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We consider determination of spin-orbit (SO) coupling constants for the two-dimensional electron
gas from measurements of electric properties in rotated in-plane magnetic field. Due to the SO
coupling the electron backscattering is accompanied by spin precession and spin mixing of the
incident and reflected electron waves. The competition of the external and SO-related magnetic
fields produces a characteristic conductance dependence on the in-plane magnetic field value and
orientation which, in turn, allows for determination of the absolute value of the effective spin-orbit
coupling constant as well as the ratio of the Rashba and Dresselhaus SO contributions.

Introduction. Charge carriers in semiconductor devices
are subject to spin-orbit (SO) interactions [1] stemming
from the anisotropy of the crystal lattice and/or the de-
vice structure. The SO interactions translate the carrier
motion into an effective magnetic field leading to carrier
spin relaxation and dephasing [2–4], spin Hall effects [5–
7], formation of topological insulators [8], persistent spin
helix states [9–11], Majorana fermions [12]. Moreover,
the SO coupling paves the way to spin-active devices,
including spin-filters based on quantum point contacts
(QPCs) [13] or spin transistors [14–18], which exploit
the precession of the electron spin in the effective mag-
netic field [19]. The most popular playground for studies
of spin effects and construction of spin-active devices is
the two-dimensional electron gas (2DEG) confined at an
interface of an asymmetrically doped III-V heterostruc-
ture, with a strong built-in electric fields in the confine-
ment layer giving rise to the Rashba SO coupling [20] and
with the Dresselhaus coupling due to the anisotropy of
the lattice which is enhanced by a strong localization of
the electron gas in the growth direction [21].

The SO interaction is sample-dependent and its char-
acterization is of a basic importance for description of
spin-related phenomena and devices. The SO coupling
constant are derived from the Shubnikov-de Haas [22–
29] oscillations, antilocalization in the magnetotransport
[30], photocurrents [31], or precession of optically polar-
ized electron spins as a function of their drift momentum
[32]. Usually both the Rashba and Dresselhaus interac-
tions contribute to the overall SO coupling. Separation
of contributions of both types of SO coupling is chal-
lenging and requires procedures based on optical polar-
ization of the electron spins [31–33]. In this Letter we
investigate the possibility for extraction of the Rashba
and Dresselhaus constants from a purely electric mea-
surement of the two-terminal conductance. The proposed
method does not involve application of optical excitation
[31, 32] or a particularly complex gating [32]. The pro-
cedure given below requires rotation of the sample in an

external in-plane magnetic field [34], which is straightfor-
ward as compared to application of the rotated electric
field to 2DEG [32]. Also, the present approach is suit-
able for high mobility samples and goes without analysis
of the localization effects in the magnetotransport [30].

The procedure which is proposed below bases on an
idea that the effects of the SO coupling related to the
wave vector component in the direction of the current
flow can be excluded by a properly oriented external in-
plane magnetic field. The procedure exploits spin effects
of backscattering – due to intentionally introduced po-
tentials – or simply to intrinsic imperfections within the
sample. In particular we show that the linear conduc-
tance of a disordered sample reveals an oscillatory be-
havior as a function of the magnetic field direction and
amplitude. The dependence allows one to determine the
strength of the SO interaction as compared to the spin
Zeeman effect as well as the relative strength of both
Rashba and Dresselhaus contributions.

Spin-dependent scattering model. Let us start from a
simple model of electron scattering (see Fig. 1). The
electron is injected to the system from e.g. a QPC and
comes to the potential defect from the left. The defect
is taken as an infinite potential step, so that the scat-
tering probability is 1. The incident and backscattered
waves are denoted by |k+

σ 〉 where k±σ stands for the ab-
solute value of the wave vector for the spin state σ and
the superscript sign indicates the electron incoming from
the left (+) or backscattered (−). Only the backscatter-
ing which returns the carriers to the QPC can alter the
conductance, so we consider the scattering wave function
along the line between the QPC and the defect

|Ψσ〉 = eik
+
σ r
∣∣k+
σ

〉
+ Σσ′aσσ′e

−ik−
σ′r
∣∣k−σ′

〉
, (1)

where aσσ′ stand for the scattering amplitudes.
Scattering at other angles does not decrease the con-

ductance and is neglected for a moment. Within the
2DEG, outside the scattering center and the QPC chan-
nel the 2D electron Hamiltonian for in-plane field B =
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Figure 1. Sketch of considered scattering process. The elec-
tron wave is incoming from the left from a source (a QPC
for instance) in spin state σ, propagates to the right and is
backscattered at position r = (0, 0) by the potential barrier
induced by the impurity.

