Naoki Kobayashi 
  
Étienne Lozes 
email: lozes@lsv.ens-cachan.fr
  
Florian Bruse 
email: florian.bruse@uni-kassel.de
  
On the Relationship Between Higher-Order Recursion Schemes and Higher-Order Fixpoint Logic

Keywords: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic Keywords higher-order recursion schemes, higher-order modal fixpoint logic, model checking

We study the relationship between two kinds of higher-order extensions of model checking: HORS model checking, where models are extended to higher-order recursion schemes, and HFL model checking, where the logic is extended to higher-order modal fixpoint logic. These extensions have been independently studied until recently, and the former has been applied to higher-order program verification, while the latter has been applied to assume-guarantee reasoning and process equivalence checking. We show that there exist (arguably) natural reductions between the two problems. To prove the correctness of the translation from HORS to HFL model checking, we establish a type-based characterization of HFL model checking, which should be of independent interest. The results reveal a close relationship between the two problems, enabling cross-fertilization of the two research threads.

Introduction

Inspired by the great success of finite state model checking [START_REF] Clarke | Model Checking[END_REF], two kinds of its higher-order extensions have been studied recently. One is model checking of higher-order recursion schemes (HORS model checking, for short) [START_REF] Knapik | Higher-order pushdown trees are easy[END_REF][START_REF] Kobayashi | Model checking higher-order programs[END_REF][START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF], which asks, given a higher-order recursion scheme G (which is a kind of a tree grammar) and a formula ϕ of the modal µ-calculus (or equivalently, an alternating parity tree automaton), whether the tree generated by G satisfies ϕ. The other is higher-order modal fixpoint logic model checking of finite state systems (HFL model checking, for short) [START_REF] Viswanathan | A higher order modal fixed point logic[END_REF], which asks, given a finite state system L and a formula ϕ of the higher-order modal fixpoint logic (which is a higher-order extension of the modal µ-calculus), whether L satisfies ϕ. Thus, in HORS model checking, systems to be verified are higher-order, whereas in HFL model checking, properties to be checked are higher-order. HORS model checking has recently been successfully applied to verification of higher-order programs [START_REF] Kobayashi | Types and higher-order recursion schemes for verification of higher-order programs[END_REF][START_REF] Kobayashi | Predicate abstraction and CEGAR for higher-order model checking[END_REF][START_REF] Kuwahara | Automatic termination verification for higher-order functional programs[END_REF][START_REF] Kuwahara | Predicate abstraction and CEGAR for disproving termination of higher-order functional programs[END_REF][START_REF] Murase | Temporal verification of higher-order functional programs[END_REF][START_REF] Ong | Verifying higher-order programs with pattern-matching algebraic data types[END_REF][START_REF] Unno | Automating relatively complete verification of higher-order functional programs[END_REF][START_REF] Yasukata | Pairwise reachability analysis for higher order concurrent programs by higher-order model checking[END_REF]. HFL model checking has been applied to assume-guarantee reasoning [START_REF] Viswanathan | A higher order modal fixed point logic[END_REF] and process equivalence checking [START_REF] Lange | Model-checking process equivalences[END_REF]. In general, HORS model check-ing is useful for precisely modeling and verifying certain infinite state systems, whereas HFL model checking is useful for checking non-regular properties of systems that cannot be expressed in ordinary modal logics such as LTL, CTL, and modal µ-calculus.

Unfortunately, the two problems (i.e., HORS/HFL model checking) have been studied independently by different research communities, and little has been known on their relationship. Interestingly, both problems are k-EXPTIME complete, where k is the largest type-theoretic order of functions used in HORS or HFL formulas. Thus, there should exist translations between order-k HORS model checking problems and order-k HFL model checking, but no direct (i.e., without going via Turing machines) translations were known.

In the present paper, we present direct, mutual translations between the HORS and HFL model checking problems. Interestingly, the roles of systems and properties are switched by the translations; in the HORS-to-HFL translation, a HORS (which is a description of a system to be verified) is translated to an HFL formula, and an automaton (which is a description of a property to be checked) is translated to a transition system, whereas in the converse translation, an HFL formula is translated to a HORS and a transition system is translated to an automaton. The translations are non-trivial. For the HORS-to-HFL translation, we have to replace the parity acceptance condition on the tree generated by HORS with proper alternation of least and greatest fixpoint operators of HFL. For the converse translation, we have to emulate the calculation of least and greatest fixpoint operators by HORS, which requires a tricky encoding of numbers.

The correctness of the HORS-to-HFL translation is also nontrivial. 1 To this end, we provide a type-based characterization of HFL model checking, so that an HFL formula is typable in the type system parameterized by a finite transition system if and only if the transition system satisfies the formula. We then prove that a HORS is typable in (a variation of) Kobayashi and Ong's type system for characterizing the HORS model checking if and only if the corresponding HFL formula is typable in the aforementioned type system. Thus, the correctness of the HORS-to-HFL formula follows from that of Kobayashi and Ong's type system.

The type-based characterization of HFL model checking mentioned above should be of independent interest. A type-based characterization of HORS model checking is well established [START_REF] Kobayashi | Model checking higher-order programs[END_REF][START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF] and has been used for studies of practical algorithms [START_REF] Broadbent | Saturation-based model checking of higher-order recursion schemes[END_REF][START_REF] Kobayashi | Model-checking higher-order functions[END_REF][START_REF] Kobayashi | A practical linear time algorithm for trivial automata model checking of higher-order recursion schemes[END_REF][START_REF] Neatherway | A traversal-based algorithm for higher-order model checking[END_REF][START_REF] Ramsay | An abstraction refinement approach to higher-order model checking[END_REF], parameterized complexity [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF][START_REF] Kobayashi | Complexity of model checking recursion schemes for fragments of the modal mu-calculus[END_REF], decidability proofs [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF][START_REF] Tsukada | Compositional higher-order model checking via ω-regular games over böhm trees[END_REF], etc. of HORS model checking. Our type-based characterization of HFL model checking is similar to (and actually simpler than) that for HORS model checking. Thus, the type-based characterization clarifies the similarity and difference of HORS/HFL model checking. We also expect that the type-based approach to HFL will allow us to develop practical algorithms for HFL model checking, following the success of the corresponding approach to HORS model checking.

The rest of the paper is structured as follows. Section 2 reviews the definitions of HORS/HFL model checking problems. Section 3 presents a translation from HORS model checking to HFL model checking. Section 4 provides a type-based characterization of HFL model checking, and Section 5 uses it to prove the correctness of the translation of Section 3. Section 6 presents a translation from HFL model checking to HORS model checking, and proves its correctness. Section 7 discusses related work and Section 8 concludes the paper. Proofs omitted in the main text are found in Appendix.

Preliminaries

In this section, we first recall, in Section 2.1, the standard definitions of (infinite) trees, parity games and tree automata (that are required for defining HORS and HFL), and then review the definitions of higher-order recursion schemes (HORS) and higher-order modal fixpoint logic (HFL), and model checking problems on them in Sections 2.2 and 2.3.

Trees, Parity Games, and Alternating Parity Tree Automata

Let N+ be the set of positive integers. Given a set L, an L-labeled tree T is a partial map from N * + to L such that ∀π ∈ N * + .∀i ∈ N+. π • i ∈ dom(T ) =⇒ {π, π • 1, . . . π • (i -1)} ⊆ dom(T ). An element of dom(T ) is called a node. For n, n ∈ dom(T ), n is a child of n if n is the longest strict prefix of n .

