Jingwei Chen

Damien Stehlé

Gilles Villard

Computing an LLL-reduced Basis of the Orthogonal Lattice

Keywords: Lattice basis reduction, LLL, orthogonal lattice, kernel lattice

As a typical application, the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL) is used to compute a reduced basis of the orthogonal lattice for a given integer matrix, via reducing a special kind of lattice bases. With such bases in input, we propose a new technique for bounding from above the number of iterations required by the LLL algorithm. The main technical ingredient is a variant of the classical LLL potential, which could prove useful to understand the behavior of LLL for other families of input bases.

INTRODUCTION

Let k < n be two positive integers. Given a full column rank n × k integer matrix A = (a i, j), we study the behaviour of the Lenstra-Lenstra-Lovász algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] for computing a reduced basis for the orthogonal lattice of A

L ⊥ (A) = m ∈ Z n : A T m = 0 = Ker(A T) ∩ Z n . (1)
The algorithm proceeds by unimodular column transformations from the input matrix Ext K (A) ∈ Z (n+k)×n :

Ext K (A) := K •A T I n = K •a 1,1 K •a 2,1 • • • K •a n,1 K •a 1,k K •a 2,k • • • K •a n,k 1 0 • • • 0 0 1 • • • 0 0 0 0 • • • 1 . (2
)
where K is a sufficiently large positive integer. The related definitions and the LLL algorithm are given in Section 2. The reader may refer to [START_REF]The LLL Algorithm: Survey and Applications[END_REF] for a comprehensive review of LLL, and to [START_REF] Schmidt | Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height[END_REF] and [START_REF] Nguyen | Merkle-Hellman revisited: A cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations[END_REF] concerning the orthogonal lattice.

Authors' addresses: Jingwei Chen, Chongqing Key Lab of Automated Reasoning & Cognition, Chongqing Institute of Green and Intelligent Technology, CAS, Chongqing, China, chenjingwei@cigit.ac.cn; Damien Stehlé, Univ Lyon, ENS de Lyon, CNRS, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 Lyon, France, damien.stehle@ens-lyon.fr; Gilles Villard, Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 Lyon, France, gilles.villard@ens-lyon.fr.

Usual techniques gives that LLL reduction requires O(n 2 log(K • ∥A∥)) swaps (see Step 7 of Algorithm 1) for a basis as in [START_REF] Chen | A BLAS based C library for exact linear algebra on integer matrices[END_REF], where ∥A∥ bounds from above the Euclidean norms of the rows and columns of A. We recall that most known LLL reduction algorithms iteratively perform two types of vector operations: translations and swaps. The motivation for studying bounds on the number of swaps comes from the fact that this number governs known cost analyses of the reduction.

Folklore applications of the reduction of bases as in (2) include, for example, the computation of integer relations between real numbers [START_REF] Chen | A new view on HJLS and PSLQ: Sums and projections of lattices[END_REF][START_REF] Håstad | Polynomial time algorithms for finding integer relations among real numbers[END_REF], the computation of minimal polynomials [START_REF] Kannan | Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers[END_REF] (see also [START_REF]The LLL Algorithm: Survey and Applications[END_REF]). A main difficulty however, both theoretically and practically, remains to master the scaling parameter K that can be very large. Heuristic and practical solutions may for instance rely on a doubling strategy (successive trials with K = 2, 2 2 , 2 4 , . . .) for finding a suitable scaling. Or an appropriate value for K may be derived from a priori bounds such as heights of algebraic numbers [START_REF] Kannan | Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers[END_REF] and may overestimate the smallest suitable value for actual inputs. Since the usual bound on the number of swaps is linear in log K, the overestimation could be a serious drawback. We show that this may not be always the case.

We consider the reduction of a basis as in (2) for obtaining a basis of the orthogonal lattice [START_REF] Chen | A new view on HJLS and PSLQ: Sums and projections of lattices[END_REF]. We establish a bound on the number of swaps that does not depend on K as soon as K is above a threshold value (as specified in [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]). This threshold depends only on the dimension and invariants of the orthogonal lattice.

