engineering 200 (5) (2011) 774

– 796. doi:https://doi.org/10.1016/j.cma.2010.10.002.

[19] G. F. Moita, M. A. Crisfield, A finite element formulation for 3-D continua

using the co-rotational technique, International Journal for Numerical

Methods in Engineering 39 (22) (1996) 3775–3792. doi:10.1002/(SICI)

1097-0207(19961130)39:22<3775::AID-NME23>3.0.CO;2-W.

[20] S. Suwelack, S. Röhl, R. Dillmann, A.-L. Wekerle, H. Kenngott, B. Müller-

Stich, C. Alt, S. Speidel, Quadratic Corotated Finite Elements for Real-

51

http://dx.doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/https://doi.org/10.1016/S0045-7825(99)00072-9
http://dx.doi.org/https://doi.org/10.1016/S0045-7825(99)00072-9
http://arxiv.org/abs/http://dx.doi.org/10.1080/19942060.2007.11015187
http://dx.doi.org/10.1080/19942060.2007.11015187
http://dx.doi.org/10.1080/19942060.2007.11015187
http://dx.doi.org/https://doi.org/10.1016/j.cma.2010.10.002
http://dx.doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3775::AID-NME23>3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3775::AID-NME23>3.0.CO;2-W

Time Soft Tissue Registration, Springer New York, New York, NY, 2012,

pp. 39–50. doi:10.1007/978-1-4614-3172-5_6.

[21] N. Haouchine, J. Dequidt, I. Peterlik, E. Kerrien, M. O. Berger, S. Cotin,

Image-guided simulation of heterogeneous tissue deformation for aug-

mented reality during hepatic surgery, in: 2013 IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), 2013, pp. 199–

208. doi:10.1109/ISMAR.2013.6671780.

[22] J. Dequidt, E. Coevoet, L. Thins, C. Duriez, Vascular Neurosurgery

Simulation with Bimanual Haptic Feedback, in: F. Jaillet, F. Zara,

G. Zachmann (Eds.), Workshop on Virtual Reality Interaction and

Physical Simulation, The Eurographics Association, 2015. doi:10.2312/

vriphys.20151337.

[23] K. Sase, A. Fukuhara, T. Tsujita, A. Konno, GPU-accelerated surgery

simulation for opening a brain fissure, ROBOMECH Journal 2 (1) (2015)

17. doi:10.1186/s40648-015-0040-0.

[24] F. Morin, H. Courtecuisse, I. Reinertsen, F. L. Lann, O. Palombi,

Y. Payan, M. Chabanas, Brain-shift compensation using intraopera-

tive ultrasound and constraint-based biomechanical simulation, Medi-

cal Image Analysis 40 (Supplement C) (2017) 133 – 153. doi:https:

//doi.org/10.1016/j.media.2017.06.003.

[25] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,

H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, S. Cotin, SOFA: A

Multi-Model Framework for Interactive Physical Simulation, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 283–321. doi:10.1007/

8415_2012_125.

[26] A. K. Chopra, Dynamics of Structures, Prentice-Hall international series

in civil engineering and engineering mechanics, Pearson Education, 2007.

52

http://dx.doi.org/10.1007/978-1-4614-3172-5_6
http://dx.doi.org/10.1109/ISMAR.2013.6671780
http://dx.doi.org/10.2312/vriphys.20151337
http://dx.doi.org/10.2312/vriphys.20151337
http://dx.doi.org/10.1186/s40648-015-0040-0
http://dx.doi.org/https://doi.org/10.1016/j.media.2017.06.003
http://dx.doi.org/https://doi.org/10.1016/j.media.2017.06.003
http://dx.doi.org/10.1007/8415_2012_125
http://dx.doi.org/10.1007/8415_2012_125

[27] H. P. Bui, S. Tomar, H. Courtecuisse, S. Cotin, S. P. A. Bordas, Real-time

error control for surgical simulation, IEEE Transactions on Biomedical

Engineering 65 (3) (2018) 596–607. doi:10.1109/TBME.2017.2695587.

[28] H. P. Bui, S. Tomar, H. Courtecuisse, M. Audette, S. Cotin, S. P. Bordas,

Controlling the error on target motion through real-time mesh adaptation:

Applications to deep brain stimulation, International Journal for Nu-

merical Methods in Biomedical Engineering e2958–n/aE2958 cnm.2958.

doi:10.1002/cnm.2958.

URL http://dx.doi.org/10.1002/cnm.2958

[29] O. Zienkiewicz, R. Taylor, The Finite Element Method: Solid mechanics,

Referex collection.Mecánica y materiales, Butterworth-Heinemann, 2000.

[30] G. R. Liu, S. S. Quek, Chapter 3 - Fundamentals for Finite Ele-

ment Method, in: G. R. Liu, , S. S. Quek (Eds.), The Finite Ele-

ment Method (Second Edition), second edition Edition, Butterworth-

Heinemann, Oxford, 2014, pp. 43–79. doi:http://dx.doi.org/10.

1016/B978-0-08-098356-1.00003-5.

[31] O. Zienkiewicz, R. Taylor, J. Zhu, The finite element method: Its basis

and fundamentals, Vol. 1, Elsevier, 2013.

[32] C. Felippa, B. Haugen, A unified formulation of small-strain corotational

finite elements: I. theory, Computer Methods in Applied Mechanics and

Engineering 194 (2124) (2005) 2285 – 2335.

[33] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler, Sta-

ble real-time deformations, in: Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, 2002, pp.

49–54.

[34] D. Baraff, A. Witkin, Large steps in cloth simulation, in: Proceedings of

SIGGRAPH, 1998, pp. 43–54.

