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2CNRS, LIMSI, Université Paris-Saclay, F-91405 Orsay, France
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We consider direct numerical simulations of turbulent Rayleigh-Bénard convection inside
two-dimensional square cells. For Rayleigh numbers Ra = 106 to Ra = 5 · 108 and
Prandtl numbers Pr = 3 and Pr = 4.3, two types of flow regimes are observed
intermittently: consecutive flow reversals (CR), and extended cessations (EC). For each
regime, we combine proper orthogonal decomposition (POD) and statistical tools on long-
term data to characterise the dynamics of large-scale structures. For the CR regime,
centrosymmetric modes are dominant and display a coherent dynamics, while non-
centrosymmetric modes fluctuate randomly. For the EC regime, all POD modes follow
Poissonian statistics and a non-centrosymmetric mode is dominant. To explore further
the differences between the CR and EC regimes, an analysis based on a cluster partition
of the POD phase-space is proposed. This data-driven approach confirms the successive
mechanisms of the generic reversal cycle in CR as proposed in (Castillo-Castellanos et al.
2016). However, these mechanisms may take one of multiple paths in the POD phase-
space. Inside the EC regime, this approach reveals the presence of two types of coherent
time sequences (weak reversals and actual cessations) and more rarely intense plume
crossings. Finally, we analyse within a range of Rayleigh numbers up to turbulent flow,
the relation between dynamical regimes and the POD energetic contents as well as the
residence time in each cluster.

1. Introduction

A remarkable aspect of turbulent flows is the organisation of coherent large-scale
flow patterns superposed to small-scale fluctuations. Decomposing the turbulent flow
into coherent flow structures and incoherent turbulence, allows to focus on dynamically
significant events (Hussain 1986). Such decomposition is usually performed either in
terms of predetermined basis functions, like spatial Fourier decomposition (see, for
instance, Das et al. (2000); Chandra & Verma (2011)), or in terms of basis functions
extracted from the data, like Proper Orthogonal Decomposition (POD) (see, for instance
Bailon-Cuba et al. (2010); Podvin & Sergent (2015, 2017); Faranda et al. (2019)),
Dynamic Mode Decomposition (DMD) (Schmid 2010; Horn & Schmid 2017), or Koopman
eigenfunction analysis (Giannakis et al. 2018). From this perspective, the coherent
structures correspond to a combination of various such modes. In many instances,
different configurations for the large-scale flows coexist and the system rapidly switches
from one configuration to the other. Let us mention polarity switches in the Earth’s
magnetic field or inside the dynamo laboratory experiments (Wicht et al. 2009; Valet
et al. 2012; Fauve et al. 2017), or flow reversals inside decaying and stochastically forced

† Email address for correspondence: anne.sergent@limsi.fr



2 A. Castillo-Castellanos, A. Sergent, B. Podvin and M. Rossi

two-dimensional turbulence in the presence of rigid walls (Van Heijst et al. 2006; Molenaar
et al. 2004). In this regard, flow reversals result from the non-linear interactions between
modes.

In turbulent Rayleigh-Bénard (RB) convection, flow reversals are also observed where
the large scale circulation (LSC), commonly referred to as the wind of turbulence, changes
sign intermittently (Niemela et al. 2001; Kadanoff 2001; Sreenivasan et al. 2002). The
structure of the LSC and the nature of its variations depend on the geometry of the
container (Grossmann & Lohse 2003; Xi & Xia 2008b; van der Poel et al. 2011). In
cylindrical RB cells, the LSC is subject to erratic reorientations of its vertical circulating
plane by means of two different mechanisms: a constant azimuthal meandering and a
momentary decline of the flow magnitude called cessation. Both mechanisms may lead
to a change in the direction of the flow circulation, either by half a revolution of the LSC
plane around the cylinder axis (a rotation-led reversal) or by a LSC restart after cessation
in the same vertical plane but in the opposite direction (cessation-led reversal) Brown
et al. (2005); Xi et al. (2006). Reorientations by cessation are far more rare than those
caused by azimuthal rotation. In turn, cessation-led reversals represent only a tiny part
of cessations, all the angular changes after cessation having the same probability (Brown
& Ahlers 2006; Xi & Xia 2008a). In cubic RB cells, the LSC plane tends to align to the
diagonals of the cell and sometimes changes its orientation through azimuthal rotation.
Little or no evidence of cessation-led reversal has been mentioned in literature (Bai et al.
2016; Foroozani et al. 2017).

There are different ways to focus on the cessation type events. One may hamper the
azimuthal meandering by slightly tilting the convection cell, or prevent it by restricting
the experimental configuration to slim (or quasi-2D) rectangular cells (Sugiyama et al.
2010; Vasilev & Frick 2011). However, a strong dependence of the reversal dynamics on
cell aspect-ratio has been noticed in quasi-2D cells (Ni et al. 2015). Another possibility is
to consider two-dimensional direct numerical simulations (DNS) (Sugiyama et al. 2010;
Petschel et al. 2011; Chandra & Verma 2011, 2013; Podvin & Sergent 2015, 2017). This
approach is interesting for different reasons. First, Sugiyama et al. (2010) used 2D DNS to
identify a region in the (Ra, Pr) parameter space in which consecutive reversal events are
observed, in good qualitative agreement with experimental observations. For this range of
parameters, the LSC flow inside a square cell is mainly composed of a large diagonal roll
and two counter-rotating corner-rolls. As pointed out by (Sugiyama et al. 2010; Chandra
& Verma 2013), in 2D reversals the LSC is temporarily replaced by a quadrupolar mode
during the transition. A second flow regime has been observed intermittently in 2D
DNS inside the same range of parameters. It is mainly composed either of two counter-
rotating horizontally stacked rolls or two vertically stacked rolls (Podvin & Sergent 2015).
In the following, we refer to both regimes as the regime of consecutive reversals (CR)
and the regime of extended cessations (EC), respectively. The intermittent switching
between the CR and EC regimes features a rich dynamical behaviour. Second, two-
dimensional (or quasi-2D RB) flows may also be observed in practical configurations,
such as those coupling turbulent convection with a strong magnetic field in typical fusion
reactor conditions (Zhang & Zikanov 2015). Third, compared to 3D DNS, 2D DNS have
a lower computational cost, thus giving access to long-term statistics.

Due to the wide range of involved temporal scales, the large-scale spatio-temporal
dynamics of the CR and EC regimes is far from being completely described. In a previous
work (Castillo-Castellanos et al. 2016), we applied an amplitude-based filter to separate
the CR and EC regimes. For the CR regime, a time-rescaling technique based on a well-
defined characteristic time scale (the time between consecutive reversals) was combined
with an ensemble average to investigate energetics of flow reversals observed in long-
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term 2D DNS data. This technique was previously used for reversals of the geomagnetic
fields (Valet et al. 2012; Lhuillier et al. 2013). Using several hundred realisations of
flow reversals, we followed the evolution of the global kinetic and available potential
energies (as proposed by Winters et al. (1995); Hughes et al. (2013)), which led to the
identification of a generic reversal mechanism which includes a long phase of LSC strength
weakening (called accumulation) preceding a rapid transition (called release) and a
rebound. This process shares common features with observations in cylindrical RB cells
(Xi & Xia 2008a), as well as with geomagnetic reversals (Valet et al. 2012). In comparison,
cessations are much less described, in particular regarding representative flow dynamics.
In cylindrical cells, it is commonly admitted that reorientations by cessation (including
cessation-led reversals) follow Poissonian statistics (Brown et al. 2005; Brown & Ahlers
2006; Xi & Xia 2008a). However, only few selected instantaneous flow patterns are given
(Xi & Xia 2008b). Additionally, a decoherence of the LSC has also been mentioned (Xi
& Xia 2007).

In the present paper, our objective is to separately characterize the spatio-temporal
dynamics of Consecutive Reversals and Extended Cessations regimes in 2D square cavity
using the POD approach. First, as previously mentionned some similarities between
flows in 2D square cell and in 3D cylinder have been identified in literature (Xi & Xia,
2008a). Connections are based on phases observed in the generic reversal cycle proposed
in Castillo-Castellanos et al. (2016). This deterministic feature may appear paradoxical
with respect to the well-known stochastic features of 3D reversals. This is one of the
points we try to elucidate: we reanalyze the 2D flows in order to determine if only a
part of flow in the CR regime may follow Poissonian statistics despite the existence of
a generic reversal cycle. This question demands to identify the leading POD modes on
the data subset corresponding to the CR regime before characterizing the statistics of
waiting times of each POD modes. This leads to reinterpret the generic reversal cycle in
terms of POD mode dynamics. By applying the same methodology to the EC regime, we
recover the expected Poissonian dynamics of cessations described in cylinders. However
we seek to identify typical coherent dynamical events in this regime (specifically by
distinguishing weak reversals from actual cessations). The total time periods related
to EC regime represent only a small part of the complete time series, and no clear
characteristic time can be identified. Thus we cannot apply the previously used time-
rescaling leading to the identification of a generic mechanism. A specific methodology
is consequently necessary to obtain some kind of classification into the spatio-temporal
dynamics. This is performed by first identifying POD dynamical modes in the EC subset,
and then analyzing the paths followed by the system in POD state space using statistical
approaches. In particular, we use a cluster-based analysis of the POD phase-diagrams
as proposed by Kaiser et al. (2014), to identify typical dynamical events whatever their
probability of occurrence. These are described in terms of representative flow patterns
(the centroids of the clusters) and time spent by the system inside each type of event.