A ranked alphabet Σ is a map from a finite set of symbols to the set of non-negative integers, called arities. A Σ-labeled tree T is a ranked tree if for every node n ∈ dom(T ), the number of children of n is Σ(T (n)).

A parity game is a two player game played by Player and Opponent and is defined by a tuple G = (V ∀ , V ∃ , v init , E, Ω), where V ∀ , V ∃ are disjoint sets of positions, v init ∈ V ∀ ∪ V ∃ is the initial position, E ⊆ (V ∀ ∪ V ∃ ) 2 is a set of moves, and Ω : V ∀ ∪ V ∃ → {0, . . . , p -1} assigns to each position a priority. Positions in V ∃ are called Player's positions, and positions in V ∀ are called Opponent's positions.

A play is a finite or infinite sequence of positions v0, v1, . . . such that v0 = v init and (vi, vi+1) ∈ E for all i ≥ 0. The play is won by Player if either it is finite and the last position vn ∈ V ∀ is an Opponent's position such that vnE(= {v | (vn, v) ∈ E}) = ∅, or the play is infinite and the largest priority occurring infinitely often (i.e., lim sup i→∞ Ω(vi)) is even. A memoryless strategy for Player is W ⊆ E such that vW = vE for all v ∈ V ∀ (Opponent's moves remain unchanged), and for all v ∈ V ∃ , there is at most one v such that (v, v ) ∈ W (Player's moves are uniquely determined by the current position); it is a winning strategy for Player if all plays in the game (V ∀ , V ∃ , v init , E ∩ W, Ω) are won by Player.

Given a finite set X, the set B + (X) of positive Boolean formulas over X is defined by

B + (X) f ::= tt | ff | x | f1 ∨ f2 | f1 ∧ f2,
where x ranges over X.

Definition 1 (alternating parity tree automata). An alternating parity tree automaton (APT) is a quintuple A = (Q, Σ, δ, q init , Ω) such that:

• Q is a finite set of states with a distinguished initial state q init ∈ Q.

• Σ is a ranked alphabet.

• δ : Q × Σ → B + ({1, . . . , m} × Q) is a transition function,
where m is the largest arity of symbols in dom(Σ).

• Ω : Q → {0, . . . , p -1} assigns a priority to each state.

Given an APT A and a Σ-labeled ranked tree T , the acceptance game

G(T, A) = (V ∀ , V ∃ , v init , E, Ω) is the parity game defined by V ∀ ∪ V ∃ := {(n, f ) | n ∈ dom(T ), f is a subformula of δ(q, a) for some (q, a) ∈ Q × dom(Σ)}, with (n, f ) ∈ V ∀ iff f is a conjunction or tt, v init := ( , δ(q init , T ( ))), E := (n, f1 * f2) , (n, fi) | n ∈ dom(T ), i ∈ {1, 2}, * ∈ {∨, ∧} ∪ (n, (i, q)), (n.i, δ(q, T (n.i))) | n, n.i ∈ dom(T )
, Ω(n, (i, q)) = Ω(q), and Ω(n, f ∨ f ) = Ω(n, f ∧ f ) = 0. The language of A, written L(A), is the set of trees T such that Player has a winning strategy for G(T, A).

Intuitively, a position (n, f ) of the game above represents a state where Player tries to prove that the node n satisfies f , and Opponent tries to disprove it. If f is a disjunction f1 ∨ f2, Player picks i and tries to show that the node n satisfies fi. If f is a conjunction f1 ∧f2, Opponent picks i and tries to disprove that the node n satisfies fi. If f = (i, q), then Player tries to show that the child n.i satisfies δ(q, T (n.i)) (i.e., is accepted from q by the automaton). When a play continues indefinitely, Player wins iff the largest priority of states visited infinitely often is even.

Example 1. Consider the APT A0 = ({q0, q1}, Σ, δ, q0, Ω), where:

Σ = {a → 2, b → 1, c → 0} δ(qi, a) = (1, q0) ∧ (2, q0) δ(qi, b) = (1, q1) δ(qi, c) = tt (for i ∈ {0, 1}) Ω(q0) = 1 Ω(q1) = 2
Let T be the tree where

dom(T ) = (2.1) * ∪ (2.1) * .1 ∪ (2.1) * .2, T (n) = a if n ∈ (2.1) * , T (n) = c if n ∈ (2.1) * .1, and T (n) = b if n ∈ (2.1) * .2.
(Thus, T is the regular infinite tree defined by T = a c (b T ). Let D be dom(T ). The acceptance game G(T, A0) is (V ∀ , V ∃ , v init , E, Ω ), where:

V ∀ = {(n, (1, q0) ∧ (2, q0)) | n ∈ D} ∪ {(n, tt) | n ∈ D} V ∃ = {(n, f ) | n ∈ D, f ∈ {(1, q0), (2, q0), (1, q1)}} v init = ( , (1, q0) ∧ (2, q0)) E = {((n, (1, q0) ∧ (2, q0)), (n, (i, q0))) | n ∈ D, i ∈ {1, 2}} ∪{((n, (1, qi)), (n.1, (1, q0) ∧ (2, q0))) | n ∈ (2.1) * .2, i ∈ {0, 1}} ∪{((n, (2, q0)), (n.2, (1, q1))) | n ∈ (2.1) * } ∪{((n, (1, q1)), (n.1, tt)) | n ∈ (2.1) * } Ω (n, (i, qj)) = j + 1 for n ∈ D, j ∈ {0, 1}, and i ∈ {1, 2} Ω (n, f ) = 0 for n ∈ D, f ∈ {tt, (1, q0) ∧ (2, q0)}.
E itself is a winning strategy for G(T, A0); so, T is accepted by A0. In general, a tree is accepted by A0 if and only if every infinite path of the tree contains infinitely many occurrences of b.

Remark 1. The acceptance of a tree by an APT can also be understood as follows, without using parity games. Let A = (Q, Σ, δ, q init , Ω) be an APT. The automaton has subformulas of δ(q, a) as "intermediate" states. Given a tree T , A runs a thread for reading the root with the initial state q init . Whenever a thread visits a node labeled with a at state q, it transits to an intermediate state δ(q, a). A thread in an intermediate state f performs the following actions, depending on the shape of f .

• Case f = f1 ∧ f2: the thread splits into two threads with states f1 and f2. • Case f = f1 ∨ f2: the thread moves to either state f1 or f2.

• Case f = (i, q): the thread visits the i-th child of the current node with state q. • Case f = tt: the thread terminates successfully.

• Case f = ff: the thread fails.

An APT A accepts a tree T if there is a run in which no thread fails, and for every non-terminating thread, the largest priority of states visited infinitely often is even. A labeled transition system (LTS) L is a quadruple (U , A, -→, s init ), where U is a finite set of states, A is a finite set of actions, -→ ⊆ U × A × U is a transition relation, and s init is the initial state. We write s a -→ s when (s, a, s ) ∈ -→.

Model Checking of HORS

In this section, we review the definition of higher-order recursion schemes (HORS) and the model checking problem on them [START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF]. A HORS is a simply-typed, higher-order tree grammar for generating a labeled tree, and the model checking problem on it asks whether the tree generated by a given HORS satisfies a given property (expressed in terms of an alternating tree automaton or a modal µ-calculus formula). When a tree is viewed as a transition system (where a node is regarded as a state and an edge as a transition), a HORS is considered a (possibly infinite) transition system. The trees generated by order-0 HORS's are regular, which correspond to finite state transition systems, whereas the trees generated by order-1 HORS's are those generated by pushdown systems. In that sense, the HORS model checking may be considered a strict extension of finite state model checking and pushdown model checking. Yet, the model checking problem remains decidable [START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF].