(Bx, By, 0) reads

H = EkinI+σx(αky−βkx+bx)+σy(βky−αkx+by), (2)

where Ekin = ~2k2

2meff
, bx/y = 1

2gµBBx/y, meff is the elec-
tron effective mass, α and β are the Rashba and Dres-
selhaus constants. The spin Zeeman effect is introduced
via Pauli matrices σx/y and the Zeeman energy will be

denoted below by EB = 1
2gµB|B| =

√
b2x + b2y.

Note, that we use the symmetric gauge A =
(Byz,−Bxz, 0) then by choosing the plane of the 2DEG
confinement to be located at z = 0, we get A = 0, and
the magnetic field enters the Hamiltonian only via the
spin Zeeman term i.e. the orbital effects do not affect
the electron transport.

Let us first neglect the Dresselhaus coupling (β = 0).
Plane wave solution for the eigenvalues of the Schrödinger
equation gives

Eσ =
~2k2

2meff
+ σ |p| , (3)

with σ = {+,−} denoting projections of the spin on the
direction of polarization p = (αky + bx,−αkx + by), and
eigenvectors

∣∣k±σ
〉

=
1√
2

(
1

σ
p±x +ip±y
p±

)
≡ 1√

2

(
1

σeiφ(k±σ ,B)

)
, (4)

for the incident (+) and backscattered (−) directions of
the electron motion with p± = |p±|. Due to the assumed
infinite scattering potential, the wave function in Eq. (1)
has to vanish at r = 0 (see Fig. 1), Ψσ (r = 0) = |k+

σ 〉+
Σσ′aσσ′

∣∣k−σ′
〉

= 0, hence

aσσ′ = −σ′σe
iφ(k+

σ ,B) + σ′e
iφ

(
k−−σ′ ,B

)

eiφ(k−+ ,B) + eiφ(k−−,B)
. (5)

In the following we use In0.5Ga0.5As material parameters
with m = 0.0465m0, Landé factor g = 9, and the Fermi
energy EF = 20meV. For the bulk Rashba [35] constant
α3D = 57.2 Å2, the 2D value is α = α3DFz, where Fz
is the electric field in the growth-direction. The Rashba
constant can be controlled by the external voltages [22]

and for In0.5Ga0.5As SO coupling constants of the order
of 5 to 10 meV nm [22] were recorded.

In Fig. 2(a) we present the scattering amplitudes aσσ′
obtained from Eq. (5) as a function of the direction of the
magnetic field B = (B cos (θ) , B sin (θ)), with B = 5T
for scattering along the x direction, k = (kx, 0). Note
that for the magnetic field oriented in the y direction
θ = π/2, i.e. for B = (0, By) the diagonal elements
of the scattering amplitudes are zero. This is a special
case for which the spinor in Eq. (4) can be written in

form |k±σ 〉 =

(
1

iσd±

)
, where d± = sign (−αk±x + by).

For a weak magnetic field |αk±x | > |by|, we get d± = ∓,
and the orthogonality relation 〈kd′σ′ |kdσ〉 = 1

2 (1 + σσ′dd′),
gives zero for the backscattering to states with the same
spin projection on the polarization vector (p), 〈k−σ |k+

σ 〉 =
0 [see Fig. 2(a)]. On the other hand for high magnetic
field |αk±x | < |by|, we get d± = 1, and the spin projection
on the polarization vector is conserved 〈k−σ |k+

σ 〉 = 1.

angle Rashba strength [meVnm]

a) b)

12 06

Figure 2. (a) Scattering amplitudes calculated from Eq. (5)
for α = 12meVnm and β = 0 as a function of angle formed by
the magnetic field vector and the x axis θ. (b) Same as in (a),
but for a fixed angle θ = π as a function of Rashba constant
α. In (a) and (b) the solid lines show the result for B = 5T
and the black dashed lines for B = 7.2T.

