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Abstract
We study the relationship between two kinds of higher-order exten-
sions of model checking: HORS model checking, where models are
extended to higher-order recursion schemes, and HFL model check-
ing, where the logic is extended to higher-order modal fixpoint logic.
These extensions have been independently studied until recently, and
the former has been applied to higher-order program verification,
while the latter has been applied to assume-guarantee reasoning
and process equivalence checking. We show that there exist (ar-
guably) natural reductions between the two problems. To prove the
correctness of the translation from HORS to HFL model checking,
we establish a type-based characterization of HFL model checking,
which should be of independent interest. The results reveal a close
relationship between the two problems, enabling cross-fertilization
of the two research threads.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic

Keywords higher-order recursion schemes, higher-order modal
fixpoint logic, model checking

1. Introduction
Inspired by the great success of finite state model checking [4], two
kinds of its higher-order extensions have been studied recently. One
is model checking of higher-order recursion schemes (HORS model
checking, for short) [8, 12, 25], which asks, given a higher-order re-
cursion scheme G (which is a kind of a tree grammar) and a formula
ϕ of the modal µ-calculus (or equivalently, an alternating parity
tree automaton), whether the tree generated by G satisfies ϕ. The
other is higher-order modal fixpoint logic model checking of finite
state systems (HFL model checking, for short) [34], which asks,
given a finite state system L and a formula ϕ of the higher-order
modal fixpoint logic (which is a higher-order extension of the modal
µ-calculus), whether L satisfies ϕ. Thus, in HORS model check-
ing, systems to be verified are higher-order, whereas in HFL model
checking, properties to be checked are higher-order. HORS model
checking has recently been successfully applied to verification of
higher-order programs [9, 16, 18, 19, 23, 26, 33, 35]. HFL model
checking has been applied to assume-guarantee reasoning [34] and
process equivalence checking [20]. In general, HORS model check-

ing is useful for precisely modeling and verifying certain infinite
state systems, whereas HFL model checking is useful for check-
ing non-regular properties of systems that cannot be expressed in
ordinary modal logics such as LTL, CTL, and modal µ-calculus.

Unfortunately, the two problems (i.e., HORS/HFL model check-
ing) have been studied independently by different research commu-
nities, and little has been known on their relationship. Interestingly,
both problems are k-EXPTIME complete, where k is the largest
type-theoretic order of functions used in HORS or HFL formulas.
Thus, there should exist translations between order-k HORS model
checking problems and order-k HFL model checking, but no direct
(i.e., without going via Turing machines) translations were known.

In the present paper, we present direct, mutual translations be-
tween the HORS and HFL model checking problems. Interestingly,
the roles of systems and properties are switched by the translations;
in the HORS-to-HFL translation, a HORS (which is a description
of a system to be verified) is translated to an HFL formula, and an
automaton (which is a description of a property to be checked) is
translated to a transition system, whereas in the converse translation,
an HFL formula is translated to a HORS and a transition system is
translated to an automaton. The translations are non-trivial. For the
HORS-to-HFL translation, we have to replace the parity acceptance
condition on the tree generated by HORS with proper alternation
of least and greatest fixpoint operators of HFL. For the converse
translation, we have to emulate the calculation of least and greatest
fixpoint operators by HORS, which requires a tricky encoding of
numbers.

The correctness of the HORS-to-HFL translation is also non-
trivial.1 To this end, we provide a type-based characterization of
HFL model checking, so that an HFL formula is typable in the
type system parameterized by a finite transition system if and only
if the transition system satisfies the formula. We then prove that
a HORS is typable in (a variation of) Kobayashi and Ong’s type
system for characterizing the HORS model checking if and only if
the corresponding HFL formula is typable in the aforementioned
type system. Thus, the correctness of the HORS-to-HFL formula
follows from that of Kobayashi and Ong’s type system.

The type-based characterization of HFL model checking men-
tioned above should be of independent interest. A type-based charac-
terization of HORS model checking is well established [12, 13] and
has been used for studies of practical algorithms [3, 10, 11, 24, 27],
parameterized complexity [13, 14], decidability proofs [13, 32], etc.
of HORS model checking. Our type-based characterization of HFL
model checking is similar to (and actually simpler than) that for

1 It is necessarily so because the decidability of HORS model checking is
non-trivial (and in fact, it has been the subject of many papers [6, 13, 25, 28])
whereas that of HFL model checking is straightforward; a proof of the
correctness of the HORS-to-HFL translation would therefore serve as an
alternative proof of the decidability of HORS model checking.



HORS model checking. Thus, the type-based characterization clar-
ifies the similarity and difference of HORS/HFL model checking.
We also expect that the type-based approach to HFL will allow us to
develop practical algorithms for HFL model checking, following the
success of the corresponding approach to HORS model checking.

The rest of the paper is structured as follows. Section 2 reviews
the definitions of HORS/HFL model checking problems. Section 3
presents a translation from HORS model checking to HFL model
checking. Section 4 provides a type-based characterization of HFL
model checking, and Section 5 uses it to prove the correctness
of the translation of Section 3. Section 6 presents a translation
from HFL model checking to HORS model checking, and proves
its correctness. Section 7 discusses related work and Section 8
concludes the paper. Proofs omitted in the main text are found in
Appendix.

2. Preliminaries
In this section, we first recall, in Section 2.1, the standard definitions
of (infinite) trees, parity games and tree automata (that are required
for defining HORS and HFL), and then review the definitions of
higher-order recursion schemes (HORS) and higher-order modal
fixpoint logic (HFL), and model checking problems on them in
Sections 2.2 and 2.3.

2.1 Trees, Parity Games, and Alternating Parity Tree
Automata

Let N+ be the set of positive integers. Given a set L, an L-labeled
tree T is a partial map from N∗+ to L such that ∀π ∈ N∗+.∀i ∈
N+. π · i ∈ dom(T ) =⇒ {π, π · 1, . . . π · (i − 1)} ⊆ dom(T ).
An element of dom(T ) is called a node. For n, n′ ∈ dom(T ), n′ is a
child of n if n is the longest strict prefix of n′.

A ranked alphabet Σ is a map from a finite set of symbols to the
set of non-negative integers, called arities. A Σ-labeled tree T is a
ranked tree if for every node n ∈ dom(T ), the number of children
of n is Σ(T (n)).

A parity game is a two player game played by Player and
Opponent and is defined by a tuple G = (V∀, V∃, vinit, E,Ω),
where V∀, V∃ are disjoint sets of positions, vinit ∈ V∀ ∪ V∃ is
the initial position, E ⊆ (V∀ ∪ V∃)2 is a set of moves, and
Ω : V∀ ∪ V∃ → {0, . . . , p− 1} assigns to each position a priority.
Positions in V∃ are called Player’s positions, and positions in V∀ are
called Opponent’s positions.

A play is a finite or infinite sequence of positions v0, v1, . . . such
that v0 = vinit and (vi, vi+1) ∈ E for all i ≥ 0. The play is won
by Player if either it is finite and the last position vn ∈ V∀ is an
Opponent’s position such that vnE(= {v | (vn, v) ∈ E}) = ∅, or
the play is infinite and the largest priority occurring infinitely often
(i.e., lim supi→∞ Ω(vi)) is even. A memoryless strategy for Player
is W ⊆ E such that vW = vE for all v ∈ V∀ (Opponent’s moves
remain unchanged), and for all v ∈ V∃, there is at most one v′ such
that (v, v′) ∈ W (Player’s moves are uniquely determined by the
current position); it is a winning strategy for Player if all plays in
the game (V∀, V∃, vinit, E ∩W,Ω) are won by Player.

Given a finite setX , the set B+(X) of positive Boolean formulas
over X is defined by

B+(X) 3 f ::= tt | ff | x | f1 ∨ f2 | f1 ∧ f2,

where x ranges over X .

Definition 1 (alternating parity tree automata). An alternating parity
tree automaton (APT) is a quintuple A = (Q,Σ, δ, qinit,Ω) such
that:

• Q is a finite set of states with a distinguished initial state
qinit ∈ Q.

• Σ is a ranked alphabet.
• δ : Q × Σ → B+({1, . . . ,m} × Q) is a transition function,

where m is the largest arity of symbols in dom(Σ).
• Ω : Q→ {0, . . . , p− 1} assigns a priority to each state.

Given an APT A and a Σ-labeled ranked tree T , the ac-
ceptance game G(T,A) = (V∀, V∃, vinit, E,Ω) is the parity
game defined by V∀ ∪ V∃ := {(n, f) | n ∈ dom(T ), f is a
subformula of δ(q, a) for some (q, a) ∈ Q × dom(Σ)}, with
(n, f) ∈ V∀ iff f is a conjunction or tt, vinit := (ε, δ(qinit, T (ε))),
E :=

{(
(n, f1 ∗ f2) , (n, fi)

)
| n ∈ dom(T ), i ∈ {1, 2}, ∗ ∈

{∨,∧}
}
∪
{(

(n, (i, q)), (n.i, δ(q, T (n.i)))
)
| n, n.i ∈ dom(T )

}
,

Ω(n, (i, q)) = Ω(q), and Ω(n, f ∨ f ′) = Ω(n, f ∧ f ′) = 0. The
language of A, written L(A), is the set of trees T such that Player
has a winning strategy for G(T,A).

Intuitively, a position (n, f) of the game above represents a state
where Player tries to prove that the node n satisfies f , and Opponent
tries to disprove it. If f is a disjunction f1 ∨ f2, Player picks i and
tries to show that the node n satisfies fi. If f is a conjunction f1∧f2,
Opponent picks i and tries to disprove that the node n satisfies fi.
If f = (i, q), then Player tries to show that the child n.i satisfies
δ(q, T (n.i)) (i.e., is accepted from q by the automaton). When a
play continues indefinitely, Player wins iff the largest priority of
states visited infinitely often is even.

Example 1. Consider the APT A0 = ({q0, q1},Σ, δ, q0,Ω),
where:

Σ = {a 7→ 2, b 7→ 1, c 7→ 0}
δ(qi, a) = (1, q0) ∧ (2, q0) δ(qi, b) = (1, q1) δ(qi, c) = tt

(for i ∈ {0, 1})
Ω(q0) = 1 Ω(q1) = 2

Let T be the tree where dom(T ) = (2.1)∗ ∪ (2.1)∗.1 ∪ (2.1)∗.2,
T (n) = a if n ∈ (2.1)∗, T (n) = c if n ∈ (2.1)∗.1, and T (n) = b
if n ∈ (2.1)∗.2. (Thus, T is the regular infinite tree defined by
T = a c (b T ). Let D be dom(T ). The acceptance game G(T,A0)
is (V∀, V∃, vinit, E,Ω

′), where:

V∀ = {(n, (1, q0) ∧ (2, q0)) | n ∈ D} ∪ {(n, tt) | n ∈ D}
V∃ = {(n, f) | n ∈ D, f ∈ {(1, q0), (2, q0), (1, q1)}}
vinit = (ε, (1, q0) ∧ (2, q0))
E = {((n, (1, q0) ∧ (2, q0)), (n, (i, q0))) | n ∈ D, i ∈ {1, 2}}
∪{((n, (1, qi)), (n.1, (1, q0) ∧ (2, q0))) |

n ∈ (2.1)∗.2, i ∈ {0, 1}}
∪{((n, (2, q0)), (n.2, (1, q1))) | n ∈ (2.1)∗}
∪{((n, (1, q1)), (n.1, tt)) | n ∈ (2.1)∗}

Ω′(n, (i, qj)) = j + 1 for n ∈ D, j ∈ {0, 1}, and i ∈ {1, 2}
Ω′(n, f) = 0 for n ∈ D, f ∈ {tt, (1, q0) ∧ (2, q0)}.
E itself is a winning strategy for G(T,A0); so, T is accepted by
A0. In general, a tree is accepted by A0 if and only if every infinite
path of the tree contains infinitely many occurrences of b.

Remark 1. The acceptance of a tree by an APT can also be
understood as follows, without using parity games. Let A =
(Q,Σ, δ, qinit,Ω) be an APT. The automaton has subformulas of
δ(q, a) as “intermediate” states. Given a tree T ,A runs a thread for
reading the root with the initial state qinit. Whenever a thread visits
a node labeled with a at state q, it transits to an intermediate state
δ(q, a). A thread in an intermediate state f performs the following
actions, depending on the shape of f .

• Case f = f1 ∧ f2: the thread splits into two threads with states
f1 and f2.
• Case f = f1 ∨ f2: the thread moves to either state f1 or f2.
• Case f = (i, q): the thread visits the i-th child of the current

node with state q.
• Case f = tt: the thread terminates successfully.



• Case f = ff: the thread fails.

An APT A accepts a tree T if there is a run in which no thread fails,
and for every non-terminating thread, the largest priority of states
visited infinitely often is even.

A labeled transition system (LTS) L is a quadruple (U,A,−→,
sinit), where U is a finite set of states, A is a finite set of actions,
−→ ⊆ U × A × U is a transition relation, and sinit is the initial
state. We write s a−→ s′ when (s, a, s′) ∈ −→.

2.2 Model Checking of HORS
In this section, we review the definition of higher-order recursion
schemes (HORS) and the model checking problem on them [25]. A
HORS is a simply-typed, higher-order tree grammar for generating
a labeled tree, and the model checking problem on it asks whether
the tree generated by a given HORS satisfies a given property
(expressed in terms of an alternating tree automaton or a modal
µ-calculus formula). When a tree is viewed as a transition system
(where a node is regarded as a state and an edge as a transition),
a HORS is considered a (possibly infinite) transition system. The
trees generated by order-0 HORS’s are regular, which correspond to
finite state transition systems, whereas the trees generated by order-1
HORS’s are those generated by pushdown systems. In that sense,
the HORS model checking may be considered a strict extension of
finite state model checking and pushdown model checking. Yet, the
model checking problem remains decidable [25].

We first define types and terms. The set of simple types, ranged
over by κ, is defined by:

κ ::= ? | κ1 → κ2.

The base type ? is used as the type of trees below. The order
of a type κ is defined by: ord(?) = 0 and ord(κ1 → κ2) =
max(ord(κ1) + 1, ord(κ2)). The set of (simply-typed) λ-terms,
ranged over by e, is defined by:

e ::= x | e1e2 | λx : κ.e.

A λ-term that does not contain λ is called an applicative term. We
often omit the type annotation and just write λx.e for λx : κ.e. As
usual, the type judgment relation K ` e : κ, where K is a map2

from a finite set of variables to the set of simple types, is defined as
the least relation closed under the following rules:

K, x : κ ` x : κ
K, x : κ1 ` e : κ2

K ` λx : κ1.e : κ1 → κ2

K ` e0 : κ1 → κ2 K ` e1 : κ1

K ` e0 e1 : κ2

Definition 2 (HORS). A higher-order recursion scheme (HORS,
for short) G is a quadruple (Σ,N ,R, S), where:

• Σ is a ranked alphabet. The elements of Σ are called terminals.
• N is a map from a finite set of symbols (called non-terminals)

to the set of simple types.
• R is a map from the set of non-terminals to the set of λ-

terms (where both terminals and non-terminals are treated as
variables). If N (A) = κ1 → · · · → κ` → ?, thenR(A) must
be of the form λx1 : κ1. · · ·λx` : κ`.e, where e is an applicative
term such that Σ! ∪ N , x1 : κ1, . . . , x` : κ` ` e : ?. Here, Σ!

denotes:

{a : ?→ · · · → ?︸ ︷︷ ︸
Σ(a)

→ ? | a ∈ dom(Σ)}.

• S is a non-terminal such thatN (S) = ?.

2 Following the usual convention, we write x1 : κ1, . . . , xn : κn instead of
{x1 7→ κ1, . . . , xn 7→ κn} for a type environment.

a

c b

a

c b2

a

c b3

· · ·

Figure 1. The tree generated by G0 in Example 2.

The order of a HORS is max({ord(N (A)) | A ∈ dom(N )}). The
rewriting relation e −→G e′ is the least relation closed under the
following rules:

• Ae1 . . . e` −→G [e1/x1, . . . , e`/x`]e if R(A) = λx1 :
κ1. · · ·λx` : κ`.e.
• a e1 · · · ei · · · e` −→G a e1 · · · e′i · · · , e` if ei −→G e′i and

Σ(a) = `.

We often represent R in the form of rewriting rules, writing
A x1 · · · x` → e forR(A) = λx1 : κ1. · · ·λx` : κ`.e.

The tree generated by G is the one obtained from S by (possibly)
infinite rewriting. Formally, it is defined as follows.

Definition 3 (TG). For an applicative term e of type ?, the (Σ ∪
{⊥ 7→ 0})-labeled tree e⊥ is defined by:

(a e1 · · · ek)⊥ = a e1
⊥ · · · ek⊥ (Ae1 · · · ek)⊥ = ⊥

We define the relation v on trees by: T1 v T2 iff dom(T1) ⊆
dom(T2) and for every n ∈ dom(T1), T1(n) = ⊥ or T1(n) =
T2(n). The tree generated by G, written TG , is

⊔
{e⊥ | S −→∗G e},

where
⊔
U denotes the least upper bound of the trees in U with

respect to v.3

Example 2. Consider the HORS G0 = ({a 7→ 2, b 7→ 1, c 7→
0},N ,R, S), where N = {S : ?, F : (? → ?) → ?,B : (? →
?)→ ?→ ?}, andR consists of the following rewriting rules:

S → F b F g → a c (g(F (B b))) B g x→ b(g x).

S is reduced as follows:

S −→ Fb −→ ac(b(F (B b))) −→ ac(b(ac(Bb(F (B(Bb))))))
−→ ac(b(ac(b(b(F (B(B b))))))) −→ · · · .

The tree generated by G0 (i.e., TG0 ) is shown in Figure 1, where bi

denotes i repetitions of b.

Definition 4 (model checking of HORS). We write G |= A if
TG ∈ L(A). The HORS model checking problem is the problem
of deciding whether G |= A, given a HORS G and an alternating
parity tree automaton A.