Our contribution. The analyses of LLL and many LLL variants bound the number of iterations using the geometric decrease of a potential that is defined using the Gram-Schmidt norms of the basis vectors; see [START_REF] Kannan | Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers[END_REF]. We are going to see that this classical potential does not capture a typical unbalancedness of the Gram-Schmidt norms that characterizes bases in [START_REF] Chen | A BLAS based C library for exact linear algebra on integer matrices[END_REF]. Taking into account the latter structure will lead us to a better bound for the number of iterations (see Table 1). Intuitively, as the basis being manipulated becomes reduced, two groups of vectors are formed: some with small Gram-Schmidt norms, and some others with large Gram-Schmidt norms. As soon they are formed, the two groups do not interfere much.

In Section 3 we introduce a new LLL potential function that generalizes the classical one for capturing the previously mentioned unbalancedness. Its geometric decrease during the execution also leads to a bound on the number of iterations (see Theorem 3.3). In Section 4, we specialize the potential to the case of bases as in (2) for computing the orthogonal lattice L ⊥ (A). As discussed above, we will see that at some point the number of iterations can be shown to be independent of the scaling parameter K, or, in other words, independent of a further increase of the input size. We note that this new potential is defined for all lattice bases, but it may not always lead to better bounds on the number of LLL iterations.

The extended gcd algorithm in [START_REF] Havas | Extended GCD and Hermite normal form algorithms via lattice basis reduction[END_REF] uses a basis as in (2) with k = 1. It is shown in [START_REF] Havas | Extended GCD and Hermite normal form algorithms via lattice basis reduction[END_REF]Sec. 3,p. 127] that if K is sufficiently large, then the sequence of operations performed by LLL is independent of K. A somewhat similar remark had been made in [START_REF] Pohst | A modification of the LLL reduction algorithm[END_REF]. We also note that in the analysis of the gradual sub-lattice reduction algorithm of [START_REF] Van Hoeij | Gradual Sub-lattice Reduction and a New Complexity for Factoring Polynomials[END_REF], a similar separation of large and small basis vectors was used, also for a better bound on the number of iterations. Our new potential function allows a better understanding of the phenomenon.

We see our potential function for LLL as a new complexity analysis tool that may help further theoretical and practical studies of LLL and its applications. Various approaches exist for computing the orthogonal lattice A, or equivalently an integral kernel basis of A T . A detailed comparison of the methods remains to be done and would be however outside the scope of this paper that focuses on the properties of the potential. An integral kernel basis may be obtained from a unimodular multiplier for the Hermite normal form of A [START_REF] Storjohann | Asymptotically fast computation of Hermite normal forms of integer matrices[END_REF] (see also [START_REF] Storjohann | The shifted number system for fast linear algebra on integer matrices[END_REF] for the related linear system solution problem), which may be combined as in [START_REF]Computation with Finitely Presented Groups[END_REF]Ch. 8] and [START_REF] Chen | A BLAS based C library for exact linear algebra on integer matrices[END_REF] with LLL for minimizing the bit size of the output. A direct application of LLL to Ext K (A) is an important alternative solution. We refer to [START_REF] Stehlé | Lattice reduction algorithms[END_REF] and references therein concerning existing LLL variants.

Future work. Future research directions are to apply this potential to bit complexity studies of the LLL basis reduction [START_REF] Neumaier | Faster LLL-type reduction of lattice bases[END_REF][START_REF] Novocin | An LLL-reduction algorithm with quasi-linear time complexity[END_REF][START_REF] Storjohann | Faster algorithms for integer lattice basis reduction[END_REF], especially for specific input bases. Indeed, an interesting problem is to design an algorithm for computing a reduced basis for L ⊥ (A) that features a bit complexity bound independent of the scaling parameter, and to compare it to approaches based on the Hermite normal form.

Notations. Throughout the paper, vectors are in column and denoted in bold. For x ∈ R m , ∥x ∥ is the Euclidean norm of x. Matrices are denoted by upper case letters in bold, such as A, B, etc. For a matrix A, A T is the transpose of A, and ∥A∥ bounds the Euclidean norms of the columns and rows of A. The base of logarithm is 2.

PRELIMINARIES

We give some basic definitions and results that are needed for the rest of the paper. A comprehensive presentation of the LLL algorithm and its applications may be found in [START_REF]The LLL Algorithm: Survey and Applications[END_REF].