We first define types and terms. The set of simple types, ranged over by κ, is defined by:

κ ::= | κ1 → κ2.
The base type is used as the type of trees below. The order of a type κ is defined by: ord( ) = 0 and ord(κ1 → κ2) = max(ord(κ1) + 1, ord(κ2)). The set of (simply-typed) λ-terms, ranged over by e, is defined by:

e ::= x | e1e2 | λx : κ.e.
A λ-term that does not contain λ is called an applicative term. We often omit the type annotation and just write λx.e for λx : κ.e. As usual, the type judgment relation K e : κ, where K is a map 2 from a finite set of variables to the set of simple types, is defined as the least relation closed under the following rules:

K, x : κ x : κ K, x : κ1 e : κ2 K λx : κ1.e : κ1 → κ2 K e0 : κ1 → κ2 K e1 : κ1 K e0 e1 : κ2
Definition 2 (HORS). A higher-order recursion scheme (HORS, for short) G is a quadruple (Σ, N , R, S), where:

• Σ is a ranked alphabet. The elements of Σ are called terminals.

• N is a map from a finite set of symbols (called non-terminals)

to the set of simple types. • R is a map from the set of non-terminals to the set of λterms (where both terminals and non-terminals are treated as variables). If

N (A) = κ1 → • • • → κ → , then R(A) must be of the form λx1 : κ1. • • • λx : κ .e
, where e is an applicative term such that Σ ! ∪ N , x1 : κ1, . . . , x : κ e : . Here, Σ ! denotes:

{a : → • • • → Σ(a) → | a ∈ dom(Σ)}.
• S is a non-terminal such that N (S) = .

2 Following the usual convention, we write x 1 : κ 1 , . . . , xn : κn instead of {x 1 → κ 1 , . . . , xn → κn} for a type environment. The order of a HORS is max({ord(N (A)) | A ∈ dom(N )}). The rewriting relation e -→G e is the least relation closed under the following rules:

• A e1 . . . e -→G [e1/x1, . . . , e /x ]e if R(A) = λx1 : κ1. • • • λx : κ .e. • a e1 • • • ei • • • e -→G a e1 • • • e i • • • , e if ei -→G e i and
Σ(a) = .

We often represent R in the form of rewriting rules, writing

A x1 • • • x → e for R(A) = λx1 : κ1. • • • λx : κ .e.
The tree generated by G is the one obtained from S by (possibly) infinite rewriting. Formally, it is defined as follows.

Definition 3 (TG). For an applicative term e of type , the (Σ ∪ {⊥ → 0})-labeled tree e ⊥ is defined by:

(a e1 • • • e k ) ⊥ = a e1 ⊥ • • • e k ⊥ (A e1 • • • e k ) ⊥ = ⊥
We define the relation on trees by: T1 T2 iff dom(T1) ⊆ dom(T2) and for every n ∈ dom(T1), T1(n) = ⊥ or T1(n) = T2(n). The tree generated by G, written TG, is {e ⊥ | S -→ * G e}, where U denotes the least upper bound of the trees in U with respect to . 3Example 2. Consider the HORS G0 = ({a → 2, b → 1, c → 0}, N , R, S), where N = {S : , F : ( → ) → , B : ( → ) → → }, and R consists of the following rewriting rules:

S → F b F g → a c (g(F (B b))) B g x → b(g x).
S is reduced as follows:

S -→ F b -→ ac(b(F (B b))) -→ ac(b(ac(Bb(F (B(Bb)))))) -→ ac(b(ac(b(b(F (B(B b))))))) -→ • • • .
The tree generated by G0 (i.e., TG 0 ) is shown in Figure 1, where b i denotes i repetitions of b. Theorem 5 (Ong [START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF]). The HORS model checking problem is k-EXPTIME complete for order-k HORS.

As in [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF][START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF], in the rest of this paper, we assume that TG does not contain ⊥. Given G and A, we can always transform them to G and A such that (i) G |= A if and only if G |= A and (ii) T G does not contain ⊥.

HFL Model Checking

In this section we review Higher-Order Modal Fixpoint Logic [START_REF] Viswanathan | A higher order modal fixed point logic[END_REF] (HFL) and its model-checking problem. HFL is an extension of the modal µ-calculus with higher-order recursive predicates; HFL formulas ϕ and HFL types η are defined by the following grammar

ϕ ::= | ⊥ | X | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | a ϕ | [a]ϕ | µX η .ϕ | νX η .ϕ | λX : η.ϕ | ϕ1 ϕ2 η ::= • | η1 → η2
The syntax of the formulas except the last two components (λabstractions and applications) is almost identical to that of the modal µ-calculus; in particular, as in the modal µ-calculus, we have the least and great fixpoint operators µ and ν; the difference is that they can be over higher-order predicates (created by a λ-abstraction λX : η.ϕ). In its original formulation [START_REF] Viswanathan | A higher order modal fixed point logic[END_REF], HFL includes negations. In our setting, these are disallowed for simplicity, which is not a restriction since any closed HFL formula can be transformed to an equivalent negation-free formula [START_REF] Lozes | A type-directed negation elimination[END_REF].

Each binder (µ, ν, λ) is annotated with the type of the bound variable (we may sometimes omit this annotation when it is clear from the context). The type • describes propositions, and the type η1 → η2 describes functions from η1 to η2. The order of an HFL type η is defined by: ord(•) = 0 and ord(η1 → η2) = max(ord(η1) + 1, ord(η2)). A type judgment relation is of the form H ϕ : η, where H is a map from a finite set of variables to the set of HFL types. Type judgments are derived from the following rules.

H

:

• H ⊥ : • H, X : η X : η H ϕ : • H a ϕ : • H ϕ : • H [a]ϕ : • H ϕ1 : • H ϕ2 : • H ϕ1 ∨ ϕ2 : • H ϕ1 : • H ϕ2 : • H ϕ1 ∧ ϕ2 : • H, X : η ϕ : η H µX η . ϕ : η H, X : η ϕ : η H νX η . ϕ : η H, X : η1 ϕ : η2 H λX : η1. ϕ : η1 → η2 H ϕ1 : η2 → η H ϕ2 : η2 H ϕ1 ϕ2 : η
A closed formula ϕ is well-typed and has type η if the type judgment ∅ ϕ : η is derivable from the above rules. In the remainder, we always implicitly assume that all the (closed) formulas are well-typed.

The order of a formula ϕ is the largest order of the type of a subformula occurring in ϕ. A formula is said to be a formula of the modal µ-calculus if its order is 0.

Let (U , A, -→, s init ) be a fixed LTS. The semantics of a formula of type η is an object of the lattice (Dη, η , η ) defined by induction on η: Define D• = P(U ) as the complete lattice of sets of states, and if η = η1 → η2 then define Dη = Dη 1 → Dη 2 as the complete lattice of monotone functions from Dη 1 to Dη 2 . For every type η and function f ∈ Dη→η, f has a unique least fixpoint LFPη(f ) ∈ Dη and a unique greatest fixpoint GFPη(f ) ∈ Dη, respectively defined as {x ∈ Dη | f (x) x} and {x ∈ Dη | x f (x)}.