Example 3. Consider the APT A0 in Example 1 and the HORS G0

in Example 2. Then, G0 |= A0 holds.

Theorem 5 (Ong [25]). The HORS model checking problem is
k-EXPTIME complete for order-k HORS.

As in [13, 25], in the rest of this paper, we assume that TG does
not contain ⊥. Given G and A, we can always transform them to
G′ and A′ such that (i) G |= A if and only if G′ |= A′ and (ii) TG′
does not contain ⊥.

3 The least upper bound always exists, as −→ is confluent.



2.3 HFL Model Checking
In this section we review Higher-Order Modal Fixpoint Logic [34]
(HFL) and its model-checking problem. HFL is an extension of
the modal µ-calculus with higher-order recursive predicates; HFL
formulas ϕ and HFL types η are defined by the following grammar

ϕ ::= > | ⊥ | X | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈a〉ϕ | [a]ϕ
| µXη.ϕ | νXη.ϕ | λX : η.ϕ | ϕ1 ϕ2

η ::= • | η1 → η2

The syntax of the formulas except the last two components (λ-
abstractions and applications) is almost identical to that of the modal
µ-calculus; in particular, as in the modal µ-calculus, we have the
least and great fixpoint operators µ and ν; the difference is that
they can be over higher-order predicates (created by a λ-abstraction
λX : η.ϕ). In its original formulation [34], HFL includes negations.
In our setting, these are disallowed for simplicity, which is not a
restriction since any closed HFL formula can be transformed to an
equivalent negation-free formula [21].

Each binder (µ, ν, λ) is annotated with the type of the bound
variable (we may sometimes omit this annotation when it is clear
from the context). The type • describes propositions, and the type
η1 → η2 describes functions from η1 to η2. The order of an
HFL type η is defined by: ord(•) = 0 and ord(η1 → η2) =
max(ord(η1)+1, ord(η2)). A type judgment relation is of the form
H ` ϕ : η, whereH is a map from a finite set of variables to the set
of HFL types. Type judgments are derived from the following rules.

H ` > : • H ` ⊥ : • H, X : η ` X : η

H ` ϕ : •
H ` 〈a〉ϕ : •

H ` ϕ : •
H ` [a]ϕ : •

H ` ϕ1 : • H ` ϕ2 : •
H ` ϕ1 ∨ ϕ2 : •

H ` ϕ1 : • H ` ϕ2 : •
H ` ϕ1 ∧ ϕ2 : •

H, X : η ` ϕ : η

H ` µXη. ϕ : η

H, X : η ` ϕ : η

H ` νXη. ϕ : η

H, X : η1 ` ϕ : η2

H ` λX : η1. ϕ : η1 → η2

H ` ϕ1 : η2 → η H ` ϕ2 : η2

H ` ϕ1 ϕ2 : η

A closed formula ϕ is well-typed and has type η if the type
judgment ∅ ` ϕ : η is derivable from the above rules. In the remain-
der, we always implicitly assume that all the (closed) formulas are
well-typed.

The order of a formula ϕ is the largest order of the type of a
subformula occurring in ϕ. A formula is said to be a formula of the
modal µ-calculus if its order is 0.

Let (U,A,−→, sinit) be a fixed LTS. The semantics of a formula
of type η is an object of the lattice (Dη,tη,uη) defined by
induction on η: Define D• = P(U) as the complete lattice of
sets of states, and if η = η1 → η2 then define Dη = Dη1 → Dη2

as the complete lattice of monotone functions fromDη1 toDη2 . For
every type η and function f ∈ Dη→η , f has a unique least fixpoint
LFPη(f) ∈ Dη and a unique greatest fixpoint GFPη(f) ∈ Dη ,
respectively defined as

d
{x ∈ Dη | f(x) v x} and

⊔
{x ∈ Dη |

x v f(x)}.
The interpretation JHK of a type environment is the set of maps ρ

such that ρ(X) ∈ DH(X) for each X ∈ dom(ρ). The interpretation

JH ` ϕ : ηK is a map from JHK to Dη defined by induction on ϕ as
follows:

JH ` > : •K(ρ) = U
JH ` ⊥ : •K(ρ) = ∅
JH, X : η ` X : ηK(ρ) = ρ(X)

JH ` 〈a〉ϕ : •K(ρ) = {s | ∃s′ ∈ JH ` ϕ : •K(ρ). s
a−→ s′}

JH ` [a]ϕ : •K(ρ)

= {s | ∀s′ ∈ S. (s
a−→ s′ implies s′ ∈ JH ` ϕ : •K(ρ))}

JH ` ϕ1 ∨ ϕ2 : •K(ρ) = JH ` ϕ1 : •K(ρ) ∪ JH ` ϕ2 : •K(ρ)
JH ` ϕ1 ∧ ϕ2 : •K(ρ) = JH ` ϕ1 : •K(ρ) ∩ JH ` ϕ2 : •K(ρ)
JH ` µXη.ϕ : ηK(ρ) = LFPη(JH ` λX : η. ϕK(ρ))
JH ` νXη.ϕ : ηK(ρ) = GFPη(JH ` λX : η. ϕK(ρ))
JH ` λX : η1. ϕ : η1 → η2K(ρ)

= {V 7→ JH, X : η1 ` ϕ : η2K(v[X 7→ V ]) | V ∈ Dη1}
JH ` ϕ1 ϕ2 : ηK(ρ)

= JH ` ϕ1 : η′ → ηK(ρ)(JH ` ϕ2 : η′K(ρ))

Note that, in the last clause, η′ is uniquely determined byH and ϕ2.
We often omit H ` · : η and just write JϕK for JH ` ϕ : ηK,

with the understanding that each subformula is implicitly annotated
with its type. For a closed formula ϕ of type •, we simply write JϕK
for J∅ ` ϕ : •K(ρ∅), where ρ∅ is the empty interpretation. We write
L |= ϕ if sinit ∈ JϕK.

We now review the definition of HFL model checking and the
decidability/complexity result.

Definition 6 (HFL model checking). The HFL model checking
problem is the problem of deciding whether L |= ϕ, given a closed
HFL formula ϕ of type • and a labeled transition system L.

Theorem 7 ([2, 34]). The HFL model checking problem is decid-
able [34]. It is k-EXPTIME complete for order-k HFL formulas [2].

Example 4. Consider the following HFL formula ϕ0:

(νF (•→•)→•.λX : • → •.〈a〉(X(F (λY : •.〈b〉(X Y )))))
(λY : •.〈b〉Y ).

It represents the property that there exists a transition sequence of
the form: abab2ab3ab4 · · ·. In fact if we replace F with
λX : • → •.〈a〉(X(F (λY : •.〈b〉(X Y )))) infinitely often and
reduce the β-redexes, we obtain the formula:

〈a〉〈b〉〈a〉〈b〉2〈a〉〈b〉3〈a〉〈b〉4 · · · .
Consider the LTS L0 = ({s0, s1}, {a, b},−→, s0), where −→ is
given by:

s0
a−→ s1 s1

b−→ s0 s1
b−→ s1.

Then we have L0 |= ϕ0.

Example 5. Consider the following formula ϕ1 [20]:

µE•→•→•.λX : •.λY : •.(X ∧ Y ) ∨ E (〈a〉X) (〈b〉Y ).

The formula ϕ1 X Y means “there exists n ≥ 0 such that 〈a〉nX
and 〈b〉nY holds. For example, ϕ2 := ϕ1 ϕ0 ([b]⊥) (where ϕ0 is
the one given in Example 4) means that there exists n ≥ 0 such that
a transition sequence of the form: abab2ab3ab4 · · · is possible after
n steps of a-transitions, and no b-transition is possible after n steps
of b-transitions. The LTS L0 in Example 4 satisfies ϕ2, since the
property is satisfied for n = 0.

For discussing transformations between HFL and HORS, it is
convenient to express HFL formulas in the form of systems of
equations, called HES.

Definition 8 (HES). A hierarchical equation system (HES) is a
sequence of equations of the form Xη1

1 =α1 ϕ1; · · · ;Xηn
n =αn

ϕn. where each αi is ν or µ, and for each i = 1, . . . , n, ϕi is a
formula without fixpoint binders such that X1 : η1 . . . , Xn : ηn `
ϕi : ηi.



For an HES E = (Xη1
1 =α1 ϕ1; · · · ;Xηn

n =αn ϕn), we
write E(Xi) for ϕi. We often omit the type annotation ηi. The HFL
formula denoted by E := (Xη1

1 =α1 ϕ1; · · · ;Xη1
n =αn ϕn) is

defined inductively by:

toHFL(Xη =α ϕ) = αXη.ϕ
toHFL(E ;Xη =α ϕ) = toHFL([αXη.ϕ/X]E).

We write L |= E if L |= toHFL(E). We sometimes write
X y1 · · · yk =α ϕ for X =α λy1. · · ·λyk.ϕ.

Example 6. The HFL formula ϕ0 in Example 4 can be represented
as the following HES.

S =ν F (λY : •.〈b〉Y );
F =ν λX : • → •.〈a〉(X(F (λY : •.〈b〉(X Y )))).

We can also restrict HES so that λ occurs only at the top-level. For
example, the HES above can further be transformed to the following
equivalent HES E0.

S =ν F B; F =ν λX : • → •.〈a〉(X(F (G X)));
G =ν λX : • → •.λY : •.〈b〉(X Y ); B =ν λY : •.〈b〉Y.

Example 7. Consider the following HES E⊥:

S =µ X; Y =ν λZ.〈a〉(Z ∧X); X =µ 〈a〉(Y X).

Then E⊥ is unsatisfiable. This can be checked by making the
following observations:

• toHFL(E⊥) is the formula µX.〈a〉(ϕ X) where ϕ is the HFL
formula νY.λZ.〈a〉

(
Z ∧ (µX ′.〈a〉(Y X ′))

)
.

• since ϕ Z implies 〈a〉Z, toHFL(E⊥) implies µX.〈a〉〈a〉X ,
which is unsatisfiable.

3. From HORS to HFL Model Checking
We introduce a reduction from HORS model checking to HFL model
checking. The reduction proceeds by exchanging the roles of the
model and the specification:

• the alternating parity tree automatonA of an instance of a HORS
model-checking problem is encoded as the labeled transition
system LA of an instance of the HFL model-checking problem;
and
• similarly, the HORS G is encoded as a HFL formula ϕG .

Intuitively, LA represents the transitions that can be made by
the automaton A (according to the behavior of A described in
Remark 1), and the formula ϕG describes that LA has transitions
corresponding to a successful run of A for the tree generated by
G. We now present these encodings; we prove their soundness in
Section 5.

3.1 Tree Automata Encoded as LTS
Let us fix an APT A = (Q,Σ, δ, qinit,Ω) and construct the labeled
transition system LA encoding it. Intuitively, the control graph
of A becomes the LTS, but since the transition relation of A
uses positive Boolean formulas, these must be encoded as states
of the transition system. Formally, the set of states of LA is
Q ∪ Qf , where Qf := {f | f is a subformula of δ(q, a) for
some (q, a) ∈ Q× dom(Σ)}. The rest of the encoding makes sure
that the transition relation of the automaton and the state priorities
are represented by the labeling of the transitions. The set of labels
of LA is the set

{ai | a ∈ dom(Σ), i ∈ {0, 1, . . . , p− 1}}
∪ {d | d ∈ {1, . . . ,m}}
∪ {and, or, true}

q0

q1f

(1, q0)

(2, q0)
(1, q1) tt

a1

a2

an
d

an
d

1
2

b1

b2

1

c1

c2

true

Figure 2. The LTS LA0 associated to the APT A0 of Example 1,
where f = (1, q0) ∧ (2, q0), and q0 is the initial state.

where p − 1 is the largest priority, and m is the largest arity. The
initial state qinit of the automaton is also the initial state of the
transition system, and the transition relation is defined by

q
aΩ(q)−→ δ(q, a) (d, q)

d−→ q

f1 ∧ f2
and−→ fi f1 ∨ f2

or−→ fi tt
true−→ tt

for q ∈ Q, a ∈ dom(Σ), and i = 1, 2. Note how the priority of a
state q is determined by the index i on the label of any transition
q

ai−→ starting at q. The positive Boolean formulas are represented
by their syntax tree, with each leaf having an outgoing transition
towards the automaton state associated to it.

Example 8. LetA0 be the APT of Example 1. The LTSLA encoding
A0 is depicted on Figure 2.

3.2 The Case of Trivial Automata
In order to get a better intuition of the encoding of G into an
HFL formula ϕG , we first discuss the special case where the
automaton A is a trivial tree automaton [1], i.e., an alternating
parity tree automaton where all the states have priority 0. This class
of automata has been used to verify higher-order programs against
safety properties [12].

As explained at the beginning of this section, ϕG expresses
the property that the automaton (or, the corresponding LTS LA
constructed above) has a successful run for the tree generated by
G. Let us first consider a special case, namely where G generates
the finite tree a c (b c). Then, since the initial state of the automaton
should be able to accept a, the LTS LA should have a transition a0;
hence ϕG should be of the form 〈a0〉ϕ1, where ϕ1 describes the
property that should be satisfied by the state s = δ(qinit, a). The
formula ϕ1 is not aware of the shape of δ(qinit, a), but knows that
the state s of the LTS after the a-transition is a positive Boolean
formula. Thus, ϕ1 asserts the following property:

• If s = (1, q), i.e., if there is a 1−→-transition, then the next state
(corresponding to q) should have transitions corresponding to an
accepting run of A for the first child c.

• If s = (2, q), i.e., if there is a 2−→-transition, then the next state
should have transitions corresponding to an accepting run of A
for the second child b c.
• If s = f1 ∧ f2, then any state after a and−→-transition should

satisfy ϕ1 again.

• If s = f1 ∨ f2, then some state after a or−→-transition should
satisfy ϕ1 again.

• If s = tt, i.e., if there is a true−→-transition, then there is no further
requirement.

Thus, ϕ1 can be described as

νX.〈1〉ϕc ∨〈2〉ϕb c ∨ (〈and〉>∧ [and]X)∨ (〈or〉X)∨〈true〉>,



where ϕc and ϕb c describe the properties that the current state has
transitions corresponding to accepting runs for c and b c respectively,
which can be defined by:

ϕc := 〈c0〉νX.(〈and〉> ∧ [and]X) ∨ (〈or〉X) ∨ 〈true〉>
ϕb c := 〈b0〉νX.〈1〉ϕc ∨ (〈and〉> ∧ [and]X) ∨ (〈or〉X) ∨ 〈true〉>.

By preparing the following formula Ln:

νX.λy1, . . . , yn.
∨n
j=1〈j〉yj ∨ (〈and〉> ∧ [and](X y1 . . . yn))

∨〈or〉(X y1 . . . yn) ∨ 〈true〉>
the formula ϕG can be simplified to:

〈a0〉(L2 (〈c〉L0) (〈b0〉(L1(〈c0〉L0)))).

In general, for a finite tree T , the formula ϕT that describes the
property “the LTS LA has transitions corresponding to a successful
run of A that accepts T ”, can be constructed inductively by:

ϕa T1 ···T` = 〈a0〉(L` ϕT1 · · · ϕT`).
In other words, the translation from a tree T to the corresponding
formula works as a homomorphism that replaces each tree construc-
tor a of arity ` with λx1. · · ·λx`.〈a0〉(L` x1 · · · x`). Thus, we can
naturally extend the translation to one from a HORS to a formula,
as given below.

For a given HORS G = (Σ,N ,R, S), let EG be the HES
A0 =ν (e0)†; . . . ;Am =ν (em)†; Eaux where (i) Eaux is the set of
definitions for Ln:

Ln =ν λy1, . . . , yn.∨n
j=1〈j〉yj ∨ (〈and〉> ∧ [and](Ln y1 . . . yn))
∨〈or〉(Ln y1 . . . yn) ∨ 〈true〉>

for n ∈ {1, . . . , k} with k being the largest arity; (ii) A0, . . . , Am
are the non-terminals of G with S = A0; (iii) ei = R(Ai); and (iv)
(e)† is defined by induction on e as follows.

(λy : κ. e)† = λy : (κ)†. (e)†

(e1 e2)† = (e1)† (e2)†

(z)† = z if z is either a non-terminal or a variable
(a)† = λy1 : •. · · ·λyΣ(a) : •. 〈a0〉(LΣ(a) y1 . . . yΣ(a))
(?)† = •
(κ1 → κ2)† = (κ1)† → (κ2)†.

As in the case for the translation from trees to formulas, we just
need to replace each tree constructor a of arity ` with
λy1, . . . y`.〈a0〉(L` y1 . . . y`).

Example 9. Consider the HORS of Example 2. Then its encoding
as a HFL formula is defined by the following HES (notice that some
β-reductions have been done to ease readability).

S =ν F (λx. 〈b0〉(L1 x));

F =ν λg. 〈a0〉
(
L2 (〈c0〉L0)

(
g (F (B (λx. 〈b0〉(L1 x))))

))
;

B =ν λg.λx. 〈b0〉(L1 (g x));
L2 =ν . . . ;L1 =ν . . . ;L0 =ν . . .

The following theorem states the correctness of the translation
above. We omit the proof, since it is a special case of Theorem 10
given later.

Theorem 9. For any trivial automatonA and HORS G, TG ∈ L(A)
if and only if LA |= EG .

