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We consider direct numerical simulations of turbulent Rayleigh-Bénard convection inside
two-dimensional square cells. For Rayleigh numbers Ra = 106 to Ra = 5 · 108 and
Prandtl numbers Pr = 3 and Pr = 4.3, two types of flow regimes are observed
intermittently: consecutive flow reversals (CR), and extended cessations (EC). For each
regime, we combine proper orthogonal decomposition (POD) and statistical tools on
long-term data to characterise the dynamics of large-scale structures. For the regime
CR, centrosymmetric modes are dominant and display a well-defined dynamics, while
the less energetic non-centrosymmetric modes (here, two double roll modes) fluctuate
randomly. For the regime EC, a non-centrosymmetric mode is dominant and the overall
dynamics display a stochastic behaviour. Furthermore, an additional simplification of the
dynamics is proposed based on a K-means clustering of the POD phase-space. It reduces
the problem to a network dynamics of finite number of clusters. This simplified analysis
captures the main features of the CR and EC dynamics. Finally, we analyse within a
range of Rayleigh numbers up to turbulent flow, the relation between dynamical regimes
and the POD energetic contents as well as the residence time in each cluster.

1. Introduction

A remarkable aspect of turbulent flows is the spontaneous organisation of coherent
large-scale flow patterns superposed to the small-scale fluctuations. In many cases, differ-
ent configurations for the large-scale flow are shown to coexist and display rapid switches
from one another, for instance inside dynamo experiments and in the geomagnetic field
under the form of polarity switches (Wicht et al. 2009; Valet et al. 2012; Fauve et al. 2017).
Flow reversals are observed inside decaying and stochastically forced two-dimensional
turbulence in the presence of rigid walls (Van Heijst et al. 2006; Molenaar et al. 2004). In
turbulent Rayleigh-Bénard convection, this phenomenon is also observed where a large
scale circulation (LSC), commonly referred to as the wind of turbulence, is shown to
change sign intermittently (Niemela et al. 2001; Kadanoff 2001).

The structure of the LSC and the nature of its variations depend on the geometry of
the container (Grossmann & Lohse 2003; Xi & Xia 2008b; van der Poel et al. 2011).
In cylindrical cells, two kinds of reversals are identified: (i) a rotation-led reversal
which corresponds to half a revolution of the LSC plane around the cylinder axis
through azimuthal meandering, and (ii) a cessation-led reversal in which the existing
LSC suddenly breaks down before re-organising into a different spatial direction (see,
for instance, Niemela et al. (2001); Sreenivasan et al. (2002); Brown & Ahlers (2007);
Xi & Xia (2008a,b)). For the latter, a double-roll mode is usually observed during the
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transition. In cubic cells, the plane of the LSC tends to align to the diagonals of the
cell and transitions from one another through azimuthal rotation, but little evidence of
cessation-led reversals (Bai et al. 2016; Foroozani et al. 2017).

One way to focus on the cessation-led reversals by reducing the rotation of the LSC
is to restrict the experimental study to slim rectangular cells (Sugiyama et al. 2010;
Vasilev & Frick 2011; Ni et al. 2015). One may also consider two-dimensional direct
numerical simulations (Sugiyama et al. 2010; Petschel et al. 2011; Chandra & Verma
2011, 2013; Podvin & Sergent 2015, 2017) since rotation-led reversals are not possible in
such a configuration. Sugiyama et al. (2010) used two-dimensional simulations to identify
a region in the (Ra, Pr) space in which reversal events are observed, in good agreement
with experimental observations. For this range of (Ra, Pr), the flow inside a square cell
is mainly composed of a large diagonal roll and two counter-rotating corner-rolls. As
pointed out by (Sugiyama et al. 2010; Chandra & Verma 2013), during the transition in
2D reversals the LSC is temporarily replaced by a quadrupolar mode. In the following,
we refer to this regime as the regime of consecutive reversals (CR). A second (and often
overlooked) flow regime is observed intermittently inside the same range of (Ra, Pr).
It is mainly composed either of two (counter-rotating) horizontally stacked rolls or two
vertically stacked rolls (Podvin & Sergent 2015). In the following, we refer to this regime
as the regime of of extended cessations (EC).

Decomposing the turbulent flow into coherent flow structures and incoherent turbu-
lence, allows to focus on dynamically significant events (Hussain 1986). Such decom-
position is usually performed either in terms of predetermined basis functions, like
spatial Fourier decomposition (see, for instance, Das et al. (2000); Chandra & Verma
(2011)), or in terms of basis functions extracted from the data, like Proper Orthogonal
Decomposition (POD) (see, for instance Bailon-Cuba et al. (2010); Podvin & Sergent
(2015, 2017)), Dynamic Mode Decomposition (DMD) (Schmid 2010; Horn & Schmid
2017), or Koopman eigenfunction analysis (Giannakis et al. 2018). From this perspective,
the coherent structures correspond to a combination of various such modes and flow
reversals result from the non-linear interactions between modes (Chandra & Verma 2011).
Note that, reduced order models based on the three and five most energetic POD modes,
are able to reproduce the main dynamical features of both regimes (Podvin & Sergent
2015, 2017).

Another viewpoint is based on energetic considerations. For the CR regime, the
energetics of reversals were recently investigated in (Castillo-Castellanos et al. 2016)
by using a combination of conditional sampling, time-rescaling, and ensemble averages.
This technique was previously used for reversals in geomagnetic fields (Valet et al.
2012; Lhuillier et al. 2013). Using several hundred realisations of particular reversals,
we followed the evolution of the global kinetic and available potential energies (Winters
et al. 1995; Hughes et al. 2013), which led to the identification of a generic reversal mech-
anism. Consistent with the avalanche mechanism mentioned by Sreenivasan et al. (2002),
reversals are driven by a localised accumulation of thermal energy until a threshold is
met and energy is thereafter expelled as a single burst.

In the present paper, we use statistical approaches applied to the modal coefficients
extracted from the POD. Contrary to (Castillo-Castellanos et al. 2016), these analyses
may be performed not only to the CR regime, but also to the EC regime. The pa-
per is organised as follows. Section 2 introduces the model equations, their numerical
implementation and the POD approach. In section 3 we present the criterion used to
separate the CR and EC regimes and introduce the data sampling for POD. The following
sections explore the differences between both regimes: §4 focuses on the spatial structure
of coherent modes, §5 on the their temporal evolution, while §6 and §7 introduce and
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apply cluster analysis to analyse the interactions between competing modes for the CR
and EC regimes, respectively. In section 8, we follow the energy contained inside different
modes and the residence times in clusters as a function of Ra. This provides a simplified
description of the various flow regimes observed. Finally, we summarize our results in
section 9.

2. Model equations and analysis tools

2.1. Physical configuration and governing equations

Consider a fluid contained in a square cell, cooled at the top with constant temperature
Ttop and heated at the bottom with constant temperature Tbot > Ttop. The flow equations
are based on the Boussinesq approximation. The flow is defined by the Rayleigh and
Prandtl numbers,

Ra ≡ gβH3 (Tbot − Ttop)

κν
, Pr ≡ ν

κ
(2.1)

where g denotes gravity, H the cell height and β, κ, ν are respectively volumetric thermal
expansion, thermal diffusivity and kinematic viscosity coefficients. As far as notations
are concerned, variables x (resp. u) and y (resp. v) stand for the horizontal and vertical
directions (resp. velocities). Coordinate vector x = (x, y) is equal to (0, 0) at the cavity
centre. One introduces the reduced temperature θ(x, t) ≡ (T − T0)/(Tbot − Ttop), with
T0 ≡ (Tbot+Ttop)/2. Given a field a(x, t), quantity a(x) (resp. σ(a)(x)) denotes the time
averaged value (resp. standard deviation) computed using the complete long-term time
series. Moreover 〈a〉(t) stands for the volume average of a(x, t) over the fluid domain.

Based on the cell height H as characteristic length scale and κ
HRa

0.5 as characteristic
velocity scale, the dimensionless velocity u = (u, v) and reduced temperature θ satisfy
the dimensionless system of equations





∇ · u = 0

∂tu+ ∇ · [u⊗ u] = −∇p+ PrRa−0.5∇2u+ Prθey
∂tθ + ∇ · [uθ] = Ra−0.5∇2θ

(2.2)

A no-slip condition for the velocity field is ensured on walls. On top (resp. bottom) walls,
one imposes θ = −0.5 (resp. θ = 0.5) while adiabaticity ∂xθ = 0 is satisfied on side-walls.
From now on, all quantities are written in dimensionless form only.