Gram-Schmidt orthogonalization. Let b 1 , • • • , b n ∈ R m be linearly independent vectors. Their Gram-Schmidt orthogonalization b * 1 , • • • , b * n is defined as follows: b * 1 = b 1 and ∀i > 1 : b * i = b i - i-1 j=1 µ i, j b * j ,
where the

µ i, j = ⟨b i ,b * j ⟩ ⟨b * j ,b * j ⟩ for all i > j are called the Gram-Schmidt coefficients. We call the ∥b * i ∥'s the Gram-Schmidt norms of the b i 's. Lattices. A lattice Λ ⊆ R m is a discrete additive subgroup of R m . If (b i) i ≤n is a set of generators for Λ, then Λ = L(b 1 , . . . , b n) = n i=1 z i b i : z i ∈ Z .
If the b i 's are linearly independent, then they are said to form a basis of Λ. When n ≥ 2, there exist infinitely many bases for a lattice. Every basis is related by an integral unimodular transformation (a linear transformation with determinant ±1) to any other. Further, the number of vectors of different bases of a lattice Λ is always the same, and we call this number the dimension of the lattice, denoted by dim(Λ).

If B = (b 1 , . . . , b n) ∈ R m×n is a basis for a lattice Λ = L(B),
the determinant of the lattice is defined as det(Λ) = det(B T B). It is invariant across all bases of Λ.

Successive minima. For a given lattice Λ, we let λ 1 (Λ) denote the minimum Euclidean norm of vectors in Λ \ {0}. From Minkowski's first theorem, we have

λ 1 (Λ) ≤ √ n • det(Λ) 1/n , where n = dim(Λ). More generally, for all 1 ≤ i ≤ n, we define the i-th minimum as λ i (Λ) = min v 1 , • • • , v i ∈ Λ linearly independent max j ≤i ∥v j ∥. Minkowski's second theorem states that i ≤n λ i (Λ) ≤ √ n n • det(Λ). Sublattices. Let Λ ⊆ R n be a lattice. We say that Λ ′ is a sublattice of Λ if Λ ′ ⊆ Λ is a lattice as well. If Λ ′ is a sublattice of Λ then λ i (Λ) ≤ λ i (Λ ′) for i ≤ dim(Λ ′). A sublattice Λ ′ of Λ ⊂ R n is said to be primitive if there exists a subspace E of R n such that Λ ′ = Λ ∩ E.
Orthogonal lattices. Given a full column rank matrix A ∈ Z n×k , the set L ⊥ (A) defined in (1) forms a lattice, called the orthogonal lattice of A. We have dim(L ⊥ (A)) = nk. Using ker(A T) ⊥ = Im(A) and [START_REF] Schmidt | Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height[END_REF]Cor. p. 328] for primitive lattices we have

det(L ⊥ (A)) = det(Z n ∩ ker(A T)) = det(Z n ∩ Im(A)),
then L(A) ⊆ Z n ∩ Im(A) and Hadamard's inequality lead to:

det(L ⊥ (A)) ≤ det(L(A)) ≤ ∥A∥ k . (3)
LLL-reduced bases. The goal of lattice basis reduction is to find a basis with vectors as short and orthogonal to each other as possible. Among numerous lattice reduction notions, the LLL-reduction [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] is one of the most commonly

used. Let 1 4 < δ < 1. Let B = (b 1 , . . . , b n) ∈ R m×n be a basis of a lattice Λ. We say that B is size-reduced if all Gram-Schmidt coefficients satisfy |µ i j | ≤ 1 2 .
We say that B satisfies the Lovász conditions if for all i we have

δ ∥b * i ∥ 2 ≤ ∥b * i+1 ∥ 2 + µ 2 i+1,i ∥b * i ∥ 2 .
If a basis B is size-reduced and satisfies the Lovász conditions, then we say that B is LLL-reduced (with respect to the parameter δ). If a basis B = (b 1 , . . . , b n) of Λ is LLL-reduced, then we have:

∀i < n, ∥b * i ∥ 2 ≤ α ∥b * i+1 ∥ 2 , ∀i ≤ n, ∥b i ∥ 2 ≤ α i-1 ∥b * i ∥ 2 , (4
) ∀i ≤ j ≤ n, ∥b i ∥ ≤ α n-1 2 λ j (Λ), (5)
where α = 4 4δ -1 . In particular, we have

∥b 1 ∥ ≤ α n-1 2 λ 1 (Λ).
In this paper, we use the original LLL parameter δ = 3 4 and hence α = 2.

The LLL algorithm. We now sketch the LLL algorithm. Although there exist many LLL variants in the literature, most of them follow the following structure. Step 7 is called an LLL swap.