3.3 The General Case
In the general case whereA is an APT with priorities {0, . . . , p−1},
we need to take into account the parity acceptance condition and
it must be reflected somehow in the resulting HFL formula. Let us
first examine the case of an order-0 HORS. Assume G is a HORS
where all non-terminals are of type ? and all rules are of the form

A → a A1 . . . AΣ(a). For each A, we prepare p fixpoint variables
A]0, . . . , A]p−1, defined by

A]i =αi

∨
i′=0,...,p−1

〈ai′〉(LΣ(a) A
]i′

1 . . . A]i
′

Σ(a)),

where αi is ν if i is even and µ otherwise. As in the case of trivial
automata, A]i expresses the property that the current state has
transitions corresponding to a accepting run of A over the tree
generated by A; in addition, A]i remembers that the priority of the
previous state is i (this intuition will be refined later). The priority
of the previous state of the automaton is recorded in the subscript
of the transition label ai′ , hence the above definition of A]i. If a
priority i is visited infinitely often by the automaton, then a fixpoint
variable of the form A]i is unfolded infinitely often. Thus, by letting
E(p)
G = (Ep−1; . . . , E0; Eaux ) where Ei contains a declaration for
A]i of the above form and Eaux is as given in the previous section,
we can guarantee that the largest priority visited by A is even if and
only if the largest index of the fixpoint variables expanded infinitely
often is even. We thus obtain LA |= E(p)

G if and only if TG ∈ L(A).
In the case of a HORS of an arbitrary order, each rule of the form

A→ C[A1, . . . , Ak] should be replaced by a fixpoint equation of
the form:

A]i =αi C
′[A]i11 , . . . , A

]ik
k ],

where each ij is the largest priority visited since the unfolding
of A before Aj is unfolded. The main difficulty arises when Aj
occurs as an argument of another non-terminal, as in A → BAj .
In this case, only B knows the largest priority visited before Aj is
unfolded. Thus, we replicate the argument of B and translate BAj
to B]0 A]0j · · · A

]p−1
j ; here, B]0 is defined so that it calls the i-th

argument A]ij when the largest priority visited before unfolding Aj
inside the body of B is i.

Let us present now the general construction of the HES E(p)
G en-

coding the HORS G for any alternating parity automaton with prior-
ities in {0, . . . , p− 1}. It is defined by E(p)

G := Ep−1; . . . ; E0; Eaux
where for each non-terminal A and for each priority i, there is a
definition A]i =αi (R(A))]0 in Ei, with (.)](.) to be defined soon,
and again with αi = ν if i is even and µ otherwise.

For any term e and for any priority i ∈ {0, . . . , p− 1}, let the
formula (e)]i be defined by induction on e as follows:

(λy : κ.e)]i = λy]0 : κ] . . . λy]p−1 : κ]. e]i

(e1 e2)]i = e]i1 e
]max(0,i)
2 e

]max(1,i)
2 . . . e

]max(p−1,i)
2

(z)]i = z]i if z is either a non-terminal or a variable
(a)]i = λy]01 : •. · · ·λy]p−1

1 : •. · · ·λy]0Σ(a) : •. · · ·λy]p−1
Σ(a) : •.∨

i′=0,...,p−1〈ai′〉(LΣ(a) y
]i′

1 . . . y]i
′

Σ(a))

(?)] = •
(κ1 → κ2)] = (κ1)] → · · · → (κ1)]︸ ︷︷ ︸

p times

→ (κ2)]

where the Ln’s definitions are as before and introduced in Eaux .
Intuitively, i in (e)]i denotes the largest priority visited before the
tree generated by e is visited (since the last unfolding of a non-
terminal).

Example 10. Consider the HORS G1 consisting of the rules:

S → F B F g → a c (g (F g)) B x→ bx,

which is a simpler variant of G0 in Example 2. It generates the
regular tree T such that T = a c (bT ). The HES E(3)

G is:

S]2 =ν ϕS ;F ]2 =ν ϕF ;B]2 =ν ϕB ;
S]1 =µ ϕS ;F ]1 =µ ϕF ;B]1 =µ ϕB ;
S]0 =ν ϕS ;F ]0 =ν ϕF ;B]0 =ν ϕB ; Eaux ,



where

ϕS = F ]0 B]0 B]1 B]2

ϕF = λg]0.λg]1.λg]2.

〈a0〉 (L2 (〈c0〉L0 ∨ 〈c1〉L0 ∨ 〈c2〉L0)ϕ
(0)

g(F g))

∨〈a1〉 (L2 (〈c0〉L0 ∨ 〈c1〉L0 ∨ 〈c2〉L0)ϕ
(1)

g(F g))

∨〈a2〉(L2 (〈c0〉L0 ∨ 〈c1〉L0 ∨ 〈c2〉L0)ϕ
(2)

g(F g))

ϕB = λx]0.λx]1.λx]2.
〈b0〉(L1 x

]0) ∨ 〈b1〉(L1 x
]1) ∨ 〈b2〉(L1 x

]2)

ϕ
(0)

g(F g) = g]0 ϕ
(0)
F g ϕ

(1)
F g ϕ

(2)
F g ϕ

(0)
F g = F ]0 g]0 g]1 g]2

ϕ
(1)

g(F g) = g]1 ϕ
(1)
F g ϕ

(1)
F g ϕ

(2)
F g ϕ

(1)
F g = F ]1 g]1 g]1 g]2

ϕ
(2)

g(F g) = g]2 ϕ
(2)
F g ϕ

(2)
F g ϕ

(2)
F g ϕ

(2)
F g = F ]2 g]2 g]2 g]2.

For the LTS LA0 in Figure 2, we can remove irrelevant parts of the
formulas ϕS ,ϕF and ϕB and simplify4 them to:

ϕ′S = F ]0 B]1 B]2

ϕ′F = λg]1.λg]2.
〈a1〉 (L2 (〈c1〉L0) (g]1 (F ]1 g]1 g]2) (F ]2 g]2 g]2)))
∨〈a2〉(L2 (〈c1〉L0) (g]2 (F ]2 g]2 g]2) (F ]2 g]2 g]2)))

ϕ′B = λx]1.λx]2.(〈b1〉(L1 x
]1) ∨ 〈b2〉(L1 x

]2)).

The simplified version of S]2 can be expanded (with some further
simplification) to:

〈a1〉(L2 (〈c1〉L0)
(〈b1〉(L1(〈a2〉(L2 (〈c1〉L0)

(〈b1〉(L1(F ]2 B]2 B]2))))))))

and F ]2 B]2 B]2 may further be expanded to

· · · ∨ 〈a2〉(L2 (〈c1〉L0)
(〈b1〉(L1(F ]2 B]2 B]2)) ∨ · · · )).

The LTS in Figure 2 satisfies this property; note that F ]2 is defined
by one of the outermost fixpoint operators ν.

The correctness of the translation is stated in the theorem
below. We prove it in Section 5, after preparing a type-based
characterization of HFL model checking in Section 4.

Theorem 10. Let A be an APT with priorities in {0, . . . , p − 1},
and let G be a HORS. Then TG ∈ L(A) iff LA |= E(p)

G .

It might be noticed that the size of e]i is inO(pan(e)|e|), where p
is the number of priorities, and an(e) is the nesting of applications in-
side arguments, defined via an(e1 e2) = max(an(e1), 1 + an(e2)),
an(λy.e) = an(e), and an(A) = an(a) = an(y) = 0. This ex-
ponential blow-up might seem prohibitive, but it is easy to avoid.
Indeed, by introducing some extra non-terminals, any HORS can be
rewritten into an equivalent one with a linear blow-up such that for
all non-terminal A, an(R(A)) ≤ 2.

Theorem 11. For every HORS G and every p ≥ 1, there is an HES
E of size linear in the size of G and polynomial in p such that for any
APT A with priorities in {0, . . . , p− 1}, TG ∈ L(A) iff LA |= E .
Furthermore, E can be constructed in time polynomial in the size of
G and p.

4. Intersection Types for HFL Model Checking
Inspired by Kobayashi and Ong’s type system [13] for characteriz-
ing HORS model checking, this section develops a type system for

4 For example, since the priority 0 does not occur, we can eliminate the
first argument g]0 of F . Similarly, we can also eliminate 〈c2〉L0 from ϕF
because the c2 transition cannot be taken at the end of a path labeled with
(a0 + a1)(1 + 2 + and + or)∗.

characterizing HFL model checking. It is parameterized by an LTS
L, and an HFL formula ϕ that is typable in the type system if and
only if L |= ϕ. We shall use this type-based characterization for
proving the correctness of the translation from HORS model check-
ing to HFL model checking presented in Section 3 (Theorem 10).
We expect that the type-based characterization is also useful for
constructing a practical model checker for HFL.

We fix an LTS L = (U,A,−→, sinit). We define the set of
intersection types by:

τ ::= s | σ → τ σ ::=
∧
{τ1, . . . , τk}.

Here, s ranges over the set U of states of L. We often write
τ1 ∧ · · · ∧ τk or

∧
i∈{1,...,k} τi for

∧
{τ1, . . . , τk}, and > for

∧
∅.

Intuitively, the type s describes propositions that are true in
state s, and the type τ1 ∧ · · · ∧ τk → τ describes functions that
take formulas having type τi for every i, and return a formula of
type τ . For example, the logical connective ∧ (when viewed as a
function that takes two propositions and returns a proposition) has
type s→ s→ s for any s, because given formulas ϕ1 and ϕ2 that
are both true in state s, ϕ1 ∧ ϕ2 is also true in state s. Similarly, ∨
has types s→ >→ s and > → s→ s for every s ∈ U .

Each intersection type should be regarded as a refinement of a
simple type κ (constructed from • and →, as introduced in Sec-
tion 2.3). It does not make sense, for example, to consider an
intersection type like s ∧ (s1 → s2), where the part s describes
propositions whereas the part s1 → s2 describes functions on
propositions. To exclude such an ill-formed intersection type, we
define the refinement relations τ :: κ (which should be read “τ is a
refinement of κ”) and σ :: κ inductively using the following rules:

s ∈ U
s :: •

τi :: κ for each i ∈ {1, . . . , k}
τ1 ∧ · · · ∧ τk :: κ

σ :: κ τ :: κ′

(σ → τ) :: (κ→ κ′)
Henceforth, we consider only intersection types that are refinements
of some simple types. We assume that each intersection type τ or σ
is implicitly annotated with the corresponding simple type (i.e., κ
such that τ :: κ or σ :: κ) and write Stype(τ) or Stype(σ) for κ.5

We assume below that an HFL formula is given in the form of
an HES

E := (X1 =α1 ϕ1; · · · ;Xn =αn ϕn).

A type judgment for (fixpoint-free) HFL formulas is of the form
Γ ` ϕ : τ , where Γ, called an (intersection) type environment, is
a set of type bindings of the form X : τ . A type environment may
contain multiple bindings for the same variable. We write Γ(X)
for τ1 ∧ · · · ∧ τk if {σ | X : σ ∈ Γ(X)} = {τ1, . . . , τk}. The
type judgment relation is inductively defined by the typing rules
in Figure 4. Note that in the rules HFL-T-ABS and HFL-T-APP
above, k may be 0.

Most of the typing rules should be easy to understand, based
on the intuition that s is the type of a formula that is satisfied by
the state s. For example, the rule HFL-T-SOME says that s satisfies
〈a〉ϕ if there exists a state s′ and a transition s a−→ s′ such that s′

satisfiesϕ. The rules HFL-T-ABS and HFL-T-APP are the standard
typing rules for abstractions and applications. The subtyping relation
τ ≤ τ ′ means, as usual, that a value of type τ may also be used as a
value of type τ ′.

Example 11. Consider the HES E0 of Example 6 and the LTS L0

of Example 4. Let Γ = {G : (s0 → s1) → s0 → s1, G : (s1 →
s1) → s1 → s1, F :

(
(s0 → s1) ∧ (s1 → s1)

)
→ s0}. Then the

type judgment Γ ` E(F ) :
(
(s0 → s1) ∧ (s1 → s1)

)
→ s0 holds

(see the derivation in Figure 4).

5 Thus, for example, > is actually annotated like >κ. Without this assump-
tion on the implicit annotation, Stype(>) cannot be determined.



s ∈ U
Γ ` > : s

(HFL-T-TRUE)

Γ, X : τ ` X : τ
(HFL-T-VAR)

s
a−→ s′ Γ ` ϕ : s′

Γ ` 〈a〉ϕ : s
(HFL-T-SOME)

Γ ` ϕ : s′ for every s′ such that s a−→ s′

Γ ` [a]ϕ : s
(HFL-T-ALL)

Γ ` ϕ1 : s Γ ` ϕ2 : s

Γ ` ϕ1 ∧ ϕ2 : s
(HFL-T-AND)

Γ ` ϕi : s for some i ∈ {1, 2}
Γ ` ϕ1 ∨ ϕ2 : s

(HFL-T-OR)

Γ, X : τ1, . . . , X : τk ` ϕ : τ X 6∈ dom(Γ)
τi :: η for each i ∈ {1, . . . , k}

Γ ` λX : η.ϕ : τ1 ∧ · · · ∧ τk → τ
(HFL-T-ABS)

Γ ` ϕ1 : τ1 ∧ · · · ∧ τk → τ
Γ ` ϕ2 : τi for each i ∈ {1, . . . , k}

Γ ` ϕ1ϕ2 : τ
(HFL-T-APP)

Γ ` ϕ : τ τ ≤ τ ′

Γ ` ϕ : τ ′
(HFL-T-SUB)

s ≤ s (HFL-SUBT-BASE)

σ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′
(HFL-SUBT-FUN)

∀j ∈ {1, . . . , `}.∃i ∈ {1, . . . , k}.τi ≤ τ ′j
τ1 ∧ · · · ∧ τk ≤ τ ′1 ∧ · · · ∧ τ ′`

(HFL-SUBT-INT)

Figure 3. Typing rules for HFL formulas.

For an entire formula (represented in the form of an HES), we
define typability in terms of a parity game.

Let dep(E) be the number of switches between ν and µ:

dep(ε) = 0

dep(F =ν ϕ; E) =

{
dep(E) if dep(E) is even
dep(E) + 1 if dep(E) is odd

dep(F =µ ϕ; E) =

{
dep(E) if dep(E) is odd
dep(E) + 1 if dep(E) is even

The priority of Fi in E , written ΩE(Fi) is defined as dep(Fi =αi

ϕi; E2) if E = (E1;Fi =αi ϕi; E2). For example, for the HES E⊥
of Example 7, ΩE⊥(S) = 3, ΩE⊥(Y ) = 2, and ΩE⊥(X) = 1.
When E is clear from context, we omit the subscript and just write
Ω(Fi).

Definition 12. Let E := (F η1
1 =α1 ϕ1; · · · ;F ηnn =αn ϕn)

be a fixpoint-free HES with η1 = •, and L = (U,A,−→, sinit)
an LTS. The typability game TG(L, E) is the parity game
(V∀, V∃, vinit, E,Ω), where:

• The set V∀ of Opponent’s positions is the set of intersection
type environments {Γ | dom(Γ) ⊆ {F1, . . . , Fn} ∧ ∀(Fi : τ) ∈
Γ.τ :: ηi}.
• The set V∃ of Player’s positions is the set of type bindings that

respect simple types, i.e., {Fi : τ | τ :: ηi}.
• vinit is the initial position F1 : sinit.
• E = E1 ∪ E2, where E1, the set of Player’s moves, is {(Fi :
τ,Γ) | Γ ` ϕi : τ}; and E2, the set of Opponent’s moves, is
{(Γ, Fi : τ) | Fi : τ ∈ Γ}.
• The priority function Ω, is defined by: Ω(Γ) = 0 for every

Γ ∈ V∀, and Ω(Fi : τ) = ΩE(Fi) for every Fi : τ ∈ V∃.

We write L ` E when Player wins the parity game TG(L, E).

Intuitively, in the game TG(L, E) Player tries to prove that
L |= E , and Opponent tries to disprove it. To this end, Player first
shows that ϕ1, the righthand side of F1, has type sinit (i.e., the
initial state of L satisfies ϕ1) under some type environment Γ, and
Opponent challenges it by picking a type binding Fj : τ from Γ, and
asking why Fj has type τ . Player then shows that ϕj has type τ
under some type environment Γ′, and Opponent again challenges the
assumption Γ′, etc. Opponent gets stuck when Player’s assumption
Γ′ is empty, in which case Player wins; Player gets stuck when
she fails to show why ϕj has type τ , in which case Opponent
wins. A play may continue indefinitely, in which case the winner is
determined by the largest priority visited infinitely often.

Example 12. Consider again the HES E0 of Example 6 and the
LTS L0 of Example 4. Let Γ be like in Example 11. Then Player has
a winning strategy by always moving to the type environment Γ or
the empty type environment (in which case Player wins).

• In the first round, Player is in position S : s0, but it holds that
Γ ` E(S) : s0, so Player can move to Γ.
• In any next round, Player is in a successor position of Γ chosen

by Opponent, i.e. some type binding A : τ of Γ. If A is either
G or B, Player can respond with the empty type environment,
because ∅ ` E(A) : τ . Otherwise, Player is on position F : τF
with τF =

(
(s0 → s1) ∧ (s1 → s1)

)
→ s0. We saw that

Γ ` F : τF holds in Example 11, so Player is allowed to move
to Γ.

Since the only infinite play according to this strategy is the one
where Player’s position (except the initial position) is always F : τF ,
and since F has priority 0, Player’s strategy is a winning one.

Example 13. Consider the HFL formula ϕ2 in Example 5, which
is equivalent to the following HES E2:

S =µ E (F B) ([b]⊥);
E =µ λX.λY.(X ∧ Y ) ∨ E (〈a〉X) (〈b〉Y );
F =ν λX.〈a〉(X(F (G X))); G =ν λX.λY.〈b〉(X Y );
B =ν λY.〈b〉Y.

Then, we have:

E : s0 → s0 → s0, F : ((s0 → s1) ∧ (s1 → s1))→ s0,
B : s0 → s1, B : s1 → s1 ` E2(S) : s0

∅ ` E2(E) : s0 → s0 → s0

Γ ` E2(F ) : ((s0 → s1) ∧ (s1 → s1))→ s0

∅ ` E2(G) : (s0 → s1)→ s0 → s1

∅ ` E2(G) : (s1 → s1)→ s1 → s1

∅ ` E2(B) : s0 → s1 ∅ ` E2(B) : s1 → s1

where Γ is the one given in Example 11. These type judgments
determine a winning strategy for Player.