The interpretation H of a type environment is the set of maps ρ such that ρ(X) ∈ D H(X) for each X ∈ dom(ρ). The interpretation H ϕ : η is a map from H to Dη defined by induction on ϕ as follows:

H : • (ρ) = U H ⊥ : • (ρ) = ∅ H, X : η X : η (ρ) = ρ(X) H a ϕ : • (ρ) = {s | ∃s ∈ H ϕ : • (ρ). s a -→ s } H [a]ϕ : • (ρ) = {s | ∀s ∈ S. (s a -→ s implies s ∈ H ϕ : • (ρ))} H ϕ1 ∨ ϕ2 : • (ρ) = H ϕ1 : • (ρ) ∪ H ϕ2 : • (ρ) H ϕ1 ∧ ϕ2 : • (ρ) = H ϕ1 : • (ρ) ∩ H ϕ2 : • (ρ) H µX η .ϕ : η (ρ) = LFPη( H λX : η. ϕ (ρ)) H νX η .ϕ : η (ρ) = GFPη( H λX : η. ϕ (ρ)) H λX : η1. ϕ : η1 → η2 (ρ) = {V → H, X : η1 ϕ : η2 (v[X → V ]) | V ∈ Dη 1 } H ϕ1 ϕ2 : η (ρ) = H ϕ1 : η → η (ρ)( H ϕ2 : η (ρ))
Note that, in the last clause, η is uniquely determined by H and ϕ2.

We often omit H • : η and just write ϕ for H ϕ : η , with the understanding that each subformula is implicitly annotated with its type. For a closed formula ϕ of type •, we simply write ϕ for ∅ ϕ : • (ρ ∅ ), where ρ ∅ is the empty interpretation. We write

L |= ϕ if s init ∈ ϕ .
We now review the definition of HFL model checking and the decidability/complexity result.

Definition 6 (HFL model checking). The HFL model checking problem is the problem of deciding whether L |= ϕ, given a closed HFL formula ϕ of type • and a labeled transition system L.

Theorem 7 ( [START_REF] Axelsson | The complexity of model checking higher-order fixpoint logic[END_REF][START_REF] Viswanathan | A higher order modal fixed point logic[END_REF]). The HFL model checking problem is decidable [START_REF] Viswanathan | A higher order modal fixed point logic[END_REF]. It is k-EXPTIME complete for order-k HFL formulas [START_REF] Axelsson | The complexity of model checking higher-order fixpoint logic[END_REF].

Example 4. Consider the following HFL formula ϕ0:

(νF (•→•)→• .λX : • → •. a (X(F (λY : •. b (X Y ))))) (λY : •. b Y ).
It represents the property that there exists a transition sequence of the form:

abab 2 ab 3 ab 4 • • •. In fact if we replace F with λX : • → •. a (X(F (λY : •. b (X Y )))
) infinitely often and reduce the β-redexes, we obtain the formula:

a b a b 2 a b 3 a b 4 • • • .
Consider the LTS L0 = ({s0, s1}, {a, b}, -→, s0), where -→ is given by:

s0 a -→ s1 s1 b -→ s0 s1 b -→ s1. Then we have L0 |= ϕ0.
Example 5. Consider the following formula ϕ1 [START_REF] Lange | Model-checking process equivalences[END_REF]:

µE •→•→• .λX : •.λY : •.(X ∧ Y ) ∨ E ( a X) ( b Y ).
The formula ϕ1 X Y means "there exists n ≥ 0 such that a n X and b n Y holds. For example, ϕ2 := ϕ1 ϕ0 ([b]⊥) (where ϕ0 is the one given in Example 4) means that there exists n ≥ 0 such that a transition sequence of the form: abab 2 ab 3 ab 4 • • • is possible after n steps of a-transitions, and no b-transition is possible after n steps of b-transitions. The LTS L0 in Example 4 satisfies ϕ2, since the property is satisfied for n = 0.

For discussing transformations between HFL and HORS, it is convenient to express HFL formulas in the form of systems of equations, called HES.

Definition 8 (HES). A hierarchical equation system (HES) is a sequence of equations of the form

X η 1 1 =α 1 ϕ1; • • • ; X ηn n =α n ϕn.
where each αi is ν or µ, and for each i = 1, . . . , n, ϕi is a formula without fixpoint binders such that X1 : η1 . . . , Xn : ηn ϕi : ηi.

For an HES

E = (X η 1 1 =α 1 ϕ1; • • • ; X ηn n =α n ϕn),
we write E(Xi) for ϕi. We often omit the type annotation ηi. The HFL formula denoted by

E := (X η 1 1 =α 1 ϕ1; • • • ; X η 1 n =α n ϕn) is defined inductively by: toHFL(X η =α ϕ) = αX η .ϕ toHFL(E; X η =α ϕ) = toHFL([αX η .ϕ/X]E). We write L |= E if L |= toHFL(E). We sometimes write X y1 • • • y k =α ϕ for X =α λy1. • • • λy k .ϕ.
Example 6. The HFL formula ϕ0 in Example 4 can be represented as the following HES.

S =ν F (λY : •. b Y ); F =ν λX : • → •. a (X(F (λY : •. b (X Y )))).
We can also restrict HES so that λ occurs only at the top-level. For example, the HES above can further be transformed to the following equivalent HES E0.

S =ν F B; F =ν λX : • → •. a (X(F (G X))); G =ν λX : • → •.λY : •. b (X Y ); B =ν λY : •. b Y. Example 7. Consider the following HES E ⊥ : S =µ X; Y =ν λZ. a (Z ∧ X); X =µ a (Y X).
Then E ⊥ is unsatisfiable. This can be checked by making the following observations:

• toHFL(E ⊥ ) is the formula µX. a (ϕ X) where ϕ is the HFL formula νY.λZ. a Z ∧ (µX . a (Y X )) . • since ϕ Z implies a Z, toHFL(E ⊥ ) implies µX. a a X,
which is unsatisfiable.

From HORS to HFL Model Checking

We introduce a reduction from HORS model checking to HFL model checking. The reduction proceeds by exchanging the roles of the model and the specification:

• the alternating parity tree automaton A of an instance of a HORS model-checking problem is encoded as the labeled transition system LA of an instance of the HFL model-checking problem; and

• similarly, the HORS G is encoded as a HFL formula ϕG.

Intuitively, LA represents the transitions that can be made by the automaton A (according to the behavior of A described in Remark 1), and the formula ϕG describes that LA has transitions corresponding to a successful run of A for the tree generated by G. We now present these encodings; we prove their soundness in Section 5.

Tree Automata Encoded as LTS

Let us fix an APT A = (Q, Σ, δ, q init , Ω) and construct the labeled transition system LA encoding it. Intuitively, the control graph of A becomes the LTS, but since the transition relation of A uses positive Boolean formulas, these must be encoded as states of the transition system. Formally, the set of states of LA is

Q ∪ Q f , where Q f := {f | f is a subformula of δ(q, a) for some (q, a) ∈ Q × dom(Σ)}.
The rest of the encoding makes sure that the transition relation of the automaton and the state priorities are represented by the labeling of the transitions. The set of labels of LA is the set where p -1 is the largest priority, and m is the largest arity. The initial state q init of the automaton is also the initial state of the transition system, and the transition relation is defined by

{ai | a ∈ dom(Σ), i ∈ {0, 1, . . . , p -1}} ∪ {d | d ∈ {1, . . . , m}} ∪ {and, or, true} q0 q1 f (1, q0) (2, q0) (1, q1) tt a1 a2
q a Ω(q) -→ δ(q, a) (d, q) d -→ q f1 ∧ f2 and -→ fi f1 ∨ f2 or -→ fi tt true -→ tt for q ∈ Q, a ∈ dom(Σ)
, and i = 1, 2. Note how the priority of a state q is determined by the index i on the label of any transition q a i -→ starting at q. The positive Boolean formulas are represented by their syntax tree, with each leaf having an outgoing transition towards the automaton state associated to it.