Algorithm 1 (LLL)

Input: A basis (b i) i ≤n of a lattice Λ ⊆ Z n . Output: An LLL-reduced basis of Λ.

1: i := 2; 2: while i ≤ n do

3: Size-reduce b i by b 1 , • • • , b i-1 ; 4:
if Lovász condition holds for i then 5:

Set i := i + 1;

6: end if 9: end while 10: Return (b i) i ≤n .

To clarify the structure of the algorithm, we omit some details in the above description, e.g., the update of Gram-Schmidt coefficients. From the sketch, we see that we can bound the running-time of LLL by the number of while loop iterations times the cost of each iteration. In fact, most cost bounds for LLL variants proceed via this simple argument.

It was showed in [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] that the number of LLL swaps is O(n 2 log ∥B∥). The following lemma plays a very important role in the analysis of LLL; see [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] for a proof. Lemma 2.1. Let B and B ′ be bases after and before an LLL swap between b i and b i+1 . Then

max{∥b ′ * i ∥, ∥b ′ * i+1 ∥} ≤ max{∥b * i ∥, ∥b * i+1 ∥}, min{∥b ′ * i ∥, ∥b ′ * i+1 ∥} ≥ min{∥b * i ∥, ∥b * i+1 ∥}, ∥b * i ∥ • ∥b * i+1 ∥ = ∥b ′ * i ∥ • ∥b ′ * i+1 ∥, ∥b ′ * i+1 ∥ ∥b * i+1 ∥ = ∥b * i ∥ ∥b ′ * i ∥ ≥ 2 √ 3 , ∀j {i, i + 1} : b ′ * j = b * j .

A NEW POTENTIAL

In this section, we introduce a variant of the classical LLL potential

Π(B) = n-1 i=1 (n -i) log ∥b * i ∥ (6)
of a lattice basis B. The variant we introduce is well-suited for analyzing the number of LLL swaps for the case that both the input and output bases have k large Gram-Schmidt norms and nk small Gram-Schmidt norms, for some k < n.

This is for example the case for the input basis as (2); see Section 4.2. The new potential is aimed at accurately measuring the progress made during the LLL execution, for such unbalanced bases.

Π k (B) = k -1 j=1 (k -j) log ∥b * ℓ j ∥ - n-k i=1 i log ∥b * s i ∥ + n-k i=1 s i .
Note that for k = n, we recover the classical potential Π. The rationale behind Π k is that in some cases we know that the output basis is made of vectors of very unbalanced Gram-Schmidt norms. As this basis is reduced, this means the first vectors have a small Gram-Schmidt norm, while the last vectors have large Gram-Schmidt norms. During the execution of LLL, such short and large vectors do not interfere much. This is an unusual phenomenon: most often, long vectors are made shorter and short vectors are made longer, so that they are all balanced at the end. But this can happen if the long vectors are rather orthogonal to the short ones. When this is the case, LLL actually runs faster than usual, because it merely "sorts" the short vectors and the long vectors, without making them interact to create shorter vectors.

Of course, it can do more intense computations among the short vectors and among the long vectors. Unbalancedness of Gram-Schmidt norms is not captured by the classical potential, but it is with Π k . In particular, the new potential Π k allows to not "pay" for the output unbalancedness in the analysis of the number of LLL swaps.

Similarly to the classical potential, the k-th LLL potential monotonically decreases with the number of LLL swaps.

More precisely, we have the following Proposition 3.2. Let B and B ′ be the current n-dimensional lattice bases before and after an LLL swap. Then for any k ≤ n, we have

Π k (B) -Π k (B ′) ≥ log(2/ √ 3).
Proof. Recall that S and L are the index sets for the nk Gram-Schmidt norms and the other k Gram-Schmidt norms for the lattice basis B. We define S ′ and L ′ for B ′ similarly.

Suppose that this LLL swap occurs between b κ and b κ+1 . Then we must be in one of the following four cases.

Case 1: κ ∈ S and κ + 1 ∈ S.