Example 14. Consider the unsatisfiable HES E⊥ of Example 7;
recall that ΩE⊥(S) = 3, ΩE⊥(Y ) = 2, and ΩE⊥(X) = 1. Let
L = ({s}, {a},−→, s) with s a−→ s. A strategy for Player in
TG(L, E⊥) is to always play Γ = {X : s, Y : s → s}. This
strategy can be seen as a cyclic type derivation that is depicted
in Figure 5. It is not a winning strategy: the dashed cycle has the
largest priority 2, but the self loop on X : s (depicted with a thick
line) has the largest priority 1, hence Opponent can force an infinite
play with the largest priority 1.

We now prove that the type-based characterization is sound and
complete.

Theorem 13 (soundness and completeness of the type-based char-
acterization). Let E be a fixpoint-free HES and L an LTS. Then,
L ` E if and only if L |= E .



X : s0 → s1 ` X : s0 → s1

Γ ` F :
(
(s0 → s1) ∧ (s1 → s1)

)
→ s0

Γ ` G : (s0 → s1)→ s0 → s1
X : s0 → s1 ` X : s0 → s1

Γ, X : s0 → s1 ` GX : s0 → s1

Γ ` G : (s1 → s1)→ s1 → s1
X : s1 → s1 ` X : s1 → s1

Γ, X : s1 → s1 ` GX : s1 → s1

Γ, X : s0 → s1, X : s1 → s1 ` F (GX) : s0

Γ, X : s0 → s1, X : s1 → s1 ` X(F (GX)) : s1

Γ, X : s0 → s1, X : s1 → s1 ` 〈a〉
(
X(F (GX))

)
: s0

Γ ` λX. 〈a〉
(
X(F (GX))

)
:
(
(s1 → s1) ∧ (s0 → s1)

)
→ s0

Figure 4. Type derivation for Γ ` E(F ) :
(
(s1 → s1) ∧ (s0 → s1)

)
→ s0 in Example 11.

X : s
E(S) : s

Y : s→ s X : s
Y X : s

〈a〉(Y X) : s

E(X) : s

Z : s ` Z : s X : s
Z : s ` Z ∧X : s

Z : s ` 〈a〉(Z ∧X) : s

E(Y ) : s→ s

Figure 5. A Player’s strategy in the typing game of Example 14.

The proof of the above theorem is given in the longer ver-
sion [17]; here we just give an outline. The proof uses a semantic
counterpart SG(L, E) of the typability game, which is obtained
from TG(L, E) by replacing the player’s moves {(Fi : τ,Γ) | Γ `
ϕi : τ} with {(Fi : τ,Γ) | Γ |= ϕi : τ}, where Γ |= ϕj : τ
is a semantic type judgment relation. Since Γ ` ϕj : τ if and
only Γ |= ϕj : τ , the semantic typability game SG(L, E) is
actually isomorphic to the (syntactic) typability game TG(L, E).
We can then transform the semantic typability game step by step,
preserving the winner, until we get the semantic typability game
for the extended HES (where fixpoint binders may occur in def-
initions) consisting of the single equation F1 = toHFL(E). Be-
cause SG(L, F1 = toHFL(E)) is winning for Player if and only if
L |= E , we have the required result.

As a corollary of Theorem 13, we also have the following
parameterized complexity result.

Theorem 14. Let E be a HES and L an LTS. Suppose that the
following parameters are bounded above by constants: (i) the depth
of E; (ii) the size of the largest (simple) type in E; and (iii) the size
of L (i.e., the number of states plus the size of the transition relation

−→). Then, L
?

|= E can be decided in time polynomial in the size of
E .

The theorem follows from the same reasoning as that for the
parameterized complexity result for HORS model checking [13].
Under the assumption above, for each variable of type η, the number
of intersection types τ such that τ ::η is bounded above by a constant.
Thus, the size of each type environment in the typability game is
linear in the size of E , hence also is the size of the typability game.
By the assumption that the depth dep(E) is fixed, the game can be
solved in time polynomial in the size of the game, hence also in the
size of E .

5. Correctness of the HORS-to-HFL Reduction
(Proof of Theorem 10)

In this section, we establish the correctness of the HORS-to-HFL
reduction (Theorem 13) we presented in Section 3. The proof relies
on the type-based characterization of HORS model-checking based
on Kobayashi and Ong’s type system [13] (KO type system, for
short). Below we first briefly review KO type system in Section 5.1.
Then we show that the typability of a HORS model-checking

instance in the KO type system is equivalent to the typability of its
HFL translation in the type system of Section 4.

5.1 KO Type System
We review here (a variation of) KO type system for characterizing
HORS model checking [15]. We fix an alternating parity automaton
A = (Q,Σ, δ, qinit,Ω). KO types are defined by the grammar

θ ::= q | ς → θ ς ::=
∧
{(θ1,m1), . . . , (θk,mk)}.

Here, q ranges over the set Q of states of the automaton, and mj

ranges over the set {0, . . . , p−1} of priorities ofA. As in the case of
intersection types for HFL, we often write (θ1,m1)∧· · ·∧(θk,mk)
or
∧
i∈{1,...,k}(θi,mi) for ∧{(θ1,m1), . . . , (θk,mk)}, and > for∧
∅.
Intuitively, q is the type of a tree that is accepted by A when q

is taken as the initial state, whereas ς1 → . . . ςn → q with ςj =
(θj,1,mj,1) ∧ · · · ∧ (θj,kj ,mj,kj ) is the type of an n-ary function
that may use the j-th argument as a value of types θj,1, . . . , θj,kj
and generates a tree of type q. The part mj,` (` ∈ {1, . . . , kj})
expresses where the j-th argument may be used as a value of type
θj,`; intuitively, (θj,`,mj,`) specifies that in constructing the output
tree of type q, the j-th argument may be used as a value of type
θj,` in a node of the tree in which the largest priority visited in the
path from the root to this node is mj,`. For the space restriction,
we refer the reader to [15] for more intuitions on KO types. A
slight difference between the original KO type system and the one
presented here is that by “the largest priority visited in the path from
the root”, we exclude the priority of the current node, whereas the
original type system included it. This change is just for technical
convenience for matching the HFL type system in the previous
section with KO type system.

As in the type system of Section 4, we only consider KO types ς
that are refinements of simple types κ (which we write ς ::κ, defined
in a similar manner as in Section 4), and the empty intersection type
that refines κ is written >κ or just > when κ is not meaningful. A
type environment is a set Θ of bindings x : (ς,m) where x is either
a non-terminal or a term variable, and m is a priority.

The typing rules of KO type system are given in Figure 6.
In the rule KO-T-CONST, the relation Q |= f (where f ∈
B+({1, . . . , n} × Q) and Q = (Q1, . . . , Qn) with Qi ⊆ Q for
each i) is defined by induction on f : (i) Q |= tt, (ii) Q 6|= ff,
(iii) Q |= (i, q) if (q ∈ Qi), (iv) Q |= f1 ∨ f2 if Q |= f1 or
Q |= f2, and (v) Q |= f1 ∧ f2 if Q |= f1 and Q |= f2. The
operation ·↑m on type environments is defined by:

Θ↑m := {x : (θ,max(m,m′)) | x : (θ,m′) ∈ Θ}.

The KO typability game KG(G,A) for a HORS G = (Σ,N ,R,
S) and an APTA = (Q,Σ, δ, qinit,Ω) is a parity game (V∀, V∃, vinit,
E,Ω′), where:

• The set V∀ of Opponent’s positions is the set of intersection type
environments {Θ | ∀(Fi : θ) ∈ Θ.θ ::N (Fi)}.



x : (θ, 0) `HORSA x : θ
(KO-T-VAR)

(Q1, . . . , Qn) |= δA(q, a)

∅ `HORSA a :
∧
q1∈Q1

(q1,Ω(q))→ · · · →
∧
qn∈Qn(qn,Ω(q))→ q

(KO-T-CONST)

Θ0 `HORSA e0 :
∧
i∈I(θi,mi)→ θ

Θi `HORSA e1 : θi for each i ∈ I
Θ0 ∪

⋃
i∈I(Θi↑mi) `HORSA e0 e1 : θ

(KO-T-APP)

Θ ∪ {x : (θi,mi) | i ∈ I} `HORSA e : θ
x does not occur in Θ

Θ `HORSA λx.e :
∧
i∈I(θi,mi)→ θ

(KO-T-ABS)

Θ `HORSA e : θ θ ≤ θ′

Θ `HORSA e : θ′
(KO-T-SUB)

q ≤ q (KO-SUBT-BASE)

θ ≤ θ′ ∀i ∈ I.∃j ∈ J.(θ′j ≤ θi ∧m′j = mi)∧
i∈I(θi,mi)→ θ ≤

∧
j∈J(θ′j ,m

′
j)→ θ′

(KO-SUBT-FUN)
Figure 6. KO type system.

• The set V∃ of Player’s positions is the set of type bindings that
respect simple types, i.e., {Fi : (θ,m) | τ ::N (Fi)}.
• vinit is the initial position F : (qinit,Ω(qinit)).
• E = E1 ∪ E2, where E1, the set of Player’s moves, is {(Fi :

(θ,m),Θ) | Θ ` R(Fi) : θ}; and E2, the set of Opponent’s
moves, is {(Θ, Fi : (θ,m)) | Fi : (θ,m) ∈ Θ}.
• The priority function Ω′, is defined by: Ω′(Θ) = 0 for every

Θ ∈ V∀, and Ω′(Fi : (θ,m)) = m for every Fi : (θ,m) ∈ V∃.

We write `HORSA G if Player has a winning strategy for KG(G,A).
The following theorem states the soundness and completeness

of KO type system.6

Theorem 15 (Kobayashi and Ong [15]). Suppose that TG does not
contain ⊥. Then, `HORSA G if and only if TG ∈ L(A).

5.2 Preservation of the Typability
Fix a HORS G and an APTAwith the set {0, . . . , p−1} of priorities.
We want to relate the typing game for KG(G,A) to the typing game
TG(LA, E(p)

G ). To avoid confusion, we write below Γ `HFL ϕ : τ
for the type judgment in HFL.

We first identify types for HFL model-checking (Section 4) and
KO types. We define the translation (·)] of KO types to the types in
Section 4.

(q)] = q
(
∧
j∈J(θj ,mj)→ θ)] =∧

j∈J,mj=0(θj)
] → · · · →

∧
j∈J,mj=p−1(θj)

] → (θ)]

For example, with p = 2, ((q0, 0) ∧ (q1, 0) ∧ (q1, 1) → q)] =
q0 ∧ q1 → q1 → q. Note that θ :: κ implies (θ)] :: κ], and that for
any HFL intersection type τ , there is a KO type θ such that τ = (θ)]

6 The type system presented in this section is actually a slight variation of the
original one [15], but the proof in [15] can be easily adapted to this variation.

if and only if τ :: κ] for some κ, and in that case, θ is unique. We
write (τ)[ for this θ. In particular, it holds that

(q)[ = q

(
∧
j∈I0 τj → · · · →

∧
j∈Ip−1

τj → τ)[ =∧
i∈{0,...,p−1},j∈Ii((τj)

[, i)→ (τ)[.

We extend (.)] and (.)[ to type environments:

(Γ)[ = {A : ((τ)[, i) | A]i : τ ∈ Γ}
(Θ)] = {A]i : (θ)] | A : (θ, i) ∈ Θ} ∪ Γaux ,

where Γaux = {Ln :
∧
q1∈Q1

q1 → · · ·
∧
qn∈Qn qn → f |

(Q1, . . . , Qn) |= f} is the type environment for all Ln. Note that
(Γ)[ is well defined for the type environments used in the typing
game of TG(LA, E(p)

G ) because it only contains bindings A]i : τ

for intersection types τ that refine a type of the form κ].
We can show that the transformation preserves typing.

Lemma 16. Let e be a term of a HORS. If Θ `HORS e : θ,
then (Θ)] `HFL e]0 : (θ)]. Conversely, if Γ `HFL e]0 : τ , then
(Γ)[ `HORS e : (τ)[.

The following lemma guarantees that Ln : τ ∈ Γaux if and only
if it is a winning position of TG(LA, E(p)

G ).

Lemma 17. Let f be a subformula of δ(q, a) with Σ(a) = n,
and Q1, . . . , Qn ⊆ Q. Then `HFL Ln :

∧
q∈Q1

q →
∧
q∈Q2

q →
· · · →

∧
q∈Qn q → f is a winning position of the HFL typability

game if and only if (Q1, . . . , Qn) |= f .

We can now prove that the reduction preserves typability.

Theorem 18. Let G be a HORS andA be an alternating parity tree
automaton. Then, `HORSA G if and only if LA `HFL E(p)

G .

Proof. Let G be the parity game obtained from TG(LA, E(p)
G ) by

removing Player’s positions of the formLn :τ , and the edges from/to
those positions. By Lemma 17, the winners of TG(LA, E(p)

G ) and
G are the same.

Notice that (.)] and (.)[ are bijections between the positions
of G and the ones of KG(G,A). By Lemma 16, these bijections
are graph isomorphisms between the graphs of the arenas of the
games. Moreover, the priority of every Opponent’s position is 0 in
both games, and for Player’s positions, Ω(x]m : τ) = m = Ω

(
x :

(τ,m)
)

holds. So both games are isomorphic.

Theorem 10 is an immediate corollary of Theorems 13, 15, and
18.

Remark 2. As mentioned in Section 1, since the decidability of
HFL model checking is straightforward, the decidability of HORS
model checking is an immediate corollary of Theorem 10. Our proof
of Theorem 10 in this section, however, does not qualify as a new
proof of the decidability of HORS model checking, because it relies
on the soundness and completeness of the KO type system.

6. From HFL to HORS Model Checking
In this section, we present a reduction from HFL model checking to
HORS model checking.

Recall that, over a (finite) LTS, by the Kleene Fixpoint Theorem,
any fixpoint formula αF η.ψ with α ∈ {µ, ν} and η = η1 →
· · · → η` → • is equivalent to Fn where

F 0 =

{
λx1 : η1. · · ·λx` : η`.> if α = ν
λx1 : η1. · · ·λx` : η`.⊥ if α = µ

F i+1 =[F i/F ]ψ



and n is greater than the height of the lattice of Dη . For η of order
k, this height is a number k-fold exponential in the number of states
of the LTS. Precise bounds can be found in [2]. Our aim is to create
a HORS that generates the syntax tree of F (n), and then runs it
against an alternating automaton that encodes the LTS in question.

6.1 Overview of the Translation
We first give an overview of the translation using an example. Let
us consider the following HES E :

S =ν F (〈a〉>); F X =µ X ∨ 〈b〉(F X).

It represents the property that the action a may be enabled after
finitely many b transitions. For a sufficiently large number n, E is
equivalent to the following HES E ′, obtained by unfolding F n
times.

S =ν F
(n) (〈a〉>);

F (n) X =µ X ∨ 〈b〉(F (n−1) X);
· · ·
F (1) X =µ X ∨ 〈b〉(F (0) X);

F (0) X =µ ⊥.
The annotations ν and µ in E ′ above actually do not matter, because
E ′ does not contain any recursion. Now, by replacing each logical
connective with the corresponding tree constructor, we obtain the
following HORS GE , which generates the syntax tree of the formula
obtained by reducing E ′:

S → F (n) (〈a〉>)

F (n) X → ∨ X (〈b〉(F (n) X))
· · ·
F (1) X → ∨ X (〈b〉(F (0) X))

F (0) X → ⊥.

Let L = (U,A,−→, sinit) be an LTS. To check whether L |= E ′
(hence also L |= E) holds, it suffices to run a tree automaton to eval-
uate (the formula represented by) the tree TGE against L. Such an
automaton AL would be of the form ({qs | s ∈ U},Σ, δ, qsinit ,Ω)
where qs is a state for checking whether s satisfies the formula rep-
resented by the current subtree, the alphabet Σ consists of the tree
constructors corresponding to logical connectives, and the transition
function δ is defined by:7

δ(qs,>) = tt δ(qs,⊥) = ff δ(qs,∨) = (1, qs) ∨ (2, qs)

δ(qs, 〈a〉) = ∨{(1, qs′ | s
a−→ s′} · · · .

Then, we have L |= E if and only if GE |= AL; thus we have
reduced HFL model checking to HORS model checking.

The remaining problem is that GE is too large, because the
required number n of unfoldings is in general k-fold exponential
in the size of L for an order-k HES. To address the problem, we
parameterize each non-terminal F (j) above by the number j, and
encode numbers as terms of HORS. Thus, the resulting HORS is
given by:

S → F n (〈a〉>)
F j X → if (IsZero j) ⊥ (∨ X (〈b〉(F (j − 1) X))).

Below, we first prepare an encoding of numbers in Section 6.2.
We then present the general translation from HFL model checking
to HORS model checking in Section 6.3.

6.2 Counting with HORS
As a first step, we show how to implement large numbers in HORS.
Our encoding follows that of Jones [7]. Let expk(r) denote the k-
fold exponent of r, defined by exp0(r) and expi+1(r) = 2expi(r).

7 The full definition is given later in Section 6.3.

For our purpose, we need to represent numbers up to expk(r) by
terms of order at most k − 1 and of size polynomial in r. Prepare
Bit = {0, 1} and let Numi be defined by

Num1 = Bit× · · · ×Bit︸ ︷︷ ︸
r

Numi+1 = Numi → Bit.

For every i, let J.Ki : {0, . . . , expi(r) − 1} → Numi be the
bijection defined as follows: (i) for every n ∈ {1, . . . , 2r − 1},
JnK1 = (b0, . . . , br−1), where b0 . . . br−1 is the binary representa-
tion of n starting with b0 as the least significant bit; (ii) for every
n ∈ {0, . . . , expi+1(r)−1}, for everym ∈ {0, . . . , expi(r)−1}
JnKi+1 maps JmKi to bm, where b0 . . . bexpi(r)−1 is the binary rep-
resentation of n.