In Fig. 2(b) we show the evolution of the scattering
amplitudes for the orientation of magnetic field fixed at
θ = π, as a function of the Rashba constant α. Then, in
Eq. (2) ky = 0 and by = 0. The scattering amplitudes
cross near α ≈ 8meVnm [Fig. 2(b)]. In this point the
Zeeman energy EB is equal to the SO coupling energy
ESO = αkx. For αkx = EB the off-diagonal terms are:
−bxσx+(EB+by)σy, for which the scattering amplitudes
(5) for eigenvectors (4) simplify to |aσσ′ |2 = 1

2 for any σσ′
and for any in-plane orientation of B vector. The EB ≈
ESO case is presented in Fig. 2(a) where the black dashed
lines show the scattering amplitudes for B = 7.2T, which
shows that almost complete spin mixing |aσσ′ |2 ≈ 1

2 is
present for any angle.

Let us now include the Dresselhaus SO coupling. The
2D Dresselhaus constant is given by β = β3D〈k2

z〉 =

β3D
π2

d2 , where β3D is the bulk constant and d is the
width of the 2DEG confinement in the growth direction.
We consider β values from 0 to ' α [9, 10]. The cubic
Dresselhaus interaction is neglected as a small effect [10].
In the absence of the B field, for the electron incident
along the x direction i.e. ky = 0, the polarization di-
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rection is p = (−βkx,−αkx) with the energy eigenvalues
Eσ =

~2k2x
2meff

+ σkx

√
α2 + β2. As a result the Dresselhaus

interaction sets the direction of the electron spin polar-
ization to θ = arctan

(
α
β

)
and increases the effective SO

coupling constant to γeff =
√
α2 + β2.

The above conclusions can also be reached by a direct
inspection of the off-diagonal part of Hamiltonian (2) for
the electron transport along the x direction (ky = 0,
kx = kF ). The effective magnetic field in Eq. (2) is
(−βkF+bx,−αkF+by). Both components of the effective
magnetic field vanish for

tan θ =
by
bx

=
α

β
(6)

and

EB =
1

2
gµBB =

√
b2x + b2y = kF γeff ≡ ESO. (7)

For illustration we calculated the electron density at
the source position – including the incident and backscat-
tered waves using Eqs. (1,5) as ρ =

∑
σ 〈Ψσ|Ψσ〉. The

backscattering probability is roughly proportional to the
electron density at the QPC [36]. The electron den-
sity – is depicted in Fig. 3(b-d) for α = 12meVnm,
β = 0; and Fig. 3(c-d) α = 9meVnm, β = 8meVnm.
These values produce the same effective coupling con-
stant γeff ≈ 12meVnm.
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Figure 3. (a) Reduction of QPC [Fig. 1] conductance
G̃ = M e2

h
− G from its quantized value for M subbands

[EF=20 meV] passing across the QPC for a potential defect
at a distance of 1500 nm from the QPC as a function of the in-
plane magnetic field value and orientation. The results were
calculated numerically within the Landauer approach. The
QPC gate potential modeled with analytical formulas for a
rectangle gate adapted from Ref. [37]. (b) Charge density
at the entrance to the QPC calculated with a simple model
of Eq.(5) for the QPC at 1500 nm from the scatterer. (c)
Same as (b) but with Rashba and Dresselhaus SO interac-
tions present. (d) Same as (c) but with the source at 2000nm
from the scatterer. The values of the coupling constants α
and β are given in meV×nm units. The vertical dashed line
in(b-d) indicates B = 7.2 T for which the Zeeman energy is
equal to the SO coupling energy, EB = ESO, see text. The
horizontal dashed line shows the angle arctan α

β

The results of Fig. 3(b-d) contain a distinct circular
pattern in the θ,B plane. The position of the center

is given by Eqs. (6,7). The angular coordinate of the
center allows one to determine the ratio of the Rashba
and Dresselhaus constants and the SO coupling constant
γeff can be read-out from the position of the center of
the pattern on the B scale, provided that the Fermi wave
vector is known. In presence of SO coupling and / or the
Zeeman effect kF is spin dependent [21]. However, for
the EB = ESO the off-diagonal terms of the Hamiltonian
(2) vanish and the Fermi wavevector is directly related
to the Fermi energy EF =

~2k2F
2meff

, which for the adopted
parameters gives kF = 0.156/nm. For γeff = 12 meV nm
one obtains ESO = 1.875 meV, which coincides with EB
for B = 7.2 T (see Fig. 3(b-d)).

