
HAL Id: hal-01921335
https://hal.science/hal-01921335

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing an LLL-reduced Basis of the Orthogonal
Lattice

Jingwei Chen, Damien Stehlé, Gilles Villard

To cite this version:
Jingwei Chen, Damien Stehlé, Gilles Villard. Computing an LLL-reduced Basis of the Orthogonal
Lattice. ISSAC 2018, 43rd International Symposium on Symbolic and Algebraic Computation (ISSAC
2018), Jul 2018, New York, United States. �10.1145/3208976.3209013�. �hal-01921335�

https://hal.science/hal-01921335
https://hal.archives-ouvertes.fr

Computing an LLL-reduced Basis of the Orthogonal Lattice

JINGWEI CHEN, Chongqing Key Lab of Automated Reasoning & Cognition, Chongqing Institute of Green and

Intelligent Technology, CAS, Chongqing, China

DAMIEN STEHLÉ, Univ Lyon, ENS de Lyon, CNRS, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007

Lyon, France

GILLES VILLARD, Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007

Lyon, France

As a typical application, the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL) is used to compute a reduced basis of the

orthogonal lattice for a given integer matrix, via reducing a special kind of lattice bases. With such bases in input, we propose a new

technique for bounding from above the number of iterations required by the LLL algorithm. The main technical ingredient is a variant

of the classical LLL potential, which could prove useful to understand the behavior of LLL for other families of input bases.

Additional Key Words and Phrases: Lattice basis reduction, LLL, orthogonal lattice, kernel lattice

1 INTRODUCTION

Let k < n be two positive integers. Given a full column rank n × k integer matrix A = (ai, j), we study the behaviour of

the Lenstra-Lenstra-Lovász algorithm [7] for computing a reduced basis for the orthogonal lattice of A

L⊥(A) =
{
m ∈ Zn : ATm = 0

}
= Ker(AT) ∩ Zn . (1)

The algorithm proceeds by unimodular column transformations from the input matrix ExtK (A) ∈ Z(n+k)×n :

ExtK (A) :=

(
K ·AT

In

)
=

©«

K ·a1,1 K ·a2,1 · · · K ·an,1
...

...
. . .

...

K ·a
1,k K ·a

2,k · · · K ·an,k

1 0 · · · 0

0 1 · · · 0

...
...

. . . 0

0 0 · · · 1

ª®®®®®®®®®®®®®®®¬

. (2)

where K is a sufficiently large positive integer. The related definitions and the LLL algorithm are given in Section 2. The

reader may refer to [11] for a comprehensive review of LLL, and to [14] and [9] concerning the orthogonal lattice.

Authors’ addresses: Jingwei Chen, Chongqing Key Lab of Automated Reasoning & Cognition, Chongqing Institute of Green and Intelligent Technology,

CAS, Chongqing, China, chenjingwei@cigit.ac.cn; Damien Stehlé, Univ Lyon, ENS de Lyon, CNRS, Inria, Université Claude Bernard Lyon 1, LIP UMR

5668, F-69007

Lyon, France, damien.stehle@ens-lyon.fr; Gilles Villard, Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007

Lyon, France, gilles.villard@ens-lyon.fr.

1

Usual techniques gives that LLL reduction requires O(n2 log(K · ∥A∥)) swaps (see Step 7 of Algorithm 1) for a basis

as in (2), where ∥A∥ bounds from above the Euclidean norms of the rows and columns of A. We recall that most known

LLL reduction algorithms iteratively perform two types of vector operations: translations and swaps. The motivation

for studying bounds on the number of swaps comes from the fact that this number governs known cost analyses of the

reduction.

Folklore applications of the reduction of bases as in (2) include, for example, the computation of integer relations

between real numbers [1, 3], the computation of minimal polynomials [6] (see also [11]). A main difficulty however,

both theoretically and practically, remains to master the scaling parameter K that can be very large. Heuristic and

practical solutions may for instance rely on a doubling strategy (successive trials with K = 2, 22, 24, . . .) for finding

a suitable scaling. Or an appropriate value for K may be derived from a priori bounds such as heights of algebraic

numbers [6] and may overestimate the smallest suitable value for actual inputs. Since the usual bound on the number of

swaps is linear in logK , the overestimation could be a serious drawback. We show that this may not be always the case.

We consider the reduction of a basis as in (2) for obtaining a basis of the orthogonal lattice (1). We establish a bound

on the number of swaps that does not depend on K as soon as K is above a threshold value (as specified in (7)). This

threshold depends only on the dimension and invariants of the orthogonal lattice.

Our contribution. The analyses of LLL and many LLL variants bound the number of iterations using the geometric

decrease of a potential that is defined using the Gram-Schmidt norms of the basis vectors; see (6). We are going to see

that this classical potential does not capture a typical unbalancedness of the Gram-Schmidt norms that characterizes

bases in (2). Taking into account the latter structure will lead us to a better bound for the number of iterations (see

Table 1). Intuitively, as the basis being manipulated becomes reduced, two groups of vectors are formed: some with

small Gram-Schmidt norms, and some others with large Gram-Schmidt norms. As soon they are formed, the two groups

do not interfere much.