Example 8. Let A0 be the APT of Example 1. The LTS LA encoding A0 is depicted on Figure 2.

The Case of Trivial Automata

In order to get a better intuition of the encoding of G into an HFL formula ϕG, we first discuss the special case where the automaton A is a trivial tree automaton [START_REF] Aehlig | A finite semantics of simply-typed lambda terms for infinite runs of automata[END_REF], i.e., an alternating parity tree automaton where all the states have priority 0. This class of automata has been used to verify higher-order programs against safety properties [START_REF] Kobayashi | Model checking higher-order programs[END_REF].

As explained at the beginning of this section, ϕG expresses the property that the automaton (or, the corresponding LTS LA constructed above) has a successful run for the tree generated by G. Let us first consider a special case, namely where G generates the finite tree a c (b c). Then, since the initial state of the automaton should be able to accept a, the LTS LA should have a transition a0; hence ϕG should be of the form a0 ϕ1, where ϕ1 describes the property that should be satisfied by the state s = δ(q init , a). The formula ϕ1 is not aware of the shape of δ(q init , a), but knows that the state s of the LTS after the a-transition is a positive Boolean formula. Thus, ϕ1 asserts the following property:

• If s = (1, q), i.e., if there is a 1 -→-transition, then the next state (corresponding to q) should have transitions corresponding to an accepting run of A for the first child c.

• If s = (2, q), i.e., if there is a 2 -→-transition, then the next state should have transitions corresponding to an accepting run of A for the second child b c.

• If s = f1 ∧ f2, then any state after a and -→-transition should satisfy ϕ1 again.

• If s = f1 ∨ f2, then some state after a or -→-transition should satisfy ϕ1 again.

• If s = tt, i.e., if there is a true -→-transition, then there is no further requirement.

Thus, ϕ1 can be described as 

a0 (L2 ( c L0) ( b0 (L1( c0 L0)))).
In general, for a finite tree T , the formula ϕT that describes the property "the LTS LA has transitions corresponding to a successful run of A that accepts T ", can be constructed inductively by:

ϕa T 1 ••• T = a0 (L ϕT 1 • • • ϕT ).
In other words, the translation from a tree T to the corresponding formula works as a homomorphism that replaces each tree constructor a of arity with λx1. • • • λx . a0 (L x1 • • • x ). Thus, we can naturally extend the translation to one from a HORS to a formula, as given below.

For a given HORS G = (Σ, N , R, S), let EG be the HES A0 =ν (e0) † ; . . . ; Am =ν (em) † ; Eaux where (i) Eaux is the set of definitions for Ln:

Ln =ν λy1, . . . , yn. (λy : κ. e) † = λy : (κ

) † . (e) † (e1 e2) † = (e1) † (e2) † (z) † = z if z is either a non-terminal or a variable (a) † = λy1 : •. • • • λy Σ(a) : •. a0 (L Σ(a) y1 . . . y Σ(a) ) ( ) † = • (κ1 → κ2) † = (κ1) † → (κ2) † .
As in the case for the translation from trees to formulas, we just need to replace each tree constructor a of arity with λy1, . . . y . a0 (L y1 . . . y ).

Example 9. Consider the HORS of Example 2. Then its encoding as a HFL formula is defined by the following HES (notice that some β-reductions have been done to ease readability).

S =ν F (λx. b0 (L1 x)); F =ν λg. a0 L2 ( c0 L0) g (F (B (λx. b0 (L1 x)))) ; B =ν λg.λx. b0 (L1 (g x)); L2 =ν . . . ; L1 =ν . . . ; L0 =ν . . .
The following theorem states the correctness of the translation above. We omit the proof, since it is a special case of Theorem 10 given later. Theorem 9. For any trivial automaton A and HORS G, TG ∈ L(A) if and only if LA |= EG.

The General Case

In the general case where A is an APT with priorities {0, . . . , p-1}, we need to take into account the parity acceptance condition and it must be reflected somehow in the resulting HFL formula. Let us first examine the case of an order-0 HORS. Assume G is a HORS where all non-terminals are of type and all rules are of the form A → a A1 . . . A Σ(a) . For each A, we prepare p fixpoint variables A 0 , . . . , A p-1 , defined by

A i =α i i =0,...,p-1 a i (L Σ(a) A i 1 . . . A i Σ(a) ),
where αi is ν if i is even and µ otherwise. As in the case of trivial automata, A i expresses the property that the current state has transitions corresponding to a accepting run of A over the tree generated by A; in addition, A i remembers that the priority of the previous state is i (this intuition will be refined later). The priority of the previous state of the automaton is recorded in the subscript of the transition label a i , hence the above definition of A i . If a priority i is visited infinitely often by the automaton, then a fixpoint variable of the form A i is unfolded infinitely often. Thus, by letting

E (p) G = (Ep-1; . . . , E0; Eaux )
where Ei contains a declaration for A i of the above form and Eaux is as given in the previous section, we can guarantee that the largest priority visited by A is even if and only if the largest index of the fixpoint variables expanded infinitely often is even. We thus obtain LA |= E (p)

G if and only if TG ∈ L(A).

In the case of a HORS of an arbitrary order, each rule of the form A → C[A1, . . . , A k ] should be replaced by a fixpoint equation of the form:

A i =α i C [A i 1 1 , . . . , A i k k ],
where each ij is the largest priority visited since the unfolding of A before Aj is unfolded. The main difficulty arises when Aj occurs as an argument of another non-terminal, as in A → B Aj. In this case, only B knows the largest priority visited before Aj is unfolded. Thus, we replicate the argument of B and translate B Aj to

B 0 A 0 j • • • A p-1 j
; here, B 0 is defined so that it calls the i-th argument A i j when the largest priority visited before unfolding Aj inside the body of B is i.

Let us present now the general construction of the HES E (p)

G encoding the HORS G for any alternating parity automaton with priorities in {0, . . . , p -1}. It is defined by E (p) G := Ep-1; . . . ; E0; Eaux where for each non-terminal A and for each priority i, there is a definition A i =α i (R(A)) 0 in Ei, with (.) (.) to be defined soon, and again with αi = ν if i is even and µ otherwise.

For any term e and for any priority i ∈ {0, . . . , p -1}, let the formula (e) i be defined by induction on e as follows:

(λy : κ.e) i = λy 0 : κ . . . λy p-1 : κ . e i (e1 e2

) i = e i 1 e max(0,i) 2 e max(1,i) 2 . . . e max(p-1,i) 2 (z) i = z i if z is either a non-terminal or a variable (a) i = λy 0 1 : •. • • • λy p-1 1 : •. • • • λy 0 Σ(a) : •. • • • λy p-1 Σ(a) : •. i =0,...,p-1 a i (L Σ(a) y i 1 . . . y i Σ(a) ) ( ) = • (κ1 → κ2) = (κ1) → • • • → (κ1) p times → (κ2)
where the Ln's definitions are as before and introduced in Eaux . Intuitively, i in (e) i denotes the largest priority visited before the tree generated by e is visited (since the last unfolding of a nonterminal).