In Fig. 3(c) one notices a reduction of the period
with respect to 3(b) with the source-impurity distance
increased to 2000 nm from 1500 nm. The period of the
oscillations ∆B is ∆

(c)
B ≈ 1.5T in (c), and ∆

(b)
B ≈ 2.0T in

(b). The ratio ∆
(c)
B /∆

(b)
B ≈ 3/4, is exactly an inverse of

the source-impurity ds−i distance ratio.
Coherent quantum transport calculations. With the in-

tuitions gained by the simple analytical model we can
pass to the calculations of the coherent transport using a
standard numerical method [38], based on the quantum
transmitting boundary solution of the quantum scatter-
ing equation at the Fermi level implemented in the finite
difference approach, which produces the electron transfer
probability used in the Landauer formula for conductance
summed over the subbands of the channels far from the
scattering area. Zero temperature is assumed. For the
numerical calculations we consider a channel extended
along the x direction, hence kx in Eq. (2) remains a
quantum number characterizing the asymptotic states of
the channel. Within the computational box the wave
vector is replaced by an operator k = (kx, ky) = −i∇.

We consider a QPC/defect system of Fig. 1. The
results presented in Fig. 3(a) indicate a reduction of
the conductance below the maximal value M e2

h for M
subbands passing across the QPC. The central position
of the pattern nearly coincides with the one of Fig. 3(c).
The local extremum of conductance in the center of the
pattern indicates the value and orientation of the external
magnetic field which lifts the SO interaction effects. The
angular position of Fig. 3(c) is exactly reproduced, and
the amplitude of the field is B = 6.5 T instead of B = 7.2
T. The deviation in the location of the central point in
the B axis in Fig. 3(a) results from the confinement in
the QPC channel which is not included in our free particle
model (see below).

The effects described so far dealt with interference of
the electron waves between the source (QPC) and the
defect. In fact, the role of the source can be played by
any scattering center, and the extraction of the SO cou-
pling constant requires a presence of two or more scat-
terers to allow for formation of standing waves described
in the previous section. For the rest of the paper we
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consider a channel of homogenous width W , which car-
ries M transport modes at the Fermi level. In Fig. 4(d)
we presented the conductance results for a clean chan-
nel of width W = 180nm and the computational box
of length L = 1.6µm. A smooth potential barrier is
introduced across the channel with height 10 meV and
width 200nm. Depending on the orientation of the mag-
netic field the number of transport modes varies between
M = 17 and M = 18. The simulation was performed
for α = 9meVnm and β = 8meVnm as in Fig. 3(b,c).
The conductance plot possesses an extremum precisely
at the angle of θ = arctan 9

8 . The magnetic field of the
extremum is slightly shifted to lower values than 7.2 T
– which is a result of the reduction of kx within the po-
tential barrier. The lack of conductance oscillations that
were observed above in Fig. 3 results from a small barrier
length (ds−i=200nm).

The oscillations reappear when one replaces the barrier
by a random disorder due to the random nonmagnetic
and spin-diagonal potential fluctuations. The fluctua-
tions simulate inhomogeneity of the doping of the poten-
tial barrier which provides the charge to the 2DEG. In
2DEG in III-V’s due to the spatial separation of the im-
purities of the 2DEG, the defects do not introduce any
significant contribution to the spin-orbit interaction (see
Ref. [39] and the Supplement [40]). Figure 4(c) displays
the conductance for the channel of the same width and
length. The potential – displayed in Fig. 4(a) is locally
varied within the range of (-0.5EF,0.5EF). The pertur-
bation induces a multitude of scattering evens – the local
density of states at the Fermi level for B = 0 is displayed
in Fig. 4(b). In spite of the complexity of the density of
states the angular shift is still arctan (9/8) ≈ π/4. The
shift of the G extremum along the B scale with respect
to 7.2 T is detectable – but small and of an opposite sign
than in Fig. 4(d). This shift is related to the fact that for
a finite width channel ky is an operator that mixes the
subbands. The wave vector ky is a well-defined quantum
number for electrons moving in an unconfined space. The
small – but detectable – effects of a finite W disappear
completely for a wider channel – which is illustrated in
Fig. 4(e) for W = 0.8 µm. Here, the number of conduct-
ing bands varies between 80 and 81. The local extremum
of conductance appears exactly at the positions indicated
in the previous section. Note, that although the number
of subbands change by 1 in Fig. 4(c,e), the variation
of conductance is as large as ∼ 3e2/h in Fig. 4(c) and
∼ 6e2/h in Fig. 4(e). The conductance variation in Fig.
3(a) was very small – since the defect was far away from
the QPC, for the disordered channel it is no longer the
case. For completeness in Fig. 4(f) we presented calcula-
tions for a twice smaller SO coupling constants α = 4.5
meVnm, β = 4 meVnm, and γeff = 6meVnm. The posi-
tion of the maximal G along the B scale is consistently
reduced from 7.2 T to 3.6 T, and the orientation of the
magnetic field vector corresponding to the extremum is