In order to compute with bits, we represent bit expressions as
ΣBit-labeled (possibly infinite) trees where ΣBit = {1 7→ 0, 0 7→
0, if 7→ 3}. We define the relation T ⇓ b inductively, by: (i) 1 ⇓ 1,
(ii) 0 ⇓ 0, (iii) if T0 T1 T2 ⇓ b if T0 ⇓ 1 and T1 ⇓ b, and (iv)
if T0 T1 T2 ⇓ b if T0 ⇓ 0 and T2 ⇓ b. We call b the value of T
when T ⇓ b holds. Note that a bit expression T may or may not
have a value if T is infinite.

We prepare an automaton to evaluate bit expressions. Let ABit

be the APT ({q1, q0},ΣBit, δ, q1,Ω), with

δ(q, if) = ((1, q1) ∧ (2, q)) ∨ ((1, q0) ∧ (3, q))
for every q ∈ {q1, q0}

δ(q1, 1) = δ(q0, 0) = tt
δ(q1, 0) = δ(q0, 1) = ff
Ω(q1) = Ω(q0) = 1.

Lemma 19. ABit accepts a tree T from state q1 (q0, resp.) if and
only if T ⇓ 1 (T ⇓ 0, resp.).

We assume below that other bit operations are represented as
order-1 non-terminals of HORS. For example, the bit complement
Not and `-ary disjunction OR` can be defined by the following
rewriting rules:

Not x→ if x 0 1
OR1 x→ x OR` x1 · · · x` → if x1 1 (OR`−1 x2 · · · x`)

We introduce the HORS types Bit? = ? and Num?
i for all i ≥ 2

as follows: Num?
2 = ?→ · · · → ?︸ ︷︷ ︸

r

→ ?, and for all i ≥ 2,

Num?
i+1 = Num?

i → ? (note that Num?
1 is undefined only

because HORS types do not have product).
For the purpose of encoding HFL formulas, we need to prepare

the following terms of HORS:

Maxi : Num?
i (which represents expi(r)− 1)

Deci : Num?
i → Num?

i (decrement function)
IsZeroi : Num?

i → Bit? (check if the argument is 0)



for all i ≥ 2. They are defined as follows, using the auxiliary
functions ExistsOnei and DecSubj :

Max1 ≡ (1, . . . , 1) Maxi+1 g → 1
Dec1 (b0, . . . , br−1) ≡

(DecSub0 b0, . . . , DecSubr−1 b0 · · · br−1)
DecSub0 b0 → Not b0
DecSubj b0 · · · bj →

(* Flip bj only if b0, . . . , bj−1 are all 0 *)
if (ORj b0 · · · bj−1) bj (Not bj)

Deci+1 f n→
(* Flip the n-th bit of f only if all the lower bits are 0.*)
if (ExistsOnei+1 f n) (f n) (Not(f n))

ExistsOnei+1 f n→
(* Check whether some bit of f lower than the n-th bit is 0 *)
if (IsZeroi n) 0

(OR2 (f (Deci n))
(
ExistsOnei+1 f (Deci n)

)
))

IsZero1 (b0, . . . , br−1)→ Not(ORr b0 · · · br−1)
IsZeroi+1 f → Not(OR2 (f Maxi) (ExistsOnei+1 f Maxi)).

Here, ≡ indicates that the lefthand side is a shorthand (or a macro)
for the righthand side, and→ indicates that the head symbol on the
lefthand side is a non-terminal of HORS defined by the rewriting
rule. The meta-variable i ranges over {1, . . . , k − 1}, and j ranges
over {1, . . . , r}. The encodings above should be easy to understand;
Maxi represents the number whose bit representation is 11 · · · 1︸ ︷︷ ︸

expi−1(r)

,

hence defined as a function that always returns 1.
The following lemma states the correctness of our number

encoding.

Lemma 20. Let T be the tree generated by IsZeroi(Decmi Maxi).
Then, (i) ifm = expi(r)−1, then T ⇓ 1; (ii) ifm < expi(r)−1,
then T ⇓ 0.

6.3 The Translation
Let L be an LTS (U,A,−→, sinit), and E be an order-k HES
Fn =αn ϕn; · · · ;F0 =α0 ϕ0 where Fi is of type ηi (and thus
ηn = •). We assume that each ϕj is of the form λx1. · · ·λx`j .ψj
such that ψj does not contain lambda abstractions.

Let hj be the height of the lattice ofDηj , andM the largest arity
of types occurring in η0, . . . , ηn. By [2], Lemma 3.5, expk(r) −
1 ≥ max(h0, . . . , hn) for r > log |U |+ |U | · (M + k)k. Let mh
be expk(r) − 1 for the least such natural number r. Note that r
is polynomial in |U | and M , assuming that the order k of E is a
constant.

Let β = (βn, . . . , βj) be a collection of non-negative integers.
If βj > 0, define

β(`) = (βn, . . . , β`) if ` > j

β(`) = (βn, . . . , βj − 1,mh, . . . ,mh︸ ︷︷ ︸
j−` times

) if ` ≤ j

Let < be the lexicographic order on β’s, i.e., the least transitive
relation that satisfies: (βn, . . . , βj+1) < (βn, . . . , βj+1, βj) and
(βn, . . . , βj+1, βj) < (βn, . . . , βj+1, βj + 1). We define the HFL
formula F (mn,...,mj)

j for each j ∈ {0, . . . , n},mn, . . . ,mj ∈
{0, . . . ,mh} as follows, by well-founded induction on <.

F
(mn,...,mj+1,0)

j = λx1. · · ·λx`j .α̂j
F βj = [F

β(0)
0 /F0, . . . , F

β(n)
n /Fn]ϕj

if β = (mn, . . . ,mj) with mj > 0.

Here, α̂j = > if αj = ν and α̂j = ⊥ if αj = µ. By the Kleene
Fixpoint Theorem, we have:

Lemma 21. JtoHFL(E)K = JF (mh)
n K.

Since F (mh)
n contains no fixpoint operators, we can reduce it

to a formula in basic modal logic. Below we create a HORS that
generates the syntax tree of this formula.

For each Fj(j ∈ {0, . . . , n}) of E , we prepare a non-terminal
of the same name Fj of a HORS, and the following rewriting rule:

Fj yn, . . . , yj , x1, . . . , x`j →
if (IsZerok yj) α̂j ([[ψj ]]yn,...,yj+1,Deck(yj)

).

Here, [[ψ′j ]]yn,...,yj is defined by induction on formulas:

[[c]]yn,...,yj = c [[ x`]]yn,...,yj = x`

[[F`]]yn,...,yj =


F` yn . . . y` if ` ≥ j
F` yn . . . yj Maxk . . . Maxk︸ ︷︷ ︸

j−l times

if ` < j

[[ϕ1ϕ2]]yn,...,yj = [[ϕ1 ]]yn,...,yj [[ϕ2]]yn,...,yj

Here, c ranges over ∨,∧, 〈a〉, [a],>,⊥; so, for example, ϕ1 ∧ ϕ2

is considered as (∧ ϕ1) ϕ2 in the above definition. In the image of
the translation, those constants are treated as tree constructors of the
HORS. The arguments y1, . . . , yj are of type Num?

k; intuitively,
Fj Jn1Kk · · · JnjKk corresponds to F (n1,...,nj)

j .
We write GE,L8 for the HORS consisting of the above rules for

Fj , S → Fn Maxk (where S is the start symbol), and the rules in
Section 6.2 for encoding numbers.

Example 15. Recall the LTS L0 from Example 4, and the HES E0
from Example 6:

S =ν F B; F =ν λX : • → •.〈a〉(X(F (G X)));
G =ν λX : • → •.λY : •.〈b〉(X Y ); B =ν λY : •.〈b〉Y.
We obtain the HORS GE0,L0 with

S′ → S Max2

S yS → if (IsZero2 yS) >
(F (Dec2 yS) Max2 (B yS Max2 Max2 Max2))

F yS yF x→
if (IsZero2 yF ) >
(〈a〉 (x (F yS (Dec2 yF ) (GyS (Dec2 yF ) Max2 x))))

G yS yF yG x y → if (IsZero2 yG) > (〈b〉 (x y))
B yS yF yG yB y → if (IsZero2 yB) > (〈b〉 y)

where the yj’s have been renamed to their respective nonterminal
for ease of understanding and the parameters xj have been renamed
to lower case versions of their HFL correspondents, and the rules
for Dec2 and IsZero2 are as per their definition.

Let AL be the APT ({qs | s ∈ U} ∪ {q1, q0},Σ, δ, qsinit ,Ω)
where:

Σ = ΣBit ∪ {∨ 7→ 2,∧ 7→ 2,> 7→ 0,⊥ 7→ 0}
∪
⋃
a∈A{〈a〉 7→ 1, [a] 7→ 1}

δ(qs, 〈a〉) = ∨{(1, qs′) | s
a−→ s′}

δ(qs, [a]) = ∧{(1, qs′) | s
a−→ s′}

δ(qs,>) = tt δ(qs,⊥) = ff
δ(qs,∨) = (1, qs) ∨ (2, qs) δ(qs,∧) = (1, qs) ∧ (2, qs)
δ(qs, 1) = δ(qs, 0) = ff (for each s ∈ U )
δ(q, if) = ((1, q1) ∧ (2, q)) ∨ ((1, q0) ∧ (3, q))

(for every q ∈ {qs | s ∈ U} ∪ {q1, q0})
δ(q1, 1) = tt δ(q1, a) = ff if a 6∈ {1, if}
δ(q0, 0) = tt δ(q0, a) = ff if a 6∈ {0, if}

and Ω(q) = 1 for every q. Note that AL is an extension of the
automaton ABit in the previous subsection.

Theorem 22. Let L be an LTS and let E be an HES. Then AL
accepts the tree generated by GE,L if and only if L |= E . The size

8 The only dependence of GE,L on L is via r.



of GE,L is polynomial in the size of E and L; and AL has m + 2
states where m is the number of states of L. Furthermore, they can
be constructed in time polynomial in the size of E and L (assuming
that the order k of E is a constant).

By the above theorem, the reduction combined with an optimal
algorithm for HORS model checking yields an k-EXPTIME HFL
model checking algorithm, which is optimal [2].

7. Related Work
The model checking problem for HORS has been studied since
around 2000. Knapik et al. [8] proved the decidability of the problem
for HORS with the safety restriction, and Ong [25] proved the
decidability for arbitrary HORS, without the safety restriction and
showed that the problem is k-EXPTIME complete for order-k
HORS. Since Ong’s proof was complex, a number of alternative
proofs have been developed since then [6, 13, 28, 32]. Among
others, Kobayashi and Ong [12, 13] have provided a type-based
characterization of HORS model checking, which inspired our
type system for HFL model checking in Section 4. The type-based
characterization of HORS model checking has lead to development
of practical algorithms for HORS model checking [3, 10, 11, 24,
27]. We therefore expect that our type-based characterization of
HFL model checking also yields practical algorithms for HFL
model checking. The proof of the correctness of our type-based
characterization (found in the longer version [17]) has been partially
inspired by Salvati and Walukiewicz’s model theoretic approach to
HORS model checking [29]. On the practical side, HORS model
checking has been applied to automated verification of higher-order
programs [9, 16, 18, 19, 23, 26, 33, 35].

Independently of the above line of work, Viswanathan and
Viswanathan [34] introduced HFL, a higher-order extension of
modal µ-calculus, and showed that, while model checking remains
decidable for finite state systems, HFL is strictly more expres-
sive than modal µ-calculus and FLC (Modal Fixpoint Logic with
Chop) [22], another extension of modal µ-calculus. Axelsson et
al. [2] proved that the model checking problem for order-k HFL
formulas is k-EXPTIME complete. The state of the art on prac-
tical algorithms for HFL model checking is much behind that on
HORS model checking algorithms. In [20], the authors sketch a
global model-checking algorithm that does not compute the entire
representation of functions, but relies on neededness analysis in
order to partially represent them. By contrast, the typing game pre-
sented in this paper may be seen as a higher-order extension of local
model-checking [31].

Somewhat surprisingly, despite that both problems are higher-
order extensions of finite state model checking that have been
introduced and studied in the 2000’s, and despite that both are
k-EXPTIME complete for the order-k fragment, we are not aware
of any previous work that studies the connection between HORS
and HFL model checking. The translation from HORS to HFL
in Section 3 has been partially inspired by Kobayashi and Ong’s
type system for HORS model checking [13]. Their type system
statically keeps track of the largest priority of states visited using
types, whereas our translation dynamically keeps that information
by duplicating arguments. This fact is reflected in the translation
from their types to our types for HFL presented in Section 3.
The translation from HORS to HFL model checking may also
have some connection to Salvati and and Walukiewicz’s recent
work [30], which uses a model-theoretic approach to reduce HORS
model checking to nested least/greatest fixpoint computations. In
the translation from HFL to HORS, the key challenge was how to
encode big numbers into order-(k−1) terms of HORS. Our encoding
may be seen as a combination of Jones’ encoding of big numbers
as functions [7], and encoding of Boolean expressions into order-0

terms (with an added automaton to evaluate these expressions); the
latter encoding was used in the benchmark of the HORS model
checker PREFACE [27].

8. Conclusion
We have presented mutual translations between the HORS and HFL
model checking problems, both higher-order extensions of finite
state model checking. We have also proved the correctness of both
translations. These translations preserve complexity, in the sense
that the translation followed by an optimal algorithm for the target
problem yields an optimal (i.e., k-EXPTIME) algorithm for the
source problem. The results reveal the close connection between the
two problems, enabling the cross-fertilization of the two threads of
research. The type-based characterization of HFL model checking
developed in Section 4 may be seen as the first outcome of such
cross-fertilization, which may yield a practical algorithm for HFL
model checking.
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Appendix
A. Proof of Theorem 13
We fix an LTS L = (U,A,−→, sinit) and a HES:

E := (F ηnn =αn ϕn; · · · ;F η0
0 =α0 ϕ0),

where ηn = •.
We assume: (i) αk is ν if k is even and µ otherwise; and (ii)

Fn occurs in none of ϕ0, . . . , ϕn. Those assumptions do not lose
generality, because (i) if αi = αi+1 = µ (αi = αi+1 = µ, resp.),
then we can insert a dummy equation F • =ν F (F • =µ F ,
resp.) between the equations for Fi and Fi+1, without changing
the semantics and typability of E ; and (ii) if Fn occurs in ϕi, we
can add F •n+1 =αn+1 Fn. By the assumption above, Ω(Fk) = k.

As sketched in Section 4, we show Theorem 13 through semantic
typability games. We first define the semantics of types and semantic
typability games in Section A.1. We then introduce in Section A.2
the semantic typability game, a semantic counterpart of the typability
game defined in Section 4, and show that it is equivalent to the
(syntactic) typability game introduced in Section 4. We then show
soundness and completeness of the semantic typability game (with
respect to L |= E) in Sections A.3 and A.4 respectively.

A.1 Semantics of types
The semantics of types Dτ (⊆ DStype(τ)) and Dσ (⊆ DStype(σ))
are defined by:

Ds = {x ∈ D• | s ∈ x}
Dτ1∧···∧τk = Dτ1 ∩ · · · ∩Dτk
Dσ→τ =
{f ∈ DStype(σ)→Stype(τ) | ∀x ∈ Dσ.f(x) ∈ Dτ}

Recall that we are assuming that each τ or σ is implicitly annotated
with the corresponding simple type, so that Stype(τ) and Stype(σ)
are well defined. For each intersection type τ , we define ⊥τ ∈ Dτ
by:

⊥s = {s}
⊥σ→τ =

λx.

{
⊥τ if x ∈ Dσ
⊥Stype(τ) otherwise

⊥τ1∧···∧τk = ⊥τ1 tStype(τ1) · · · tStype(τ1) ⊥τk
When τ ::η, the restriction of (Dη,tη,uη) toDτ forms a complete
sublattice, having ⊥τ as the least element.

Lemma 23. Suppose τ :: η. Then, the following conditions hold.

1. If x, y ∈ Dτ , then x tη y, x uη y ∈ Dτ .
2. Dτ is upward-closed, i.e., x ∈ Dτ and x vη y imply y ∈ Dτ .
3. ⊥τ is the least element of Dτ .
4. If x ∈ Dη , then x ∈ Dτ if and only if ⊥τ vη x.

Proof. The first property can be shown by induction on η.

• If η = •, then τ =
∧
q∈Q q for some Q ⊆ U with Q ⊆ x,

Q ⊆ y. SoQ ⊆ x∩y ⊆ x∪y, henceforth xu• y, xt• y ∈ Dτ .
• Assume η = η1 → η2 and the property 1 holds for η2. Let
x, y ∈ Dη1→η2 . For all z ∈ Dη1 . Then (x uη1→η2 y)(z) =
x(z)uη2 y(z) ∈ Dη2 and (xtη1→η2 y)(z) = x(z)tη2 y(z) ∈
Dη2 by induction, henceforth x uη1→η2 y, x tη1→η2 y ∈
Dη1→η2 .

The second and third properties also follow by straightforward
induction on η. The fourth property follows as an immediate
corollary of the second and third properties.

Lemma 24. If σ ≤ σ′ has a derivation then Dσ ⊆ Dσ′ .

Proof. By straightforward induction on the derivation of σ ≤ σ′

(see the three rules HFL-T-SUBT-BASE, HFL-SUBT-FUN, and
HFL-SUBT-INT of Figure 4).

Let ρ be an interpretation (i.e., a map from a finite set of variables
to
⋃
ηDη). We write ρ |= Γ if ρ(X) ∈ Dτ for every binding

X : τ ∈ dom(Γ). We write Γ |= ϕ : τ (Γ |= ϕ : σ, resp.) if
JϕK(ρ) ∈ Dτ (JϕK(ρ) ∈ Dσ , resp.) holds for every interpretation ρ
such that ρ |= Γ.