In Section 3 we introduce a new LLL potential function that generalizes the classical one for capturing the previously

mentioned unbalancedness. Its geometric decrease during the execution also leads to a bound on the number of

iterations (see Theorem 3.3). In Section 4, we specialize the potential to the case of bases as in (2) for computing the

orthogonal lattice L⊥(A). As discussed above, we will see that at some point the number of iterations can be shown to

be independent of the scaling parameter K , or, in other words, independent of a further increase of the input size. We

note that this new potential is defined for all lattice bases, but it may not always lead to better bounds on the number of

LLL iterations.

The extended gcd algorithm in [4] uses a basis as in (2) with k = 1. It is shown in [4, Sec. 3, p. 127] that if K is

sufficiently large, then the sequence of operations performed by LLL is independent of K . A somewhat similar remark

had been made in [13]. We also note that in the analysis of the gradual sub-lattice reduction algorithm of [5], a similar

separation of large and small basis vectors was used, also for a better bound on the number of iterations. Our new

potential function allows a better understanding of the phenomenon.

We see our potential function for LLL as a new complexity analysis tool that may help further theoretical and practical

studies of LLL and its applications. Various approaches exist for computing the orthogonal lattice A, or equivalently an

integral kernel basis of AT . A detailed comparison of the methods remains to be done and would be however outside

the scope of this paper that focuses on the properties of the potential. An integral kernel basis may be obtained from

a unimodular multiplier for the Hermite normal form of A [19] (see also [18] for the related linear system solution

problem), which may be combined as in [15, Ch. 8] and [2] with LLL for minimizing the bit size of the output. A direct

application of LLL to ExtK (A) is an important alternative solution. We refer to [16] and references therein concerning

existing LLL variants.

Futurework. Future research directions are to apply this potential to bit complexity studies of the LLL basis reduction [8,

12, 17], especially for specific input bases. Indeed, an interesting problem is to design an algorithm for computing a

reduced basis for L⊥(A) that features a bit complexity bound independent of the scaling parameter, and to compare it

to approaches based on the Hermite normal form.

Notations. Throughout the paper, vectors are in column and denoted in bold. For x ∈ Rm , ∥x ∥ is the Euclidean norm

of x . Matrices are denoted by upper case letters in bold, such as A, B, etc. For a matrix A, AT is the transpose of A, and
∥A∥ bounds the Euclidean norms of the columns and rows of A. The base of logarithm is 2.

2 PRELIMINARIES

We give some basic definitions and results that are needed for the rest of the paper. A comprehensive presentation of

the LLL algorithm and its applications may be found in [11].

Gram-Schmidt orthogonalization. Let b1, · · · ,bn ∈ Rm be linearly independent vectors. Their Gram-Schmidt

orthogonalization b∗
1
, · · · ,b∗n is defined as follows:

b∗
1
= b1 and ∀i > 1 : b∗i = bi −

i−1∑
j=1

µi, jb
∗
j ,

where the µi, j =
⟨bi ,b ∗

j ⟩

⟨b ∗
j ,b

∗
j ⟩

for all i > j are called the Gram-Schmidt coefficients. We call the ∥b∗i ∥’s the Gram-Schmidt

norms of the bi ’s.

Lattices. A lattice Λ ⊆ Rm is a discrete additive subgroup of Rm . If (bi)i≤n is a set of generators for Λ, then

Λ = L(b1, . . . ,bn) =

{ n∑
i=1

zibi : zi ∈ Z

}
.

If the bi ’s are linearly independent, then they are said to form a basis of Λ. When n ≥ 2, there exist infinitely many bases

for a lattice. Every basis is related by an integral unimodular transformation (a linear transformation with determinant

±1) to any other. Further, the number of vectors of different bases of a lattice Λ is always the same, and we call this

number the dimension of the lattice, denoted by dim(Λ). If B = (b1, . . . ,bn) ∈ Rm×n
is a basis for a lattice Λ = L(B),

the determinant of the lattice is defined as det(Λ) =
√
det(BT B). It is invariant across all bases of Λ.

Successive minima. For a given lattice Λ, we let λ1(Λ) denote the minimum Euclidean norm of vectors in Λ \ {0}. From
Minkowski’s first theorem, we have λ1(Λ) ≤

√
n · det(Λ)1/n , where n = dim(Λ). More generally, for all 1 ≤ i ≤ n, we

define the i-th minimum as

λi (Λ) = min

v1, · · · ,vi ∈ Λ

linearly independent

max

j≤i
∥vj ∥.

Minkowski’s second theorem states that

∏
i≤n λi (Λ) ≤

√
n
n
· det(Λ).