The paper is organised as follows. Section 2 introduces the model equations, their
numerical implementation and the POD approach. In section 3, we present the criterion
used to separate the CR and EC regimes and introduce the data sampling for POD. The
following sections explore the differences between both regimes: §4 focuses on the spatial
structure of coherent modes, §5 on the their temporal evolution, while §6 and §7 introduce
and apply cluster analysis to analyse the interactions between competing modes for the
CR and EC regimes, respectively. In section 8, we follow the energy contained inside
different modes and the residence times in clusters as a function of Ra. This provides
a simplified description of the various flow regimes observed. Finally, we summarize our
results in section 9.



4 A. Castillo-Castellanos, A. Sergent, B. Podvin and M. Rossi

Pr Ra nxny ts ne Nu %Diff.
4.3 1 · 106 5122 4500 418 6.83 0.2

3 · 106 5122 4500 248 9.09 0.4
5 · 106 5122 4500 120 10.47 0.5
8 · 106 5122 4500 76 12.14 0.7
1 · 107 5122 9600 3 13.06 0.3
3 · 107 5122 9600 22 18.29 0.2
5 · 107 5122 65000 605 20.97 0.7
8 · 107 5122 4500 66 23.96 2.6
1 · 108 10242 4500 56 25.77 0.2
3 · 108 10242 4500 9 35.50 1.6
5 · 108 10242 4500 - 41.09 2.8

Pr Ra nxny ts ne Nu %Diff.
3.0 1 · 106 5122 4500 520 6.60 0.2

3 · 106 5122 4500 310 8.82 0.4
5 · 106 5122 4500 133 10.10 0.4
8 · 106 5122 4500 22 11.60 0.7
1 · 107 5122 9600 220 12.50 0.3
3 · 107 5122 9600 261 17.60 0.5
5 · 107 5122 65000 754 20.70 0.7
8 · 107 5122 4500 75 23.79 2.5
1 · 108 10242 4500 45 25.36 0.2
3 · 108 10242 4500 1 35.06 1.5
5 · 108 10242 4500 - 40.76 2.5

Table 1. Simulation parameters: Ra and Pr, number of grid points nxny, simulation length ts
in convective time units and number of events ne where the global angular momentum A2D(t)
(defined in equation 3.1) changes sign during the simulation length. Numerical convergence of
the Nusselt number: average Nusselt number and maximum relative difference between different
definitions, see text.

2. Model equations and analysis tools

2.1. Physical configuration and governing equations

Consider a fluid contained in a square cell, cooled at the top with constant temperature
Ttop and heated at the bottom with constant temperature Tbot > Ttop. The flow equations
are based on the Boussinesq approximation. The flow is defined by the Rayleigh and
Prandtl numbers,

Ra ≡ gβH3 (Tbot − Ttop)

κν
, Pr ≡ ν

κ
(2.1)

where g denotes gravity, H the cell height and β, κ, ν are respectively volumetric thermal
expansion, thermal diffusivity and kinematic viscosity coefficients. As far as notations
are concerned, variables x (resp. u) and y (resp. v) stand for the horizontal and vertical
directions (resp. velocities). Coordinate vector x = (x, y) is equal to (0, 0) at the cavity
centre. One introduces the reduced temperature θ(x, t) ≡ (T − T0)/(Tbot − Ttop), with
T0 ≡ (Tbot+Ttop)/2. Given a field a(x, t), quantity a(x) (resp. σ(a)(x)) denotes the time
averaged value (resp. standard deviation) computed using the complete long-term time
series. Moreover 〈a〉(t) stands for the volume average of a(x, t) over the fluid domain.

Based on the cell height H as characteristic length scale and κ
HRa

0.5 as characteristic
velocity scale (one obtained from a balance between the friction and buoyancy forces,
equivalent to the free-fall velocity divided by Pr0.5) the dimensionless velocity u = (u, v)
and reduced temperature θ satisfy the dimensionless system of equations





∇ · u = 0

∂tu+ ∇ · [u⊗ u] = −∇p+ PrRa−0.5∇2u+ Prθey
∂tθ + ∇ · [uθ] = Ra−0.5∇2θ

(2.2)

A no-slip condition for the velocity field is ensured on walls. On top (resp. bottom) walls,
one imposes θ = −0.5 (resp. θ = 0.5) while adiabaticity ∂xθ = 0 is satisfied on side-walls.
From now on, all quantities are written in dimensionless form only.
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2.2. DNS: parameter range and numerical method

The values of (Ra, Pr) used for direct numerical simulations (DNS) covers the tran-
sition to a turbulent flow regime where reversals have been reported (Sugiyama et al.
2010): Ra = 106 − 5 · 108 for Pr = 3 and Pr = 4.3. Sections 3 to 7 are mainly focused
on Ra = 5 · 107, while section 8 explores the different dynamical regimes observed as
function of Ra. Whenever both Pr display similar results, we present in detail only those
for Pr = 3. The length of the simulations range from 4500 to 65000 convective time units
as to observe an adequate number of reversals of the LSC (see table 1).

Time integration of the governing equations 2.2 is performed through a second-order
semi-implicit scheme. It combines a staggered in time discretisation of the velocity and
scalar fields with an implicit treatment of the diffusion terms and the Bell-Colella-Glaz
advection scheme (Bell et al. 1989) for the non-linear terms. Details of this method can
be found on (Popinet 2003, 2009). The time step is variable and verifies the Courant-
Friedrichs-Lewy condition CFL < 0.5. Incompressibility is imposed by a projection
method. Numerical implementation is done using Basilisk (Popinet 2015). The code has
been validated and verified for Rayleigh-Bénard convection in Castillo-Castellanos et al.
(2016). Simulations are performed using the finite volume method on a regular Cartesian
centred grid with 512 or 1024 points in each direction. We verify the spatial resolution
by evaluating the numerical convergence of time-averaged Nusselt numbers obtained by
different methods: integrated over the top and bottom plates, over the volume, and
derived from exact relations to the viscous and thermal dissipation rates (Shraiman &
Siggia 1990). In general, these values converge within 2% of the average Nusselt number,
see table 1.

2.3. Mode extraction using Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (Lumley 1967) is a statistical technique which
provides a representation of a spatio-temporal vector field ψ(x, t) as the superposition of
a denumeration of space-dependent structures or empirical eigenfunctions φk(x), k > 1,
the amplitude of which αk varies in time:

ψ(x, t) =

∞∑

k=1

αk(t)φk(x) (2.3)

Here the field consists of the joint velocity and temperature fields ψ = {u, γθ}, where γ
is an arbitrary rescaling factor here taken equal to 1 (the influence of γ was studied in
Podvin & Sergent (2015)).

The empirical eigenfunctions constitute a hierarchy of patterns most likely to be
observed in the simulation and they are solutions of the eigenvalue problem

∫
R(x,x′)φk(x′)dx′ = λkφk(x) (2.4)

where R(x,x′) ≡ 1
N

∑N
n=1ψ(x, tn)ψ(x′, tn) is the spatial autocorrelation tensor com-

puted from N snapshots obtained at times ti, i = 1 . . . N . By construction the eigenfunc-
tions are orthogonal (see (Holmes et al. 2012) for more details). It can be shown that
the problem can be reformulated into what is called the method of snapshots, following
Sirovich (1987), as

Cmnα
k
n = λkα

k
m, with Cmn ≡ 〈ψ(x, tm)ψ(x, tn)〉 (2.5)

The amplitude αkn = αk(tn) represents the amplitude of mode k at time tn. By con-
struction the amplitudes are uncorrelated, and if the eigenfunctions are normalized,
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we have αjαk = δjkλk, δjk being the Kronecker symbol. The eigenvalues λk, k > 1
represent the average contribution of mode k to the total energy of the vector field
Ecomb ≡ 〈θ2 + u2〉 =

∑∞
k=1 λk and can be ordered λ1 > λ2 > · · ·λk.

The idea is then to superimpose the small set of dominant modes identified by the
decomposition to build an approximation to the actual flow field (in other words the flow
is replaced by its projection onto the first few most energetic modes). We note that the
relationship between empirical eigenfunctions and the standard definition of a coherent
structure is not entirely straightforward, as empirical eigenfunctions correspond to linear
combinations of individual realizations of the flow over the full spatial domain,

φk(x) =
N∑

n=1

αk(tn)ψ(x, tn) (2.6)

while standard definitions of coherent structures (such as the corner rolls) are typically
local in space. More on this can be found in (Podvin & Sergent 2017).

For this system, we identify the following symmetry operators which leave the gov-
erning equations invariant: a reflection symmetry Sx with respect to the vertical axis
(x = 0),



u(x, y)
v(x, y)
θ(x, y)


 Sx−→



−u(−x, y)
v(−x, y)
θ(−x, y)


 (2.7)

and a reflection symmetry Sy with respect to the horizontal axis (y = 0).



u(x, y)
v(x, y)
θ(x, y)


 Sy−→




u(x,−y)
−v(x,−y)
−θ(x,−y)


 (2.8)

The combination of both Rπ = Sx ◦ Sy = Sy ◦ Sx represents the centrosymmetry.



u(x, y)
v(x, y)
θ(x, y)


 Rπ−→



−u(−x,−y)
−v(−x,−y)
−θ(−x,−y)


 (2.9)

which in addition to the identity form a symmetry group (Podvin & Sergent 2015). In
this work, we extract a set of POD modes M. In the next paragraph, we show that each
mode M possesses symmetries related to elements E of the symmetry group. Each mode
can be symmetric, i.e. EM = M, or antisymmetric, i.e. EM = −M. In keeping the naming
scheme proposed by Podvin & Sergent (2017), we introduce the following notations for
coherent modes: (i) two modes Q and Q∗, which are symmetric with respect to all the
elements of the group; (ii) two modes L and L∗, which are symmetric with respect to Rπ,
but antisymmetric with respect to Sx and Sy ; and (iii) two modes S and S∗, also known
as symmetry-breaking modes, which are antisymmetric with respect to Rπ. However,
mode S is symmetric with respect to Sy and antisymmetric with respect to Sx, while
mode S∗ has the opposite symmetries (see table 2).