For this system, we identify the following symmetry operators which leave the gov-
erning equations invariant: a reflection symmetry Sx with respect to the vertical axis
(x = 0), 


u(x, y)
v(x, y)
θ(x, y)


 Sx−→



−u(−x, y)
v(−x, y)
θ(−x, y)


 (2.3)

and a reflection symmetry Sy with respect to the horizontal axis (y = 0).


u(x, y)
v(x, y)
θ(x, y)


 Sy−→




u(x,−y)
−v(x,−y)
−θ(x,−y)


 (2.4)

The combination of both Rπ = Sx ◦ Sy = Sy ◦ Sx represents the centrosymmetry.


u(x, y)
v(x, y)
θ(x, y)


 Rπ−→



−u(−x,−y)
−v(−x,−y)
−θ(−x,−y)


 (2.5)
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Mode-Q Mode-Q∗ Mode-L Mode-L∗ Mode-S Mode-S∗

Symmetry Rπ S S S S AS AS
Symmetry Sx S S AS AS AS S
Symmetry Sy S S AS AS S AS

Table 1. Definition of modes based on symmetry properties. In each case, we indicate whether
the mode is symmetric (S) or antisymmetric (AS) with respect to Sx, Sy, and Rπ presented in
§2.1.

Pr Ra nxny ts ne Nu %Diff.
4.3 1 · 106 5122 4500 418 6.83 0.2

3 · 106 5122 4500 248 9.09 0.4
5 · 106 5122 4500 120 10.47 0.5
8 · 106 5122 4500 76 12.14 0.7
1 · 107 5122 9600 3 13.06 0.3
3 · 107 5122 9600 22 18.29 0.2
5 · 107 5122 65000 605 20.97 0.7
8 · 107 5122 4500 66 23.96 2.6
1 · 108 10242 4500 56 25.77 0.2
3 · 108 10242 4500 9 35.50 1.6
5 · 108 10242 4500 - 41.09 2.8

Pr Ra nxny ts ne Nu %Diff.
3.0 1 · 106 5122 4500 520 6.60 0.2

3 · 106 5122 4500 310 8.82 0.4
5 · 106 5122 4500 133 10.10 0.4
8 · 106 5122 4500 22 11.60 0.7
1 · 107 5122 9600 220 12.50 0.3
3 · 107 5122 9600 261 17.60 0.5
5 · 107 5122 65000 754 20.70 0.7
8 · 107 5122 4500 75 23.79 2.5
1 · 108 10242 4500 45 25.36 0.2
3 · 108 10242 4500 1 35.06 1.5
5 · 108 10242 4500 - 40.76 2.5

Table 2. Simulation parameters: Ra and Pr, number of grid points nxny, simulation length ts
in convective time units and number of events ne where A2D changes sign during the simulation
length. Numerical convergence of the Nusselt number: average Nusselt number and maximum
relative difference between different definitions, see text.

which in addition to the identity form a symmetry group (Podvin & Sergent 2015). In
this work, we extract a set of coherent modes M, each possessing particular symmetries
with respect to each element E of the symmetry group. Each mode can be symmetric, i.e.
EM = M, or antisymmetric, i.e. EM = −M. In keeping the naming scheme proposed by
Podvin & Sergent (2017), we introduce the following notations for coherent modes: (i) two
modes Q and Q∗, which are symmetric with respect to all the elements of the group; (ii)
two modes L and L∗, which are symmetric with respect to Rπ, but antisymmetric with
respect to Sx and Sy ; and (iii) two modes S and S∗, also known as symmetry-breaking
modes, which are antisymmetric with respect to Rπ. However, mode S is symmetric with
respect to Sy and antisymmetric with respect to Sx, while mode S∗ has the opposite
symmetries (see table 1).

2.2. DNS: parameter range and numerical method

The values of (Ra, Pr) used for direct numerical simulations (DNS) covers the tran-
sition to a turbulent flow regime where reversals have been reported (Sugiyama et al.
2010): Ra = 106 − 5 · 108 for Pr = 3 and Pr = 4.3. The length of the simulations range
from 4500 to 60000 convective time units as to observe an adequate number of reversals
of the LSC (see table 2).

Time integration of the governing equations 2.2 is performed through a second-order
semi-implicit scheme. It combines a staggered in time discretisation of the velocity and
scalar fields with an implicit treatment of the diffusion terms and the Bell-Colella-Glaz
advection scheme (Bell et al. 1989) for the non-linear terms. Details of this method can
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be found on (Popinet 2003, 2009). The time step is variable and verifies the Courant-
Friedrichs-Lewy condition CFL < 0.5. Incompressibility is imposed by a projection
method. Numerical implementation is done using Basilisk (Popinet 2015). The code has
been validated and verified for Rayleigh-Bénard convection in Castillo-Castellanos et al.
(2016). Simulations are performed using the finite volume method on a regular Cartesian
centred grid with 512 or 1024 points in each direction. We verify the spatial resolution
by evaluating the numerical convergence of time-averaged Nusselt numbers obtained by
different methods: integrated over the top and bottom plates, over the volume, and
derived from exact relations to the viscous and thermal dissipation rates (Shraiman &
Siggia 1990). In general, these values converge within 2% of the average Nusselt number,
see table 2.

2.3. Mode extraction using Proper Orthogonal Decomposition (POD)

In the following sections, we extract the coherent structures based on Proper Orthogo-
nal Decomposition (POD). Given a data setψ(x, t), this procedure determines an optimal
set of orthonormal spatial functions φk(x) on which the fields can be decomposed

ψ(x, t) =

∞∑

k=1

αk(t)φk(x) (2.6)

Function φk(x) denotes a normalized eigenfunction of the spatial autocorrelation tensor
R(x,x′) ≡ ψ(x, t)ψ(x′, t)

∫
R(x,x′)φk(x′)dx′ = λkφk(x) (2.7)

associated with the eigenvalue λk. It can be shown that the amplitudes αk(t) are such
that αjαk = δjkλk, δjk being the Kronecker symbol. Modes are then ordered according
to their energetic content that is λ1 > λ2 > · · ·λk.

Due to the size of the physical grid (nxny ∼ 105), we use the snapshot method (Sirovich
1987). First one approximates the correlation tensor R from N individual snapshots
obtained at instants tn as

R(x,x′) =
1

N

N∑

n=1

ψ(x, tn)ψ(x′, tn) (2.8)

Second, the eigenfunctions are assumed to be a linear combination of these N snapshots

φk(x) =

N∑

n=1

βk(tn)ψ(x, tn) (2.9)

so that the eigenvalue problem 2.7 can be rewritten as

Cmnβk(tn) = λkβk(tm), with Cmn ≡ 〈ψ(x, tm)ψ(x, tn)〉 (2.10)

leaving one eigenvalue problem of size N2 instead of 9n2xn
2
y. Moreover it can shown that

βk(tn) = αk(tn)/λk (more details in (Holmes et al. 2012)).
For the present work, the data set is composed of joint velocity and temperature field

ψ(x, t) = (θ, u, v). (2.11)

As a result, the set of orthonormal functions is such that φk = (φθk, φ
u
k , φ

v
k) and the
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Figure 1. Figure (a) Time evolution of A2D(t) scaled by |A2D| for (Ra = 5 · 107, P r = 3).

The threshold separating the CR and EC regimes set to Athres = |A2D|+ σ(|A2D|) is shown in
red. White areas correspond to CR, while grey areas correspond to EC. Figure (b) (resp. (c))
displays snapshots taken inside the CR (resp. EC) regime. Colour indicates temperature field
θ(x, t) and lines are streamlines (negative values shown in dashed).

combined energy reads as

Ecomb ≡ 〈θ2 + u2〉 =

∞∑

k=1

λk (2.12)

Our POD implementation was validated by applying it to two data sets: a first set of
1152 snapshots for (Ra = 5 · 107, P r = 3), and a second set of 1200 snapshots for
(Ra = 5 · 107, P r = 4.3). In both cases, snapshots were taken every 5 convective time
units (t.u.) from the complete series. Using a longer series or a smaller sampling time
did not affect results, giving some confidence in the robustness of our mode extraction.
For (Ra = 5 · 107, P r = 4.3), results are in good agreement with published results by
(Podvin & Sergent 2017): we obtain a similar set of structures, which display the same
symmetries and similar energy contents (not presented here).

3. Data Processing: Identification of regimes and conditional
sampling

3.1. Identification of the two flow regimes

For the range of (Ra, Pr) considered, two different dynamical regimes have been
identified by following the global angular momentum

A2D(t) ≡ −1

2

∫
x2ω(x, t) dx, with ω(x, t) = ∂xv − ∂yu (3.1)

as a function of time (figure 1a). Indeed, this quantity is a measure of the organised
rotation around the centre of the cavity (Molenaar et al. 2004). A criterion based on the
amplitude of A2D was proposed to discriminate the two regimes (Podvin & Sergent 2015;
Castillo-Castellanos et al. 2016). If |A2D| > Athres (here set to Athres = |A2D|+σ(|A2D|))
during the interval between two consecutive sign changes in A2D, then the time interval
is assigned to the regime of consecutive reversals (CR), corresponding to white areas in
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figure 1a. A time interval where such threshold is not reached can be of two kinds: weak or
rogue reversals if only one consecutive sign change is observed, and a cessation of the LSC
otherwise. For simplicity, both kinds are assigned to the regime of extended cessations
(EC), corresponding to grey areas in figure 1a. On the one hand, consecutive reversals
are characterised by alternating positive and negative plateaus in A2D. Positive (resp.
negative) plateaus are associated to a large counter-clockwise (resp. clockwise) diagonal
roll with two corner-rolls (see figure 1b). On the other hand, extended cessations are
characterised by a more erratic dynamics and by the absence of a central vortex (see
figure 1c).