Sublattices. Let Λ ⊆ Rn be a lattice. We say that Λ′
is a sublattice of Λ if Λ′ ⊆ Λ is a lattice as well. If Λ′

is a sublattice

of Λ then λi (Λ) ≤ λi (Λ
′) for i ≤ dim(Λ′). A sublattice Λ′

of Λ ⊂ Rn is said to be primitive if there exists a subspace E

of Rn such that Λ′ = Λ ∩ E.

Orthogonal lattices. Given a full column rank matrix A ∈ Zn×k , the set L⊥(A) defined in (1) forms a lattice, called

the orthogonal lattice of A. We have dim(L⊥(A)) = n − k . Using ker(AT)⊥ = Im(A) and [14, Cor. p. 328] for primitive

lattices we have

det(L⊥(A)) = det(Zn ∩ ker(AT)) = det(Zn ∩ Im(A)),

then L(A) ⊆ Zn ∩ Im(A) and Hadamard’s inequality lead to:

det(L⊥(A)) ≤ det(L(A)) ≤ ∥A∥k . (3)

LLL-reduced bases. The goal of lattice basis reduction is to find a basis with vectors as short and orthogonal to each

other as possible. Among numerous lattice reduction notions, the LLL-reduction [7] is one of the most commonly

used. Let
1

4
< δ < 1. Let B = (b1, . . . ,bn) ∈ Rm×n

be a basis of a lattice Λ. We say that B is size-reduced if

all Gram-Schmidt coefficients satisfy |µi j | ≤ 1

2
. We say that B satisfies the Lovász conditions if for all i we have

δ ∥b∗i ∥
2 ≤ ∥b∗i+1∥

2 + µ2i+1,i ∥b
∗
i ∥

2
. If a basis B is size-reduced and satisfies the Lovász conditions, then we say that B is

LLL-reduced (with respect to the parameter δ). If a basis B = (b1, . . . ,bn) of Λ is LLL-reduced, then we have:

∀i < n, ∥b∗i ∥
2 ≤ α ∥b∗i+1∥

2,

∀i ≤ n, ∥bi ∥
2 ≤ α i−1∥b∗i ∥

2, (4)

∀i ≤ j ≤ n, ∥bi ∥ ≤ α
n−1
2 λj (Λ), (5)

where α = 4

4δ−1 . In particular, we have ∥b1∥ ≤ α
n−1
2 λ1(Λ). In this paper, we use the original LLL parameter δ = 3

4
and

hence α = 2.

The LLL algorithm. We now sketch the LLL algorithm. Although there exist many LLL variants in the literature, most

of them follow the following structure. Step 7 is called an LLL swap.

Algorithm 1 (LLL)

Input: A basis (bi)i≤n of a lattice Λ ⊆ Zn .
Output: An LLL-reduced basis of Λ.
1: i := 2;

2: while i ≤ n do
3: Size-reduce bi by b1, · · · ,bi−1;
4: if Lovász condition holds for i then
5: Set i := i + 1;
6: else
7: (LLL swap) Swap bi and bi−1; set i := max{i − 1, 2};

8: end if
9: end while
10: Return (bi)i≤n .

To clarify the structure of the algorithm, we omit some details in the above description, e.g., the update of Gram-

Schmidt coefficients. From the sketch, we see that we can bound the running-time of LLL by the number of while loop

iterations times the cost of each iteration. In fact, most cost bounds for LLL variants proceed via this simple argument.

It was showed in [7] that the number of LLL swaps is O(n2 log ∥B∥). The following lemma plays a very important role

in the analysis of LLL; see [7] for a proof.

Lemma 2.1. Let B and B′ be bases after and before an LLL swap between bi and bi+1. Then

max{∥b ′∗i ∥, ∥b ′∗i+1∥} ≤ max{∥b∗i ∥, ∥b
∗
i+1∥},

min{∥b ′∗i ∥, ∥b ′∗i+1∥} ≥ min{∥b∗i ∥, ∥b
∗
i+1∥},

∥b∗i ∥ · ∥b
∗
i+1∥ = ∥b ′∗i ∥ · ∥b ′∗i+1∥,

∥b ′∗i+1∥

∥b∗i+1∥
=

∥b∗i ∥

∥b ′∗i ∥
≥

2

√
3

,

∀j < {i, i + 1} : b ′∗j = b
∗
j .

3 A NEW POTENTIAL

In this section, we introduce a variant of the classical LLL potential

Π(B) =
n−1∑
i=1

(n − i) log ∥b∗i ∥ (6)

of a lattice basis B. The variant we introduce is well-suited for analyzing the number of LLL swaps for the case that both

the input and output bases have k large Gram-Schmidt norms and n − k small Gram-Schmidt norms, for some k < n.

This is for example the case for the input basis as (2); see Section 4.2. The new potential is aimed at accurately measuring

the progress made during the LLL execution, for such unbalanced bases.