53

http://dx.doi.org/10.1109/TBME.2017.2695587
http://dx.doi.org/10.1002/cnm.2958
http://dx.doi.org/10.1002/cnm.2958
http://dx.doi.org/10.1002/cnm.2958
http://dx.doi.org/10.1002/cnm.2958
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-08-098356-1.00003-5
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-08-098356-1.00003-5

[35] S. Timoshenko, History of Strength of Materials: With a Brief Account

of the History of Theory of Elasticity and Theory of Structures, Dover

Civil and Mechanical Engineering Series, Dover Publications, 1953.

[36] F. Sotiropoulos, X. Yang, Immersed boundary methods for simulating

fluidstructure interaction, Progress in Aerospace Sciences 65 (2014) 1–21.

doi:10.1016/j.paerosci.2013.09.003.

[37] F. Qin, J. Chen, Z. Li, M. Cai, A Cartesian grid nonconforming immersed

finite element method for planar elasticity interface problems, Computers

& Mathematics with Applications 73 (3) (2017) 404–418. doi:10.1016/

j.camwa.2016.11.033.

[38] J. Sethian, Level Set Methods and Fast Marching Methods: Evolving

Interfaces in Computational Geometry, Fluid Mechanics, Computer

Vision, and Materials Science, Cambridge Monographs on Applied and

Computational Mathematics, Cambridge University Press, 1999.

[39] T.-P. Fries, S. Omerovi, Higher-order accurate integration of implicit

geometries, International Journal for Numerical Methods in Engineering

106 (5) (2016) 323–371. doi:10.1002/nme.5121.

[40] N. M. Grosland, R. Bafna, V. A. Magnotta, Automated hexahedral

meshing of anatomic structures using deformable registration, Com-

puter Methods in Biomechanics and Biomedical Engineering 12 (1)

(2009) 35–43, pMID: 18688764. arXiv:http://dx.doi.org/10.1080/

10255840802136143, doi:10.1080/10255840802136143.

[41] G. Dhatt, G. Touzot, E. Lefranois, Finite Element Method, John Wiley

& Sons, Inc., 2012. doi:10.1002/9781118569764.

[42] R. Plantefève, I. Peterlik, N. Haouchine, S. Cotin, Patient-specific

biomechanical modeling for guidance during minimally-invasive hep-

54

http://dx.doi.org/10.1016/j.paerosci.2013.09.003
http://dx.doi.org/10.1016/j.camwa.2016.11.033
http://dx.doi.org/10.1016/j.camwa.2016.11.033
http://dx.doi.org/10.1002/nme.5121
http://arxiv.org/abs/http://dx.doi.org/10.1080/10255840802136143
http://arxiv.org/abs/http://dx.doi.org/10.1080/10255840802136143
http://dx.doi.org/10.1080/10255840802136143
http://dx.doi.org/10.1002/9781118569764

atic surgery, Annals of Biomedical Engineering 44 (1) (2016) 139–153.

doi:10.1007/s10439-015-1419-z.

[43] H. P. Bui, S. Tomar, H. Courtecuisse, M. Audette, S. Cotin, S. P. Bordas,

Controlling the error on target motion through real-time mesh adaptation:

Applications to deep brain stimulation, International Journal for Nu-

merical Methods in Biomedical Engineering e2958–n/aE2958 cnm.2958.

doi:10.1002/cnm.2958.

[44] T. Rabczuk, R. Gracie, J.-H. Song, T. Belytschko, Immersed particle

method for fluidstructure interaction, International Journal for Numerical

Methods in Engineering 81 (1) (2010) 48–71. doi:10.1002/nme.2670.

[45] M. Moumnassi, S. Bordas, R. Figueredo, P. Sansen, Analysis using

higher-order xfem: implicit representation of geometrical features from

a given parametric representation, Mechanics & Industry 15 (5) (2014)

443–448. doi:10.1051/meca/2014033.

[46] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite

elements, NURBS, exact geometry and mesh refinement, Computer

Methods in Applied Mechanics and Engineering 194 (39) (2005) 4135 –

4195. doi:https://doi.org/10.1016/j.cma.2004.10.008.

[47] C. Anitescu, M. N. Hossain, T. Rabczuk, Recovery-based error estima-

tion and adaptivity using high-order splines over hierarchical T-meshes,

Computer Methods in Applied Mechanics and Engineering 328 (2018)

638 – 662. doi:https://doi.org/10.1016/j.cma.2017.08.032.

55

http://dx.doi.org/10.1007/s10439-015-1419-z
http://dx.doi.org/10.1002/cnm.2958
http://dx.doi.org/10.1002/nme.2670
http://dx.doi.org/10.1051/meca/2014033
http://dx.doi.org/https://doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/https://doi.org/10.1016/j.cma.2017.08.032

	1 Introduction
	2 Methods
	2.1 Problem setting
	2.2 Weak form and FEM discretisation
	2.3 Geometry discretisation for immersed/implicit boundaries
	2.3.1 Geometry discretisation
	2.3.2 Refinement for invalid cut elements
	2.3.3 Stabilisation by moving background nodes
	2.3.4 Implementation aspects
	2.3.5 Numerical integration

	2.4 Corotational formulation for CutFEM
	2.5 Boundary conditions on immersed surfaces
	2.6 Solving system equations with constraints

	3 Results
	3.1 Convergence study
	3.2 A comparison with FEM
	3.3 Needle insertion simulations
	3.3.1 Immersed interface
	3.3.2 Fictitious boundary

	3.4 Electrode implantation simulation in Deep Brain Stimulation

	4 Conclusions