To validate our approach, POD was applied a set of 1200 snapshots for (Ra =
5 · 107, P r = 4.3). Snapshots were taken every 5 convective time units (t.u.) from the
complete series. Using a longer series or a smaller sampling time did not affect results,
giving some confidence in the robustness of our mode extraction. Results are in good
agreement with (Podvin & Sergent 2017), see figure 1.
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Mode-Q Mode-Q∗ Mode-L Mode-L∗ Mode-S Mode-S∗

Symmetry Rπ S S S S AS AS
Symmetry Sx S S AS AS AS S
Symmetry Sy S S AS AS S AS

Table 2. Definition of modes based on symmetry properties. In each case, we indicate
whether the mode is symmetric (S) or antisymmetric (AS) with respect to Sx, Sy, and Rπ.

L
k=1

Q
k=2

S
k=3

L∗

k=4

S∗

k=5

Q∗

k=6

−0.5

0.0

0.5

φθ
k

−0.5

0.0

0.5

ψ(φu
k , φ

v
k)

Figure 1. Leading POD modes obtained from the complete series for Ra = 5 · 107 and
Pr = 4.3. For each figure, colour corresponds to the temperature modes φθk (top row) and to
the streamfunction of the velocity modes (φuk , φ

v
k) (bottom row). Streamlines are also presented

in bottom row with dashed lines for negative streamfunction values.

3. Data Processing: Identification of regimes and conditional
sampling

3.1. Identification of the two flow regimes

For the range of (Ra, Pr) considered, two different dynamical regimes have been
identified by following the global angular momentum

A2D(t) ≡ −1

2

∫
x2ω(x, t) dx, with ω(x, t) = ∂xv − ∂yu (3.1)

as a function of time (figure 2a). Indeed, this quantity is a measure of the organised
rotation around the centre of the cavity, i.e the strength of the LSC (Molenaar et al.
2004). A criterion based on the amplitude of A2D was proposed to discriminate the two
regimes (Podvin & Sergent 2015; Castillo-Castellanos et al. 2016). If |A2D| > Athres
(here set to Athres = |A2D|+σ(|A2D|)) during the interval between two consecutive sign
changes in A2D, then the time interval is assigned to the regime of consecutive reversals
(CR), corresponding to white areas in figure 2a. A time interval where such threshold is
not reached can be of two kinds: weak reversals if only one consecutive sign change is
observed, and a cessation of the LSC otherwise. For simplicity, both kinds are assigned to
the regime of extended cessations (EC), corresponding to grey areas in figure 2a. On the
one hand, consecutive reversals are characterised by alternating positive and negative
plateaus in A2D. Positive (resp. negative) plateaus are associated to a large counter-
clockwise (resp. clockwise) diagonal roll with two corner-rolls (see figure 2b). On the
other hand, extended cessations are characterised by a more erratic dynamics and by the
absence of a central vortex (see figure 2c).
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(a)

2000 3000 4000 5000

t

−1

0

1
A

2D
/|A

2D
|

(b) (c)
+0.5

0.0

−0.5

Figure 2. Figure (a) Time evolution of A2D(t) scaled by |A2D| for (Ra = 5 · 107, P r = 3).

The threshold separating the CR and EC regimes set to Athres = |A2D|+ σ(|A2D|) is shown in
red. White areas correspond to CR, while grey areas correspond to EC. Figure (b) (resp. (c))
displays snapshots taken inside the CR (resp. EC) regime. Colour indicates temperature field
θ(x, t) and lines are streamlines (negative values shown in dashed).

3.2. Conditional sampling for POD

Conditional sampling allows to distinguish and provide quantitative information about
interesting spatial and/or temporal regions of a turbulent flow (Antonia 1981). Here,
we use the aforementioned criterion to separate our data into two subsets: a first one
which corresponds to the CR regime only and a second one which excludes this regime,
leaving mostly the EC regime. The idea is now to apply a POD analysis to each subset
separately and investigate in detail the dynamics of each regime. In §4 to §7, we focus on
the values (Ra = 5 · 107, P r = 3) and (Ra = 5 · 107, P r = 4.3) since the system displays
in that two cases, an intermittency between the CR and EC regimes. For reference,
at (Ra = 5 · 107, P r = 3) (resp. (Ra = 5 · 107, P r = 4.3)) the probability of being
inside the CR regime is 79.6% (resp. 83.0%) of the complete series. It is thus possible to
highlight the different roles played by the large-scale modes from different viewpoints.
These observations will be used in §8 to follow the large-scale flow dynamics over a wider
range of Ra numbers.

For (Ra = 5 · 107, P r = 3), the CR subset is restricted to 108 flow reversals,
corresponding to 1521 snapshots taken every 4 convective time units. The sampling
frequency of snapshots has been adjusted to ensure the different phases of the flow
reversals are represented and the number of snapshots was progressively increased until
the convergence of POD modes is reached. The EC subset is composed of 1500 snapshots
taken every convective time unit. The sampling frequency was increased due to the
generally faster dynamics and short duration of this regime. For this regime it was more
difficult to obtain converged POD modes and small differences are still observed when
considering different sets of snapshots. For (Ra = 5 · 107, P r = 4.3) the CR subset is
composed of 100 reversals, corresponding to 3157 snapshots taken every 4 time units,
while the EC subset is composed of 3800 snapshots taken every time unit.
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Figure 3. Conditional POD analysis of the CR and EC subsets. Normalised eigenvalues for
the first 20 modes for Ra = 5 · 107 for (a) Pr = 3.0 and (b) Pr = 4.3 .

Extracted from CR Only
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Figure 4. Leading POD modes of the CR subset obtained for Ra = 5 · 107 and Pr = 3.0. For
each figure, colour corresponds to the temperature modes φθk (top row) and to the streamfunction
of the velocity modes (φuk , φ

v
k) (bottom row). Streamlines are also presented in bottom row with

dashed lines for negative streamfunction values.

4. Comparison of the spatial structures extracted from each regime

For (Ra = 5 · 107, P r = 3) and (Ra = 5 · 107, P r = 4.3), and both CR and EC subsets,
the POD spectra exhibits at least two decades of decay between modes k = 1 and k = 20
(figure 3). The two first modes of the CR regime represent around 80% percent of the
combined energy Ecomb, with an additional 10% contained inside modes k = 3 to 7 for
Pr = 3 (resp. modes k = 3 to 6 for Pr = 4.3). In comparison, the first two and six
modes of the EC regime represent 70% and 86% of Ecomb, respectively. Generally EC
modes k = 2 to 20 are more energetic than their CR counterparts, indicating a stronger
competition between POD modes for the EC subset. In sections 4.1 and 4.2, we study
only on the six most energetic POD modes for each regime. In the following and whenever
there is no ambiguity, we refer to the amplitude αk(t) of the mode k as the mode itself.
For instance if k = 1 mode is a mode Q, α1 is written as Q.

4.1. Leading POD modes inside the regime of ‘consecutive reversals’ (CR)

Figure 4 displays the POD modes extracted from the CR subset for (Ra = 5 ·107, P r =
3). Each mode displays a clear symmetry. Mode k = 1 corresponds to L, associated to a
single-roll mode with small recirculation cells in the four corners. In the following, this
mode will be used as a marker of the strength of the LSC. Mode k = 2 corresponds to
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Figure 5. Most energetic POD modes of the EC subset obtained for Ra = 5 · 107 and
Pr = 3.0. Temperature and velocity modes are displayed as in figure 4.

Q, associated to a four-roll mode and to the mean temperature field. Indeed, a linear
combination of centrosymmetric modes L and Q roughly corresponds to the LSC with
added corner-rolls, the most recognisable flow structure of the CR regime. Mode k = 3
corresponds to L∗, composed of three vertically stacked rolls; k = 4 to mode S, composed
of two vertically stacked rolls, analogous to the short-lived double-roll mode observed in
cylindrical cells (Xi & Xia 2008b). Mode k = 5 corresponds to mode Q∗, similar to mode
Q, but with four additional rolls carrying cold (resp. hot) fluid close to the bottom (resp.
top) plate; and finally k = 6 corresponds to mode S∗, composed of two horizontally
stacked rolls. For (Ra = 5 · 107, P r = 4.3) one obtains a similar set of POD modes but
with modes k = 3 and k = 4 interchanged.

4.2. Leading POD modes inside the regime of ‘extended cessations’ (EC)

Figure 5 displays POD modes extracted from the EC subset for (Ra = 5 ·107, P r = 3).
Such modes are reminiscent of those extracted from the CR subset: k = 1 is similar to
the symmetry-breaking mode S, but the temperature field suggests this mode is a linear
combination of modes S and Q. Similarly, k = 2 can be seen as a linear combination of
centrosymmetric modes L and L∗ with LL∗ > 0, and corresponds to a vortex detached
from the top and bottom plates (Podvin & Sergent 2017). Both leading modes have
comparable energetic contents (figure 3). Unlike the CR regime, the EC regime displays
a strong competition between modes with different symmetries. Modes k = 3, k = 4,
and k = 5, are reminiscent of modes Q, S∗, and Q∗, respectively, while k = 6 is a new
mode specific to the EC regime. The latter one is composed of two co-rotating vortices
surrounded by six smaller counter-rotating rolls. A similar set of POD modes is obtained
for (Ra = 5 · 107, P r = 4.3).