unchanged.
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Figure 4. a) Potential disorder in simulated quantum wire.
b) Local density of states obtained for channel from (a) at
B=0. c) Conductance through the wire in (a) as a function of
magnetic field amplitude B and direction angle. d) Same as c)
but with one potential barrier in the middle of channel instead
of random disorder. e) Same as (c) but for the wire with
length L = 4000nm and W = 800nm. f) Same as (e) but for
SO couplings twice smaller γeff = 6meVnm. For comparison
of (c,e) see Fig. 3(b). The values M show the number of
non-degenerated modes in the channel.

Summary. We have shown that the in-plane mag-
netic field can lift the off-diagonal terms of the transport
Hamiltonian for the two-dimensional electron gas that
result from the Zeeman effect and the SO interaction.
The effect appears only for a value and orientation of the
external magnetic field which excludes the spin mixing
effects that accompany the backscattering in presence of
the SO coupling. In consequence the conductance maps
for a system containing two or more scatterers – inten-
tionally introduced – or inherently present in a disordered
sample exhibit a pronounced extremum as a function of
the magnetic field modulus B and orientation θ. An ex-
perimental value of B – for which the Zeeman energy is
equal to the SO coupling energy – should allow one to ex-
tract the effective SO coupling constant including both
the Rashba and Dresselhaus terms, and the orientation
field indicates the relative contributions of both. The re-
sults indicate the ratio of the Dresselhaus and Rashba
constants is exactly resolved by the procedure, and the
amplitude of the magnetic field – hence the effective SO
constant varies only within a 10% from the exact value
depending on the channel width and disorder profile.
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I. STABILITY OF THE CONDUCTANCE
PATTERN

The Letter indicated a well resolved extremum of con-
ductance for the conditions given by Eq. (6) and (7), for
which the external magnetic field cancels the SO effective
magnetic field that depends on the electron wave vector.
The presented analysis is based on the electron transport
along the x direction. The conductance extremum was
found for a quantum point contact with a single defect
[Fig. 3(a)] and for a potential barrier [Fig. 3(d)]. These
two systems corresponded to a nearly 1D transport, since
the potential barrier was introduced in a separable man-
ner, and in the quantum point contact an appearance of
the non-zero ky implies removal of the electron from the
beam of backscattered electrons. However, for the per-
turbed sample [Fig. 4(c,e,f)] the electrons undergo multi-
ple scattering and acquire non-zero ky values between the
scattering events. Results of Fig. 4(c,e,f) obtained for a
disorder covering basically the entire width of the sample
indicate that the effects of temporarily non-zero ky for the
spin precession averages out to zero and the conductance
extremum stays in the position defined by Eqs. (6,7).
In order to support the discussion further we present in
this document the case with a smaller number of defects,
where the averaging may not be complete. We take a
channel of width W =400nm and length L =1200nm.
The simulation was performed for α = 9meVnm and β =
8meVnm as in Fig. 3(b,c). In the first column of Fig. S1
we show the obtained conductance images for different
configurations of disorder potential Vdis in the channel
(second column). The third column present an image of
LDOS computed for B = 0.

One notices the angle shift θ = arctan
(
α
β

)
, equal to

the ratio between Rashba and Dresselhaus strengths, re-
mains constant for different densities and configurations
of disorder. Hence still for a limited number of defects
the measurement of θ should provide good information
about the α

β . However, the position of the vertical line
for which EB = ESO can be estimated roughly from the
obtained images to be between 7 and 8 T which agrees
with the assumed value of the SO interaction in simu-
lated device. The exact position of the center on the B
scale for the adopted parameters is 7.2 T.

To conclude, in general we have found that detecting
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Figure S1. First column – conductance as a function of mag-
netic field amplitude and angle. Second column – the random
disorder potential energy in the channel in units of meV. Third
column – resulting LDOS for B = 0 T in arbitrary units.

the angle shift θ is more robust against the sample varia-
tions than finding the magnetic field strength symmetry
point.

II. THE EFFECT OF THE IMPURITIES ON SO
COUPLING CONSTANT

The disorder considered in the Letter is a potential
fluctuation, which results from e.g. non-ideally homoge-
nous doping of the barrier layer under which the two-
dimensional electron gas is confined. In the 2DEG het-
erostructures the electron gas is separated from the im-
purities by an undoped spacer of a few to about 20 nm.
The potential fluctuation affects the electric field in the
growth direction, so an estimation of the resulting local
change of the Rashba SO coupling constant is needed.