Definition 3.1. Let k ≤ n ≤ m be positive integers and B ∈ Rm×n
be full column rank. We let s1 < . . . < sn−k be the

indices of the n − k smallest Gram-Schmidt norms of B (using the lexicographical in case there are several (n − k)-th

smallest Gram-Schmidt norms), and set S = {si }i≤n−k . We let ℓ1 < . . . < ℓk be the indices of the other k Gram-Schmidt

norms, and set L = {ℓj }j≤k . The k-th LLL potential of B is defined as:

Πk (B) =
k−1∑
j=1

(k − j) log ∥b∗ℓj ∥ −
n−k∑
i=1

i log ∥b∗si ∥ +
n−k∑
i=1

si .

Note that for k = n, we recover the classical potential Π. The rationale behind Πk is that in some cases we know

that the output basis is made of vectors of very unbalanced Gram-Schmidt norms. As this basis is reduced, this means

the first vectors have a small Gram-Schmidt norm, while the last vectors have large Gram-Schmidt norms. During the

execution of LLL, such short and large vectors do not interfere much. This is an unusual phenomenon: most often, long

vectors are made shorter and short vectors are made longer, so that they are all balanced at the end. But this can happen

if the long vectors are rather orthogonal to the short ones. When this is the case, LLL actually runs faster than usual,

because it merely “sorts” the short vectors and the long vectors, without making them interact to create shorter vectors.

Of course, it can do more intense computations among the short vectors and among the long vectors. Unbalancedness

of Gram-Schmidt norms is not captured by the classical potential, but it is with Πk . In particular, the new potential Πk

allows to not “pay” for the output unbalancedness in the analysis of the number of LLL swaps.

Similarly to the classical potential, the k-th LLL potential monotonically decreases with the number of LLL swaps.

More precisely, we have the following

Proposition 3.2. Let B and B′ be the current n-dimensional lattice bases before and after an LLL swap. Then for

any k ≤ n, we have Πk (B) − Πk (B′) ≥ log(2/
√
3).

Proof. Recall that S and L are the index sets for the n − k Gram-Schmidt norms and the other k Gram-Schmidt

norms for the lattice basis B. We define S ′ and L′ for B′
similarly.

Suppose that this LLL swap occurs between bκ and bκ+1. Then we must be in one of the following four cases.

Case 1: κ ∈ S and κ + 1 ∈ S .

Let i0 ≤ n − k such that κ = si0 and κ + 1 = si0+1. From Lemma 2.1, we have S ′ = S and L′ = L, and hence κ = s ′i0
and κ + 1 = s ′i0+1. For the other indices, we have s

′
i = si (for i ≤ n − k) and ℓ′j = ℓj (for j ≤ k). Then

Πk (B) − Πk (B
′) =

k∑
j=1

(k − j) log
∥b∗

ℓj
∥

∥b ′
ℓ′j
∥
+

n−k∑
i=1

i log
∥b ′∗s ′i

∥

∥b∗si ∥

+

n−k∑
i=1

(
si − s ′i

)
= i0 log

∥b ′∗s ′i
0

∥

∥b∗si
0

∥
+ (i0 + 1) log

∥b ′∗s ′i
0
+1

∥

∥b∗si
0
+1
∥

= log

∥b ′∗κ+1∥

∥b∗κ+1∥
≥ log

(
2

√
3

)
,

where the last inequality follows from Lemma 2.1.

Case 2: κ ∈ L and κ + 1 ∈ L.

The treatment of Case 1 can be adapted readily.

Case 3: κ ∈ L, κ + 1 ∈ S , S ′ = S and L′ = L.

Let j0 ≤ k such that κ = ℓj0 , and i0 ≤ n − k such that κ + 1 = si0 . Then we have κ = ℓ′j0 and κ + 1 = s
′
i0 . For the other

indices, we have s ′i = s
(t)
i (for i ≤ n − k) and ℓ′j = ℓ

(t)
j (for j ≤ k). Thus

Πk (B) − Πk (B
′) =

k∑
j=1

(k − j) log
∥b∗

ℓj
∥

∥b ′∗
ℓ′j
∥
+

n−k∑
i=1

i log
∥b ′∗s ′i

∥

∥b∗si ∥

+

n−k∑
i=1

(
si − s ′i

)
= (k − j0) log

∥b∗
ℓj

0

∥

∥b ′∗
ℓ′j

0

∥
+ i0 log

∥b ′∗s ′i
0

∥

∥b∗si
0

∥

= (k − j0 + i0) log
∥b ′∗κ+1∥

∥b∗κ+1∥
≥ log

(
2

√
3

)
,

where the last inequality follows from Lemma 2.1 and the fact that k − j0 + i0 ≥ 1.

Case 4: κ ∈ L, κ + 1 ∈ S , S ′ = S ∪ {κ} \ {κ + 1} and L′ = L ∪ {κ + 1} \ {κ}.