Given the similarities between the modes extracted from EC and CR subsets (the
sole exception being the mode k = 6 of the EC regime), we conclude that both subsets
are accurately represented by the same set of coherent spatial structures. This suggests
that differences between the CR and EC regimes concern the time evolution of modal
amplitudes. In the following sections, we hence project the complete time series into the
set of modes extracted from the CR regime as to compare the temporal evolution of the
modal amplitudes for both regimes.
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5. Comparison of temporal evolution in the CR and EC regimes

We analyse here the temporal evolution in both regimes and focus on the coherent or
stochastic nature of the dynamics of each POD mode.

5.1. General temporal evolution and PDF of modal amplitudes

Let us project the fields ψ(x, t) = (θ, u, v) into the set of POD modes φk(x) extracted
from the CR subset to obtain the modal amplitudes αk(t). For simplicity, these ampli-
tudes are then scaled by the common factor 1/|L|. Figure 6 displays their time evolution,
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and figure 7 their corresponding probability distribution functions (PDF). A different
behaviour is observed for the CR and EC regimes.

During the CR regime (white areas), the dominant mode L alternates between positive
and negative plateaus. Both A2D (shown in green) and L are very well correlated and are
considered as excellent indicators of the presence of flow reversals. As observed by Podvin
& Sergent (2017), the time evolution of mode L∗ is different for positive and negative
values of L. Modes S and S∗ display positive and negative peaks during transitions,
but otherwise fluctuate around zero. Mode Q increases progressively during the plateaus
and suddenly drops during transitions, while Q∗ is centred around zero and displays the
opposite behaviour. As for as PDFs are concerned, modes L and L∗ display a bimodal
distribution, modes S and S∗, a double exponential distribution, which are almost
symmetric. On the contrary, modes Q and Q∗ have skewed probability distributions. This
behaviour can be explained as follows. If a set of amplitudes M(t) ≡ {L,L∗, Q,Q∗, S, S∗}
is obtained by the governing equations, then SxM , SyM , and RπM are also data sets
associated to these governing equations. Furthermore, contrary to modes Q and Q∗ which
are symmetric under operators Sx, Sy, and Rπ, the modes {L,L∗, S, S∗} are changed into
their opposite by the action of at least one of these operators (see table 2). Consequently
their PDFs are expected to symmetric with respect to zero. This is not completely the
case in figure 7 due to limited number of records.

During the EC regime (shaded areas), the dominant mode S is characterized by positive
and negative plateaus and its PDF takes the form of a symmetric bimodal distribution.
This is analogous to the evolution of mode L during the CR regime. Mode S is therefore
a good marker for this regime. Mode S∗ becomes more energetic than in the CR regime,
but does not exhibit such clear plateaus. The time evolution of the other POD modes is
also modified by the change of regime: modes {L,L∗} are found to oscillate around zero
or may display smaller positive and negative plateaus, while {Q,Q∗} fluctuate around a
non-null positive value.

For the above symmetry considerations, the PDFs of modes {L,L∗, S, S∗} are sym-
metric with respect to zero. As such, these modes are prone to exhibit a reversing
dynamics (see figure 6), and the dynamics of each mode is similar for its positive and
negative values. By contrast, the PDFs of modes Q and Q∗ are skewed: mode Q does not
reverse, whereas Q∗ does change sign, but evolves differently for its positive and negative
values. Consequently, in order to characterise the temporal dynamics of each regime more
precisely, we study the process governing the reversing modes {L,L∗, S, S∗}.

5.2. Distribution of waiting times for reversing POD modes

To characterise the reversal process of modes {L,L∗, S, S∗}, we compute for each such
mode the waiting time τ between consecutive sign changes and evaluate its probability
distribution P(τ). The quantity h(τ)dτ where h(τ) ≡ P(τ)/(1−

∫ τ
0

P(τ ′)dτ ′), stands for
the probability of the occurrence of another reversal inside time interval [τ, τ+dτ ] where τ
is defined as the time elapsed since the last reversal. The probability distribution P(τ) and
h(τ) are often employed for polarity reversals of Earth’s magnetic field. Polarity changes
are typically assumed to originate from a general renewal process, in which reversals
are independent from one another (see, for instance (Merrill et al. 1998; Lhuillier et al.
2013)). To verify whether or not the independence hypothesis is correct, the probability
distribution P(τ) is compared to a Gamma distribution

P(τ) =

(
k

m

)k
τk−1

Γ (k)
exp

(
−k τ

m

)
, with Γ (k) =

∫ ∞

0

xk−1 exp (−x)dx (5.1)



Cessation and reversals of large-scale structures in square Rayleigh–Bénard cells 13

0 50 100 150 200

τL

10−3

10−2

10−1

F
re

q
u
en

cy
(a)

0 25 50 75 100

τL∗
0 25 50 75 100

τS

0 25 50 75 100

τS∗

0 50 100 150 200

τL

10−3

10−2

10−1

F
re

q
u
en

cy

(b)

0 25 50 75 100

τL∗
0 25 50 75 100

τS

0 25 50 75 100

τS∗

Figure 8. Distribution of waiting times τM of modes M = {L,L∗, S, S∗} for
(Ra = 5 · 107, P r = 3). Figure (a) displays the CR regime and (b) the EC regime. PDFs
are obtained using histograms with fixed bins of 2.5 t.u. width. Exponential (solid) and Gamma
distributions with k 6= 1 (dashed) are drawn using parameters from table 3.

where m = τ denotes the mean value of τ and the shape parameter k provides the stan-
dard deviation m/

√
k. For a Gamma distribution, h reaches a constant limτ→∞ h(τ) = k

m
at long time intervals (McFadden & Merrill 1986). When k = 1, the probability h is
found always constant h(τ) = 1

m . This exponential distribution is interpreted as a lack
of memory of the system: reversals are thus generated by a Poisson process characterized
by an affine profile in a log plot, i.e. logP (τ) = − τ

m − logm. On the contrary, a memory
effect appears when k 6= 1 : on the one hand, for k > 1 the distribution is such that
limτ→0 h(τ) = 0, indicating a temporary inhibition of future reversal events at short
times. On the other hand, for k < 1, h diverges for τ → 0 indicating an encouragement
at short times. Figure 8 displays the distribution of waiting times from the CR and EC
subsets for (Ra = 5 · 107, P r = 3). PDFs are compared either to Gamma distributions
with k > 1 (dashed lines) or to exponential distributions (solid lines) using the parameters
listed in table 3. To illustrate the goodness of each fit, table 3 also includes the quantity
R2 ≡ 1 − ∑bin e

2/
∑
bin P2

hist where Phist is the estimated density distribution using
histograms and e is the error between the fit and the histogram. In this context, a value
R2 = 1 indicates that the Gamma distribution perfectly fits the histogram.

For the EC subset, the distribution of waiting times for all reversing modes fit reason-
ably well to exponential distributions (figure 8), so indicating a Poisson-like dynamics for
all modes studied: the cessation regime seems to be composed of memoryless events. In
the EC regime, the lack of memory was identified previously by (Brown & Ahlers 2005,
2006) in three-dimensional flows. Our POD analysis simply confirms that all modes have
Poissonian statistics for waiting times and no memory in the EC regime.

For the CR subset, the distributions of τS , and τS∗ also fit well exponential distribu-
tions. By contrast, the distributions P (τL) for mode L are fitted to Gamma distributions
with k = 38, with large dispersion and a peak value around τL = 70 t.u., several times
longer than the large eddy turnover time tE ≈ 3.5 t.u. The leading mode L thus strongly
deviates from Poissonian statistics, suggesting that the system keeps a form of memory
of the preceding reversals. This highlights the coherent behaviour of the large-scale
structures specific to the CR regime. The distribution of τL∗ displays elements of the
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(a) (b)
Exp. dist. Gamma distrib.

τM n m R2 k m R2

τL 523 - - 38.1 74.9 0.89
τL∗ > 11.1 1059 - - 7.8 27.1 0.96
τL∗ < 11.1 2287 3.2 0.97 - - -
τS 5045 7.8 0.79 - - -
τS∗ 8970 4.0 0.83 - - -

Exp. dist.
τM n m R2

τL 231 24.1 0.73
τL∗ 675 9.5 0.83

τS 285 12.0 0.72
τS∗ 947 6.8 0.71

Table 3. (a) CR subset and (b) EC subset for (Ra = 5 · 107, P r = 3). Values k and m define
the fit of the probability distributions of waiting times τM to either exponential (in that case k
is set to 1) or Gamma distributions with k 6= 1. The coefficient R2 quantifies the goodness of
the fit (see text). Finally n denotes the number of events where a mode changes signs.

exponential and Gamma distributions: if one separates the values less than a cut-off
value around 11 t.u. (this value is comparable to the duration of the transition from a
positive to negative plateau for A2D, see (Castillo-Castellanos et al. 2016)). The shorter
timescales τL∗ < 11 follow an exponential distribution, whereas the longer timescales
τL∗ > 11 are governed by a Gamma distribution with k = 9 for Pr = 3 (resp. k = 8 for
Pr = 4.3). In this respect, the distribution of τL∗ reflects the interplay between long-term
coherent dynamics and short-term random fluctuations typical of this regime.