Let i 0 ≤ nk such that κ = s i 0 and κ + 1 = s i 0 +1 . From Lemma 2.1, we have S ′ = S and L ′ = L, and hence κ = s ′ i 0 and κ + 1 = s ′ i 0 +1 . For the other indices, we have s ′ i = s i (for i ≤ nk) and ℓ ′ j = ℓ j (for j ≤ k). Then

Π k (B) -Π k (B ′) = k j=1 (k -j) log ∥b * ℓ j ∥ ∥b ′ ℓ ′ j ∥ + n-k i=1 i log ∥b ′ * s ′ i ∥ ∥b * s i ∥ + n-k i=1 s i -s ′ i = i 0 log ∥b ′ * s ′ i 0 ∥ ∥b * s i 0 ∥ + (i 0 + 1) log ∥b ′ * s ′ i 0 +1 ∥ ∥b * s i 0 +1 ∥ = log ∥b ′ * κ+1 ∥ ∥b * κ+1 ∥ ≥ log 2 √ 3
, where the last inequality follows from Lemma 2.1.

Case 2: κ ∈ L and κ + 1 ∈ L.

The treatment of Case 1 can be adapted readily.

Case 3: κ ∈ L, κ + 1 ∈ S, S ′ = S and L ′ = L.

Let j 0 ≤ k such that κ = ℓ j 0 , and i 0 ≤ nk such that κ + 1 = s i 0 . Then we have κ = ℓ ′ j 0 and κ + 1 = s ′ i 0 . For the other indices, we have

s ′ i = s (t) i (for i ≤ n -k) and ℓ ′ j = ℓ (t) j (for j ≤ k). Thus Π k (B) -Π k (B ′) = k j=1 (k -j) log ∥b * ℓ j ∥ ∥b ′ * ℓ ′ j ∥ + n-k i=1 i log ∥b ′ * s ′ i ∥ ∥b * s i ∥ + n-k i=1 s i -s ′ i = (k -j 0) log ∥b * ℓ j 0 ∥ ∥b ′ * ℓ ′ j 0 ∥ + i 0 log ∥b ′ * s ′ i 0 ∥ ∥b * s i 0 ∥ = (k -j 0 + i 0) log ∥b ′ * κ+1 ∥ ∥b * κ+1 ∥ ≥ log 2 √ 3
, where the last inequality follows from Lemma 2.1 and the fact that k -

j 0 + i 0 ≥ 1. Case 4: κ ∈ L, κ + 1 ∈ S, S ′ = S ∪ {κ} \ {κ + 1} and L ′ = L ∪ {κ + 1} \ {κ}.
Let j 0 ≤ k such that κ = ℓ j 0 , and i 0 ≤ nk such that κ + 1 = s i 0 . Then κ = s ′ i 0 and κ + 1 = ℓ ′ j 0 . For other indices, we have s ′ i = s i (for i ≤ nk) and ℓ ′ j = ℓ j (for j ≤ k). Then

Π k (B) -Π k (B ′) = k j=1 (k -j) log ∥b * ℓ j ∥ ∥b ′ * ℓ ′ j ∥ + n-k i=1 i log ∥b ′ * s ′ i ∥ ∥b * s i ∥ + n-k i=1 s i -s ′ i = (k -j 0) log ∥b * ℓ j 0 ∥ ∥b ′ * ℓ ′ j 0 ∥ + i 0 log ∥b ′ * s ′ i 0 ∥ ∥b * s i 0 ∥ + 1 = (k -j 0) log ∥b * κ ∥ ∥b ′ * κ+1 ∥ + i 0 log ∥b ′ * κ ∥ ∥b * κ+1 ∥ + 1 ≥ 1,
where the last inequality follows from Lemma 2.1. The observation that 1 ≥ log(2/ √ 3) allows to complete the proof. □

With the above property of the k-th LLL potential, we can bound the number of LLL swaps that LLL performs.

Theorem 3.3. Let B ∈ R m×n be a full column rank matrix. Let B ′ be the basis returned by the LLL algorithm when given B as input. Then the number of swaps that LLL performs is no greater than

min 1≤k ≤n Π k (B) -Π k (B ′) log 2 √ 3
.

ORTHOGONAL LATTICES

As an application of the k-th LLL potential Π k , we consider the problem of computing an LLL-reduced basis of an orthogonal lattice. Let A ∈ Z n×k with n ≥ k. We aim at computing an LLL-reduced basis of the orthogonal lattice L ⊥ (A), by LLL-reducing Ext K (A) (as defined in (2)), for a sufficiently large integer K.