We shall show that, for any formula ϕ that does not contain
fixpoint operators, the syntactic type judgment Γ ` ϕ : τ is sound
and complete with respect to the semantic type judgment Γ |= ϕ : τ

Lemma 25 (soundness of syntactic type judgment). Let ϕ be a
formula without fixpoint operators. Then, Γ ` ϕ : τ implies
Γ |= ϕ : τ .

Proof. By induction on the derivation of Γ ` ϕ : τ .

• Case HFL-T-TRUE: since τ = s ∈ U , Γ |= > : τ .
• Case HFL-T-VAR: since X : τ ∈ Γ, for any ρ |= Γ, ρ |= X : τ .
• Case HFL-T-SOME: then ϕ = 〈a〉ϕ′, τ = s ∈ U , s a−→ s′,

and Γ ` ϕ′ : s′ for some s′. By induction, Γ |= ϕ′ : s′, and by
HFL semantics, Γ |= 〈a〉ϕ′ : s.
• Case HFL-T-ALL: similar to previous case.
• Case HFL-T-AND: then ϕ = ϕ1 ∧ϕ2, τ = s ∈ U , Γ ` ϕ1 : s,

and Γ ` ϕ2 : s. By induction, Γ |= ϕ1 : s, and Γ |= ϕ2 : s, and
by HFL semantics, Γ |= ϕ1 ∧ ϕ2 : s.
• Case HFL-T-OR: similar to previous case.
• Case HFL-T-ABS: then ϕ = λX :η.ϕ′, τ = τ1∧· · ·∧τl → τ ′,

and Γ, X : τ1, . . . , X : τk ` ϕ′ : τ ′ for some X 6∈ dom(Γ).
Let ρ be such that ρ |= Γ, and let x ∈ Dτ1 u · · · uDτk . Then
ρ]{X 7→ x} |= Γ, :τ1, . . . , X :τk, thus by induction hypothesis
ρ ] {X 7→ x} |= ϕ′ : τ ′. Since it holds for all such x, and by
definition ofDτ , ρ |= λX : η.ϕ′ : τ1∧· · ·∧τk → τ ′, and since
this holds for all such ρ, Γ |= λX : η.ϕ′ : τ1 ∧ · · · ∧ τk → τ ′.
• Case HFL-T-APP: then ϕ = ϕ1 ϕ2, Γ ` ϕ1 : τ ′ with
τ ′ = τ1 ∧ · · · ∧ τk → τ and Γ ` ϕ2 : τi for all i = 1, . . . , k.
Let ρ be such that ρ |= Γ. By induction hypothesis, ρ |= ϕ1 :
τ1 ∧ · · · ∧ τk → τ and ρ |= ϕ2 : τi for all i = 1, . . . , k. By
definition of Dτ ′ , it holds that ρ |= ϕ1 ϕ2 : τ . Since this holds
for all such ρ, Γ |= ϕ1 ϕ2 : τ .
• Case HFL-T-SUB: straightforward by Lemma 24.

To prove the converse (completeness), we need some preparation.
Given a type environment Γ, we define a canonical interpretation
ρΓ by:

dom(ρΓ) = dom(Γ) ρΓ(X) = ⊥Γ(X)

We have:

Lemma 26. Γ |= ϕ : τ iff JϕK(ρΓ) ∈ Dτ iff ⊥τ v JϕK(ρΓ).

Proof. • Γ |= ϕ : τ =⇒ JϕK(ρΓ) ∈ Dτ : This follows
immediately from the definition of Γ |= ϕ : τ and the fact
ρΓ |= Γ.
• JϕK(ρΓ) ∈ Dτ =⇒ Γ |= ϕ : τ : Suppose ρ |= Γ. Then, by the

definition of ρΓ and Lemma 23, we have ρΓ(X) v ρ(X) for
every X ∈ dom(Γ). Thus, by the monotonicity of JϕK and the
upward-closedness of Dτ (Lemma 23), we have JϕK(ρ) ∈ Dτ .
• JϕK(ρΓ) ∈ Dτ iff ⊥τ v JϕK(ρΓ) follows immediately from

Lemma 23.



For each value x ∈ Dη , we define the corresponding type σx,η
by:

σx,• =
∧
{s | s ∈ x}

σx,η1→η2 =
∧
y∈Dη1

(σy,η1 → σx y,η2)

Here, σ1 → σ2 is defined by:

σ1 → (τ1 ∧ · · · ∧ τk) = (σ1 → τ1) ∧ · · · ∧ (σ1 → τk).

Lemma 27. If x ∈ Dη , then x vη y if and only if y ∈ Dσx,η .

Proof. We first show that x ∈ Dη implies x = ⊥σx,η by induction
on η.

• Case η = •: In this case, x = {s1, . . . , sk} and σx,η =
s1 ∧ · · · ∧ sk. Thus, x ∈ ⊥σx,η follows immediately.
• Case η = η1 → η2: In this case, we have:

Dσx,η =
∧

y∈Dη1

(σy,η1 → σx y,η2).

Suppose y′ ∈ Dη1 . We need to show

xy′ = tη2{⊥σx y,η2
| ⊥σy,η1

v y′}.
By the induction hypothesis, the righthand side is equal to:

tη2{x y | y v y
′} = xy′,

as required.

Now, If x ∈ Dη and x vη y, then ⊥σx,η = x vη y. Thus,
by Lemma 23, we have y ∈ Dσx,η . Conversely, if x ∈ Dη and
y ∈ Dσx,η , then x = ⊥σx,η vη y, as required.

Lemma 28. If ⊥τ vStype(τ) ⊥τ ′ , then τ ′ ≤ τ .

Proof. We show that ⊥τ vStype(τ) ⊥τ1∧···∧τk implies τi ≤ τ for
some i ∈ {1, . . . , k} by induction on the structure of η = Stype(τ).
The lemma follows as a special case, where k = 1.

• Case η = •: In this case, τ = s and τi = si. Thus, by the
assumption ⊥τ vη ⊥τ1∧···∧τk , we have {s} ⊆ {s1, . . . , sk},
which implies τ = s = si = τi for some i.
• Case η = η1 → η2: In this case, τ = σ → τ ′ and τi = σi →
τ ′i . By the condition ⊥τ vη ⊥τ1∧···∧τk , we have

⊥τ ′ = ⊥τ (⊥σ) vη2 ⊥τ1∧···∧τk (⊥σ).

The righthand side is equal to:

tη2{⊥τ ′i | i ∈ {1, . . . , k},⊥σi v ⊥σ}.

Thus, by the induction hypothesis, there must exist i such
that τ ′i ≤ τ ′ and ⊥σi v ⊥σ . Let σ = τ ′′1 ∧ · · · ∧ τ ′′m and
σi = τ ′′′1 ∧ · · · ∧ τ ′′′n . Then ⊥σi v ⊥σ implies ⊥τ ′′′j v ⊥σ
for each j ∈ {1, . . . , n}. By the induction hypothesis, for each
j, there exists j′ ∈ {1, . . . ,m} such that τ ′′j′ ≤ τ ′′′j . Thus, we
have σ ≤ σi. We have, therefore, τi ≤ τ as required.

We are now ready to prove the completeness of the syntactic
type judgment.

Lemma 29 (completeness of syntactic type judgment). Let ϕ be
a formula without fixpoint operators. Then, Γ |= ϕ : τ implies
Γ ` ϕ : τ .

Proof. The proof proceeds by induction on the structure of ϕ.

• Case ϕ = >: Since JϕK(ρΓ) = U , we have U ∈ Dτ , which
implies τ = s ∈ U . Thus, by using HFL-T-TRUE we obtain
Γ ` ϕ : τ .

• Case ϕ = ⊥: This cannot happen, since J⊥K(ρ) = ∅.
• Case ϕ = X: By Lemma 28, we have ⊥τ v JXK(ρΓ) =
ρΓ(X) = ⊥Γ(X). By Lemma 28, we have Γ(X) ≤ τ . By
using HFL-T-VAR and HFL-T-SUB, we obtain Γ ` X : τ as
required.
• Case ϕ = 〈a〉ϕ′: By Lemma 26, we have:

⊥τ v• JϕK(ρΓ) = {s | s a−→ s′, s′ ∈ Jϕ′K(ρΓ)}.

Thus, τ = s with s a−→ s′ and s′ ∈ Jϕ′K(ρΓ) for some s, s′.
By s′ ∈ Jϕ′K(ρΓ) and Lemma 26, we have Γ |= ϕ′ : s′. By
the induction hypothesis, we have Γ ` ϕ′ : s′. Thus, by using
HFL-T-SOME, we obtain Γ ` ϕ : τ as required.
• Case ϕ = [a]ϕ′: By Lemma 26, we have:

⊥τ v• JϕK(ρΓ) = {s | s a−→ s′ =⇒ s′ ∈ Jϕ′K(ρΓ)}.
Thus, τ = s form some s ∈ U , and s′ ∈ Jϕ′K(ρΓ) holds
for every s′ ∈ U such that s a−→ s′. By Lemma 26 and the
induction hypothesis, we have Γ ` ϕ′ : s′ for every s′ ∈ U such
that s a−→ s′. Thus, by using HFL-T-ALL, we obtain Γ ` ϕ : τ
as required.
• Case ϕ = ϕ1 ∧ ϕ2: By Lemma 26, we have:

⊥τ v• JϕK(ρΓ) = Jϕ1K(ρΓ) ∩ Jϕ2K(ρΓ).

Thus, by using Lemma 26 and the induction hypothesis, we get
Γ ` ϕ1 : τ and Γ ` ϕ2 : τ . Thus, by using HFL-T-AND, we
obtain Γ ` ϕ : τ as required.
• Case ϕ = ϕ1 ∨ ϕ2: By Lemma 26, we have:

⊥τ v• JϕK(ρΓ) = Jϕ1K(ρΓ) ∪ Jϕ2K(ρΓ).

Thus, τ = s for some s ∈ U , and s ∈ JϕiK(ρΓ) for i = 1 or
2. By using Lemma 26 and the induction hypothesis, we get
Γ ` ϕ1 : τ or Γ ` ϕ2 : τ . Thus, by using HFL-T-OR, we
obtain Γ ` ϕ : τ as required.
• Case ϕ = ϕ1ϕ2: By the assumption Γ |= ϕ1ϕ2 : τ , we have:

Jϕ1K(ρΓ)(Jϕ2K(ρΓ)) ∈ Dτ .
Suppose x ∈ DσJϕ2K(ρΓ),η2

, where η2 is the simple type of
ϕ2. By Lemma 27, Jϕ2K(ρΓ) v x. By the monotonicity of
Jϕ1K(ρΓ), we have Jϕ1K(ρΓ)(Jϕ2K(ρΓ) v Jϕ1K(ρΓ)(x). Since
DσJϕ2K(ρΓ),η2

is upward-closed (Lemma 23), Jϕ1K(ρΓ)(x) ∈
Dτ . Thus, we have:

Jϕ1K(ρΓ) ∈ DσJϕ2K(ρΓ),η2
→τ .

By Lemma 26, we have Γ |= ϕ1 : σJϕ2K(ρΓ),η2
→ τ . By

Lemma 27, we also have: Jϕ2K(ρΓ) ∈ DσJϕ2K(ρΓ),η2
, which

implies
Γ |= ϕ2 : σJϕ2K(ρΓ),η2

by Lemma 26. By the induction hypothesis, we have Γ ` ϕ1 :
σJϕ2K(ρΓ),η2

→ τ and Γ ` ϕ2 : σJϕ2K(ρΓ),η2
, which imply

Γ ` ϕ1ϕ2 : τ as required.
• Case ϕ = λX.ϕ′: In this case, τ = σ → τ ′ for some σ and
τ ′. By the assumption Γ |= λX.ϕ′ : τ and Lemma 26, we
have JλX.ϕ′K(ρΓ) ∈ Dτ , which implies JλX.ϕ′K(ρΓ)(⊥σ) =
Jϕ′K(ρΓ{X 7→ ⊥σ}) ∈ Dτ ′ . Thus, we have Γ, X :σ |= ϕ′ : τ ′.
By the induction hypothesis, we have Γ, X : σ ` ϕ′ : τ ′.
Therefore, we obtain Γ ` ϕ : τ as required.

A.2 Semantic typability games
We call

F ηnn =αn ϕn; · · · ;F
ηj
j =αj ϕj



an extended HES if ϕi may contain fixpoint operators. As for HES,
we assume: (i) αk is ν if k is even and µ otherwise; and (ii) Fn
occurs in none of ϕj , . . . , ϕn. Thus, ΩE(Fi) = i − j if j is even,
and ΩE(Fi) = i− j + 1 otherwise.

The advantage of semantic type judgments introduced in the
previous subsection is that we can define a typability game also for
extended HES’s.

The semantic typability game for an extended HES

E := (F ηnn =αn ϕn; · · · ;F
ηj
j =αj ϕj)

and an LTS L = (U,A,−→, sinit), written SG(L, E), is a parity
game (V∀, V∃, vinit, E,Ω), where:

• The set V∀ of Opponent’s positions is the set of intersection type
environments {Γ | ∀Fi : τ ∈ Γ.τ :: ηi}.
• The set V∃ of Player’s positions is the set of type bindings that

respect simple types, i.e., {Fi : τ | τ :: ηi}.
• vinit is the initial position F : sinit.
• E = E1 ∪ E2, where E1, the set of Player’s moves, is
{(Fi : τ,Γ) | Γ |= ϕi : τ}; and E2, the set of Opponent’s
moves, is {(Γ, Fi : τ) | Fi : τ ∈ Γ}.
• The priority function Ω is defined by: Ω(Γ) = 0 for every

Γ ∈ V∀, and Ω(Fi : τ) = ΩE(Fi) for every Fi : τ ∈ V∃.

For an ordinary HES (i.e., HES where fixpoint operators do not
occur on the righthand side), the semantic typability game coincides
with the (syntactic) typability game.

Lemma 30. Let E be an HES. Player wins TG(L, E) if and only
if Player wins SG(L, E).

Proof. By the definition of the games, the sets of Opponent’s
Player’s moves in TG(L, E) and SG(L, E) are identical. By
Lemmas 25 and Lemmas 29, the sets of Player’s moves are also
identical. Thus, the two games are isomorphic.

A.3 Soundness of the Semantic Typability Game
We shall show that if Player wins the semantic typability game
SG(L, E), then L |= E holds. To this end, we transform the
semantic parity game step by step, until we obtain the trivial
semantic parity game for E ′ := (Fn =αn toHFL(E)). Player
winning the game means ∅ |= toHFL(E) : sinit, i.e., sinit ∈
JtoHFL(E)K, which implies L |= E .

For i = 0, . . . , n, we define an (extended) HES E(i) as follows.
E(0) is E = (F ηnn =αn ϕn; · · · ;F η0

0 =α0 ϕ0). Given E(i):

F ηnn =αn ϕ
(i)
n ; · · · ;F ηii =αi ϕ

(i)
i ,

E(i+1) is defined as

F ηnn =αn ϕ
(i+1)
n ; · · · ;F ηii+1 =αi+1 ϕ

(i+1)
i+1 ,

where ϕ(i+1)
j = [αiF

ηi
i .ϕ

(i)
i /Fi]ϕ

(i)
j . Thus, E(i+1) is obtained by

removing the last equation F ηii =αi ϕ
(i)
i , and replacing Fi with

αiF
ηi
i .ϕ

(i)
i . Note that E(n) = (Fn =αn toHFL(E)) (recall that

we assumed that Fn does not occur on the righthand side of E). We
write ϕ(i)

j below for the righthand side of the equation for Fj in
E(i).

We shall show that the transformation from E(i) to E(i+1)

preserves the winner of the semantic parity game. To this end,
we construct a winning strategy for SG(L, E(j+1)) from that for
SG(L, E(j)). Let W(j) be a (memoryless) winning strategy for
SG(L, E(j)). For each winning position F : τ of SG(L, E(j)), we
define the closure of F : τ , written closW(j)(F : τ), as the least type
environment such that:

• W(j)(F : τ) ⊆ closW(j)(F : τ)

• If Fj :τ ′ ∈ closW(j)(F :τ), thenW(j)(Fj :τ ′) ⊆ closW(j)(F :
τ).

For example, ifW(j)(F :τ1) = {F :τ2, Fj :τ3} andW(j)(Fj :τ3) =
{F : τ4, Fj : τ3}, then closW(j)(F : τ1) = {F : τ2, Fj : τ3, F : τ4}.

We define Player’s memoryless strategyW(j+1) for SG(L, E(j+1))
by:

W(j+1)(Fk : τ) = {F` : τ ′ | F` : τ ′ ∈ closW(Fk : τ), ` > j}

if k > j and Fk :τ is a winning position of ϕ(j), andW(j+1)(Fk :τ)
is undefined otherwise. We show that W(j+1) is a valid strategy
(i.e., ((Fk:, τ),W(j+1)(Fk : τ)) ∈ E), andW(j+1) is a winning
strategy. To show thatW(j+1) is valid, it suffices to prove:

W(j+1)(Fk : τ) |= ϕ
(j+1)
k : τ

We shall use the following lemma.

Lemma 31 (semantic substitution lemma). If Γ0, F : τ1, . . . , F :
τk |= ϕ : τ with F 6∈ dom(Γ0) and Γi |= ϕ′ : τi for each
i ∈ {1, . . . , k}, then Γ0,Γ1, . . . ,Γk |= [ϕ′/F ]ϕ : τ .

Proof. This follows by straightforward induction on the structure of
ϕ.

Using the lemma above, we show thatW(j+1) is a valid strategy,
by case analysis on αj .

• Case αj = µ:
Let us define clos(i)

W(j)(Fk :τ) by: clos(0)

W(j)(Fk :τ) =W(j)(Fk :

τ) and clos
(i+1)

W(j) (Fk : τ) = {F : τ ′ ∈ clos
(i)

W(j)(Fk : τ) |
F 6= Fj} ∪

⋃
Fj :τ ′∈clos

(i)

W(j)
(Fk:τ)

W(j)(Fj : τ ′). Since the

set of types is finite, andW(j) is a winning strategy, we have
clos

(m)

W(j)(Fk : τ) =W(j+1)(Fk : τ) for some m. By repeatedly
applying the semantic substitution lemma toW(j)(Fk : τ) |=
ϕ

(j)
k : τ , we obtain:

W(j+1)(Fk : τ) |= [ϕ
(j)
j /Fj ]

mϕ
(j)
k : τ.