As a final remark, evaluating the PDFs of the waiting times considering both subsets
at once would mask the more coherent nature of the CR regime.

5.3. Generic reversal in the CR regime

The time coherence displayed by some POD modes (L and L∗) in the CR regime can
be further studied by revisiting the statistical approach proposed in (Castillo-Castellanos
et al. 2016). This procedure extracts a generic reversal cycle from an ensemble of
realisations. First, one identifies the set of consecutive times ti at which a marker of
reversal changes sign. Here, we use the amplitude L(t) as the marker of the reversal.
Consider a time interval [ti, ti+1] in which the marker L(t) > 0; a quantity a(t) in
this interval is represented in the re-scaled time to = (t − ti+1)/(ti+1 − ti), so that
a(to|to ∈ [−1, 0]). Conversely, for an interval [ti, ti+1] in which the marker L(t) 6 0, a(t)
is represented in the re-scaled time to = (t − ti)/(ti+1 − ti), so that a(to|to ∈ [0, 1]).
The ensemble average over the rescaled curves represents the evolution of a(to) during a
generic reversal in the interval to ∈ [−1, 1]. This treatment may exhibit the presence of a
dynamical path in a(t) that repeats over the ensemble of realisations. In contrast, if a(t)
displays random fluctuations throughout the reversal cycle, its generic curve is flat.

The idea is to use this averaging procedure on the POD mode amplitudes as to
characterise (in the statistical sense) their dynamical evolution and to connect it back
to the generic reversal mechanism proposed by Castillo-Castellanos et al. (2016). In said
work, the marker of reversal was the global angular impulse A2D(t) while quantity a(t)
was the global angular impulse itself or the global kinetic energy Ekin(t) ≡

∫
1
2u

2dx, or
else the available potential energy Eapot(t) (for a precise definition of Eapot(t), see Winters
et al. (1995); Hughes et al. (2013)). From this viewpoint, the generic reversal mechanism
is composed of 3 consecutive phases. First, an accumulation phase characterised by
a progressive decrease in Ekin as Eapot builds up inside growing corner-rolls. This is
followed by a release phase where energy is exchanged from Eapot to Ekin, complete with
a rebound. Last, the acceleration phase where Ekin increases while Eapot remains fairly
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Figure 9. Bivariate histograms of the global kinetic energy Ekin, available potential energy
Eapot, and of the modal amplitudes as function of re-scaled time to during a generic reversal for
(Ra = 5 · 107, P r = 3). Generic curves are displayed in solid lines, while dotted lines indicate
one standard deviation. Colour intensity indicates the probability density (here shown for the
blue phase, but equivalent for the other colours), while the colour indicates the 3 phases of a
generic reversal in energetic viewpoint: accumulation (blue), release (orange), and acceleration
(green). A precursory region to the flow reversal is enclosed between vertical blue lines, see text.

constant during the recovery of the LSC. Additionally, a precursory region was identified,
indicating the transition from a LSC dominant to a corner-roll dominant flow.

Now, let us consider the amplitudes of the POD modes during a generic reversal (see
figure 9). For the sake of comparison with the energy analysis presented in Castillo-
Castellanos et al. (2016) the accumulation phase is identified in figure 9, by a blue
colour, the release phase by an orange colour and the acceleration phase by a green
colour. Finally the two vertical lines indicate the position of the precursory region.

Modes {S, S∗} do not display any particularly coherent shape (flat generic curves with
larger amplitudes observed from the precursory region until the end of the acceleration
phase). By contrast, the modes {L,L∗, Q,Q∗} show some very coherent dynamical
patterns. Modes {L,L∗} carry the flow reversal. Given the spatial structure of {L,L∗},
the main circulation is reinforced when both modes have amplitudes with opposite signs.
At the beginning of the accumulation phase, L and L∗ have opposite signs. Consider the
case with L(to) > 0 and L∗(to) < 0 (the opposite case being equivalent). During the
accumulation phase, L∗ increases progressively and becomes positive, thus weakening
the circulation along the upper and lower boundary layers. A peak in L∗ > 0 coincides
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with the change in sign of mode L. Modes {Q,Q∗} carry the thermal energy. Mode Q
progressively increases during the plateau state, then suddenly drops, before returning
to its initial value, reminiscent of the generic reversal of Eapot. This could be expected:
by construction, the contribution to Eapot from modes antisymmetric with respect to Sx
is null thus leaving symmetric modes {Q,Q∗} as the main carriers of Eapot since S∗ is
negligible. It can be shown by computation that contributions to Eapot from the spatial
eigenfunction related to mode Q and Q∗ are positive, which can be understood in terms
of thermal stratification, see figure 4. As a function of time, mode Q∗ is centred around
zero and is anti-correlated to Q. During the generic cycle, the contribution to Eapot of
mode Q∗ compensates in part that of Q. Finally, note that modes Q∗ and L∗, change
signs closely to the precursory region. This coincides with a change in slope for Eapot.
Our observations place the precursory time at around 75% of to (or 56 t.u.). By switching
signs, these modes, because of their spatial structure, mark the detachment of the LSC
from the top/bottom plates and the progressive redistribution of thermal energy towards
the bulk which precedes the flow reversal.

For the case (Ra = 5 · 107, P r = 4.3), similar trends are found. The change in sign of
modes L∗ and Q∗ is observed around 72% of to (or 89 t.u.). The most noticeable difference
with respect to Pr = 3 concerns the rebound which is less intense, and the evolution of
Eapot which displays a steeper slope inside the precursory region. Our observations are
also in good agreement with the limit cycle obtained from the 5-mode model by Podvin
& Sergent (2017). The precursor event and the precursor duration as defined in the same
work are also recovered in the generic cycle of POD modes.

6. Exploring the CR regime using the cluster-based analysis

One way to explore further the differences between CR and EC regimes, is to study
the statistical correlations between modes. However, it is not an easy matter to exhibit
connections between the complete set of modes at the same time. To achieve this goal, we
provide a drastically simplified description of the spatio-temporal dynamics in terms of
network dynamics with K representative states. The temporal dynamics is then reduced
to two elements: the trajectories followed between these K points and the residence time,
which is the time spent inside each point. To define this network, we seek a decomposition
of a 6-dimensional phase-space made up of the POD amplitudes recorded every δt into
a finite set of clusters of points (ck, k = 1, ...,K). Each cluster ck is characterised by a
centroid µk, i.e. the average of the ensemble of 6-dimensional points in ck. Centroids
become the points of the network, each associated to a representative spatial pattern,
which may be seen as the most common superposition of POD modes inside the cluster. In
the following and whenever there is no ambiguity, we refer to the cluster ck corresponding
to the centroid µk by the centroid µk itself.

An adequate sampling frequency δt and a large number of records are key to obtain
correct results. For the present work, the POD amplitudes αk(t) are taken every δt = 0.05
time units. Additionally, we apply the operators Sx, Sy, and Rπ (defined in equations
2.7 to 2.9) to the amplitudes αk to increase the number of records since such data set is
a possible one for the dynamics. This greatly facilitates the interpretation by enforcing
the natural symmetries of the system. The partitioning of the phase-space is done using
the K-means clustering algorithm as described in Kaiser et al. (2014). The algorithm
is tasked to find a partition that minimizes the total within-cluster variance, i.e. the
squared distance between points inside a cluster and the corresponding centroid. This
requires fixing the number K of clusters. Further details are provided in appendix A.
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Figure 10. Flow patterns corresponding to the K = 12 cluster centroids extracted from the CR
subset for (Ra = 5 ·107, P r = 3). Colour indicates the temperature field, and lines correspond to
the streamlines (negative values of streamfunction are in dashed). The five groups are identified
by a different colour of the bottom ruler.

In the present section we validate our approach on the CR regime. The study of the
EC regime is presented in section 7.

6.1. Flow patterns associated to cluster centroids in the CR regime

For (Ra = 5 · 107, P r = 3), partitioning the CR subset using K = 12 clusters is
found to be satisfactory (see appendix A). These clusters are organised in 5 groups
(Gcrk , k = 1, ..., 5), each associated to a different colour in figures 10 to 12:
• Three groups Gcrk , (k = 1, 2, 3), each characterized by two clusters which are Sx and

Sy antisymmetric. The cluster centroids are denoted {µ+
k , µ

−
k }, superscripts indicating

the sign in mode L. Colours are green, yellow and blue, respectively.
• A single group Gcr4 with four clusters. Centroids are denoted {µ++

4 , µ+−
4 , µ−+4 , µ−−4 },

superscripts indicating the quadrant in the (L,S) plane. Colour is red.
• A single group Gcr5 with two clusters which are Sy-symmetric. The cluster centroids

are denoted {µ+
5 , µ

−
5 }, superscripts indicating the sign in mode S. Colour is grey.

The flow patterns associated to each cluster centroid are displayed in figure 10. They
indeed capture the underlying physics. For members of Gcr1 (green), Gcr2 (yellow) and
Gcr3 (blue), the flow pattern exhibits a large diagonal roll with counter-rotating corner-
rolls of different sizes typical of the growth of corner-rolls. For members of Gcr4 (red)
the flow pattern exhibits a central vortex partially detached from the top/bottom plates
which is typical of the rearrangement of the LSC. Members of Gcr1 to Gcr4 can be easily
recognised as rough approximations of the LSC during a generic reversal (see, for instance
figure 7 in Castillo-Castellanos et al. (2016)). For members of Gcr5 (grey), the flow pattern
corresponds to a vertically stacked double-roll which forms an horizontal jet. A horizontal
jet impacts one of the side-walls along which two small corner-rolls are placed, reminiscent
of the leading mode of the EC regime (see figure 5). This flow pattern is predominantly
observed during cessations (Podvin & Sergent 2015).