Let j0 ≤ k such that κ = ℓj0 , and i0 ≤ n − k such that κ + 1 = si0 . Then κ = s
′
i0 and κ + 1 = ℓ

′
j0 . For other indices, we

have s ′i = si (for i ≤ n − k) and ℓ′j = ℓj (for j ≤ k). Then

Πk (B) − Πk (B
′) =

k∑
j=1

(k − j) log
∥b∗

ℓj
∥

∥b ′∗
ℓ′j
∥
+

n−k∑
i=1

i log
∥b ′∗s ′i

∥

∥b∗si ∥

+

n−k∑
i=1

(
si − s ′i

)
= (k − j0) log

∥b∗
ℓj

0

∥

∥b ′∗
ℓ′j

0

∥
+ i0 log

∥b ′∗s ′i
0

∥

∥b∗si
0

∥
+ 1

= (k − j0) log
∥b∗κ ∥

∥b ′∗κ+1∥
+ i0 log

∥b ′∗κ ∥

∥b∗κ+1∥
+ 1

≥ 1,

where the last inequality follows from Lemma 2.1. The observation that 1 ≥ log(2/
√
3) allows to complete the proof. □

With the above property of the k-th LLL potential, we can bound the number of LLL swaps that LLL performs.

Theorem 3.3. Let B ∈ Rm×n be a full column rank matrix. Let B′ be the basis returned by the LLL algorithm when

given B as input. Then the number of swaps that LLL performs is no greater than

min

1≤k≤n

Πk (B) − Πk (B′)

log

(
2√
3

) .

4 ORTHOGONAL LATTICES

As an application of the k-th LLL potential Πk , we consider the problem of computing an LLL-reduced basis of an

orthogonal lattice. LetA ∈ Zn×k with n ≥ k . We aim at computing an LLL-reduced basis of the orthogonal latticeL⊥(A),
by LLL-reducing ExtK (A) (as defined in (2)), for a sufficiently large integer K .

In Subsection 4.1, we provide a sufficient condition on the scaling parameter K so that a LLL-reduced basis of L⊥(A)
can be extracted from a LLL-reduced basis of L(ExtK (A)). For such a sufficiently large K , we study the Gram-Schmidt

orthogonalizations of the input and output bases of the LLL call to ExtK (A) in Subsection 4.2, and we provide a bound

on the number of required LLL swaps which is independent of K in Subsection 4.3.

4.1 Correctness

For n ≥ k , we define σn,k as the map that embeds Rn into Rn+k by adding 0’s in the first k coordinates.

σn,k : Rn → Rn+k

(x1, · · · ,xn)
T 7→ (0, · · · , 0︸ ︷︷ ︸

k

,x1, · · · ,xn︸ ︷︷ ︸
n

)T .

We also define δn,k as the map that erases the first k coordinates of a vector in Rn+k .

δn,k : Rn+k → Rn

(x1, · · · ,xk ,xk+1, · · · ,xk+n)
T 7→ (xk+1, · · · ,xk+n)

T .

We extend these functions to matrices in the canonical way. The following proposition is adapted from [9, Theorem 4]

(see also [10, Proposition 2.24]). It shows that if K is sufficiently large, then calling the LLL algorithm on ExtK (A)
provides an LLL-reduced basis of L⊥(A).

Proposition 4.1. Let A ∈ Zn×k be full column rank and B = ExtK (A). If B′ is an LLL-reduced basis of L(B) and

K > 2

n−1
2 · λn−k (L

⊥(A)), (7)

then δn,k (b ′1), · · · ,δn,k (b
′
n−k) is an LLL-reduced basis of L⊥(A).

Proof. As A ∈ Zn×k is full column rank, we have dim(L⊥(A)) = n − k . For any basis C ∈ Zn×(n−k) of L⊥(A), we
have σn,k (C) = B · C, and hence the lattice σn,k (L

⊥(A)) is a sublattice of L(B). This implies that, for all i ≤ n − k ,

λi (L(B)) ≤ λi (σn,k (L
⊥(A))) = λi (L

⊥(A)).

It follows from (5) that, for all i ≤ n − k ,

∥b ′i ∥
2 ≤ 2

n−1 · λ2n−k (L(B)) ≤ 2
n−1 · λ2n−k (L

⊥(A)). (8)

We now assume (by contradiction) that δn,k (b
′
i) < L

⊥(A) for some i ≤ n − k . Note that

b ′i = B · δn,k (b
′
i) = (K · δn,k (bi′)

T · A | δn,k (b
′
i)
T)T .

As the subvector K · δn,k (b
′
i)
T · A is non-zero, and using the assumption on K , we obtain that

∥b ′i ∥
2 = ∥K · δn,k (b

′
i)
T · A∥2 + ∥δn,k (b

′
i)∥

2

≥ K2 > 2
n−1 · λ2n−k (L

⊥(A)),

which contradicts (8).