Example 10. Consider the HORS G1 consisting of the rules:

S → F B F g → a c (g (F g)) B x → b x,
which is a simpler variant of G0 in Example 2. It generates the regular tree T such that T = a c (b T ). The HES E

G is:

S 2 =ν ϕS; F 2 =ν ϕF ; B 2 =ν ϕB; S 1 =µ ϕS; F 1 =µ ϕF ; B 1 =µ ϕB; S 0 =ν ϕS; F 0 =ν ϕF ; B 0 =ν ϕB; Eaux , where ϕS = F 0 B 0 B 1 B 2 ϕF = λg 0 .λg 1 .λg 2 . a0 (L2 ( c0 L0 ∨ c1 L0 ∨ c2 L0) ϕ (0) g(F g) ) ∨ a1 (L2 ( c0 L0 ∨ c1 L0 ∨ c2 L0) ϕ (1) g(F g) ) ∨ a2 (L2 ( c0 L0 ∨ c1 L0 ∨ c2 L0) ϕ (2) g(F g) ) ϕB = λx 0 .λx 1 .λx 2 . b0 (L1 x 0 ) ∨ b1 (L1 x 1 ) ∨ b2 (L1 x 2 ) ϕ (0) g(F g) = g 0 ϕ (0) F g ϕ (1) F g ϕ (2) F g ϕ (0) F g = F 0 g 0 g 1 g 2 ϕ (1) g(F g) = g 1 ϕ (1) F g ϕ (1) F g ϕ (2) F g ϕ (1) F g = F 1 g 1 g 1 g 2 ϕ (2) g(F g) = g 2 ϕ (2) F g ϕ (2) F g ϕ (2) F g ϕ (2) F g = F 2 g 2 g 2 g 2 .
For the LTS LA 0 in Figure 2, we can remove irrelevant parts of the formulas ϕS,ϕF and ϕB and simplify4 them to:

ϕ S = F 0 B 1 B 2 ϕ F = λg 1 .λg 2 . a1 (L2 ( c1 L0) (g 1 (F 1 g 1 g 2 ) (F 2 g 2 g 2 ))) ∨ a2 (L2 ( c1 L0) (g 2 (F 2 g 2 g 2 ) (F 2 g 2 g 2 ))) ϕ B = λx 1 .λx 2 .( b1 (L1 x 1 ) ∨ b2 (L1 x 2 )).
The simplified version of S 2 can be expanded (with some further simplification) to:

a1 (L2 ( c1 L0) ( b1 (L1( a2 (L2 ( c1 L0) ( b1 (L1(F 2 B 2 B 2 ))))))))
and F 2 B 2 B 2 may further be expanded to

• • • ∨ a2 (L2 ( c1 L0) ( b1 (L1(F 2 B 2 B 2 )) ∨ • • • )).
The LTS in Figure 2 satisfies this property; note that F 2 is defined by one of the outermost fixpoint operators ν.

The correctness of the translation is stated in the theorem below. We prove it in Section 5, after preparing a type-based characterization of HFL model checking in Section 4.

Theorem 10. Let A be an APT with priorities in {0, . . . , p -1}, and let G be a HORS.

Then TG ∈ L(A) iff LA |= E (p) G .
It might be noticed that the size of e i is in O(p an(e) |e|), where p is the number of priorities, and an(e) is the nesting of applications inside arguments, defined via an(e1 e2) = max(an(e1), 1 + an(e2)), an(λy.e) = an(e), and an(A) = an(a) = an(y) = 0. This exponential blow-up might seem prohibitive, but it is easy to avoid. Indeed, by introducing some extra non-terminals, any HORS can be rewritten into an equivalent one with a linear blow-up such that for all non-terminal A, an(R(A)) ≤ 2.

Theorem 11. For every HORS G and every p ≥ 1, there is an HES E of size linear in the size of G and polynomial in p such that for any APT A with priorities in {0, . . . , p -1}, TG ∈ L(A) iff LA |= E. Furthermore, E can be constructed in time polynomial in the size of G and p.

Intersection Types for HFL Model Checking

Inspired by Kobayashi and Ong's type system [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF] for characterizing HORS model checking, this section develops a type system for characterizing HFL model checking. It is parameterized by an LTS L, and an HFL formula ϕ that is typable in the type system if and only if L |= ϕ. We shall use this type-based characterization for proving the correctness of the translation from HORS model checking to HFL model checking presented in Section 3 (Theorem 10). We expect that the type-based characterization is also useful for constructing a practical model checker for HFL.

We fix an LTS L = (U, A, -→, s init ). We define the set of intersection types by:

τ ::= s | σ → τ σ ::= {τ1, . . . , τ k }.
Here, s ranges over the set U of states of L. We often write τ1 ∧ • • • ∧ τ k or i∈{1,...,k} τi for {τ1, . . . , τ k }, and for ∅.

Intuitively, the type s describes propositions that are true in state s, and the type τ1 ∧ • • • ∧ τ k → τ describes functions that take formulas having type τi for every i, and return a formula of type τ . For example, the logical connective ∧ (when viewed as a function that takes two propositions and returns a proposition) has type s → s → s for any s, because given formulas ϕ1 and ϕ2 that are both true in state s, ϕ1 ∧ ϕ2 is also true in state s. Similarly, ∨ has types s → → s and → s → s for every s ∈ U .

Each intersection type should be regarded as a refinement of a simple type κ (constructed from • and →, as introduced in Section 2.3). It does not make sense, for example, to consider an intersection type like s ∧ (s1 → s2), where the part s describes propositions whereas the part s1 → s2 describes functions on propositions. To exclude such an ill-formed intersection type, we define the refinement relations τ :: κ (which should be read "τ is a refinement of κ") and σ :: κ inductively using the following rules:

s ∈ U s :: • τi :: κ for each i ∈ {1, . . . , k} τ1 ∧ • • • ∧ τ k :: κ σ :: κ τ :: κ (σ → τ ) :: (κ → κ )
Henceforth, we consider only intersection types that are refinements of some simple types. We assume that each intersection type τ or σ is implicitly annotated with the corresponding simple type (i.e., κ such that τ :: κ or σ :: κ) and write Stype(τ ) or Stype(σ) for κ. 5We assume below that an HFL formula is given in the form of an HES

E := (X1 =α 1 ϕ1; • • • ; Xn =α n ϕn).
A type judgment for (fixpoint-free) HFL formulas is of the form Γ ϕ : τ , where Γ, called an (intersection) type environment, is a set of type bindings of the form X : τ . A type environment may contain multiple bindings for the same variable. We write Γ(X)

for τ1 ∧ • • • ∧ τ k if {σ | X : σ ∈ Γ(X)} = {τ1, . . . , τ k }.
The type judgment relation is inductively defined by the typing rules in Figure 4. Note that in the rules HFL-T-ABS and HFL-T-APP above, k may be 0.