6.2. Analysis of reversals in cluster space

The simplified representation via clusters is also capable to retrieve the three phases of
the reversal cycle (accumulation, release, and acceleration). Figure 11 displays the clusters
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modes L, Q, and S, during a series of particular flow reversals observed for (Ra = 5·107, P r = 3).
Data-points inside the EC subset correspond to the shaded areas, whereas data-points from the
CR subset are coloured to match the groups Gcrk , see colour code at the top part of the figure.

visited as a function of time are shown alongside a time series of the amplitudes of modes
L, Q, and S. The time series covers a series of standard flow reversals interspersed by
two weak reversals, which are assigned to the EC subset and will be discussed in §7.
For all standard reversals, the clusters are almost always visited in the same sequence.
Starting from a positive L, the sequence (µ+

1 , µ
+
2 , µ

+
3 ) illustrates the growing corner-rolls

observed during the accumulation phase, where µ+
2 roughly corresponds to a precursory

region identified in §5.3. This is followed by a sequence (µ+
3 , µ

−
3 , µ

−
2 ) which splits into

two branches (either µ−−4 or µ−+4 ) and corresponds to the the beginning of the release
phase (sign change in L) leading to the rebound event. Finally, during the complex re-
organisation process typical of the acceleration phase, the system alternates between
different clusters (µ−−4 , µ−1 , µ−+4 ), before eventually settling down on µ−1 .

Figure 12 displays in the planes (L,Q) and (L, S): (i) a random sample of data-points
coloured according to the corresponding cluster groups, (ii) the position of the cluster
centroids, and (iii) the generic reversal cycle from §5.3. In these planes, all of cluster
centroids, are located along the generic cycle with the exception of centroids {µ+

5 , µ
−
5 }

and centroids {µ++
4 , µ+−

4 , µ−+4 , µ−−4 }. It is inside the (L, S) plane that the two branches
leading to the rebound event are best seen. Since both branches have equal probability
of occurrence, by averaging over the ensemble of realisations, the generic cycle inevitably
‘smoothes out’ both branches. Consequently, cluster analysis is better suited to work
whenever multiple transition paths are observed.

For each group Gcrk , we compute the residence time %pcr, as well as the conditional
average for different global quantities (table 4a). The system spends 70% of time inside
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Figure 12. Phase diagram in the (L,Q) and (L, S) planes for (Ra = 5 · 107, P r = 3) inside the
CR subset. For reference, the generic reversal from §5.3 is displayed in solid lines. Data-points
are coloured to match the groups Gcrk , see colour code at the top of the figure. Solid marks
indicate the corresponding centroids.

(a) (b)
%pcr E[|A2D|] E[Ekin] E[Eapot]

Gcr1 43.5 1.49 1.15 0.96
Gcr2 26.0 0.99 0.95 1.04
Gcr3 13.6 0.36 0.76 1.09
Gcr4 14.5 0.99 1.05 0.91
Gcr5 2.4 0.36 0.82 1.06

100.0 1.11 1.03 0.99

%pec E[|A2D|] E[Ekin] E[Eapot]
Gec1 21.9 1.03 1.02 0.97
Gec2 5.8 0.28 0.75 1.06
Gec3 4.6 0.31 1.03 0.84
Gec4 49.0 0.57 0.88 1.02
Gec5 18.7 0.18 0.78 1.14

100.0 0.57 0.89 1.03

Table 4. Conditional averages over each of the groups extracted from the (a) CR and (b)
EC regimes for (Ra = 5 · 107, P r = 3). pcr (resp. pec) denotes the probability for the system
to be inside Gcrk (resp. Geck ) while E[a] denotes the conditional average of a(t) over a cluster
normalised by the average a over the complete series.

Gcr1 and Gcr2 , while it spends 14% of time inside Gcr3 and Gcr4 each. This is in good
agreement with the duration of each phase of the generic reversal cycle with an energetical
viewpoint (Castillo-Castellanos et al. 2016). The sequences described above are also
consistent with the evolution of A2D, Ekin, and Eapot during a generic reversal. For
instance, the sequence (µ+

1 , µ
+
2 , µ

+
3 ) displays a gradual increase of E[Eapot] as in the

accumulation phase. By contrast, the group Gcr5 is only visited whenever deviations from
standard reversals become important, like at the beginning and at the end of a series of
consecutive reversals (see, for instance t ∼ 16200 and t ∼ 16550 in figure 11). For such
events the residence time is always of a few per cent (table 4a).

7. Exploring the EC regime using the cluster-based analysis

In the previous section, we have shown that cluster analysis recovers the features of
the CR regime obtained using the statistical method of section 5.3 and it is even able
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Figure 13. Flow patterns corresponding to the 11 cluster centroids extracted from the EC
subset for (Ra = 5 · 107, P r = 3). Colour indicates the temperature field, while lines correspond
to streamlines (negative values of streamfunction in dashed). The 5 groups of centroids are
identified by a different colour as shown at the bottom ruler of the figure.

to obtain more detailed aspects. Here, the same cluster analysis explores the regime of
extended cessations (EC), which is far less well understood. Note that the statistical
method used in section 5.3 would be ineffective for the EC regime, since this method
relies on the presence of a dominant timescale (the waiting time between consecutive
reversals) to rescale time and extract a dynamical pattern from many realisations. Such
dominant timescale has not been identified for the EC regime.

7.1. Flow patterns associated to the cluster centroids in the EC regime

For (Ra = 5 · 107, P r = 3), partitioning the EC subset using K = 11 clusters is found
to be satisfactory (see appendix A). For clarity, the centroids extracted from the EC
subset are noted νk in order to differentiate the CR and EC subsets. These clusters are
organised in 5 groups (Geck , k = 1, ..., 5), each associated to a different colour in figures
14 to 16:
• A single group Gec1 with two clusters which are Sx and Sy antisymmetric. Centroids

are denoted {ν+1 , ν−1 }, superscripts indicating the sign of mode L. Colour is green.
• A single group Gec2 with a single cluster {ν2} which satisfies all the symmetries.

Colour is yellow.
• A single group Gec3 with two clusters which are Sx-symmetric. The cluster centroids

are denoted {ν+3 , ν−3 }, superscripts indicating the sign of mode S∗. Colour is blue.
• A single group Gec4 with four clusters. Centroids are denoted {ν++

4 , ν+−4 , ν−+4 , ν−−4 },
superscripts indicating quadrant in the (L,S) plane. Colour is red.
• A single group Gec5 with two clusters which are Sy-symmetric. The cluster centroids

are denoted {ν+5 , ν−5 }, superscripts indicating the sign of mode S. Colour is grey.
The flow patterns associated to each centroid are shown in figure 13. The large diagonal

rolls are associated to ν+1 and ν−1 while a quadrupolar mode, commonly observed during
standard reversals in the CR regime, is associated to ν2. A horizontally stacked double-
roll pattern with small corner-rolls along the top or bottom plates is associated to
ν+3 and ν−3 . For {ν++

4 , ν+−4 , ν−+4 , ν−−4 } the flow pattern corresponds to a large vortex
squeezed between one small and one big corner-roll, clearly reminiscent to that of
{µ++

4 , µ+−
4 , µ−+4 , µ−−4 }. Finally, a vertically stacked double-roll pattern with corner-rolls
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Figure 14. Time series indicating the cluster ceck visited at time t and the corresponding
amplitudes of modes L, Q, and S, during a series of extended cessations interspersed by several
periods of consecutive flow reversals for (Ra = 5 · 107, P r = 3). The EC subset corresponds to
white areas. Data-points from the EC subset are coloured to match the groups Geck , see colour
code at the top part of the figure.

along the left or right side-walls, nearly identical to that of µ+
5 and µ−5 , is associated to

ν+5 and ν−5 .

7.2. A cluster space approach of cessations

For the EC regime, figure 14 displays the clusters visited as a function of time alongside
a time series of modes L, Q, and S, as done previously in figure 11 for the CR regime.
Similarly, figure 15 displays the phase diagrams in the (L, S) and (S, S∗) planes, being
the most relevant planes for the cessation dynamics.

First, note that data-points in figure 15 are evenly distributed between the clusters
inside groups Gec1 , Gec4 , and Gec5 . This is confirmed by computing the residence time
for each single cluster, which is at most 12% and is consistent with table 4b since the
residence time %pec in each group is nearly proportional to the number of elements.

The cluster-based analysis discriminates between different kinds of dynamical events
within EC regime. Based on the sequence of clusters visited, ones identifies two dynamics:
weak reversals (windows in figure 14 containing t ∼ 8800 and t ∼ 9300) and actual
cessations of the LSC (the remaining windows). Weak reversals deviate from standard
reversals in CR mainly because of a larger amplitude of mode S. This is likely due to
the asymmetric growth of corner-rolls. During these events, data-points are found to
visit prominently the cluster group Gec1 and to a smaller degree the group Gec4 . At the
beginning of each weak reversal, the system visits Gec2 , then Gec1 . It may then visit Gec4
and Gec1 through different paths.
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Figure 15. Phase diagram in the (L,S) and (L,S∗) planes for (Ra = 5 · 107, P r = 3) inside the
EC subset. Colour is used to identify each cluster group, see colour code at the top of the figure:
Gec1 , and Gec2 predominantly associated to weak reversals, and Gec3 , Gec4 , and Gec5 predominantly
associated to extended cessations. Solid marks indicate the corresponding centroids.