3.2. Conditional sampling for POD

Conditional sampling allows to distinguish and provide quantitative information about
interesting spatial and/or temporal regions of a turbulent flow (Antonia 1981). Here, we
use the aforementioned criterion to separate our data into two subsets: a first one which
corresponds to the CR regime only and a second one which excludes this regime, leaving
mostly the EC regime. The idea is now to apply a POD analysis to each subset separately
and investigate in detail the dynamics of each regime. In the sections 4 to 7, we focus on
the values (Ra = 5 · 107, P r = 4.3) and (Ra = 5 · 107, P r = 3) since the system displays
in that two cases, an intermittency between the CR and EC regimes. For reference,
at (Ra = 5 · 107, P r = 4.3) (resp. (Ra = 5 · 107, P r = 3)) the probability of being
inside the CR regime is 83.0% (resp. 79.6%) of the complete series. It is thus possible to
highlight the different roles played by the large-scale modes from different viewpoints.
These observations will be used in section 8 to follow the large-scale flow dynamics over
a wider range of Ra numbers.

For (Ra = 5 · 107, P r = 4.3), the CR subset is restricted to 100 flow reversals,
corresponding to 3157 snapshots taken every 4 convective time units. The sampling
frequency of snapshots has been adjusted to ensure the different phases of the flow
reversals are represented and the number of snapshots was progressively increased until
the convergence of POD modes is reached. The EC subset is composed of 3800 snapshots
taken every convective time unit. The sampling frequency was increased due to the
generally faster dynamics and short duration of this regime. For this regime it was more
difficult to obtain converged POD modes and small differences are still observed when
considering different sets of snapshots. For (Ra = 5 · 107, P r = 3) the CR subset is
composed of 108 reversals, corresponding to 1521 snapshots taken every 4 time units,
while the EC subset is composed of 1500 snapshots taken every time unit.

4. Comparison of the spatial structures extracted from each regime

For (Ra = 5 · 107, P r = 4.3) and (Ra = 5 · 107, P r = 3) and both CR and EC subsets,
the POD spectra exhibits at least two decades of decay between modes k = 1 and k = 20
(figure 2). The two first modes of the CR regime represent around 80% percent of the
combined energy Ecomb, with an additional 10% contained inside modes k = 3 to 6 for
Pr = 4.3 (resp. modes k = 3 to 7 for Pr = 3). In comparison, the first two and six
modes of the EC regime represent 70% and 86% of Ecomb, respectively. Generally EC
modes k = 2 to k = 20 are more energetic than their CR counterparts, indicating a
stronger competition between POD modes for the EC subset. In sections 4.1 and 4.2, we
study only on the six most energetic POD modes for each regime. In the following and
whenever there is no ambiguity, we refer to the amplitude αk(t) of the mode k as the
mode itself. For instance if k = 1 mode is a mode Q, α1 is written as Q.



8 A. Castillo-Castellanos, A. Sergent, B. Podvin and M. Rossi

(a)

0 5 10 15 20

k

10−3

10−2

10−1

100

λ
k
/
∑

∞ k
=

1
λ

k
CR only

EC only

(b)

0 5 10 15 20

k

10−3

10−2

10−1

100

λ
k
/
∑

∞ k
=

1
λ

k

CR only

EC only

Figure 2. Conditional POD analysis of the CR and EC subsets. Normalised eigenvalues for
the first 20 modes for Ra = 5 · 107 for (a) Pr = 4.3 and (b) Pr = 3.0.

Extracted from CR Only
(a)

L Q S L∗ Q∗ S∗
k=1 k=2 k=3 k=4 k=5 k=6

(b)

L Q L∗ S Q∗ S∗
k=1 k=2 k=3 k=4 k=5 k=6

Figure 3. Leading POD modes of the CR subset obtained for Ra = 5 · 107 and (a) Pr = 4.3,
(b) Pr = 3.0. For each figure, colour corresponds to the temperature modes φθk (top row) and to
the streamfunction of the velocity modes (φuk , φ

v
k) (bottom row). Streamlines are also presented

in bottom row with dashed lines for negative streamfunction values.

4.1. Leading POD modes inside the regime of ‘consecutive reversals’ (CR)

Figure 3a displays the POD modes extracted from the CR subset for (Ra = 5·107, P r =
4.3). Each mode displays a clear symmetry: k = 1 corresponds to mode L, associated
to a single-roll mode with small recirculation cells in the corners; k = 2 corresponds to
mode Q, associated to a four-roll mode and to the mean temperature field; k = 3 to
mode S, composed of two vertically stacked rolls; k = 4 to mode L∗, composed of three
vertically stacked rolls; k = 5 to mode Q∗, similar to mode Q, but with four additional
rolls carrying cold (resp. hot) fluid close to the bottom (resp. top) plate; and finally k = 6
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Extracted from EC Only

(a)

k=1 k=2 k=3 k=4 k=5 k=6
(b)

k=1 k=2 k=3 k=4 k=5 k=6

Figure 4. Most energetic POD modes of the EC subset obtained for Ra = 5 · 107 and (a)
Pr = 4.3, (b) Pr = 3.0. Temperature and velocity modes are displayed as in figure 3.

to mode S∗, composed of two horizontally stacked rolls. A similar set of POD modes is
obtained for (Ra = 5 · 107, P r = 3), but modes k = 3 and k = 4, are interchanged (figure
3b). In addition, this set of modes is similar to the one extracted from the complete series
(see, for instance, figure 1 from Podvin & Sergent (2017)), but with k = 5 and k = 6
interchanged. Because of this, the previous studies focused on the five most energetic
modes (Podvin & Sergent 2015, 2017) did not include the mode Q∗.

4.2. Leading POD modes inside the regime of ‘extended cessations’ (EC)

Figure 4a displays POD modes extracted from the EC subset at (Ra = 5 · 107, P r =
4.3). Such modes are reminiscent of those extracted from the CR subset: k = 1 is similar
to mode S. Mode k = 2 can be seen as a linear combination of mode L and mode L∗

with LL∗ > 0, and corresponds to a vortex detached from the top and bottom plates
(Podvin & Sergent 2017). Modes k = 3, k = 4, and k = 5, are reminiscent of mode
Q, mode S∗, and mode Q∗, respectively, while k = 6 is a new mode specific to the EC
regime. The latter one is composed of two co-rotating vortex surrounded by six smaller
counter-rotating rolls. A similar set of POD modes is obtained for (Ra = 5 ·107, P r = 3),
but the temperature field of k = 1 suggests this mode is a combination of mode S and
mode Q (figure 4b).

Given the similarities between the modes extracted from EC and CR subsets (the
sole exception being the mode k = 6 of the EC regime), we conclude that both subsets
are accurately represented by the same set of coherent spatial structures. This suggests
that differences between the CR and EC regimes concerns the time evolution of modal
amplitudes. In the following sections, we hence project the complete time series into
the set of modes extracted from the CR regime to compare the temporal evolution of
amplitudes for both regimes.



10 A. Castillo-Castellanos, A. Sergent, B. Podvin and M. Rossi

5. Comparison of temporal evolution in the CR and EC regimes

We analyse here the temporal evolution in both regimes and focus on the coherent or
stochastic nature of the dynamics of each POD mode.

5.1. General temporal evolution and PDF of modal amplitudes

Let us project the fields ψ(x, t) = (θ, u, v) into the set of POD modes extracted from
the CR subset to obtain the modal amplitudes αk(t). For simplicity, these amplitudes are
then scaled by the common factor 1/|L|. Figure 5 displays their time evolution, and figure
6 their corresponding probability distribution functions (PDF). A different behaviour is
observed for the CR and EC regimes.