Thus, we have

W(j+1)(Fk : τ) |= [µF
ηj
j .ϕ

(j)
j /Fj ]ϕ

(j)
k : τ

as required.
• Case αj = ν:

Let {τ1, . . . , τ`} be {τ ′ | Fj : τ ′ ∈ closW(j)(Fk : τ)}. Then,
we have:

W(j+1)(Fk : τ), Fj : τ1, . . . , Fj : τ` |= ϕ
(j)
j : τi,

which implies

W(j+1)(Fk : τ) |= λFj .ϕ
(j)
j : τ1 ∧ · · · ∧ τ` → τi

for every i ∈ {1, . . . , `}. By Lemma 26, we have:

⊥τ1∧···∧τ` vηj JλFj .ϕ(j)
j K(ρW(j+1)(Fk:τ))(⊥τ1∧···∧τ`).

Thus, we have

⊥τ1∧···∧τ` vηj JνF ηjj .ϕ
(j)
j K(ρW(j+1)(Fk:τ)),

from which we obtain

W(j+1)(Fk : τ) |= νFj .ϕ
(j)
j : τ1 ∧ · · · ∧ τ`

by using Lemma 26. Thus, by Lemma 31, we have:

W(j+1)(Fk : τ) |= [νFj .ϕ
(j)
j /Fj ]ϕ

(j)
k : τ

as required.



Finally, to see that W(j+1) is a winning strategy, notice that
for each segment (Fk : τ)(W(j+1)(Fk : τ))(F ′ : τ ′) of a play that
conforms to the strategyW(j+1), there is a corresponding segment
(Fk : τ)(W(j)(Fk : τ))(Fj : τ ′′)(W(j)(Fj : τ ′′)) · · · (F ′ : τ ′) of a
play that conforms to the strategyW(j), where the largest priorities
in the segments are the same. Thus, every play that conforms to
W(j+1) is won by Player.

By the discussion above, we have:

Lemma 32. Let E be an HES and L be an LTS. If Player wins
SG(L, E), then L |= E .

A.4 Completeness of the Semantic Typability Game
We show the converse of Lemma 32: if L |= E then Player wins
the semantic typability game SG(E ,L). Essentially, we just need
to do the inverse of the argument for the soundness proof. We
start with a winning strategy for the semantic typability game
of E(n) and construct those for the semantic parity games of
E(n−1), . . . , E(0) = E step by step, where E(0), . . . , E(n) are as
defined in Section A.3.

Actually, we use a slightly different notion of semantic typability
game. The fat semantic typability game for an extended E :

F ηnn =αn ϕn; · · · ;F
ηj
j =αj ϕj

(with ηn = •) and an LTS L = (U,A,−→, sinit) is a parity game
FG(L, E) = (V∀, V∃, Vinit, E,Ω), where:

• The set V∀ of Opponent’s positions is the set of intersection type
environments {Γ | ∀Fi : τ ∈ Γ.τ :: ηi}.
• The set V∃ of Player’s positions is the set of type bindings that

respect simple types, i.e., {Fi : σ | σ :: ηi, σ 6= >}.
• Vinit is the set of initial positions: {Fn : s1 ∧ · · · ∧ sk | sinit ∈
{s1, . . . , sk}}.
• E = E1 ∪ E2, where E1, the set of Player’s moves, is
{(Fi : σ,Γ) | Γ |= ϕi : σ}; and E2, the set of Opponent’s
moves, is {(Γ, Fi : σ) | σ = Γ(Fi)}.
• The priority function Ω, is defined by: Ω(Γ) = 0 for every

Γ ∈ V∀, and Ω(Fi : σ) = ΩE(Fi) for every Fi : τ ∈ V∃.

In the last but one clause, Γ(Fj) denotes {τ | Fj : τ ∈ Γ}. Player
wins if there is a winning strategy from one of the initial positions.
The difference from the (non-fat) semantic typability game is that
Player’s position is of the form F : σ, instead of F : τ .

AssumingL |= E , we construct winning strategies for FG(L, E(n)),
FG(L, E(n−1)),. . . , FG(L, E(0)) in this order. For E(n), there is a
trivial winning strategy defined by:W(n)(Fn :⊥JtoHFL(E)K,•) = ∅.

Assume we are given a memoryless winning strategyW(j+1)

for FG(L, E(j+1)). Recall that E(j+1) is:

Fn =αn ϕ
(j+1)
n ; · · · ; · · · ;Fj+1 =αj+1 ϕ

(j+1)
j+1 Fn,

where ϕ(j+1)
i = [αjFj .ϕ

(j)
j /Fj ]ϕ

(j)
i . Without loss of generality,

we assume thatW(j+1) is defined only for Player’s winning posi-
tions of FG(L, E(j+1)).

We define Player’s history-sensitive strategy9W ′(j) for FG(L, E(j))
as the partial function given by:

W ′(j)(h(Fk : σ)) = Γ, Fj : σ
JαjF

ηj
j .ϕ

(j)
j K(ρΓ),ηj

if k > j andW(j+1)(Fk : σ) = Γ

W ′(j)(h(Γ, Fj : σj)(Fj : σj)) = (Γ, Fj : σj)
if αj = ν, and σj = σ

JνF
ηj
j .ϕ

(j)
j K(ρΓ),ηj

.

W ′(j)(h(Γ, Fj : σj,`)(Fj : σj,`)) = (Γ, Fj : σj,`−1)
if αj = µ, and σj,` = σ

JF (`)
j K(ρΓ),ηj

6= σ
JF (`−1)
j K(ρΓ),ηj

= σj,`−1

Here, the formula F (i)
j occurring in the last clause is defined by:

F
(0)
j = λX1, . . . , X`j .ff F

(i+1)
j = [F

(i)
j /Fj ]ϕ

(j)
j .

(Thus, JF (`)
j K(ρΓ) = JµF ηjj .ϕ

(j)
j K(ρΓ) for a sufficiently large `.)

W ′(j)(h) is undefined if it does not match any of the three clauses
above.

We show thatW ′(j) is a valid strategy, i.e.,W ′(j)(h(Fk:σ)) = Γ

implies Γ |= ϕ
(j)
k : σ. We perform case analysis on which caluse

has been used for derivingW ′(j)(h(Fk : σ)) = Γ.

• The first clause:
In this case, Γ = Γ′, Fj : σ

JαjFj .ϕ
(j)
j K(ρΓ),ηj

, with k > j and

W(j+1)(Fk : σ) = Γ′. By the validity of the strategyW(j+1),
we have Γ′ |= ϕ

(j+1)
k : σ, i.e.,

Γ′ |= [αjFj .ϕ
(j)
j /Fj ]ϕ

(j)
k : σ.

Thus, we have

Γ′, Fj : σ
JαjFj .ϕ

(j)
j K(ρΓ),ηj

|= ϕ
(j)
k : σ

as required.
• The second clause:

In this case, h = h′Γ and Γ = Γ′, Fj : σj with αj = ν and
σj = σ

JνFj .ϕ
(j)
j K(ρΓ′ ),ηj

. Thus, we have Γ′, Fj :σj |= ϕ
(j)
j : σj

as required.
• The third clause:

In this case, h = h′(Γ, Fj : σj,`) and Γ = Γ′, Fj : σj,`−1, with
αj = µ, and σj,` = σ

JF (`)
j K(ρΓ′ ),ηj

6= σ
JF (`−1)
j K(ρΓ),ηj

=

σj,`−1, where F (`)
j = [F

(`−1)
j /Fj ]ϕ

(j)
j . Since JF (`)

j K(ρΓ) =

Jϕ(j)
j K(ρΓ′{Fj 7→ JF (`−1)

j K(ρΓ)}), we have

Γ′, Fj : σ
JF (`−1)
j K(ρΓ′ ),ηj

|= ϕ
(j)
j : σ

JF (`)
j K(ρΓ′ ),ηj

,

as required.

To check thatW ′(j) is a winning strategy, it suffices to observe
that (i) for each fragment (Fk :σ)h′(Fk′ :σ

′) of a play with k, k′ > j,
there exists a corresponding fragment of a play (consisting of two
moves) (Fk : σ)Γ(Fk′ : σ′) conforming to W(j+1); (ii) if there
exists an infinite play that visits only Fj , then αj must be even
(since the third clause in the definition ofW ′(j) can generate only
finite plays); and (iii) Player never gets stuck (note that in the third
clause, σj,0 = >, and that in the first clause, Fk : σ comes from the
co-domain ofW(j+1)).

Now, by a standard theorem on parity games, there is also a
memoryless winning strategyW(j).

9 Player’s history-sensitive strategyW for a parity game is a partial map
from (V∀ ∪V∃)∗V∃ to V∀ ∪V∃. It is winning if Player wins every play that
conforms toW , i.e., every play vinitv1v2 · · · such that ∀n.vn ∈ V∃ =⇒
vn+1 = W(vinit · · · vn). It is known that if there is a history-sensitive
winning strategy, there also exists a memoryless winning strategy [5].



By repeating the above steps, we obtain a memoryless winning
stragety W(0) for FG(L, E). From W(0), we can construct a
history-sensitve winning strategy W ′ for the non-fat semantic
typability game SG(L, E) as follows.

W ′(Fn : sinit) =W(0)(Fn : σ0)
where Fn : σ0 is an initial, winning position of the fat game.

W ′(hΓ(F : τ)) =W(0)(F : Γ(F )).

We can further convertW ′ to a memoryless winning strategyW for
SG(L, E).

Thus, we have:

Lemma 33. Let E be an HES and L be an LTS. If L |= E , then
Player wins SG(L, E).

Theorem 13 follows as an immediate corollary of Lemmas 30,
32, and 33.

B. Proofs for Lemmas in Section 5
We show that the KO typing game TG(G,A) is isomorphic to the
HFL typing game TG(LA, EG) where positions of the form Ln : τ
have been omitted.

Let Γaux = {Ln :
∧
q1∈Q1

q1 → · · ·
∧
qn∈Qn qn → f |

(Q1, . . . , Qn) |= f}.
The positions that are omitted precisely are the ones of Γaux . We

first show that these are winning positions for Player.

Proof of Lemma 17. The claim is that always playing Γaux is a
winning strategy for Player in the typing game starting at position
`HFL Ln :

∧
q∈Q1

q →
∧
q∈Q2

q → · · · →
∧
q∈Qn q → f .

To prove this, we reason by induction on f . Let σl =
∧
q∈Ql

q,
Γ = {y1 : σ1, . . . , yn} and ϕ = 〈and〉tt∧ [and](Ln y1 . . . yn))∨
〈or〉(Ln y1 . . . yn) ∨

∨n
j=1〈j〉yj ∨ 〈true〉>. By case analysis on

f , we show that Γ,Γaux `HFL ϕ : f iff (Q1, . . . , Qn) |= f .

• if f = (j, q), then f
j−→ q and this is the only transition from

f , so `HFL ϕ : f iff `HFL 〈j〉yj : f , if and only if `HFL yj : q, if
and only if q ∈ Qj , if and only if (Q1, . . . , Qn) |= f .

• if f = f1∧f2, then f and−→ f1, f and−→ f2. Then Γ,Γaux `HFL ϕ :
f iff Γ,Γaux `HFL Ln y1 . . . yn : fi for i = 1, 2, iff (by induc-
tion) (Q1, . . . , Qn) |= fi for i = 1, 2 iff (Q1, . . . , Qn) |= f .
• the case f = f1 ∨ f2 is similar

• if f = tt, then f true−→ f , therefore Γ `HFL 〈true〉> : f
and Γ `HFL ϕ : f . Moreover, (Q1, . . . , Qn) |= tt, so the
equivalence holds.

Hence Γ,Γaux `HFL ϕ : f iff (Q1, . . . , Qn) |= f , which ends the
proof.

We now move to identifying Player’s positions of the KO typing
game with Players’ position of the HFL typing game.

Lemma 34. Let e be a term of a HORS. If Γ `HFL e]m : τ then
there exists Θ such that Θ `HORS e : (τ)[ with Γ ⊇ (Θ↑m)].

Proof. By induction on e:

• if e = x for a variable or a non-terminal x, then by T-VAR
Γ ⊇ x]m : τ = (Θ↑m)] with Θ := {x :

(
(τ)[, 0

)
} such that

Θ `HORS x : (τ)[

• if e = a with Σ(a) = n, then by definition of (.)]m and by
T-ABS, there are σl,m′ =

∧
q′∈Ql,m′

q′ and q ∈ Q such that
τ = σ1,0 → · · · → σ1,p−1 → · · · → σn,0 → · · · →
σn,p−1 → q

Γ,Γ′ `HFL
∨p−1
m′=0〈am′〉(Ln y

]m′

1 . . . y]m
′

n ) : q

Γ′ =
{
y]m

′

l : σl,m′ | (l,m′) ∈ {1, . . . , n} × {0, . . . , p −
1}
}

By construction of LA, fixing m′ := Ω(q),

Γ,Γ′ `HFL Ln y]m
′

1 . . . y]m
′

n : δA(q, a),

and by Lemma 17 there is Q ∈ (2Q)n such that Q |= δA(q, a)

and Γ,Γ′ `HFL y]m
′

l :
∧
q′∈Ql

q′ for all l = 1, . . . , n. So it
holds that (Q1,m′ , . . . , Qn,m′) |= δA(q, a), and by T-CONST
in KO type system, `HORS a : θ with

θ :=
∧

q′∈Q1,m′

(q′,m′)→ · · · →
∧

q′∈Qn,m′

(q′,m′)→ q.

Finally, (τ)[ ≤ θ, hence by T-SUB `HORS a : (τ)[.
• if e = e1 e2, then there are types τm′,j such that

1. Γ `HFL e]m1 :
∧
j∈J0

τ0,j → · · · →
∧
j∈Jp−1

τp−1,j → τ ,
and

2. Γ `HFL e]max(m,m′)
2 : τm′,j for all m′ = 0, . . . , p − 1 and

for all j ∈ Jm′
By induction hypothesis
1. there is Θ1 such that Γ ⊇ (Θ1↑m)] and Θ1 `HORS e1 :∧

m′=0,...,p−1,j∈Jm′
((τm′,j)

[,m′)→ (τ)[

2. there are Θm′,j such that Γ ⊇ (Θm′,j↑max(m,m′))
] and

Θm′,j `HORS e2 : (τm′,j)
[

Let Θ := Θ1 ∪
⋃
{Θm′,j↑m′ | m′ = 0, . . . , p − 1, j ∈ Jm′}.

Then Γ ⊇ (Θ↑m)], and Θ `HORS e1 e2 : (τ)[

Lemma 35. Let e be a term of a HORS. If Θ `HORS e : θ, then
(Θ↑m)] `HORS e]m : (θ)]

Proof. By induction on e:

• if e = x, then Θ ⊇ {x : (θ, 0)}, so (Θ↑m)] ⊇ {x]m : (θ)]},
and (Θ↑m)] `HFL x]m : (θ)]

• if e = a with Σ(a) = n then by T-CONST it holds that
θ =

∧
j∈J1

(q1j ,Ω(q))) → · · · →
∧
j∈Jn(qnj ,Ω(q))) → q

for some q, qlj such that
{

(l, qlj) | l ∈ {1, . . . , n}, j ∈
Jl
}
|= δ(q, a). Let m = Ω(q) and Γ =

{
y]ml : qlj | l ∈

{1, . . . , n}, j ∈ Jl
}

. Then (Θ↑m)] `HFL 〈am〉(Ln y]m1 . . . y]mn )

since (Θ↑m)] ⊇ Γaux . Let σl,m′ = > if m′ 6= m, and
σl,m =

∧
j∈Jl

qlj , so that (θ)] = σ1,0 → . . . σ1,p−1 →
· · · → σn,0 · · · → σn,p−1 → q. Let Γ′ =

{
y]ml : σl,m |

l ∈ {1, . . . , n},m ∈ {0, . . . , p − 1}
}

. Since Γ ⊆ Γ′,
Γ′, (Θ↑m)] `HFL 〈am〉(Ln y]m1 . . . y]mn ) : q, so Γ′, (Θ↑m)] `HFL∨p−1
m′=0〈am′〉(Ln y

]m′

1 . . . y]m
′

n ) : q, and finally (Θ↑m)] `HFL
(a)]m : (θ)].
• if e = e1 e2, then by T-APP Θ = Θ0 ∪

⋃
j∈J Θj↑mj for

some Θj and mj , and Θ `HORS e1 :
∧
j∈J(θj ,mj) → θ, and

Θj `HORS e2 : θj . Let
∧
j∈J(θj ,mj) =

∧p−1
m′=0

∧
j∈Jm′

(θj ,m
′).

By definition, (Θ↑m)] = (Θ0↑m)] ∪
⋃
j∈J Θj↑max(i,mj) By

induction hypothesis, (Θ↑m)] `HORS e]m1 :
∧
j∈J0

(θj)
] →

· · · →
∧
j∈Jp−1

(θj)
] → (θ)] and (Θj↑m′)] `HORS e]m

′

2 :

(θj)
] for all j ∈ J and for all m′. In particular, for all

m′ = 0, . . . , p−1, for all j ∈ Jm′ , (Θ↑m)] `HORS e]max(i,m′)
2 :

(θj)
], so by T-APP and by definition of (.)]m, (Θ↑m)] `HORS

(e1 e2)]m : (θ)].



Proof of Lemma 16. Follows immediately from Lemmas 34 and
35 in the special case m = 0.

C. Proofs for Section 6
Proof of Lemma 20. Recall that a number n > 0 is decremented

by one by flipping exactly those bits in its binary representation such
that all bits of lesser significance are zero. In particular, the least
significant bit must be flipped.