At the beginning of every actual cessation, the system visits Gec2 , then Gec1 as for weak
reversals. However the situation is then dynamically quite different: mode L oscillates
around zero, Q fluctuates around a nearly constant value, while S displays a plateau
sporadically interrupted by short excursions like the ones observed around t ∼ 8600, t ∼
9100, and t ∼ 9900 in figure 14. On the (L, S) and (S, S∗) planes, clusters {ν−+4 , ν+5 , ν

++
4 }

and {ν−−4 , ν−5 , ν
−+
4 } are found to be sufficiently close to one another to be considered as

part of two attractive basins. This qualitative assessment can be confirmed by measuring
the distance between centroids in the 6-D subspace. These basins precisely correspond
to the actual cessations (plateau in mode S, oscillation in L). In trajectory terms, the
system moves back and forth between three clusters inside the groups Gec4 and Gec5 ,
e.g. {ν−+4 , ν+5 , ν

++
4 } and the short excursion of mode S are through Gec1 , Gec2 , and Gec3

before returning to one of the attractive basins. From the centroid patterns of figures
13, it can be inferred that the back and forth between Gec4 and Gec5 is related to the
competition between two counter-rotating vertically stacked vortices, where the relative
size is reflected on the sign of L. This is observed in the snapshots presented in figures
16a to 16f. Oscillations in mode L are physically related to a continuous push and shove
motion between a large ascending plume and one descending along one of the side-walls
from which an horizontal jet is formed. Both plumes remain locked along the same side-
wall until the plateau in mode S is disrupted during a short excursion. A short excursion
is presented in figures 16g to 16l. This particular event is triggered by the weakening of the
horizontal jet (figure 16g) which favours the emergence of a quadrupolar pattern (figure
16h). A new unstable pattern forms from the merging of vortices coming from opposite
corners (figure 16i). This new flow structure rotates until it eventually re-organises into a
more stable vertically stacked double-roll pattern. The most commonly observed feature
during the rotation of the unstable pattern is the brief passage of an intense plume
through the centre of the cavity, which corresponds to the passage through Gec3 (figure
16j). This rapid event is characterised by large fluctuations in mode Q and a substantial
increase (of around 40%) in the global heat-transfer. For such rapid events, the residence



Cessation and reversals of large-scale structures in square Rayleigh–Bénard cells 23

Gec
1 Gec

2 Gec
3 Gec

4 Gec
5

x

y

(a)

x

(b)

x

(c)

x

(d)

x

(e)

x

(f)

x

y

(g)

x

(h)

x

(i)

x

(j)

x

(k)

x

(l)

Figure 16. Sequence of instantaneous fields observed during actual cessations for
(Ra = 5 · 107, P r = 3). Colour indicates the temperature field θ(x, t), lines are streamlines
(negative streamfunction values in dashed). The coloured symbol of the top-right corner indicates
the current cluster group (colour code at the top of the figure). Snapshots (a) to (f) are taken
every 20 t.u. from t = 9090 to t = 9190, whereas snapshots (g) to (l) are taken every 4 t.u. from
t = 9882 to t = 9902 illustrating a short excursion.

time is 4.6% of the total EC subset, that is less than 1% of the total simulation length
(table 4b).

It is remarkable how the attractive basins {ν−+4 , ν+5 , ν
++
4 } and {ν−−4 , ν−5 , ν

−+
4 } are

reminiscent of the double-roll modes (noted DMR1, DRM2, and DRM3 in Xi & Xia
(2008b)) observed inside cylindrical cells.For certain aspect ratios, the asymmetric con-
figurations are more frequently observed than the symmetric one. This behaviour could
be explained in part by a 3-D analogue of the push and shove motion described above.

8. Evolution of dynamical regimes as function of Rayleigh number

For a given Pr (in practice Pr = 4.3 or Pr = 3), we take advantage of the POD
and cluster-based analyses to make evidence of the dynamical flow regimes observed for
different values of Ra which covers the transition from a steady-state to a turbulent flow
regime. More precisely, a first study is based on the energetic content of the leading POD
modes, a second on the residence time inside the different groups of clusters.

8.1. Energy contents of leading POD modes

To allow for a direct comparison between different Ra, we use the modes φk extracted
from the CR subset for Ra = 5 · 107 for the Pr considered (see §4). For the different
Ra, we project the instantaneous velocity and temperature fields onto the six leading
POD modes φk to obtain the set of amplitudes (αk, k = 1, · · · , 6). As in §5, these modal
amplitudes are then scaled by a common factor which is the value 1/|L| for Ra = 5 · 107.
Afterwards we compute αkαk, which is proportional to the part of the combined energy
Ecomb contained inside mode φk (see section 2.3). We check the statistical convergence by
splitting each series in half and comparing their mean values. For the values of (Ra, Pr)
considered, energy contained inside the six POD modes is somewhere between 80% and
95% of the total energy Ecomb, while the maximum relative difference is about 2%.

Let us focus on the energetic contents of the leading POD modes L, Q, and S (figure
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Figure 17. Dynamical regimes as a function of Ra for (a,c) Pr = 3 and (b,d) Pr = 4.3. Marks
i to v separate the different dynamical regimes (see text). Figs. (a,b) display the rescaled values
of αkαk, where αk is obtained by projection into CR modes for Ra = 5 · 107. Combined energy
Ecomb is shown for reference. Figs. (c,d) display the probability %pec of the system being inside
the cluster groups: Gec1 is predominantly associated to plateaus; Gec2 to transitions between
plateaus; Gec3 to short excursions; and Gec4 and Gec5 to extended cessations.

17), which contain the main features of both the CR and EC regimes. As function of
Ra, we may identify different dynamical regimes: below mark i mode L is dominant;
between marks i and ii mode Q is dominant; above ii mode L becomes again dominant
and remains so for larger values of Ra; between iii and iv mode S becomes comparable
to Q; above iv mode S decreases with respect to modes L and Q. Note that, on the
figure, we add a mark v which will be used in the next section. In the following, since
both values of Pr display similar trends, we focus on the case for Pr = 3.

In order to highlight the relation between the LSC dynamics and the energetic contents
of POD modes, figure 18 displays a time series of A2D for different values of Ra
representing each dynamical regime. For values of Ra between the onset convection and
mark i, a steady-state roll is observed. The jump of mode Q around mark i coincides with
the transition to unsteady flows. Region i-ii corresponds to continuous reversals of the
LSC but without the accumulation phase, i.e. modes Q and L have the same dominant
frequency and plateaus in A2D are completely absent. Examples of this zone are a periodic
solution like at Ra = 3 ·105 (figure 18a) or when mode S becomes more energetic, chaotic
reversals like at Ra = 2 ·106 (figure 18b). Above mark ii, mode L becomes dominant once
again. This coincides with the development of metastable plateaus in A2D (figure 18c).
Inside region iii-iv, as mode S becomes more energetic again, plateaus become shorter
while the CR and EC regimes are observed intermittently (figure 18d). Finally above
mark iv, as mode S weakens again, plateaus size gradually increase and reversals become
more regular (figure 18e). Once mode S becomes negligible, stable plateaus are observed
for as long as 2000 convective time units (figure 18f).
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Figure 18. Time series of the angular impulse A2D for Pr = 3 and different Ra illustrating
the different flow flow regimes: (a) periodic reversals for Ra = 3 · 105, (b) chaotic reversals for
Ra = 2 · 106, (c) appearance of long plateaus for Ra = 8 · 106, (d) flow reversals and extended
cessations for Ra = 3·107, (e) flow reversals for Ra = 1·108, and (f) long plateaus for Ra = 5·108.

This dependency on (Ra, Pr) of the flow dynamics is consistent with observations from
Sugiyama et al. (2010) where flow reversals are observed over two discontinuous ranges
of Ra for Pr > 4.3. The plateau length seems to be influenced by the energetic contents
of mode S, with longer plateaus observed as mode S weakens, which is more pronounced
for Pr = 4.3 than for Pr = 3 (see number of reversals in table 1). For instance, for
(Ra = 107, P r = 4.3) only 3 reversals were observed over 9600 t.u. For this case, the
waiting time between reversals can be more than 300 times larger than for the region
i-ii, and up to 50 times shorter than for the region iii-iv.

8.2. Residence time inside different cluster groups

The second approach uses the cluster partitioning for each value of Pr. To allow for
a direct comparison between different Ra, we use the clusters extracted from the EC
subset at Ra = 5 · 107. This partitioning recovers the main features of the regime of
extended cessations, but also of flow reversals. For a given Ra, we assign each data-point
(αk, k = 1, · · · , 6) computed in §8.1 to one of the 5 groups Geck presented in §7.1. Figure
19 displays the (L, S) phase-diagrams for the Rayleigh numbers corresponding to cases
of figure 18. From this procedure, the residence time %pec of each group Geck can be
evaluated (see figure 17c for Pr = 3 and figure 17d for Pr = 4.3).