Most of the typing rules should be easy to understand, based on the intuition that s is the type of a formula that is satisfied by the state s. For example, the rule HFL-T-SOME says that s satisfies a ϕ if there exists a state s and a transition s 

Γ ϕi : s for some i ∈ {1, 2} Γ ϕ1 ∨ ϕ2 : s (HFL-T-OR) Γ, X : τ1, . . . , X : τ k ϕ : τ X ∈ dom(Γ) τi :: η for each i ∈ {1, . . . , k} Γ λX : η.ϕ : τ1 ∧ • • • ∧ τ k → τ (HFL-T-ABS) Γ ϕ1 : τ1 ∧ • • • ∧ τ k → τ Γ ϕ2 : τi for each i ∈ {1, . . . , k} Γ ϕ1ϕ2 : τ (HFL-T-APP) Γ ϕ : τ τ ≤ τ Γ ϕ : τ (HFL-T-SUB) s ≤ s (HFL-SUBT-BASE) σ ≤ σ τ ≤ τ σ → τ ≤ σ → τ (HFL-SUBT-FUN) ∀j ∈ {1, . . . , }.∃i ∈ {1, . . . , k}.τi ≤ τ j τ1 ∧ • • • ∧ τ k ≤ τ 1 ∧ • • • ∧ τ (HFL-SUBT-INT)
Figure 3. Typing rules for HFL formulas.

For an entire formula (represented in the form of an HES), we define typability in terms of a parity game.

Let dep(E) be the number of switches between ν and µ:

dep( ) = 0 dep(F =ν ϕ; E) = dep(E) if dep(E) is even dep(E) + 1 if dep(E) is odd dep(F =µ ϕ; E) = dep(E) if dep(E) is odd dep(E) + 1 if dep(E) is even
The priority of Fi in E, written ΩE (Fi) is defined as dep(Fi =α i ϕi; E2) if E = (E1; Fi =α i ϕi; E2). For example, for the HES E ⊥ of Example 7, ΩE ⊥ (S) = 3, ΩE ⊥ (Y ) = 2, and ΩE ⊥ (X) = 1. When E is clear from context, we omit the subscript and just write Ω(Fi).

Definition 12. Let E := (F η 1 1 =α 1 ϕ1; • • • ; F ηn n =α n ϕn)
be a fixpoint-free HES with η1 = •, and L = (U, A, -→, s init ) an LTS. The typability game TG(L, E) is the parity game (V ∀ , V ∃ , v init , E, Ω), where:

• The set V ∀ of Opponent's positions is the set of intersection type environments {Γ | dom(Γ) ⊆ {F1, . . . , Fn} ∧ ∀(Fi : τ ) ∈ Γ.τ :: ηi}. • The set V ∃ of Player's positions is the set of type bindings that respect simple types, i.e., {Fi : τ | τ :: ηi}. • v init is the initial position F1 : s init .

• E = E1 ∪ E2, where E1, the set of Player's moves, is {(Fi : τ, Γ) | Γ ϕi : τ }; and E2, the set of Opponent's moves, is {(Γ, Fi : τ ) | Fi : τ ∈ Γ}. • The priority function Ω, is defined by: Ω(Γ) = 0 for every Γ ∈ V ∀ , and Ω(Fi : τ ) = ΩE (Fi) for every Fi : τ ∈ V ∃ .

We write L E when Player wins the parity game TG(L, E).

Intuitively, in the game TG(L, E) Player tries to prove that L |= E, and Opponent tries to disprove it. To this end, Player first shows that ϕ1, the righthand side of F1, has type s init (i.e., the initial state of L satisfies ϕ1) under some type environment Γ, and Opponent challenges it by picking a type binding Fj : τ from Γ, and asking why Fj has type τ . Player then shows that ϕj has type τ under some type environment Γ , and Opponent again challenges the assumption Γ , etc. Opponent gets stuck when Player's assumption Γ is empty, in which case Player wins; Player gets stuck when she fails to show why ϕj has type τ , in which case Opponent wins. A play may continue indefinitely, in which case the winner is determined by the largest priority visited infinitely often. • In the first round, Player is in position S : s0, but it holds that Γ E(S) : s0, so Player can move to Γ. Since the only infinite play according to this strategy is the one where Player's position (except the initial position) is always F : τF , and since F has priority 0, Player's strategy is a winning one.

Example 13. Consider the HFL formula ϕ2 in Example 5, which is equivalent to the following HES E2:

S =µ E (F B) ([b]⊥); E =µ λX.λY.(X ∧ Y ) ∨ E ( a X) ( b Y ); F =ν λX. a (X(F (G X))); G =ν λX.λY. b (X Y ); B =ν λY. b Y.
Then, we have:

E : s0 → s0 → s0, F : ((s0 → s1) ∧ (s1 → s1)) → s0, B : s0 → s1, B : s1 → s1 E2(S) : s0 ∅ E2(E) : s0 → s0 → s0 Γ E2(F ) : ((s0 → s1) ∧ (s1 → s1)) → s0 ∅ E2(G) : (s0 → s1) → s0 → s1 ∅ E2(G) : (s1 → s1) → s1 → s1 ∅ E2(B) : s0 → s1 ∅ E2(B) : s1 → s1
where Γ is the one given in Example 11. These type judgments determine a winning strategy for Player. A strategy for Player in TG(L, E ⊥ ) is to always play Γ = {X : s, Y : s → s}. This strategy can be seen as a cyclic type derivation that is depicted in Figure 5. It is not a winning strategy: the dashed cycle has the largest priority 2, but the self loop on X : s (depicted with a thick line) has the largest priority 1, hence Opponent can force an infinite play with the largest priority 1.

We now prove that the type-based characterization is sound and complete.

Theorem 13 (soundness and completeness of the type-based characterization). Let E be a fixpoint-free HES and L an LTS. Then, L E if and only if L |= E. The proof of the above theorem is given in the longer version [START_REF] Kobayashi | On the relationship between higher-order recursion schemes and higher-order fixpoint logic[END_REF]; here we just give an outline. The proof uses a semantic counterpart SG(L, E) of the typability game, which is obtained from TG(L, E) by replacing the player's moves {(Fi : τ, Γ) | Γ ϕi : τ } with {(Fi : τ, Γ) | Γ |= ϕi : τ }, where Γ |= ϕj : τ is a semantic type judgment relation. Since Γ ϕj : τ if and only Γ |= ϕj : τ , the semantic typability game SG(L, E) is actually isomorphic to the (syntactic) typability game TG(L, E). We can then transform the semantic typability game step by step, preserving the winner, until we get the semantic typability game for the extended HES (where fixpoint binders may occur in definitions) consisting of the single equation F1 = toHFL(E). Because SG(L, F1 = toHFL(E)) is winning for Player if and only if L |= E, we have the required result.

X : s 0 → s 1 X : s 0 → s 1 Γ F : (s 0 → s 1 ) ∧ (s 1 → s 1 ) → s 0 Γ G : (s 0 → s 1 ) → s 0 → s 1 X : s 0 → s 1 X : s 0 → s 1 Γ, X : s 0 → s 1 G X : s 0 → s 1 Γ G : (s 1 → s 1 ) → s 1 → s 1 X : s 1 → s 1 X : s 1 → s 1 Γ, X : s 1 → s 1 G X : s 1 → s 1 Γ, X : s 0 → s 1 , X : s 1 → s 1 F (G X) : s 0 Γ, X : s 0 → s 1 , X : s 1 → s 1 X(F (G X)) : s 1 Γ, X : s 0 → s 1 , X : s 1 → s 1 a X(F (G X)) : s 0 Γ λX. a X(F (G X)) : (s 1 → s 1 ) ∧ (s 0 → s 1 ) → s 0
X : s E(S) : s Y : s → s X : s Y X : s a (Y X) : s E(X) : s Z : s Z : s X : s Z : s Z ∧ X : s Z : s a (Z ∧ X) : s E(Y ) : s → s
As a corollary of Theorem 13, we also have the following parameterized complexity result. Theorem 14. Let E be a HES and L an LTS. Suppose that the following parameters are bounded above by constants: (i) the depth of E; (ii) the size of the largest (simple) type in E; and (iii) the size of L (i.e., the number of states plus the size of the transition relation -→). Then, L ? |= E can be decided in time polynomial in the size of E.