From the above, we obtain that δn,k (b
′
1
), · · · ,δn,k (b

′
n−k) are linearly independent vectors in L⊥(A). They actually

form a basis of L⊥(A). To see this, consider an arbitrary vector c ∈ L⊥(A). The vector B · c belongs to the real span

of b ′
1
, · · · ,b ′n−k and to L(B). As B′

is a basis of L(B), vector B ·c is an integer combination of b ′
1
, · · · ,b ′n−k and vector c

is an integer combination of δn,k (b
′
1
), · · · ,δn,k (b

′
n−k).

SinceB′
is LLL-reduced and the firstk coordinates of each ofb ′

1
, · · · ,b ′n−k are 0, we obtain thatδn,k (b

′
1
), · · · ,δn,k (b

′
n−k)

form an LLL-reduced basis of L⊥(A). □

To make this condition on K effective, we use some upper bounds on λn−k (L
⊥(A)). For instance, from Minkowski’s

second theorem, we have

λn−k (L
⊥(A)) ≤ (n − k)

n−k
2 · det(L⊥(A)) ≤ (n − k)

n−k
2 · ∥A∥k .

Hence

K > 2

n−1
2 · (n − k)

n−k
2 · ∥A∥k (9)

suffices to guarantee that (7) holds.

The bound in (9) can be very loose. Indeed, in many cases, we expect the minima of L⊥(A) to be balanced, and if

they are so, then the following bound would suffice

K > 2
Ω(n) · ∥A∥

k
n−k . (10)

For such a scaling paramter K , according to Proposition 4.1, after termination of the LLL call with ExtK (A) as its

input, the output matrix must be of the following form:(
0 M
C N

)
, (11)

where the columns of C ∈ Zn×(n−k) form an LLL-reduced basis of the lattice L⊥(A). 1

4.2 On the LLL input and output bases

To bound the number of LLL swaps, we first investigate the matrix B = ExtK (A) given as input to the LLL algorithm,

and the output matrix B′
.

Intuitively, from the shape of B and the fact that A is full rank, there must be k Gram-Schmidt norms of B that are

“impacted” by the scaling parameter K , and hence have large magnitude, while other n − k Gram-Schmidt norms of B
should be of small magnitude.

On the other hand, recall that B′
is of the form (11). Since only the first k coordinates are related to the scaling

parameter K , the submatrix C is “independent” of K . Thus, each of ∥b ′∗
1
∥, · · · , ∥b ′∗n−k ∥ should be relatively small (for

a sufficiently large K), while each of ∥b ′∗n−k+1∥, · · · , ∥b
′∗
n ∥ is “impacted” by K , and hence with large magnitude. The

following result formalizes this discussion.

Proposition 4.2. Let A ∈ Zn×k be of full column rank and B′ the output basis of LLL with B = ExtK (A) as input. If
the scaling parameter K ∈ Z satisfies (7), then for the output matrix B′ we have

∀i ≤ n − k, ∀j > n − k, ∥b ′∗i ∥ < ∥b ′∗j ∥.

Proof. From Proposition 4.1, we know that B′
is of the form(

0 ∗

C ∗

)
,

and that the columns of C ∈ Zn×k form an LLL-reduced basis of L⊥(A). We thus have, for i ≤ n − k

∥b ′∗i ∥2 ≤ ∥b ′i ∥
2 = ∥ci ∥

2 ≤ 2
n−k−1λ2n−k (L

⊥(A)).

Further, for n − k < j ≤ n, we have

∥b ′∗j ∥2 ≥ 2
−k ∥b ′∗n−k+1∥

2 ≥ 2
−kK2.

The choice of K allows to complete the proof. □

Weobserve again that combining the condition of Proposition 4.2 togetherwith a general purpose bound on λn−k (L
⊥(A))

allows to obtain a sufficient bound on K that can be efficiently derived from A.
Although ∥b∗si ∥ is relatively small with respect to K , it can be bounded from below. In fact, we have a more general

lower bound:

∀i ≤ n, ∥b∗i ∥ ≥ 1. (12)

This is because that there is a coefficient in bi which is equal to 1 and 0 for all other bj ’s. This lower bound will be

helpful in the proof of Theorem 4.3.

1
In fact, the resulting matrix gives more information than an LLL-reduced basis of L⊥(A). For instance, the columns of

1

K ·M form a basis of the lattice

generated by the rows of A.

Table 1. Upper bounds on the number of LLL swaps for different k (K sufficiently large), α = log ∥A∥.

Classical analysis (9) Heuristic (10) New analysis

k = 1 O(n2 logn + nα) O(n2 + nα) O(nα)
k = n/2 O(n3 logn + n3α) O(n3 + n2α) O(n3 + n2α)
k = n − 1 O(n2α) O(n2α) O(n3 + nα)

4.3 Bounding the number of LLL swaps

Suppose that K is a sufficient large positive integer satisfying (7). Proposition 4.1 guarantees that we can use LLL with

B = ExtK (A) as input to compute an LLL-reduced basis for L⊥(A). We now study the number of LLL swaps performed

in this call to the LLL algorithm.