Note that the order 1 nonterminals representing boolean opera-
tions work as intended: If T is the tree generated by x, and T ′ is the
tree generated by Not x then T ⇓ b iff T ′ ⇓ b, where b ∈ {1, 0}
and b is the opposite constant. Moreover, if Tj is the tree generated
by xj , for 1 ≤ j ≤ `, and T is the tree generated by OR` x1, · · · , x`,
then T ⇓ 1 iff Tj ⇓ 1 for at least one j, and T ⇓ 0 iff Ti ⇓ 0 for all
j.

The proof of the lemma is by induction on i. Let i = 1. By
the above, if T is the tree generated by IsZero1 (b0, . . . , br−1)
and Tj is the tree generated by bj , for j with 0 ≤ j ≤ r − 1,
then T ⇓ 1 if Tj ⇓ 0 for all j and T ⇓ 1 if there exists j such
that Tj ⇓ 1 and Tj′ ⇓ 0 for all j′ < j. Consider Decm1 Max1 for
0 ≤ m ≤ exp1(r)− 1 and let Tj be the tree generated by the j-th
bit in this tuple. We observe that Tj ⇓ 0 if the j-th bit in the binary
representation of exp1(r)−1−m is zero and Tj ⇓ 1 if it is one. We
prove this by induction overm. Form = 0 the claim is by definition
since Tj ⇓ 1 for all j. Consider the statement proved for m < r− 1
and let T ′j the the tree generated by bit number j in Decm+1

1 Max1.
For j = 0, via DecSub0 b0 → Not bj we obtain that T0 ⇓ b iff
T ′0 ⇓ b. Since the least significant bit of exp1(r) − 1 − (m + 1)
must be the opposite of the least significant bit of exp1(r)−1−m,
this proves the statement for j = 0. From

DecSubj b0 · · · bj → if (ORj b0 · · · bj−1) bj (Not bj)

we conclude that, if Tj ⇓ b then T ′j ⇓ b iff Tj′ ⇓ 0 for all j′ < j

and T ′j ⇓ b else. If T ′j ⇓ b then, by the induction hypothesis,
all bits of lesser significance than j in the binary representation
of exp1(r) − 1 − m are zero, whence the j-th bit must be
flipped in the binary representation of exp1(r) − 1 −m − 1 =
exp1(r) − 1 − (m + 1), which it is. Conversely, if Tj ⇓ b then
T ′j ⇓ b iff Tj′ ⇓ 1 for some j′ < j. Hence, by the induction
hypothesis, the j′-th bit of m is one and, hence the j-th bit of
exp1(r)− 1−m− 1 = exp1(r)− 1− (m+ 1) equals the j-th
bit of exp1(r)− 1−m− 1 = exp1(r)− 1− (m). This finishes
the induction and yields the claim of the lemma for i = 1.

Assume that the lemma is proved for some i. Note that the binary
representation of expi+1(r) − 1 has expi(r) − 1 bits, none of
which are zero.

Consider the trees Tmm′ generated by (Decmi+1 Maxi+1) (Decm
′

i Maxi)

and T ′mm′ generated by ExistsOnei+1 (Decmi+1 Maxi+1) (Decm
′

i Maxi).
We claim that Tmm′ ⇓ 0 iff the expi(r) − 1 − m′-th bit of
expi+1(r) − 1 −m is zero and that Tmm′ ⇓ 1 if it is one. More-
over we claim that T ′mm′ ⇓ 1 if Tmm′′ ⇓ 1 for some m′′ with
expi+1(r)− 1 ≥ m′′ > m′ and that T ′mm′ ⇓ 0 if Tmm′′ ⇓ 0 for all
expi+1(r) − 1 ≥ m′′ > m′. The proof is by double induction
on m and m′. For the outer induction, consider the case m = 0.
Clearly Maxi+1 (Decm

′
i Maxi) generates the tree T 0

m′ = 1 for all
m′. Hence, also T ′0m′ ⇓ 1 if m′ < expi(r) − 1 and T ′0m ⇓ 0 if
m′ = expi(r)− 1 by induction over m′.

Consider the claim proved for some m < expi+1(r)− 1. We
have to show that Tm+1

m′ ⇓ 1 if the expi(r) − 1 − m′-th bit of

expi+1(r) − 1 − (m + 1) is zero and that Tm+1
m′ ⇓ 1 if it is one.

Consider

Deci+1 f g → if (ExistsOnei+1 f g) (f g) (Not(f g)).

There are two cases: If the expi(r)− 1−m′′-th bit of the binary
representation of expi+1(r) − 1 − m is one for some m′′ with
expi(r) − 1 ≥ m′′ > m′, then, by the induction hypothesis,
T ′mm′ ⇓ 1 and the second clause of the if statement is relevant.
In other words, if Tmm′ ⇓ b then Tm+1

m′ ⇓ b, which is as desired
since the expi(r) − 1 −m′-th bit of expi+1(r) − 1 − (m + 1)
must equal the same bit of exp1(r) − 1 −m, whence the claim
holds for this case. If the expi(r) − 1 −m′′-th bit of the binary
representation of expi+1(r) − 1 − m is zero for all m′′ with
expi(r) − 1 ≥ m′′ > m′, then the expi(r) − 1 − m′′-th
bit of expi+1(r) − 1 − (m + 1) must be opposite to that of
expi+1(r)−1−m. By the induction hypothesis, T ′mm′ ⇓ 0 whence,
if Tmm′ ⇓ b, then Tm+1

m′ ⇓ b.
It remains to show that T ′m+1

m′ ⇓ 1 if Tm+1
m′′ ⇓ 1 for some m′′

with expi+1(r)− 1 ≥ m′′ > m′ and that T ′m+1
m′ ⇓ 0 if Tmm′′ ⇓ 0

for all m′′ with expi+1(r)− 1 ≥ m′′ > m′. By the claim of the
lemma for i, if m′ = expi+1(r) − 1, then the clause IsZeroi g
in the definition of ExistsOnei+1 will generate a tree T such that
T ⇓ 1 and Tm+1

m′′ ⇓ 0, which is correct since there is no valid
m′′ > m′. The rest of the claim proceeds by induction over m′.
Consider it proved form′ > 0. We show that it holds form′−1. By
definition of ExistsOnei+1, we have that T ′m+1

m′−1 is that generated
by

if (f (Deci g)) 1
(
ExistsOnei+1 f (Deci g)

)
)

where f = Decm+1
i+1 Maxi+1 and Deci g = Decm

′−1+1
i Maxi.

Since Tm+1
m′ ⇓ 1 if the expi(r) − 1 − (m′)-th bit of the binary

representation is one, we get that T ′m+1
m−1 ⇓ 1 if the expi(r)−1−m′-

th bit of the binary representation of expi+1(r) − 1 − (m + 1)

is one. Since Tm+1
m′ ⇓ 0 if the expi(r) − 1 − (m′)-th bit of the

binary representation is zero, we get that T ′m+1
m′−1 ⇓ b iff T ′m+1

m′ ⇓ b.
By the induction hypothesis, T ′m+1

m′ ⇓ 1 iff there is m′′ with
0 ≥ m′′ ≥ m′, such that the expi(r) − 1 − m′′-th bit of the
binary representation of expi+1(r)− 1− (m+ 1) is one, which
finishes the induction.

Putting it all together, we obtain that, if T is the tree generated
by IsZeroi+1 Decmi+1 Maxi+1, then T ⇓ 1 if m = expi(r) − 1
and T ⇓ 0 if m < expi(r) − 1, which is the claim for the case
i+ 1 in the main induction. Hence, the lemma is proved.

Below we write FV(ϕ) for the set of free variables occurring in
ϕ.

Proof of Lemma 21. We define the substitution γi (i ∈ {0, . . . , n, n+
1}) by:

γ0 = [ ] (i.e., the empty substitution)
γi+1 = [αiFi.γiϕi/Fi] ◦ γi

Note that toHFL(E) = γn+1Fn = αnFn.γnϕn.
For β ∈ {0, . . . ,mh}n−j+1, we define the HFL formula ϕβj

by:

ϕ
(mn,...,mj+1,0)

j = λx1. · · ·λx`j .α̂j
ϕβj = [ϕ

β(n)
n /Fn, . . . , ϕ

β(j)
j /Fj ]γjϕj

if β = (mn, . . . ,mj) with 0 < mj <mh.
ϕβj = [ϕ

β(n)
n /Fn, . . . , ϕ

β(j+1)
j+1 /Fj+1]αjFj .γjϕj

if β = (mn, . . . ,mj) with mj = mh.

We shall show that
Jϕβj K = JF βj K

by well-founded induction on β. Let β = (βn, . . . , βj).



• Case βj = 0: The result follows immediately, since

ϕβj = λx1. · · ·λx`j .α̂j = F βj .

• Case βj > 0: We first show that

ϕ
β(`)
` = [ϕβ(n)

n /Fn, . . . , ϕ
β(j)
j /Fj ]γjF` (∗)

holds for every ` < j, by induction on j − ` > 0. Since
β(`) = (β(`+ 1),mh), by the definition of ϕβj , we have:

ϕ
β(`)
` = [ϕ

β(n)
n /Fn, . . . , ϕ

β(`+1)
`+1 /F`+1]α`F`.γ`ϕ`

(by the definition of ϕβ` )
= [ϕ

β(n)
n /Fn, . . . , ϕ

β(j)
j /Fj ]

[γjFj−1/Fj−1, . . . , γjF`+1/F`+1]α`F`.γ`ϕ`
(by the induction hypothesis)

= [ϕ
β(n)
n /Fn, . . . , ϕ

β(j)
j /Fj ]γj(α`F`.γ`ϕ`)

(by dom(γj) ∩ FV(α`F`.γ`ϕ`) ⊆ {F`+1, . . . , Fæ−1})
= [ϕ

β(n)
n /Fn, . . . , ϕ

β(j)
j /Fj ]γjF`

as required.
Now, if βj <mh, we have

F βj = [F
β(n)
n /Fn, . . . , F

β(0)
0 /F0]ϕj

ϕβj = [ϕ
β(n)
n /Fn, . . . , ϕ

β(j)
j /Fj ]γjϕj

= [ϕ
β(n)
n /Fn, . . . , ϕ

β(j)
j /Fj ,

γ′γjFj−1/Fj−1, . . . , γ
′γjF0/F0]ϕj

by the definition of F βj and ϕβj , where

γ′ = [ϕβ(n)
n /Fn, . . . , ϕ

β(j)
j /Fj ].

By the induction hypothesis, JF β(`)
` K = Jϕβ(`)

` K for ` ≥ j. For
` < j, we have:

JF β(`)
` K = Jϕβ(`)

` K (by the induction hypothesis)
= Jγ′γjF`K (by property (*) above).

Thus, we have the required result.
The remaining is the case where βj = mh. For any β′ =
(βn, . . . , βj+1,m) for 0 < m ≤mh, we have

JF β
′

j K = J[F β
′(n)

n /Fn, . . . , F
β′(0)
0 /F0]ϕjK

= J[ϕβ
′(n)
n /Fn, . . . , ϕ

β′(0)
0 /F0]ϕjK

(by the induction hypothesis)
= J[ϕβ

′(n)
n /Fn, . . . , ϕ

β′(j)
j /Fj ](γjϕj)K

(by property (*) above)
= J[ϕβ

′(j)
j /Fj ][ϕ

β′(n)
n /Fn, . . . , ϕ

β′(j+1)
j+1 /Fj+1](γjϕj)K

(since ϕβ
′(k)
j ’s are closed )

= J(λFj .[ϕβ(n)
n /Fn, . . . , ϕ

β(j+1)
j+1 /Fj+1](γjϕj))KJϕβ

′(j)
j K.

Thus, we have:

JF βj K = fmhJλx1. · · ·λx`j .α̂jK

for f = (J(λFj .[ϕβ(n)
n /Fn, . . . , ϕ

β(j+1)
j+1 /Fj+1](γjϕj))K. By

the Knaster-Tarski Theorem, we have:

JF βj K = αjFj .[ϕ
β(n)
n /Fn, . . . , ϕ

β(j+1)
j+1 /Fj+1](γjϕj) = Jϕβj K

as required.

Finally, the required result follows as a special case of Jϕβj K = JF βj K,
where j = n and β = mh.

We assume below that ηj = ηj,1 → · · · → ηj,`j → •. We de-
fine λ-terms eβj for each j ∈ {0, . . . , n}, β ∈ {0, . . . ,mh}n−j+1

by induction on β (with respect to the well-founded relation <):

e
(mn,...,mj+1,0)

j = λx1 : η!
j,1. · · ·λx`j : η!

j,`j
.α̂j

eβj = [e
β(0)
0 /G0, . . . , e

β(n)
n /Gn]ϕ!

j

if β = (mn, . . . ,mj) with mj > 0.

Here, (·)! translates HFL formulas and types to terms and types of
HORS, by simply replacing the proposition type with the tree type,
and every logical connective with the corresponding tree constructor:

(•)! = ? (η1 → η2)! = η!
1 → η!

2

(c)! = c (x)! = x (Fi)
! = Fi (ϕ1ϕ2)! = (ϕ1)!(ϕ2)!.

In the above definition, c ranges over ∨,∧, 〈a〉, [a],>,⊥, and the
righthand side of (c)! is the corresponding tree constructor of the
same name. Notice that eβj is essentially the same as the HFL
formula F βj defined in Section 6, except that each logical connective
has been replaced by the corresponding tree constructor. We have:

Lemma 36. sinit ∈ JF (mh)
n K, if and only if T

e
(mh)
n

(i.e., the tree

generated by e(mh)
n ) is accepted by AL.

Proof. We define the logical relation ∼η between closed (fixpoint-
free) HFL formulas and λ-terms by:

• ϕ ∼• e if (i) ` ϕ : •, (ii) e : ?, and (iii) for every s ∈ U ,
s ∈ JϕK if and only if Te is accepted by AL from qs.
• ϕ ∼η1→η2 e if (i) ` ϕ : η1 → η2, (ii) ` e : (η1 → η2)!, and

(iii) ϕϕ′ ∼η2 ee
′ holds for every ϕ′, e′ such that ϕ′ ∼η1 e

′.

Then, it follows that for every logical connective c (and the corre-
sponding tree constructor), c ∼ηc c holds (where η∧ = η∨ = • →
• → •, η〈a〉 = η[a] = • → •, and η> = η⊥ = •). By using the
standard argument on logical relations and well-founded induction
on β, we can prove F βj ∼ηj e

β
j , from which F (mh)

n ∼• e(mh)
n

follows as a special case. Thus, we have the required result.

Now it remains to show that e(mh)
n is essentially equivalent to

GE,L. For a term e of HORS GE,L, we just write Te for the tree
generated from e (instead of the start symbol S).

Lemma 37. T
e
(mh)
n

is accepted by AL if and only if so is TGE,L .

Proof. Let N be the second component of GE,L (which is a map
from non-terminals to their simple types). We define another log-
ical relation ∼′κ between terms of GE,L (which may contain λ-
abstractions) by:

• e ∼′? e′ if (i) ` e : ?, (ii)N ` e′ : ?, and (iii) for every s ∈ U ,
Te is accepted by AL from qs if and only if Te′ is accepted by
AL from qs.
• e ∼′κ1→κ2

e′ if (i) ` e : κ1 → κ2, (ii) N ` e′ : κ1 → κ2, and
(iii) ee1 ∼′κ2

e′e′1 holds for every e1, e
′
1 such that e1 ∼′η1

e′1.

Below we write i# for Decmh−iMaxk. When β = (βn, . . . , βj),
we also write β# for the sequence βn# · · · βj#. We show:

e
(βn,...,βj)

j ∼′η!
j
Gj βn

# · · · βj#

by well founded induction on β = (βn, . . . , βj). We need to show

e
(βn,...,βj)

j e1 · · · e`j ∼
′
? Gj βn

# · · · βj# e′1 · · · e′`j
for every e1, . . . , e`j , e

′
1, . . . , e

′
`j

such that ei ∼′ηj,i e
′
i.

• Case βj = 0:
By the definition of e(βn,...,βj)

j , T
e
(βn,...,βj)

j e1···e`j
= α̂j . By

the definition of GE,L,

TGj βn# ··· βj# e′1···e
′
`j

= ifTIsZerok (βj#) α̂j · · · .



By the assumption βj = 0 and by Lemma 20, TIsZeroi (βj#) is
accepted from q1. Thus, the whole tree is accepted from qs if
and only if α̂j is. Thus, we have the required result.
• Case βj > 0:
e

(βn,...,βj)

j e1 · · · e`j is reduced to:

[e
β(0)
0 /G0, . . . , e

β(n)
n /Gn, e1/x1, . . . , e`j/x`j ]ψ

!
j .

On the other hand,

Gj βn
# · · · βj# e′1 · · · e′`j

is reduced to:

if (IsZerok(βj
#) α̂j

([e′1/x1, . . . , e
′
`j
/x`j ] [[ ψj ]]βn#,...,(βj−1)#)

The else part is actually equivalent to:

[G0 (β(0))#/G0, . . . , Gn (β(n))#/Gn, e
′
1/x1, . . . , e

′
`j/x`j ]ψ

!
j .

By the induction hypothesis, eβ(i)
i ∼′

η!
i
Gi (β(i))#. Thus, by

the standard logical relation argument, we obtain

[e
β(0)
0 /G0, . . . , e

β(n)
n /Gn, e1/x1, . . . , e`j/x`j ]ψ

!
j

∼′
η!
j

[G0 (β(0))#/G0, . . . , Gn (β(n))#/Gn, e
′
1/x1, . . . , e

′
`j
/x`j ]ψ

!
j .

By the condition βj > 0 and Lemma 20, TIsZerok(βj#) is
accepted from q0. Thus, we have the required result.

Proof of Theorem 22. This follows immediately from Lemmas 21,
36, and 37.