During the CR regime (white areas), the dominant mode L alternates between positive
and negative plateaus. Both A2D (shown in green) and L are very well correlated and are
considered as excellent indicators of the presence of flow reversals. As observed by Podvin
& Sergent (2017), the time evolution of mode L∗ is different for positive and negative
values of L. Modes S and S∗ display positive and negative peaks during transitions, but
otherwise fluctuate around zero. Mode Q increases progressively during the plateaus and
suddenly drops during transitions, while mode Q∗ is centred around zero and displays the
opposite behaviour. As for as PDFs are concerned, modes L and L∗ display a bimodal
distribution, modes S and S∗, a double exponential distribution, which are almost
symmetric. On the contrary, modes Q and Q∗ have skewed probability distributions. This
behaviour can be explained as follows. If a set of amplitudes M(t) ≡ {L,L∗, Q,Q∗, S, S∗}
is obtained by the governing equations, then SxM , SyM , and RπM are also data sets
associated to these governing equations. Furthermore, contrary to modes Q and Q∗ which
are symmetric under operators Sx, Sy, and Rπ, the modes {L,L∗, S, S∗} are changed into
their opposite by the action of at least one of these operators (see table 1). Consequently
their PDFs are expected to symmetric with respect to zero. This is not completely the
case in figure 6 due to limited number of records.

During the EC regime (shaded areas), the dominant mode S is characterized by positive
and negative plateaus and its PDF takes the form of a symmetric bimodal distribution.
This is equivalent to the evolution of mode L during the CR regime. Mode S is therefore
a good marker for this regime. Mode S∗ becomes more energetic than in the CR regime,
but does not exhibit such clear plateaus. The time evolution of the other POD modes
is also modified by the change of regime: modes {L,L∗} are found to oscillate around
zero or may display smaller positive and negative plateaus, while symmetric mode Q
fluctuates around a non null positive value.

Most of the above observations are valid for both Pr. The time evolution of the POD
modes is more regular and more clearly defined for Pr = 3 than for Pr = 4.3 (see figures
5a and 5b). Additionally, the PDFs of L and S during the EC regime are different for
Pr = 3: L displays a more uniform distribution, whereas S displays a more prominent
peak around zero.

For the above symmetry considerations, the PDFs of modes {L,L∗, S, S∗} are symmet-
ric with respect to zero. As such, these modes are prone to exhibit a reversing dynamics
(see figure 5), and the dynamics of each mode is similar for its positive and negative
values. By contrast, the PDFs of modes Q and Q∗ are skewed: mode Q does not reverse,
whereas mode Q∗ does change sign, but evolves differently for its positive and negative
values. Consequently, in order to characterise the temporal dynamics of each regime more
precisely, we study the reversal process governing the reversing modes {L,L∗, S, S∗}.
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Figure 5. Scaled amplitudes αk(t)/|L| and the scaled angular impulse A2D/|A2D| for (a)
Pr = 4.3 and Ra = 5 · 107, (b) Pr = 3.0 and Ra = 5 · 107. White (resp. shaded) regions belong
to the CR (resp. EC) subset. Red solid lines on the top figure pinpoints the threshold separating
the CR and EC subsets.
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Figure 6. Probability distributions of the scaled amplitudes αk(t)/|L| for (a) Pr = 4.3 and
Ra = 5 · 107, (b) Pr = 3.0 and Ra = 5 · 107. PDFs inside CR regime are displayed in blue, while
conditional PDFs inside EC regime are displayed in red.

5.2. Distribution of waiting times for reversing POD modes

To characterise the reversal process of modes {L,L∗, S, S∗}, we compute for each such
mode the waiting times τ between consecutive sign changes and evaluate its probability
distribution P(τ). The quantity h(τ)dτ where h(τ) ≡ P(τ)/(1 −

∫ τ
0

P(τ ′)dτ ′), stands
for the probability of the occurrence of another reversal inside time interval [τ, τ + dτ ]
where time τ is defined as the time elapsed since the last reversal. The probability
distribution P(τ) and h(τ) are often employed for polarity reversals of Earth’s magnetic
field. Polarity changes are typically assumed to originate from a general renewal process,
in which reversals are independent from one another (see, for instance (Merrill et al.
1998; Lhuillier et al. 2013)). To verify whether or not the independence hypothesis is
correct, the probability distribution P(τ) is compared to a Gamma distribution

P(τ) =

(
k

m

)k
τk−1

Γ (k)
exp

(
−k τ

m

)
, with Γ (k) =

∫ ∞

0

xk−1 exp (−x)dx (5.1)

where m = τ denotes the mean value of τ and the shape parameter k provides the stan-
dard deviation m/

√
k. For a Gamma distribution, h reaches a constant limτ→∞ h(τ) = k

m
at long time intervals (McFadden & Merrill 1986). When k = 1, the probability h is
found always constant h(τ) = 1

m . This exponential distribution is interpreted as a lack
of memory of the system: reversals are thus generated by a Poisson process characterized
by an affine profile in a log plot, i.e. logP (τ) = − τ

m − logm. On the contrary, a memory
effect appears when k 6= 1 : on the one hand, for k > 1 the distribution is such that
limτ→0 h(τ) = 0, indicating a temporary inhibition of future reversal events at short
times. On the other hand, for k < 1, h diverges for τ → 0 indicating an encouragement at
short times. Figure 7 (resp. 8) displays the distribution of waiting times from the CR and
EC subsets for (Ra = 5 ·107, P r = 4.3)(resp. (Ra = 5 ·107, P r = 3)). PDFs are compared
either to Gamma distributions with k > 1 (dashed lines) or to exponential distributions
(solid lines) using the parameters listed in tables 3 and 4. To illustrate the goodness of
each fit, tables 3 and 4 also include the quantity R2 ≡ 1 −∑bin e

2/
∑
bin P2

hist where
Phist is the estimated density distribution using histograms and e is the error between
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Figure 7. Distribution of waiting times τM of modes M = {L,L∗, S, S∗} for
(Ra = 5 · 107, P r = 4.3). Figure (a) displays the CR regime and (b) the EC regime. PDFs
are obtained using histograms with fixed bins of 2.5 t.u. width. Exponential (solid) and Gamma
distributions with k 6= 1 (dashed) are drawn using parameters from table 3.

(a) (b)
Exp. dist. Gamma distrib.

τM n m R2 k m R2

τL 393 - - 7.1 119.2 0.44
τL∗ > 11.6 987 - - 4.2 30.2 0.96
τL∗ < 11.6 3046 2.8 0.99 - - -
τS 6733 6.9 0.74 - - -
τS∗ 10080 4.1 0.78 - - -

Exp. dist.
τM n m R2

τL 212 25.4 0.65
τL∗ 706 9.0 0.82

τS 199 11.4 0.63
τS∗ 1046 6.9 0.72

Table 3. (a) The CR subset for (Ra = 5 · 107, P r = 4.3). (b) The EC subset for
(Ra = 5 · 107, P r = 4.3). Values k and m define the fit of the probability distributions of
waiting times τM to either exponential (in that case k is set to 1) or Gamma distributions with
k 6= 1. The coefficient R2 quantifies the goodness of the fit (see text). Finally n denotes the
number of events where a mode changes signs.

the fit and the histogram. In this context, a value R2 = 1 indicates that the Gamma
distribution perfectly fits the histogram.

For the EC subset, the distribution of waiting times for all reversing modes fit
reasonably well to exponential distributions, so indicating a Poisson-like dynamics for
all modes studied: the cessation regime seems to be composed of memoryless events. No
strong indication has been found against this assertion though our records are still not
long enough to provide a firm conclusion.

For the CR subset, the distributions of τS , and τS∗ also fit well to exponential
distributions. By contrast, the distributions P (τL) for mode L are fitted to Gamma
distributions with k = 7 for Pr = 4.3 and k = 38 for Pr = 3 with a large dispersion and
a peak value around τL = 100 t.u. (resp. τL = 70 t.u.) for Pr = 4.3 (resp. Pr = 3) which
is several times larger than the large eddy turnover time tE ≈ 3.5 t.u. The leading mode
L thus strongly deviates from Poissonian statistics, suggesting that the system keeps a
form of memory of the preceding reversals. This highlights the coherent behaviour of the
large-scale structures specific to the CR regime.
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Figure 8. Same as figure 7 but for (Ra = 5 · 107, P r = 3). Exponential (solid) and Gamma
distributions with k 6= 1 (dashed) are also drawn using parameters from table 4.

(a) (b)
Exp. dist. Gamma distrib.

τM n m R2 k m R2

τL 523 - - 38.1 74.9 0.89
τL∗ > 11.1 1059 - - 7.8 27.1 0.96
τL∗ < 11.1 2287 3.2 0.97 - - -
τS 5045 7.8 0.79 - - -
τS∗ 8970 4.0 0.83 - - -

Exp. dist.
τM n m R2

τL 231 24.1 0.73
τL∗ 675 9.5 0.83

τS 285 12.0 0.72
τS∗ 947 6.8 0.71

Table 4. Same as table 3 but for (Ra = 5 · 107, P r = 3).