Theorem 4.3. Let A ∈ Zn×k with a non-zero k-th principal minor, and K an integer satisfying (7). Then, given

B = ExtK (A) as its input, LLL computes (as a submatrix of the returned basis) an LLL-reduced basis of L⊥(A) after at
most O(k3 + k(n − k)(1 + log ∥A∥)) LLL swaps, where ∥A∥ is the maximum of the Euclidean norm of all rows and columns

of the matrix A.

Proof. From Proposition 4.1, the LLL algorithm allows to obtain a LLL-reduced basis for L⊥(A). We know from

Theorem 3.3 that in order to obtain an upper bound on the number of LLL swaps, it suffices to find an upper bound

to Πk (B) and a lower bound on Πk (B′), where B′
is the basis returned by LLL when given B as input. From (12) we have

Πk (B) =
k∑
j=1

(k − j) log ∥b∗ℓj ∥ −
n−k∑
i=1

i log ∥b∗si ∥ +
n−k∑
i=1

si

≤

k∑
j=1

(k − j) log ∥b∗ℓj ∥ +
n−k∑
i=1

si

≤

k∑
j=1

(k − j) log ∥bℓj ∥ +
n−k∑
i=1

(k + i)

≤ (1 + logK + log ∥A∥)
k(k − 1)

2

+
(n − k)(n + k + 1)

2

.

Thanks to Proposition 4.2, we have

Πk (B
′) =

k∑
j=1

(k − j) log ∥b ′∗ℓ′j
∥ −

n−k∑
i=1

i log ∥b ′∗s ′i
∥ +

n−k∑
i=1

s ′i

=

k∑
j=1

(k − j) log ∥b ′∗n−k+j ∥ −
n−k∑
i=1

i log ∥b ′∗i ∥ +

n−k∑
i=1

i .

Since the first k coefficients of b ′∗i are 0 (for i ≤ n − k) and A is full-rank, we must have ∥b ′∗n−k+1∥ ≥ K . Further, since

B′
is LLL-reduced, combining with (4) we have, for j ≤ k

∥b ′∗n−k+j ∥ ≥ 2

1−j
2 ∥b ′∗n−k+1∥ ≥ 2

1−j
2 K ≥ 2

1−k
2 K .

We hence obtain

Πk (B
′) ≥

(
logK +

1 − k

2

) k∑
j=1

(k − j) −
n−k∑
i=1

i log ∥b ′∗i ∥

+
(n − k)(n − k + 1)

2

≥
k(k − 1)

2

(
logK +

1 − k

2

)
− (n − k)

n−k∑
i=1

log ∥b ′∗i ∥

+
(n − k)(n − k + 1)

2

,

where we used the fact that all ∥b′∗i ∥’s are ≥ 1. This is true for the ∥b∗i ∥’s and LLL cannot make the minimum

Gram-Schmidt norm decrease. Using (3), we obtain:

Πk (B
′) ≥

k(k − 1)

2

(
logK +

1 − k

2

)
− (n − k)k log ∥A∥

+
(n − k)(n − k + 1)

2

.

Finally, using Theorem 3.3, we obtain that the number of LLL swaps is no greater than

Πk (B) − Πk (B′)

log

(
2√
3

) ≤
k(n − k

2
) log ∥A∥ + k3 + (n − k)k

log

(
2√
3

) ,

which is of O(k3 + k(n − k)(1 + log ∥A∥)). □

In Table 1 we compare favorably (k = 1,n/2) the result of Theorem 4.3 to the bounds on the number of swaps using

the classical potential (6) and K fixed from the general threshold (9) or the heuristic one (10). We also consider k = n − 1.

However, in the latter case the problem reduces to linear system solving, and different techniques such as those in [18]

should be considered.

With the potential function Π of (6), we have

Π(B) ≤ log

∏
i≤n

(
K2∥A∥2

) min(k,i)
2

≤
k(2n − k + 1)

2

log (K ∥A∥) .

The bound on the number of LLL swaps obtained using the classical potential is thereforeO(k(n−k/2)(1+logK+log ∥A∥).
While we see from Theorem 4.3 that the actual number of swaps for computing an LLL-reduced basis for L⊥(A) does
not grow with K when K is sufficiently large.

ACKNOWLEDGMENTS

Our thanks go to anonymous referees for helpful comments, which make the presentation of the paper better. Jingwei

Chen was partially supported by NNSFC (11501540, 11671377, 11771421) and Youth Innovation Promotion Association,

CAS. Damien Stehlé was supported by ERC Starting Grant ERC-2013-StG-335086-LATTAC.

REFERENCES
[1] J. Chen, D. Stehlé, and G. Villard. 2013. A new view on HJLS and PSLQ: Sums and projections of lattices. In Proceedings of ISSAC’13 (June 26-29, 2013,

Boston, MA, USA). ACM, 149–156.