The Rashba SO interaction strength α = α3DF
′
z re-

sults from the structural inversion asymmetry in the
2DEG confinement plane and is proportional to the elec-
tric field in the growth direction F ′z, where for the bulk
In0.5Ga0.5As alloy Rashba [1] constant is α3D = 57.2 Å2.
The strength of the electric gradient F ′z can be tuned by
external voltages [2] and may be varied from 50 to 100
kV/cm in In0.5Ga0.5As as reported in Ref. [2]. The value
of the electric field can be also changed by random impu-
rities in the structure or result from the inhomogeneity
of the distribution of the impurities, which may locally
change the value of F ′z → F ′z + ∆Fz. The vertical po-
sition of the 2DEG sheet is set at z = 0. In order to
estimate the strength of the electric gradient induced by
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single impurity we computed the electric field

∆Fz(x, y) = − ∂

∂z

(
e

4πεε∗ |rimp − r′|

)∣∣∣∣
r′=(x,y,0)

(1)

induced by negatively charged impurity located 10nm
from the 2DEG surface (see Fig. S2(c)). The correc-
tion to the electric field due to a single impurity located
is negligibly weak as compared to the nominal value of
F ′z, hence it can be neglected in our simulations.

III. FRIEDEL OSCILLATIONS AND THE
EFFECTIVE POTENTIAL

In strongly perturbed systems the charge density forms
ripples with the periodicity of half of the Fermi wave-
length. We considered the effect for the present pertur-
bation – an impurity at a distance from the 2DEG. We
simulated the effect of the single negatively charged im-
purity on the electron density using the DFT method de-
scribed in Ref. [3]. In simulations we put α = 10meVnm
and β = 0 i.e. only the Rashba term is active. The im-
purity is introduced 10nm from the the 2DEG computa-
tional sheet in the middle of the computational box. The
average electron density in the simulation is 1×1012[ 1

cm2 ].
The self-consistent DFT solution is reached for tempera-
ture T = 1K. The rest of the parameters is the same as
in the transport simulations.

In Fig. S2(a) we show the self consistent electron den-
sity obtained from our DFT solver. One may see that the
effect of introduced impurity is relatively weak for a given
configuration. The electron density for EF = 20 meV is
large, hence the screening is quite efficient, resulting in
small depletion in the electron density. The change of
the effective potential energy due to the presence of the
defect is well visible (see Fig. S2(b)) and vary from about
42meV to 46meV.

In Fig. S3(a) we plot the cross section of the elec-
tron density and effective potential from Fig. S2(a-b)
with peak in the Veff and deep in electron density n at
x = 200nm. Due to the relatively weak perturbation of
the impurity (∼ 25% of depletion) the amplitude of the
Friedel oscillations are very small but still visible in the
electron density plot. However, due to the smearing prop-
erty of the Coulomb kernel V (r) =

´

dr′n(r′)/ |r − r′|
the weak Friedel oscillations in n become even weaker
in the resulting potential energy, hence the lack of the
Friedel oscillation in the obtained Veff plot. In order to
enhance the oscillation of the charge density in Fig. S3(b)
we put the impurity at 2.5nm only from the electron gas.
Now, the ripples on the density are more pronounced, but
their are not resolved in the self-consistent potential any-
way. To conclude, the effect of Friedel oscillation on the
DFT potential for the considered perturbation is weak,
and the modification of the charge density by the rota-

50

100

150

y
 [

n
m

]

0

1

50

100

150

y
 [

n
m

]

36

46

100 200 300 400
x [nm]

50

100

150

y
 [

n
m

]

-0.11

a)

b)

c)
0.00

Figure S2. (a) The self consistent electron density in
the channel of width 200nm and length 400nm. (b) DFT
self-consistent potential energy. (c) The bare electric field
∆Fz(x, y) at z = 0 induced by the impurity (see Eq. (1)).
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Figure S3. (a) The cross section of normalized electron
density for y = 100 nm from Fig. S2(a) (black line) and the
effective potential – potential of the impurity screened by the
deformation of the electron gas (red line). (b) Same as (a)
only for the impurity at 2.5 nm from the electron gas.

tion of the magnetic field in presence of the SO coupling
should not alter the results for the electron transport.
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