The distribution of τL∗ displays elements of the Exponential and Gamma distribu-
tions: if one separates the values less than a cut-off value around 11 t.u. (this value
is comparable to the duration of the transition from a positive to negative plateau for
A2D, see (Castillo-Castellanos et al. 2016)). The shorter timescales τL∗ < 11 follow an
Exponential distribution, whereas the longer timescales τL∗ > 11 are governed by a
Gamma distribution with k = 8 for Pr = 4.3 (resp. k = 9 for Pr = 3).

As a final remark, evaluating the PDFs of the waiting times considering both subsets
at once would mask the more coherent nature of the CR regime.

5.3. Generic reversal in the CR regime

The coherent behaviour in the CR regime can be further studied by revisiting the
statistical approach proposed in (Castillo-Castellanos et al. 2016). This procedure ex-
tracts a generic reversal cycle from an ensemble of realisations. The methodology is as
follows. First, the set of consecutive times ti at which a marker R of reversal changes
sign. Consider a time interval [ti, ti+1] in which the marker R > 0; a quantity a(t)
in this interval is represented in the re-scaled time to = (t − ti+1)/(ti+1 − ti), so
that a(to|to ∈ [−1, 0]) = a(t|t ∈ [ti, ti+1]). Similarly for an interval [ti, ti+1] in which
the marker R 6 0; any quantity a(t) in this interval is represented in the re-scaled
time to = (t − ti)/(ti+1 − ti), so that a(to|to ∈ [0, 1]) = a(t|t ∈ [ti, ti+1]). When we
have a sufficiently large number of intervals [ti, ti+1] of recorded flow reversals, all the
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Figure 9. Modal amplitudes as function of re-scaled time to during a generic reversal for
(Ra = 5 ·107, P r = 3). Generic curves are displayed in solid lines, while dotted lines indicate one
standard deviation. Colour intensity indicates the probability density, while the colour indicates
the 3 phases of a generic reversal in energetic viewpoint: accumulation (blue), release (orange),
and acceleration (green). A precursory region to the flow reversal is enclosed between vertical
blue lines, see text.

intervals with R 6 0 (resp. R > 0) are stacked together. The ensemble average over the
rescaled curves represents the evolution of a(to) during a generic reversal in the interval
to ∈ [−1, 1]. This treatment may exhibit the presence of a dynamical path in a(t) that
repeats over the ensemble of realisations. When a(t) displays incoherent fluctuations
around zero throughout the reversal cycle, its generic curve is essentially flat, even if
large fluctuations may still be observed at specific times of the generic cycle.

In (Castillo-Castellanos et al. 2016), the marker R of reversal was the global angular
impulse A2D(t) while quantity a(t) was the global angular impulse itself or the global
kinetic energy Ekin(t) ≡

∫
1
2u

2dx,or else the available potential energy Eapot(t) (for a
precise definition of Eapot(t), see (Winters et al. 1995; Castillo-Castellanos et al. 2016)).
From this energetic viewpoint, we identified a generic reversal mechanism in 3 consecutive
phases. First an accumulation phase which is characterised by a plateau in A2D, a
progressive increase in Eapot and the growth of corner-rolls. This is followed by a release
phase where an energy exchange from Eapot to Ekin is observed followed by a rebound.
Finally, the acceleration phase corresponds to the recovery of a new stable plateau. A
precursory region for release was also identified.

The same averaging procedure can be used directly on the POD mode amplitudes. This
method of extracting deterministic features can be applied a priori to any system with a
reversal without resorting to an energy analysis. Here one uses the amplitude of mode L as
the marker of the reversal. For (Ra = 5 ·107, P r = 3), the generic reversal of POD modes
is presented in figure 9. For the sake of comparison with the energy analysis presented in
(Castillo-Castellanos et al. 2016) the accumulation phase of Eapot is signalled in figure 9,
by a blue colour, the release phase by an orange colour and the acceleration phase by a
green colour. Finally the two vertical lines indicate the position of the precursory region.
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Modes {S, S∗} do not display any particularly coherent shape (flat generic curves with
larger amplitudes observed from the precursory region until the end of the acceleration
phase). By contrast, modes {L,L∗, Q,Q∗} show some very coherent patterns. Modes
{L,L∗} carry the flow reversal. At the beginning of the accumulation phase (case with
positive L(to)), L

∗ is negative. Due to mode spatial structures, this means effectively
aiding the main circulation. During this phase, L∗ increases progressively and changes
sign. This dynamics weakens the flow along the upper and lower boundary layers. Note
that, a peak in L∗ > 0 coincides with the change in sign of mode L. This is followed by
a sudden drop in L∗, before returning to the initial configuration where L and L∗ have
opposite signs. Mode Q increases progressively during the plateau state, then suddenly
drops, before returning to its initial value. This is reminiscent of the generic reversal of
Eapot. This could be expected: by construction, the contribution to Eapot from modes
antisymmetric with respect to Sx is null thus leaving symmetric modes {Q,Q∗} as the
main carriers of Eapot since S∗ is negligible. It can be shown by computation that
contributions to Eapot from the spatial eigenfunction related to mode Q or Q∗ is positive.
This can be understood in terms of thermal stratification, see figure 3. As a function of
time, mode Q∗ is centred around zero and is anti-correlated to Q: during the generic
cycle, the contribution to Eapot of Q∗ compensates in part that of Q. Finally note that
modes L∗ and Q∗, change signs closely to the precursory region. Our observations place
the precursory time at around 75% of to (or 56 t.u.). By switching signs, these modes,
because of their spatial structure, mark the detachment of the LSC from the top/bottom
plates and the progressive redistribution of thermal energy towards the bulk.

For the case (Ra = 5 · 107, P r = 4.3), similar trends are found. The change in sign
of modes L∗ and Q∗ is observed around 72% of to (or 89 t.u.). The most noticeable
difference with respect to Pr = 3 is a less intense rebound during the release phase. Our
observations are also in good agreement with the limit cycle obtained from the 5-mode
model by Podvin & Sergent (2017). The precursor event and the precursor duration as
defined in the same work are also recovered in the generic cycle of POD modes.

6. Exploring the CR regime using the cluster-based analysis

One way to explore further the differences between CR and EC regimes, is to study
the statistical correlations between modes. An adequate sampling frequency δt and a
large number of records are key to obtain correct results. For the present work, the
POD amplitudes αk(t) are taken every δt = 0.05 time units. Additionally, we apply the
operators Sx, Sy, and Rπ (defined in equations 2.3 to 2.5) to the amplitudes αk to increase
the number of records since such data set is a possible one for the dynamics. This greatly
facilitates the interpretation by enforcing the natural symmetries of the system.

It is not an easy matter to exhibit connections between the complete set of modes at
the same time. To overcome this difficulty, we simplify further the system description: we
reduce the dimensionality of the problem first by using the six more energetic POD modes
only and second by applying in this 6-D subspace, a cluster-based approach proposed by
(Kaiser et al. 2014) which reduces the phase space to a finite numberK of spatial patterns.
The temporal dynamics is then reduced to two elements: the trajectories followed between
these clusters in this K points network and the time spent inside each cluster. Cluster
analysis of the POD subspace has been previously used to study spatial and temporal
intermittency in a variety of systems (for instance see Kaiser et al. (2014); Cao et al.
(2014)).
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6.1. Cluster partitioning of the 6-D subspace of modal amplitudes

This method consists in partitioning a set of 6-dimensional data points (POD am-
plitudes), into a finite set of K clusters. Each cluster ck of points, is characterised by a
representative state given by the cluster centroid µk which is the average of the ensemble
of points in ck. The objective is to provide a drastically simplified description of the
spatio-temporal dynamics in terms of finite network dynamics. The K spatial structures
in terms of typical flow patterns are associated to each centroid point. For this work,
the cluster partitioning is performed via the K-means algorithm (see, for instance Jain
(2010)) as implemented by the scikit-learn Python package (Pedregosa et al. 2011). Given
a number K of clusters, the K-means algorithm is tasked to find a Voronoi partition of a
set of data points so that the sum of the squared error between the centroid of a cluster,
and its associated points

Ĵ(c1, .., cK) =

K∑

k=1

∑

α′∈ck
‖α′ − µk‖2 with α′ = (α′1, α

′
2, · · · , α′6) (6.1)

is minimized over all sets of K clusters. The minimum squared error is denoted by
J(K). Starting from an initial guess of the cluster centroids µi=0

k obtained using k-
means++ (Arthur & Vassilvitskii 2007), one applies an iterative procedure. At step n of
this procedure, one obtains a given value µi=nk and performs two actions: one builds a new
Voronoi partition based on µi=nk , thereafter new centroids µi=n+1

k are computed using
the mean values of all the points of the new partition clusters. Steps are repeated until
the current and subsequent centroids converge. In the following and whenever there is no
ambiguity, we use the following notation: we refer to the cluster ck corresponding to the
centroid µk by the centroid µk itself. Because of the discrete flow symmetries {Sx,Sy,Rπ},
each cluster is a priori bound to be included in one of three possible groups: (i) groups
of 4 clusters, where none of the elements of the group satisfy a particular symmetry but
each element is transformed into another member of the group by the action of Sx, Sy, or
Rπ; (ii) groups of 2 clusters, where each element of the group is invariant by the action
of one of the symmetries among the set {Sx,Sy,Rπ} and is transformed into another
member of the group by the remaining symmetries; and (iii) groups of a single cluster,
which is invariant by the action of {Sx,Sy,Rπ}. However, since the K-means algorithm is
not constrained by symmetry, it sometimes leads to an optimum set of K clusters which
does not verify the symmetry rules. If this is the case, we disregard this result.