[2] Z. Chen and A. Storjohann. 2005. A BLAS based C library for exact linear algebra on integer matrices. In Proceedings of ISSAC’05 (Beijing, China,
July 24–27, 2005). ACM, 92–99.

[3] J. Håstad, B. Just, J. C. Lagarias, and C. P. Schnorr. 1989. Polynomial time algorithms for finding integer relations among real numbers. SIAM Journal
of Computing 18, 5 (1989), 859–881. Erratum: SIAM J. Comput., 43(1), 254–254, 2014.

[4] G. Havas, B. S. Majewski, and K. R. Matthews. 1998. Extended GCD and Hermite normal form algorithms via lattice basis reduction. Experimental
Mathematics 7, 2 (1998), 125–136.

[5] M. van Hoeij and A. Novocin. 2012. Gradual Sub-lattice Reduction and a New Complexity for Factoring Polynomials. Algorithmica 63, 3 (2012),
616–633.

[6] R. Kannan, A. K. Lenstra, and L. Lovász. 1984. Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers.

In Proceedings of STOC’84 (April 30 - May 2, 1984, Washington, DC, USA). ACM, 191–200.

[7] A. K. Lenstra, H. W. Lenstra, and L. Lovász. 1982. Factoring polynomials with rational coefficients. Mathematische Annalen 261, 4 (1982), 515–534.

[8] A. Neumaier and D. Stehlé. 2016. Faster LLL-type reduction of lattice bases. In Proceedings of ISSAC’16 (July 20–22, 2016, Waterloo, Ontario, Canada).
ACM, 373–380.

[9] P. Nguyen and J. Stern. 1997. Merkle-Hellman revisited: A cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations. In

Proceedings of CRYPTO’97 (August 17–21, 1997, Santa Barbara, CA, USA). LNCS, Vol. 1294. Springer, 198–212.
[10] P. Q. Nguyen. 1999. La Géométrie des Nombres en Cryptologie. Ph.D. Dissertation. Université Paris 7, Paris.
[11] P. Q. Nguyen and B. Vallée (Eds.). 2010. The LLL Algorithm: Survey and Applications. Springer, Berlin.
[12] A. Novocin, D. Stehlé, and G. Villard. 2011. An LLL-reduction algorithm with quasi-linear time complexity. In Proceedings of STOC ’11 (June 6–8,

2011, San Jose, USA). ACM, 403–412.

[13] M. E. Pohst. 1987. A modification of the LLL reduction algorithm. Journal of Symbolic Computation 4, 1 (1987), 123–127.

[14] W. M. Schmidt. 1968. Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height. Duke Mathematical Journal
35, 2 (1968), 327–339.

[15] C. C. Sims (Ed.). 1994. Computation with Finitely Presented Groups. Cambridge University Press.

[16] D. Stehlé. 2017. Lattice reduction algorithms. In Proceedings of ISSAC ’17 (July 25-28, 2017, Kaiserslautern, Germany). ACM, 11–12.

[17] A. Storjohann. 1996. Faster algorithms for integer lattice basis reduction. Technical Report 249. ETH, Department of Computer Science, Zürich,

Switzerland.

[18] A. Storjohann. 2005. The shifted number system for fast linear algebra on integer matrices. J. Complexity 21, 4 (2005), 609–650.

[19] A. Storjohann and G. Labahn. 1996. Asymptotically fast computation of Hermite normal forms of integer matrices. In Proceedings of ISSAC’96 (July
24-26, 1996, Zurich, Switzerland). ACM, 259–266.

http://dx.doi.org/10.1145/2465506.2465936
http://doi.org/10.1145/1073884.1073899
http://dx.doi.org/10.1137/0218059
http://dx.doi.org/10.1137/130947799
http://doi.org/10.1080/10586458.1998.10504362
http://dx.doi.org/10.1007/s00453-011-9500-y
http:doi.org/10.1145/800057.808681
http://doi.org/10.1007/BF01457454
https://doi.org/10.1145/2930889.2930917
https://doi.org/10.1007/BFb0052236
ftp://ftp.di.ens.fr/pub/users/pnguyen/PhD.pdf
http://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1145/1993636.1993691
https://doi.org/10.1016/S0747-7171(87)80061-5
https://projecteuclid.org/euclid.dmj/1077377618
http://doi.org/10.1017/CBO9780511574702
http://doi.org/10.1145/3087604.3087665
https://doi.org/10.3929/ethz-a-006651659
http://dx.doi.org/10.1016/j.jco.2005.04.002
http://doi.org/10.1145/236869.237083

	Abstract
	1 Introduction
	2 Preliminaries
	3 A new potential
	4 Orthogonal lattices
	4.1 Correctness
	4.2 On the LLL input and output bases
	4.3 Bounding the number of LLL swaps

	Acknowledgments
	References