In Subsection 4.1, we provide a sufficient condition on the scaling parameter K so that a LLL-reduced basis of L ⊥ (A) can be extracted from a LLL-reduced basis of L(Ext K (A)). For such a sufficiently large K, we study the Gram-Schmidt orthogonalizations of the input and output bases of the LLL call to Ext K (A) in Subsection 4.2, and we provide a bound on the number of required LLL swaps which is independent of K in Subsection 4.3.

Correctness

For n ≥ k, we define σ n,k as the map that embeds R n into R n+k by adding 0's in the first k coordinates.

σ n,k : R n → R n+k (x 1 , • • • , x n) T → (0, • • • , 0 k , x 1 , • • • , x n n) T .
We also define δ n,k as the map that erases the first k coordinates of a vector in R n+k .

δ n,k : R n+k → R n (x 1 , • • • , x k , x k +1 , • • • , x k+n) T → (x k +1 , • • • , x k+n) T .
We extend these functions to matrices in the canonical way. The following proposition is adapted from [9, Theorem 4] (see also [START_REF] Nguyen | La Géométrie des Nombres en Cryptologie[END_REF]Proposition 2.24]). It shows that if K is sufficiently large, then calling the LLL algorithm on Ext K (A)

provides an LLL-reduced basis of L ⊥ (A).

Proposition 4.1. Let A ∈ Z n×k be full column rank and B = Ext K (A). If B ′ is an LLL-reduced basis of L(B) and

K > 2 n-1 2 • λ n-k (L ⊥ (A)), (7)
then δ n,k (b ′ 1), • • • , δ n,k (b ′ n-k) is an LLL-reduced basis of L ⊥ (A). Proof. As A ∈ Z n×k is full column rank, we have dim(L ⊥ (A)) = n -k. For any basis C ∈ Z n×(n-k) of L ⊥ (A), we have σ n,k (C) = B • C, and hence the lattice σ n,k (L ⊥ (A)) is a sublattice of L(B). This implies that, for all i ≤ n -k, λ i (L(B)) ≤ λ i (σ n,k (L ⊥ (A))) = λ i (L ⊥ (A)).
It follows from (5) that, for all i ≤ nk,

∥b ′ i ∥ 2 ≤ 2 n-1 • λ 2 n-k (L(B)) ≤ 2 n-1 • λ 2 n-k (L ⊥ (A)). (8)
We now assume (by contradiction) that

δ n,k (b ′ i) L ⊥ (A) for some i ≤ n -k. Note that b ′ i = B • δ n,k (b ′ i) = (K • δ n,k (b i ′) T • A | δ n,k (b ′ i) T) T .
As the subvector

K • δ n,k (b ′ i) T •
A is non-zero, and using the assumption on K, we obtain that

∥b ′ i ∥ 2 = ∥K • δ n,k (b ′ i) T • A∥ 2 + ∥δ n,k (b ′ i)∥ 2 ≥ K 2 > 2 n-1 • λ 2 n-k (L ⊥ (A)),
which contradicts [START_REF] Neumaier | Faster LLL-type reduction of lattice bases[END_REF].

From the above, we obtain that

δ n,k (b ′ 1), • • • , δ n,k (b ′ n-k
) are linearly independent vectors in L ⊥ (A). They actually form a basis of L ⊥ (A). To see this, consider an arbitrary vector c ∈ L ⊥ (A). The vector B • c belongs to the real span

of b ′ 1 , • • • , b ′ n-k and to L(B). As B ′ is a basis of L(B), vector B • c is an integer combination of b ′ 1 , • • • , b ′ n-k and vector c is an integer combination of δ n,k (b ′ 1), • • • , δ n,k (b ′ n-k). Since B ′ is LLL-reduced and the first k coordinates of each of b ′ 1 , • • • , b ′ n-k are 0, we obtain that δ n,k (b ′ 1), • • • , δ n,k (b ′ n-k) form an LLL-reduced basis of L ⊥ (A). □
To make this condition on K effective, we use some upper bounds on λ n-k (L ⊥ (A)). For instance, from Minkowski's second theorem, we have

λ n-k (L ⊥ (A)) ≤ (n -k) n-k 2 • det(L ⊥ (A)) ≤ (n -k) n-k 2 • ∥A∥ k . Hence K > 2 n-1 2 • (n -k) n-k 2 • ∥A∥ k (9)
suffices to guarantee that (7) holds.