Since J(K) always decreases as we increase K, one is required to fix the number K
of clusters. This choice can be done based on the decrease of the minimum squared
error J(K) with respect to K (like in figure 10 for instance). In our case, we also take
advantage of the symmetric nature of the POD subspace to guide the choice of K. An
adequate number of clusters K results from a good compromise between a small number
of clusters, the decrease in the squared error J(K), and also on the condition that the
computed clusters verify the required symmetry rules.

6.2. Flow patterns associated to cluster centroids in the CR regime

For (Ra = 5 ·107, P r = 3) the partitioning the CR subset using K = 12 is satisfactory:
this choice results in a decrease in the squared error by more than 90% with respect
to the case with K = 1 (figure 10a). The K = 12 clusters have organized in 5 groups
(Gcrk , k = 1, ..., 5), a different colour being associated with each group:
• Three groups Gcrk , (k = 1, 2, 3), each characterized by two clusters which are Sx and

Sy antisymmetric. The cluster centroids are denoted {µ+
k , µ

−
k }, superscripts indicating

the sign in mode L. Colours are green, yellow and blue, respectively.
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Figure 10. Normalised squared error J(K)/J(K = 1) as function of the number of clusters
K for (Ra = 5 · 107, P r = 3) inside the (a) CR regime, and (b) EC regime.
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• A single group Gcr4 with four clusters. Centroids are denoted {µ++
4 , µ+−

4 , µ−+4 , µ−−4 },
superscripts indicating the quadrant in the (L,S) plane. Colour is red.
• A single group Gcr5 with two clusters which are Sy-symmetric. The cluster centroids

are denoted {µ+
5 , µ

−
5 }, superscripts indicating the sign in mode S. Colour is grey.

The flow patterns associated to each cluster centroid are displayed in figure 11. They
indeed capture the underlying physics. For members of groups Gcr1 (green), Gcr2 (yellow)
and Gcr3 (blue), flow patterns exhibit a large diagonal roll with counter-rotating corner-
rolls of different sizes typical of the growth of corner-rolls. For members of Gcr4 (red)
the flow pattern exhibits a central vortex partially detached from the top/bottom plates
which is typical of the rearrangement of the LSC (see, for instance fields of a generic
reversal presented in figure 7 in Castillo-Castellanos et al. (2016)). For members of Gcr5
(grey), the flow pattern corresponds to a vertically stacked double-roll which forms
an horizontal jet. The horizontal jet impacts one of the side-walls along which two
small corner-rolls are placed. This pattern is predominantly observed during extended
cessations(Podvin & Sergent 2015) or just leaving this regime (see below figure 12).
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Figure 12. Time series of the cluster µk visited at time t and the corresponding amplitudes of
modes L, Q, and S, during a series of particular flow reversals observed for (Ra = 5·107, P r = 3).
Data-points inside the EC subset correspond to the shaded areas, whereas data-points from the
CR subset are coloured to match the groups Gcrk , see colour code at the top part of the figure.

6.3. Analysis of reversals in cluster space

The simplified representation via clusters is also capable to get back the three phases of
the reversal cycle (accumulation, release, and acceleration). Figure 12 displays the clusters
visited as a function of time are shown alongside a time series of the amplitudes of modes
L, Q, and S. The time series covers a series of standard flow reversals interspersed by two
weak or ‘rogue’ reversals, which are assigned to the EC subset and will be discussed in §7.
For all standard reversals, the clusters are almost always visited in the same sequence.
Starting from a positive L, the sequence (µ+

1 , µ
+
2 , µ

+
3 ) illustrates the growing corner-rolls

observed during the accumulation phase, where µ+
2 roughly corresponds to a precursory

region identified in §5.3. This is followed by a sequence (µ+
3 , µ

−
3 , µ

−
2 ) which splits into

two branches (either µ−−4 or µ−+4 ) and corresponds to the the beginning of the release
phase (sign change in L) leading to the rebound event. Finally, during the complex re-
organisation process typical of the acceleration phase, the system alternates between
different clusters (µ−−4 , µ−1 , µ−+4 ), before eventually settling down on µ−1 .

Figure 13 displays in the planes (L,Q) and (L, S): (i) a random sample of data-points
coloured according to the corresponding cluster groups, (ii) the position of the cluster
centroids, (iii) the generic reversal cycle from §5.3. In these planes, all of cluster centroids,
are located along the generic cycle with the exception of centroids {µ+

5 , µ
−
5 } and centroids

{µ++
4 , µ+−

4 , µ−+4 , µ−−4 }. It is inside the (L, S) plane that the two branches leading to the
rebound event are best seen. Since both branches have equal probability of occurrence,
by averaging over the ensemble of realisations, the generic cycle inevitably ‘smoothes out’
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Figure 13. Phase diagram in the (L,Q) and (L, S) planes for (Ra = 5 · 107, P r = 3) inside the
CR subset. For reference, the generic reversal from §5.3 is displayed in solid lines. Data-points
are coloured to match the groups Gcrk , see colour code at the top of the figure. Solid marks
indicate the corresponding centroids.

(a) (b)
%pcr E[|A2D|] E[Ekin] E[Eapot]

Gcr1 43.5 1.49 1.15 0.96
Gcr2 26.0 0.99 0.95 1.04
Gcr3 13.6 0.36 0.76 1.09
Gcr4 14.5 0.99 1.05 0.91
Gcr5 2.4 0.36 0.82 1.06

100.0 1.11 1.03 0.99

%pec E[|A2D|] E[Ekin] E[Eapot]
Gec1 21.9 1.03 1.02 0.97
Gec2 5.8 0.28 0.75 1.06
Gec3 4.6 0.31 1.03 0.84
Gec4 49.0 0.57 0.88 1.02
Gec5 18.7 0.18 0.78 1.14

100.0 0.57 0.89 1.03

Table 5. Conditional averages over each of the groups extracted from the (a) CR and (b)
EC regimes for (Ra = 5 · 107, P r = 3). pcr (resp. pec) denotes the probability for the system
to be inside Gcrk (resp. Geck ) while E[a] denotes the conditional average of a(t) over a cluster
normalised by the average a over the complete series.

both branches. Consequently, cluster analysis is better suited to work whenever multiple
transition paths are observed.

For each group Gcrk , we compute the residence time %pcr, as well as the conditional
average for different global quantities (table 5a). The system spends 70% of time inside
Gcr1 and Gcr2 , while it spends 14% of time inside Gcr3 and Gcr4 each. This is in good
agreement with the duration of each phase of the generic reversal cycle with an energetical
viewpoint (Castillo-Castellanos et al. 2016). The sequences described above are also
consistent with the evolution of A2D, Ekin, and Eapot during a generic reversal (not
shown in the present paper). For instance, the sequence (µ+

1 , µ
+
2 , µ

+
3 ) displays a gradual

increase of E[Eapot] as in the accumulation phase. The group Gcr5 is instead only visited
whenever deviations from standard reversals become important, like at the beginning and
at the end of a series of consecutive reversals (see, for instance t ∼ 16200 and t ∼ 16550
in figure 12). For such events the residence time is always of a few per cent (table 5a).
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Figure 14. Flow patterns corresponding to the 11 cluster centroids extracted from the EC
subset for (Ra = 5 · 107, P r = 3). Colour indicates the temperature field, while lines correspond
to streamlines (negative values of streamfunction in dashed). The 5 groups of centroids are
identified by a different colour as shown at the bottom ruler of the figure.

7. Exploring the EC regime using the cluster-based analysis

In the previous section, we have shown that cluster analysis recovers the features of
the CR regime obtained using the statistical method of section 5.3 and it is even able
to obtain more detailed aspects. Here, the same cluster analysis explores the regime
of extended cessations (EC), which is a regime far less well understood. Note that the
statistical method used in section 5.3 would be ineffective for EC.

7.1. Flow patterns associated to the cluster centroids in the EC regime

Partitioning the EC subset using K = 11 clusters results in a decrease in the squared
error by more than 80% with respect to the case K = 1 (figure 10b). The centroids
extracted from the EC subset are noted νk in order to differentiate the CR and EC
subsets. For K = 11, we have identified 5 groups of cluster (a different colour is used for
each group)
• A single group Gec1 with two clusters which are Sx and Sy antisymmetric. Centroids

are denoted {ν+1 , ν−1 }, superscripts indicating the sign of mode L. Colour is green.
• A single group Gec2 with a single cluster {ν2} which satisfies all the symmetries.

