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Generalised	helical	vortex	pairs		
E.	Duran	Venegas,	S.	Le	Dizes	

Aix	Marseille	University,	CNRS,	Centrale	Marseille,	IRPHE,	Marseille,	France	
	
	
New	 solutions	 describing	 the	 interaction	 of	 helical	 pairs	 of	 counter-rotating	 vortices		
are	obtained	using	a	vortex	filament	approach.	The	vortices	are	assumed	to	have	a	small		
core	 size	 allowing	 the	 calculation	 of	 the	 self-induced	 velocities	 from	 Biot-Savart	 law	
using	the	cut-off	theory.		

	

Figure	1:	Parameters	defining	the	generalized	helical	vortex	pairs.	

These	 new	 vortex	 structures	 do	 not	 possess	 any	 helical	 symmetry	 but	 they	 exhibit	 a	
spatial	periodicity	(figure	1)		

	

and	are	stationary	in	a	rotating	and	translating	frame.	

Their	properties,	such	as	radial	deformation,	frame	velocity	(figure	2)	or	induced	flow,	
are	 provided	 as	 a	 function	 of	 the	 four	 geometric	 parameters	 characterizing	 each	
solution:	

	

Approximate	 solutions	 are	 also	 obtained	 when	 the	 mutual	 interaction	 is	 weak.	 This	
allows	us	to	provide	explicit	expressions	for	the	rotation	and	translation	velocities	of	the	
structure	in	this	limit.			
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Figure	2:	Angular	velocity	(right)	and	axial	velocity	(right)	of	the	frame	where	the	solution	
is	 stationary	 as	 a	 function	 of	 α	 and	 h*	 for	 R*=0.5	 and	 ε=0.03.	 Both	 quantities	 have	 been	
normalized	using	the	external	radius	Rext	,	and	the	vortex	circulation	Γ.	

The	variation	of	the	vortex	core	size	induced	by	the	helix	deformation	is	also	analysed.	
We	show	that	these	variations	have	a	weak	effect	on	the	shape	and	characteristics	of	the	
solutions,	for	the	range	of	parameters	that	we	have	considered.		

The	results	are	finally	applied	to	rotor	wakes.	It	is	explained	how	these	solutions	could	
possibly	describe	the	far	wake	of	an	helicopter	rotor	in	vertical	flight	(figure	3).		

	

Figure	 3:	 Diagram	 of	 the	 different	 rotor	 flow	 regimes.	 White	 regions:	 windmill	 brake	
regime	 or	wind	 turbine	 regime	 (both	 vortices	 are	 going	 upwards	 as	 the	 external	wind).	
Light	gray	regions:	ascending	regime	(both	vortices	are	going	downwards	as	the	external	
wind).	Dark	gray	regions:	slow	descending	regime	and	vortex	ring	state	(both	vortices	are	
going	downwards	while	the	external	wind	is	going	upwards).	Close	to	the	line	F		=	0,	there	
exists	 a	 small	 region	 where	 one	 vortex	 is	 going	 upwards	 while	 the	 other	 is	 going	
downwards:	such	a	solution	cannot	describe	the	(far)	wake	of	a	rotor.	
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Figure 13: Contour values of the frame velocity in the (↵, h) plane for R⇤ = 0.5, " = 0.03,
N = 1 and  = 1. (a) Angular velocity ⌦ = ⌦F R2

ext/� , (b) Axial velocity W =
WF Rext/� . The dashed line (↵ = 1) indicates a line where ⌦ and W are not defined.
The thick solid curve corresponds to the level zero.
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Figure 14: (a) Variation of the tangential velocity on a period in the internal vortex
(dashed line) and in the external vortex (solid line) for a typical case (R⇤ = 0.5, h⇤ = 1,
↵ = 1.4 and " = 0.03, N = 1,  = 1). (b) Maximum tangential velocity fluctuation in
the internal vortex (dashed lines) and external vortex (solid lines) as a function of h⇤ for
di↵erent values of R⇤ and ↵ = 1.4 , " = 0.03, N = 1,  = 1 .

velocity fluctuation with h⇤ and R⇤, in agreement with the increase of the vortex
deformation (see figure 10).

The mean tangential velocity of each vortex is shown in the (↵, h) plane in figure 15. A
positive value corresponds to an advection in the positive axial direction, a negative value
to an advection in the opposite direction. Not surprisingly, the mean tangential velocity
blows up as ↵ ! 1 like ⌦F and WF . It is also interesting to note that the contour curves
are similar (in shape) for both vortices and close to those obtained for ⌦F R2

ext/� in
figure 13(a).

In figure 16a, we have displayed on the same plot the parameters for which mean
tangential velocities and ⌦F vanish. We clearly see that mean tangential velocities and
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