The bound in (9) can be very loose. Indeed, in many cases, we expect the minima of L ⊥ (A) to be balanced, and if they are so, then the following bound would suffice

K > 2 Ω(n) • ∥A∥ k n-k . (10
)
For such a scaling paramter K, according to Proposition 4.1, after termination of the LLL call with Ext K (A) as its input, the output matrix must be of the following form:

0 M C N , (11
)
where the columns of C ∈ Z n×(n-k) form an LLL-reduced basis of the lattice L ⊥ (A).1

On the LLL input and output bases

To bound the number of LLL swaps, we first investigate the matrix B = Ext K (A) given as input to the LLL algorithm, and the output matrix B ′ .

Intuitively, from the shape of B and the fact that A is full rank, there must be k Gram-Schmidt norms of B that are "impacted" by the scaling parameter K, and hence have large magnitude, while other nk Gram-Schmidt norms of B should be of small magnitude.

On the other hand, recall that B ′ is of the form [START_REF]The LLL Algorithm: Survey and Applications[END_REF]. Since only the first k coordinates are related to the scaling parameter K, the submatrix C is "independent" of K. Thus, each of ∥b ′ * 1 ∥, • • • , ∥b ′ * n-k ∥ should be relatively small (for a sufficiently large K), while each of ∥b ′ * n-k +1 ∥, • • • , ∥b ′ * n ∥ is "impacted" by K, and hence with large magnitude. The following result formalizes this discussion. Proposition 4.2. Let A ∈ Z n×k be of full column rank and B ′ the output basis of LLL with B = Ext K (A) as input. If the scaling parameter K ∈ Z satisfies [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], then for the output matrix B ′ we have

∀i ≤ n -k, ∀j > n -k, ∥b ′ * i ∥ < ∥b ′ * j ∥.
Proof. From Proposition 4.1, we know that B ′ is of the form

0 * C * ,
and that the columns of C ∈ Z n×k form an LLL-reduced basis of L ⊥ (A). We thus have, for i ≤ nk

∥b ′ * i ∥ 2 ≤ ∥b ′ i ∥ 2 = ∥c i ∥ 2 ≤ 2 n-k -1 λ 2 n-k (L ⊥ (A)). Further, for n -k < j ≤ n, we have ∥b ′ * j ∥ 2 ≥ 2 -k ∥b ′ * n-k +1 ∥ 2 ≥ 2 -k K 2 .
The choice of K allows to complete the proof. □

We observe again that combining the condition of Proposition 4.2 together with a general purpose bound on λ n-k (L ⊥ (A))

allows to obtain a sufficient bound on K that can be efficiently derived from A.

Although ∥b * s i ∥ is relatively small with respect to K, it can be bounded from below. In fact, we have a more general lower bound:

∀i ≤ n, ∥b * i ∥ ≥ 1. (12
)
This is because that there is a coefficient in b i which is equal to 1 and 0 for all other b j 's. This lower bound will be helpful in the proof of Theorem 4.3.

Table 1. Upper bounds on the number of LLL swaps for different k (K sufficiently large), α = log ∥A ∥.

Classical analysis (9) Heuristic (10) New analysis k

= 1 O(n 2 log n + nα) O(n 2 + nα) O(nα) k = n/2 O(n 3 log n + n 3 α) O(n 3 + n 2 α) O(n 3 + n 2 α) k = n -1 O(n 2 α) O(n 2 α) O(n 3 + nα)

Bounding the number of LLL swaps

Suppose that K is a sufficient large positive integer satisfying [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. Proposition 4.1 guarantees that we can use LLL with B = Ext K (A) as input to compute an LLL-reduced basis for L ⊥ (A). We now study the number of LLL swaps performed in this call to the LLL algorithm.

Theorem 4.3. Let A ∈ Z n×k with a non-zero k-th principal minor, and K an integer satisfying [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. Then, given B = Ext K (A) as its input, LLL computes (as a submatrix of the returned basis) an LLL-reduced basis of L ⊥ (A) after at most O(k 3 + k(nk)(1 + log ∥A∥)) LLL swaps, where ∥A∥ is the maximum of the Euclidean norm of all rows and columns of the matrix A.