Colour is yellow.
• A single group Gec3 with two clusters which are Sx-symmetric. The cluster centroids

are denoted {ν+3 , ν−3 }, superscripts indicating the sign of mode S∗. Colour is blue.
• A single group Gec4 with four clusters. Centroids are denoted {ν++

4 , ν+−4 , ν−+4 , ν−−4 },
superscripts indicating quadrant in the (L,S) plane. Colour is red.
• A single group Gec5 with two clusters which are Sy-symmetric. The cluster centroids

are denoted {ν+5 , ν−5 }, superscripts indicating the sign of mode S. Colour is grey.
The flow patterns associated to each centroid are shown in figure 14. The large diagonal

rolls are associated to ν+1 and ν−1 while the quadrupolar mode associated to ν2 is
commonly observed during standard reversals in the CR regime. For ν+3 and ν−3 , the
flow pattern is a horizontally stacked double-roll with small corner-rolls along the top
or bottom plates. For {ν++

4 , ν+−4 , ν−+4 , ν−−4 } the flow pattern corresponds to a large
vortex squeezed between one small and one big corner-roll, clearly reminiscent to that
of {µ++

4 , µ+−
4 , µ−+4 , µ−−4 }. For ν+5 and ν−5 , the flow pattern corresponds to a vertically
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stacked double-roll with corner-rolls along the left or right side-walls, which is nearly
identical to that of µ+

5 and µ−5 from the CR subset.

7.2. A cluster space approach of cessations

The use of a cluster-based analysis in POD subspace allows to study the EC regime.
For instance, one may analyse the clusters visited as a function of time as presented in
figure 15, alongside a time series of modes L, Q, and S. Cessation dynamics could also
be analysed using phase diagrams in the (L, S) and (S, S∗) planes. This is performed
on figure 16 which includes a random sample of data-points coloured according to the
corresponding cluster groups and the position of the cluster centroids.

First, note that data-points in figure 16 are evenly distributed between the clusters
inside groups Gec1 , Gec4 , and Gec5 . This is confirmed by computing the residence time
for each single cluster, which is at most 12% and is consistent with table 5b since the
residence time %pec in each group is nearly proportional to the number of elements.

The cluster-based analysis discriminates between different kinds of dynamical events
within EC regime. Based on the sequence of clusters visited, ones identifies two dynamics:
‘rogue’ reversals (windows in figure 15 containing t ∼ 8800 and t ∼ 9300) and actual
cessations of the LSC (the remaining windows). Rogue reversals deviate from standard
reversals in CR mainly because of a larger amplitude of mode S. This is likely due to
the asymmetric growth of corner-rolls. During these events, data-points are found to
visit prominently the cluster group Gec1 and to a smaller degree the group Gec4 . At the
beginning of each rogue reversal, the system visits Gec2 , then Gec1 , It may then visit Gec4
and Gec1 through different paths.

At the beginning of every actual cessation, the system visits Gec2 , then Gec1 as for rogue
reversal. However the situation is then dynamically quite different: mode L oscillates
around zero, mode Q fluctuates around a nearly constant value and mode S displays
a plateau sporadically interrupted by short excursions like the ones observed around
t ∼ 8600, t ∼ 9100, and t ∼ 9900 in figure 15. On the (L, S) and (S, S∗) planes, clusters
{ν−+4 , ν+5 , ν

++
4 } and {ν−−4 , ν−5 , ν

−+
4 } are found to be sufficiently close to one another to be

considered as part of two attractive basins. This qualitative assessment can be confirmed
by measuring the distance between centroids in the 6-D subspace. These basins precisely
correspond to the actual cessations (plateau in mode S, oscillation in L). In trajectory
terms, the system moves back and forth between three clusters inside the groups Gec4
and Gec5 , e.g. {ν−+4 , ν+5 , ν

++
4 } and the short excursion of mode S are through Gec1 , Gec2 ,

and Gec3 before returning to one of the attractive basins. From the centroid patterns of
figures 14, it can be inferred that the back and forth between Gec4 and Gec5 is related
to the competition between two counter-rotating vertically stacked vortices, where the
relative size is reflected on the sign of L. This is observed in the snapshots presented
in figures 17a to 17f. Oscillations in mode L are physically related to a continuous push
and shove motion between a large ascending plume and one descending along one of
the side-walls from which an horizontal jet is formed. Both plumes remain locked along
the same side-wall until the plateau in mode S is disrupted during a short excursion.
A short excursion is presented in figures 17g to 17l. This particular event is triggered
by the weakening of the horizontal jet (figure 17g) which favours the emergence of a
quadrupolar pattern (figure 17h). A new unstable pattern forms from the merging of
vortices coming from opposite corners (figure 17i). This new flow structure rotates until
it eventually re-organises into a more stable vertically stacked double-roll pattern. The
most commonly observed feature during the rotation of the unstable pattern is the brief
passage of an intense plume through the centre of the cavity, which corresponds to the
passage through Gec3 (figure 17j). This rapid event is characterised by large fluctuations
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Figure 16. Phase diagram in the (L,S) and (L,S∗) planes for (Ra = 5 · 107, P r = 3) inside the
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associated to extended cessations. Solid marks indicate the corresponding centroids.



24 A. Castillo-Castellanos, A. Sergent, B. Podvin and M. Rossi

Gec
1 Gec

2 Gec
3 Gec

4 Gec
5

x

y

(a)

x

(b)

x

(c)

x

(d)

x

(e)

x

(f)

x

y

(g)

x

(h)

x

(i)

x

(j)

x

(k)

x

(l)

Figure 17. Sequence of instantaneous fields observed during actual cessations for
(Ra = 5 · 107, P r = 3). Colour indicates the temperature field θ(x, t), lines are streamlines
(negative streamfunction values in dashed). The coloured symbol of the top-right corner indicates
the current cluster group (colour code at the top of the figure). Snapshots (a) to (f) are taken
every 20 t.u. from t = 9090 to t = 9190, whereas snapshots (g) to (l) are taken every 4 t.u. from
t = 9882 to t = 9902 illustrating a short excursion.

in mode Q and a substantial increase (of around 40%) in the global heat-transfer (not
presented here). For such rapid events, the residence time is 4.6% of the total EC subset,
that is less than 1% of the total simulation length (table 5b).

8. Evolution of dynamical regimes as function of Rayleigh number

For a given Pr (in practice Pr = 4.3 or Pr = 3), we take advantage of the POD
and cluster-based analyses to make evidence of the dynamical flow regimes observed for
different values of Ra which covers the transition from a steady-state to a turbulent flow
regime. More precisely, a first study is based on the energetic content of the leading POD
modes, a second on the residence time inside the different groups of clusters.

8.1. Energy contents of leading POD modes

To allow for a direct comparison between different Ra, we use the modes φk extracted
from the CR subset for Ra = 5 · 107 for the Pr considered (see §4). For the different
Ra, we project the instantaneous velocity and temperature fields onto the six leading
POD modes φk to obtain the set of amplitudes (αk, k = 1, · · · , 6). As in §5, these modal
amplitudes are then scaled by a common factor which is the value 1/|L| for Ra = 5 · 107.
Afterwards we compute αkαk, which is proportional to the part of the combined energy
Ecomb contained inside mode φk (see section2.3). For the values of (Ra, Pr) considered,
the energy contained inside the six POD modes is somewhere between 80% and 95% of
the total energy Ecomb (not presented here).

Let us focus on the energetic contents of the leading POD modes L, Q, and S (figure
18), which contain the main features of both the CR and EC regimes. As function of
Ra, we may identify different dynamical regimes: below mark i mode L is dominant;
between marks i and ii mode Q is dominant; above ii mode L becomes again dominant
and remains so for larger values of Ra; between iii and iv mode S becomes comparable
to Q; above iv mode S decreases with respect to modes L and Q. Note that, on the
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Figure 18. Dynamical regimes as a function of Ra for (a,c) Pr = 3 and (b,d) Pr = 4.3. Marks i
to v separate the different dynamical regimes (see text). Figs. (a,b) display the rescaled values of
αkαk, where αk is obtained by projection into CR modes for Ra = 5 ·107. Figs. (c,d) display the
probability %pec of the system being inside the cluster groups: Gec1 is predominantly associated
to plateaus; Gec2 to transitions between plateaus; Gec3 to short excursions; and Gec4 and Gec5 to
extended cessations.

figure, we add a mark v which will be used in the next section. In the following, since
both values of Pr display similar trends, we focus on the case for Pr = 4.3.