First, consider the region i-ii. For Ra = 3 · 105, the periodic solution corresponds to a
closed path along the S-axis which passes through the cluster groups Gec1 and Gec2 (figure
19a). Data-points inside Gec1 correspond to the diagonal rolls observed during plateaus,
while Gec2 corresponds to the quadrupolar mode observed during the transition between
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Figure 19. Phase diagram in the (L, S) plane for Pr = 3 and different Ra illustrating the
different flow regimes presented in figure 18. Cluster groups are obtained from the EC regime
for Ra = 5 · 107, see colour code at the bottom of the figure: Gec1 is predominantly associated
to plateaus; Gec2 to transitions between plateaus; Gec3 to short excursions; and Gec4 and Gec5 to
extended cessations.

positive and negative plateaus. By contrast, the chaotic reversals observed inside the
same region, do not display any particular orbit and explore all of the groups (figure
19b). In this region, we observe the emergence of cluster groups Gec4 and Gec5 , associated
to cessation dynamics, which become dominant for the higher Ra. For all groups the
residence time %pec has the same order between 20% and 40% (figure 17d).

Inside region ii-iii, Gec1 becomes dominant at the expense of all the other groups, in
particular of Gec2 , illustrating the relative scarcity of flow reversals (figures 17d and 19c).
Inside region iii-iv, the group Gec1 becomes less prominent in favour of Gec2 (indicating
shorter plateaus), and in favour of Gec4 and Gec5 (associated to cessation dynamics) (figure
17d). The sum of residence times of Gec4 and Gec5 is as large as 40%, which illustrates
the strong competition between the CR and EC regimes (figure 19d). Inside the region
iv-v, Gec1 and Gec2 are reinforced while cessation dynamics become rare or non-existing
(figures 17d and 19e). Finally, as Ra increases above v, groups other than Gec1 essentially
disappear and only a long stable plateau remains (figures 17d and 19f).

A comparison of the residence times between the two Pr, suggests that a higher Pr
reduces the occurrence of cessation dynamics. This effect is more pronounced inside the
regions inside i-iv. This is consistent with results from Chandra & Verma (2013) for
Pr = 1, where the Fourier mode [1,2] (roughly equivalent to mode S) is dominant below
Ra = 107. Additionally, the ratio between the Fourier mode [2,2] (roughly equivalent to
Q) and the [1,1] mode (equivalent to L) of the vertical velocity was found to decrease
monotonically for Ra between 2 · 107 and 109. A similar decrease is observed inside the
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region ii-iii. However, above iii the ratio between modes Q and L reaches a near constant
value.

9. Conclusion

In this paper we used long-term data from two-dimensional DNS of a square RB cell
to extract and study the dynamics of the large-scale structures. In the range considered,
intermittency between the regime of consecutive reversals (CR) and the regime of
extended cessations (EC) is observed. Initially, we split, based on a criterion depending
of the global angular momentum, the overall data into two subsets, one for the CR and
one for the EC regimes. For each subset, a POD analysis is performed identifying the
six most energetic large-scale flow structures. Both regimes however may be accurately
represented by the same type of large-scale flow structures, suggesting that differences
between the CR and EC regimes concerns, for the most part, the energetic distribution
of these flow structures and more generally their time evolution. This suggests that both
regimes are driven by different physical processes.

As for the energetic content, the leading modes in the CR regime are centrosymmetric
monopole L and quadrupole Q, while the leading mode for the EC regime is the
symmetry-breaking vertical dipole S. For both regimes, the leading mode amplitude
exhibits alternating positive and negative plateaus, the duration of plateaus, known as
the waiting time, being several times longer than the large-eddy turnover time.

As for the time evolution, we performed a separate analysis of the probability distri-
bution function of waiting times between consecutive reversals. During the EC regime,
the PDFs of waiting times for all reversing modes {L,L∗, S, S∗} correspond well to
exponential distribution: this indicates that the system loses its memory during the
EC regime. During the CR regime, this is also true for the symmetry-breaking modes S
and S∗. By contrast, the waiting times for the reversing mode L (and to a lesser extent
L∗) strongly deviates from a Poissonian process. In this view, modes {S, S∗} become
a source of noise for an otherwise predominantly coherent dynamics , as identified in
(Podvin & Sergent 2017). This feature is confirmed by applying a conditional average over
hundreds of realisations of particular reversals in the CR. This leads to the identification
of the most common dynamical features of the POD amplitudes during a generic reversal.
Centrosymmetric modes {L,L∗, Q,Q∗} are found to follow a generic cycle, whereas the
symmetry-breaking modes {S, S∗} fluctuate around zero. The above observations are
consistent with results obtained experimentally in a cylinder (Xi & Xia 2008a), where the
strength of the rebound and the time period to the next reversal have been demonstrated
to be correlated, despite a Poissonian process of occurrence of the reorientations.

A simplified representation based on a cluster partitioning reduces the problem to a
finite network dynamics, which enables the study of the long-term evolution of large-
scale structures. Such an approach not only recovers the main features of the CR
regime previously obtained through a simple ensemble averaging, but also reveals that
flow reversals may take one of several possible paths with equal probability during the
beginning of the release phase leading to the rebound event.

The clustering method was then used to study the EC regime which has been much less
explored. It discriminates between different coherent dynamical events regardless of their
relative timescales: weak reversals and actual cessations. On the one hand, weak reversals
deviate from standard reversals due to the intensity in mode S. On the other hand, the
actual cessations are predominantly associated to a continuous push and shove motion
between two vertically stacked vortices. This metastable state may be sustained for long
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periods of time. Moreover, short excursions are also identified despite their shortness and
scarcity, corresponding to the brief appearance of an intense plume crossing the cavity.

As a final analysis, we combined POD and cluster analysis to provide a description of
the different spatio-temporal dynamics observed over a wide range of Rayleigh numbers.
By considering the energetic content of the leading POD modes {L,Q, S} and the
residence time in each group of clusters, we identified the successive dynamical regimes
observed from the steady state to the turbulent regime.
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Appendix A. Cluster partitioning method

This method consists in partitioning a set of six-dimensional data points (in our case,
a set of six POD amplitudes taken every δt), into a finite set of K clusters. Each cluster
ck of points, is characterised by the average position µk of the ensemble of points in
ck. This point µk, called the centroid, corresponds to a typical flow pattern seen as a
representative state of cluster ck.

For this work, the cluster partitioning is performed via the K-means algorithm (see,
for instance Jain (2010)) as implemented by the scikit-learn Python package (Pedregosa
et al. 2011). This algorithm can be described as an optimisation method: given a number
K of clusters and a set of data points, it is tasked to find a Voronoi partition (see, for
instance Okabe et al. (2009)) of these data points so that the sum of the squared error

Ĵ(c1, .., cK) =

K∑

k=1

∑

α′∈ck
‖α′ − µk‖2 with α′ = (α′1, α

′
2, · · · , α′6) (A 1)

between the centroid of a cluster, and its associated points is minimized over all sets of K
clusters. The minimum squared error is denoted by J(K). Starting from an initial guess
of the cluster centroids µi=0

k obtained using k-means++ (Arthur & Vassilvitskii 2007),
one applies an iterative procedure. At step n of this procedure, one obtains a given value
µi=nk and performs two actions: first one builds a new Voronoi partition based on µi=nk ,
second the centroids of this new partition µi=n+1

k are computed using the mean values
of all the points of the new partition clusters. Steps are repeated until the current and
subsequent centroids converge.

Because of the discrete flow symmetries {Sx,Sy,Rπ}, each cluster is a priori bound to



Cessation and reversals of large-scale structures in square Rayleigh–Bénard cells 31

5 10 15 20 25

K

0.0

0.2

0.4

0.6

0.8

1.0
J
(K

)/
J
(K

=
1)

CR Only

EC Only

−1 0 1

L

−1

0

1

S

K = 10

−1 0 1

L

K = 12

−1 0 1

L

K = 14

Figure 20. Normalised squared error J(K)/J(K = 1) as function of the number of clusters K
for (Ra = 5 · 107, P r = 3) inside the CR and EC regimes. The insets illustrate the clusters (in
colour) and the cluster centroids (in white marks) of the partitioned POD subspace for the CR
regime using different values of K.

be included in one of three possible groups: (i) groups of 4 clusters, where none of the
elements of the group satisfy a particular symmetry but each element is transformed into
another member of the group by the action of Sx, Sy, or Rπ; (ii) groups of 2 clusters,
where each element of the group is invariant by the action of one of the symmetries
among the set {Sx,Sy,Rπ} and is transformed into another member of the group by the
remaining symmetries; and (iii) groups of a single cluster, which is invariant by the action
of {Sx,Sy,Rπ}. However, since the K-means algorithm is not constrained by symmetry,
it sometimes leads to an optimum set of K clusters which does not verify the symmetry
rules. If this is the case, we disregard this result.

Since J(K) always decreases as we increase K, one is required to fix the number K
of clusters. This choice can be done based on the decrease of the minimum squared
error J(K) with respect to K (like in figure 20 for instance). In our case, we also take
advantage of the symmetric nature of the POD subspace to guide the choice of K. An
adequate number of clusters K results from a good compromise between a small number
of clusters, the decrease in the squared error J(K), and also on the condition that the
computed clusters verify the required symmetry rules.

For (Ra = 5 · 107, P r = 3) the partitioning the CR subset using K = 12 is deemed
satisfactory: this choice results in a decrease in the squared error by more than 90%
with respect to the case with K = 1 (figure 20). Smaller values of K fail to satisfy the
required symmetries (see for instance, K = 10 in the left inset in figure 20) or to recover
important details such as the double-roll modes associated to cessations, while a larger
value provides a marginal gain of information about the phases of the generic cycle (see
for instance, K = 14 in the right inset in figure 20). Similarly, partitioning the EC subset
using K = 11 clusters results in a decrease in the squared error by more than 80% with
respect to the case K = 1 (figure 20). Smaller values of K fail to recover the short
excursions through mode S∗ while larger values provide redundant information on the
cessation dynamics.
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