Proof. From Proposition 4.1, the LLL algorithm allows to obtain a LLL-reduced basis for L ⊥ (A). We know from Theorem 3.3 that in order to obtain an upper bound on the number of LLL swaps, it suffices to find an upper bound to Π k (B) and a lower bound on Π k (B ′), where B ′ is the basis returned by LLL when given B as input. From [START_REF] Novocin | An LLL-reduction algorithm with quasi-linear time complexity[END_REF] we have Since the first k coefficients of b ′ * i are 0 (for i ≤ nk) and A is full-rank, we must have ∥b ′ * n-k +1 ∥ ≥ K. Further, since B ′ is LLL-reduced, combining with (4) we have, for j ≤ k

Π k (B) = k j=1 (k -j) log ∥b * ℓ j ∥ - n-k i=1 i log ∥b * s i ∥ + n-k i=1 s i
∥b ′ * n-k +j ∥ ≥ 2 1-j 2 ∥b ′ * n-k +1 ∥ ≥ 2 1-j 2 K ≥ 2 1-k 2 K .
We hence obtain

Π k (B ′) ≥ log K + 1 -k 2 k j=1 (k -j) - n-k i=1 i log ∥b ′ * i ∥ + (n -k)(n -k + 1) 2 ≥ k(k -1) 2 log K + 1 -k 2 -(n -k) n-k i=1 log ∥b ′ * i ∥ + (n -k)(n -k + 1)
2

,
where we used the fact that all ∥b ′ * i ∥'s are ≥ 1. This is true for the ∥b * i ∥'s and LLL cannot make the minimum Gram-Schmidt norm decrease. Using (3), we obtain:

Π k (B ′) ≥ k(k -1) 2 log K + 1 -k 2 -(n -k)k log ∥A∥ + (n -k)(n -k + 1) 2 .
Finally, using Theorem 3.3, we obtain that the number of LLL swaps is no greater than

Π k (B) -Π k (B ′) log 2 √ 3 ≤ k(n -k 2) log ∥A∥ + k 3 + (n -k)k log 2 √ 3
, which is of O(k 3 + k(nk)(1 + log ∥A∥)). □

In Table 1 we compare favorably (k = 1, n/2) the result of Theorem 4.3 to the bounds on the number of swaps using the classical potential (6) and K fixed from the general threshold [START_REF] Nguyen | Merkle-Hellman revisited: A cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations[END_REF] or the heuristic one [START_REF] Nguyen | La Géométrie des Nombres en Cryptologie[END_REF]. We also consider k = n -1.

However, in the latter case the problem reduces to linear system solving, and different techniques such as those in [START_REF] Storjohann | The shifted number system for fast linear algebra on integer matrices[END_REF] should be considered.

With the potential function Π of (6), we have

Π(B) ≤ log i ≤n K 2 ∥A∥ 2 min(k,i) 2 ≤ k(2n -k + 1) 2 log (K ∥A∥) .
The bound on the number of LLL swaps obtained using the classical potential is therefore O(k(n-k/2)(1+log K +log ∥A∥).

While we see from Theorem 4.3 that the actual number of swaps for computing an LLL-reduced basis for L ⊥ (A) does not grow with K when K is sufficiently large.

else 7 :(

 7 LLL swap) Swap b i and b i-1 ; set i := max{i -1, 2}; 8:

Definition 3 . 1 .

 31 Let k ≤ n ≤ m be positive integers and B ∈ R m×n be full column rank. We let s 1 < . . . < s n-k be the indices of the nk smallest Gram-Schmidt norms of B (using the lexicographical in case there are several (n -k)-th smallest Gram-Schmidt norms), and set S = {s i } i ≤n-k . We let ℓ 1 < . . . < ℓ k be the indices of the other k Gram-Schmidt norms, and set L = {ℓ j } j ≤k . The k-th LLL potential of B is defined as:

2 .

 2 j) log ∥b ℓ j ∥ + n-k i=1 (k + i) ≤ (1 + log K + log ∥A∥) k(k -1) 2 + (n -k)(n + k + 1)Thanks to Proposition 4.2, we haveΠ k (B ′) j) log ∥b ′ * n-k +j ∥ -

In fact, the resulting matrix gives more information than an LLL-reduced basis of L ⊥ (A). For instance, the columns of 1 K • M form a basis of the lattice generated by the rows of A.

ACKNOWLEDGMENTS

Our thanks go to anonymous referees for helpful comments, which make the presentation of the paper better. Jingwei Chen was partially supported by NNSFC (11501540, 11671377, 11771421) and Youth Innovation Promotion Association, CAS. Damien Stehlé was supported by ERC Starting Grant ERC-2013-StG-335086-LATTAC.