In order to highlight the relation between the LSC dynamics and the energetic contents
of POD modes, figure 19 displays a time series of A2D for different values of Ra
representing each dynamical regime. For values of Ra between the onset convection and
mark i, a steady-state roll is observed. The jump of mode Q around mark i coincides with
the transition to unsteady flows. Region i-ii corresponds to continuous reversals of the
LSC but without the accumulation phase, i.e. modes Q and L have the same dominant
frequency (not presented here) and plateaus in A2D are completely absent. Examples of
this zone are a periodic solution like at Ra = 3 ·105 (figure 19a) or when mode S becomes
more energetic, chaotic reversals like at Ra = 3 · 106 (figure 19b). Above mark ii, mode
L becomes dominant once again. This coincides with the development of long plateaus
in A2D. The length of plateaus however seems to be influenced by the energetic contents
of mode S. Inside region ii-iii, plateaus gradually become longer as mode S weakens (see
figure 19c and number of reversals in table 2). Inside region iii-iv, as mode S becomes
significant again, plateaus become shorter while the CR and EC regimes are observed
intermittently (figure 19d). Finally above mark iv, as mode S weakens again, plateaus
size gradually increase (figure 19e). Once mode S becomes negligible, stable plateaus
are observed for as long as 2000 convective time units (figure 19f). This dependency on
Ra of the flow dynamics is consistent with observations from Sugiyama et al. (2010)
for Pr > 4.3 where flow reversals are observed over two discontinuous ranges of Ra.
The intermediate range of Ra numbers where Sugiyama et al. (2010) observes no flow
reversals, corresponds to the region ii-iii where flow reversals are particularly rare: for
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Figure 19. Time series of the angular impulse A2D for Pr = 4.3 and different Ra illustrating
the different flow flow regimes: (a) periodic reversals for Ra = 3 · 105, (b) chaotic reversals for
Ra = 3 · 106, (c) presence of long plateaus for Ra = 8 · 106, (d) flow reversals and extended
cessations for Ra = 5·107, (e) flow reversals for Ra = 2·108, and (f) long plateaus for Ra = 5·108.

instance, for (Ra = 107, P r = 4.3) only 3 reversals were observed over 9600 t.u. (see
table 2). For this region, the waiting time between reversals can be more than 300 times
larger than for the region i-ii.

8.2. Residence time inside different cluster groups

The second approach uses the cluster partitioning for each value of Pr. To allow for
a direct comparison between different Ra, we use the clusters extracted from the EC
subset at Ra = 5 · 107. This partitioning recovers the main features of the regime of
extended cessations, but also of flow reversals. For a given Ra, we assign each data-point
(αk, k = 1, · · · , 6) computed in subsection 8.1 to one of the 5 groups Geck presented in §7.1.
Figure 20 displays the (L, S) phase-diagrams for the Rayleigh numbers corresponding to
cases of figure 19. From this procedure, the residence time %pec of each group Geck can
be evaluated (see figure 18c for Pr = 3 and figure 18d for Pr = 4.3).

First, consider the region i-ii. For Ra = 3 · 105, the periodic solution corresponds to a
closed path along the S-axis which passes through the cluster groups Gec1 and Gec2 (figure
20a). Data-points inside Gec1 correspond to the diagonal rolls observed during plateaus,
while Gec2 corresponds to the quadrupolar mode observed during the transition between
positive and negative plateaus. Comparable residence times %pec(G

ec
1 ) and %pec(G

ec
2 )

(figure 18d) illustrate the absence of long metastable plateaus. By contrast, the chaotic
reversals observed inside the same region, do not display any particular orbit and explore
all of the groups (figure 20b). Accordingly, for all groups the residence time %pec has the
same order between 20% and 40% (figure 18d).
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Figure 20. Phase diagram in the (L, S) plane for Pr = 4.3 and different Ra illustrating the
different flow regimes presented in figure 19. Cluster groups are obtained from the EC regime
for Ra = 5 · 107, see colour code at the bottom of the figure: Gec1 is predominantly associated
to plateaus; Gec2 to transitions between plateaus; Gec3 to short excursions; and Gec4 and Gec5 to
extended cessations.

Inside region ii-iii, Gec1 becomes dominant at the expense of all the other groups, in
particular of Gec2 , illustrating the scarcity of flow reversals (figures 18d and 20c). Inside
region iii-iv, the group Gec1 becomes less prominent in favour of Gec2 (indicating shorter
plateaus), and in favour of Gec4 and Gec5 associated to cessation dynamics (figure 18d).
The sum of residence times of Gec4 and Gec5 is as large as 25%, which illustrates the strong
competition between the CR and EC regimes (figure 20d). Inside the region iv-v, Gec1
and Gec2 are reinforced while cessation dynamics become rare or non-existing (figures 18d
and 20e). Finally, as Ra increases above v, groups other than Gec1 , essentially disappear
and only a long stable plateau is observed (figures 18d and 20f).

The sequence presented here can be compared to results from Chandra & Verma (2013)
for Pr = 1. The ratio between the Fourier mode [2,2] (roughly equivalent to Q) and the
[1,1] mode (equivalent to L) of the vertical velocity was found to decrease monotonically
for Ra between 2 · 107 and 109. A similar decrease is observed inside the region ii-iii.
However, above iii the ratio between modes Q and L reaches a near constant value.

9. Conclusion

In this paper we used long-term data from two-dimensional DNS of a square RB
cell to extract and study the dynamics of the large-scale structures. In the range
considered, intermittency between the regime of consecutive reversals (CR) and the
regime of extended cessations (EC) is observed. Our approach combines a statistical
approach and proper orthogonal decomposition (POD) to characterise each regime.
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Initially, we split, based on a criterion depending of the global angular momentum,
the overall data in two subsets, one for each flow regime. For each subset, a POD
analysis is performed identifying the six most energetic large-scale flow structures. Both
regimes however may be accurately represented by the same type of large-scale flow
structures, suggesting that differences between the CR and EC regimes concerns, for
the most part, the time evolution of these flow structures. For CR, the leading modes
are centrosymmetric monopole L and quadrupole Q, while for EC, the leading mode is
the symmetry-breaking vertical dipole S. For both regimes, the amplitude of the leading
mode exhibits alternating positive and negative plateaus, the duration of plateaus being
several times longer than the large-eddy turnover time.

A separate analysis of the probability distribution function of waiting times between
reversals, suggests that the CR and EC regimes are driven by different physical processes.
During the EC regime, the PDFs of waiting times for all reversing modes correspond
well to exponential distribution. This seems to indicate that the system loses its memory
during the EC regime. During the CR regime, PDFs of waiting times for mode L (and
to a lesser extent for mode L∗) deviate much from the expected exponential distribution
of a Poisson process. This observation is consistent with the energetic interpretation
of the generic reversal mechanism (Castillo-Castellanos et al. 2016), where localised
accumulation and subsequent release of thermal energy, drives the flow reversal during
CR. By applying a conditional average over hundreds of realisations of particular reversals
in the CR, we identified the most common dynamical features of the POD amplitudes
during a generic reversal. Centrosymmetric modes {L,L∗, Q,Q∗} are found to follow a
generic cycle, whereas the symmetry-breaking modes {S, S∗} fluctuate around zero. In
this view, modes {S, S∗} become a source of noise for a predominantly coherent dynamics.
These observations are in good agreement with results from the 5-mode model by Podvin
& Sergent (2017).

We also presented a simplified representation to study the long-term evolution of the
large-scale structures: inside the phase-space of six leading POD amplitudes, a cluster
partitioning algorithm was applied on the data set reducing the dynamics to a network
of K = 12 or K = 11 states. Such a drastic approach recovered the main features of
the CR regime. In addition, during the beginning of the release phase leading to the
rebound event, flow reversals were shown to take one of several possible paths with equal
probability. This method was then used to study the EC regime which has been much less
explored. It discriminated between different dynamical events regardless of their relative
timescales: weak or ‘rogue’ reversals and actual cessations. On the one hand, the rogue
reversals deviate from standard reversals due to the intensity in mode S. On the other
hand, the actual cessations are predominantly associated to a continuous push and shove
motion between two vertically stacked vortices. This metastable state may be sustained
for long periods of time. Moreover, sporadic reversals of this vertical dipole also have
been identified during a short excursion.

As a final analysis, we combined the POD and cluster analysis to provide a description
of the different spatio-temporal dynamics observed over a wide range of Rayleigh num-
bers. By considering the energetic content of the leading POD modes {L,Q, S} and the
residence time in each group of clusters, we were able to identify the successive dynamical
regimes observed from the steady state to the turbulent regime.

As a prospective, this type of approach opens the door for a more systematic study of
the transition between the regimes of consecutive flow reversals and extended cessations.
A more systematic study of the dependency of the large-scale flow dynamics on the
Prandtl number could also be of interest.
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