The theorem follows from the same reasoning as that for the parameterized complexity result for HORS model checking [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF]. Under the assumption above, for each variable of type η, the number of intersection types τ such that τ ::η is bounded above by a constant. Thus, the size of each type environment in the typability game is linear in the size of E, hence also is the size of the typability game. By the assumption that the depth dep(E) is fixed, the game can be solved in time polynomial in the size of the game, hence also in the size of E.

Correctness of the HORS-to-HFL Reduction (Proof of Theorem 10)

In this section, we establish the correctness of the HORS-to-HFL reduction (Theorem 13) we presented in Section 3. The proof relies on the type-based characterization of HORS model-checking based on Kobayashi and Ong's type system [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF] (KO type system, for short). Below we first briefly review KO type system in Section 5.1.

Then we show that the typability of a HORS model-checking instance in the KO type system is equivalent to the typability of its HFL translation in the type system of Section 4.

KO Type System

We review here (a variation of) KO type system for characterizing HORS model checking [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF]. We fix an alternating parity automaton A = (Q, Σ, δ, q init , Ω). KO types are defined by the grammar

θ ::= q | ς → θ ς ::= {(θ1, m1), . . . , (θ k , m k )}.
Here, q ranges over the set Q of states of the automaton, and mj ranges over the set {0, . . . , p-1} of priorities of A. As in the case of intersection types for HFL, we often write (θ1, m1)

∧ • • • ∧ (θ k , m k )
or i∈{1,...,k} (θi, mi) for ∧{(θ1, m1), . . . , (θ k , m k )}, and for ∅.

Intuitively, q is the type of a tree that is accepted by A when q is taken as the initial state, whereas ς1 → . . . ςn → q with ςj = (θj,1, mj,1) ∧ • • • ∧ (θ j,k j , m j,k j ) is the type of an n-ary function that may use the j-th argument as a value of types θj,1, . . . , θ j,k j and generates a tree of type q. The part m j, ( ∈ {1, . . . , kj}) expresses where the j-th argument may be used as a value of type θ j, ; intuitively, (θ j, , m j, ) specifies that in constructing the output tree of type q, the j-th argument may be used as a value of type θ j, in a node of the tree in which the largest priority visited in the path from the root to this node is m j, . For the space restriction, we refer the reader to [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF] for more intuitions on KO types. A slight difference between the original KO type system and the one presented here is that by "the largest priority visited in the path from the root", we exclude the priority of the current node, whereas the original type system included it. This change is just for technical convenience for matching the HFL type system in the previous section with KO type system.

As in the type system of Section 4, we only consider KO types ς that are refinements of simple types κ (which we write ς :: κ, defined in a similar manner as in Section 4), and the empty intersection type that refines κ is written κ or just when κ is not meaningful. A type environment is a set Θ of bindings x : (ς, m) where x is either a non-terminal or a term variable, and m is a priority.

The typing rules of KO type system are given in Figure 6. In the rule KO-T-CONST, the relation

Q |= f (where f ∈ B + ({1, . . . , n} × Q) and Q = (Q1, . . . , Qn) with Qi ⊆ Q for each i) is defined by induction on f : (i) Q |= tt, (ii) Q |= ff, (iii) Q |= (i, q) if (q ∈ Qi), (iv) Q |= f1 ∨ f2 if Q |= f1 or Q |= f2, and (v) Q |= f1 ∧ f2 if Q |= f1 and Q |= f2.
The operation •↑m on type environments is defined by:

Θ↑m := {x : (θ, max(m, m )) | x : (θ, m ) ∈ Θ}.
The KO typability game KG(G, A) for a HORS G = (Σ, N , R, S) and an APT A = (Q, Σ, δ, q init , Ω) is a parity game (V ∀ , V ∃ , v init , E, Ω ), where:

• The set V ∀ of Opponent's positions is the set of intersection type environments {Θ | ∀(Fi : θ) ∈ Θ.θ :: N (Fi)}.

x : (θ, 0)

HORS A x : θ (KO-T-VAR) (Q1, . . . , Qn) |= δA(q, a) ∅ HORS A a : q 1 ∈Q 1 (q1, Ω(q)) → • • • → qn∈Qn (qn, Ω(q)) → q (KO-T-CONST) Θ0 HORS A e0 : i∈I (θi, mi) → θ Θi HORS A e1 : θi for each i ∈ I Θ0 ∪ i∈I (Θi↑m i ) HORS A e0 e1 : θ (KO-T-APP) Θ ∪ {x : (θi, mi) | i ∈ I} HORS A e : θ x does not occur in Θ Θ HORS A λx.e : i∈I (θi, mi) → θ (KO-T-ABS) Θ HORS A e : θ θ ≤ θ Θ HORS A e : θ (KO-T-SUB) q ≤ q (KO-SUBT-BASE) θ ≤ θ ∀i ∈ I.∃j ∈ J.(θ j ≤ θi ∧ m j = mi) i∈I (θi, mi) → θ ≤ j∈J (θ j , m j ) → θ
(KO-SUBT-FUN) Figure 6. KO type system.

• The set V ∃ of Player's positions is the set of type bindings that respect simple types, i.e., {Fi : (θ, m) | τ :: N (Fi)}.

• v init is the initial position F : (q init , Ω(q init )).

• E = E1 ∪ E2, where E1, the set of Player's moves, is {(Fi : (θ, m), Θ) | Θ R(Fi) : θ}; and E2, the set of Opponent's moves, is {(Θ, Fi : (θ, m)) | Fi : (θ, m) ∈ Θ}.

• The priority function Ω , is defined by: Ω (Θ) = 0 for every Θ ∈ V ∀ , and Ω (Fi : (θ, m)) = m for every Fi : (θ, m) ∈ V ∃ .

We write HORS

A

G if Player has a winning strategy for KG(G, A). The following theorem states the soundness and completeness of KO type system. 6 Theorem 15 (Kobayashi and Ong [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF]). Suppose that TG does not contain ⊥. Then, HORS A G if and only if TG ∈ L(A).

Preservation of the Typability

Fix a HORS G and an APT A with the set {0, . . . , p-1} of priorities. We want to relate the typing game for KG(G, A) to the typing game TG(LA, E (p) G ). To avoid confusion, we write below Γ HFL ϕ : τ for the type judgment in HFL.

We first identify types for HFL model-checking (Section 4) and KO types. We define the translation (•) of KO types to the types in Section 4.

(q) = q ( j∈J (θj, mj) → θ) = j∈J,m j =0 (θj) → • • • → j∈J,m j =p-1 (θj) → (θ)
For example, with p = 2, ((q0, 0) ∧ (q1, 0) ∧ (q1, 1) → q) = q0 ∧ q1 → q1 → q. Note that θ :: κ implies (θ) :: κ , and that for any HFL intersection type τ , there is a KO type θ such that τ = (θ) 6 The type system presented in this section is actually a slight variation of the original one [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF], but the proof in [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF] can be easily adapted to this variation.

if and only if τ :: κ for some κ, and in that case, θ is unique. We write (τ ) for this θ. In particular, it holds that

(q) = q ( j∈I 0 τj → • • • → j∈I p-1 τj → τ ) = i∈{0,.
..,p-1},j∈I i ((τj) , i) → (τ ) . We extend (.) and (.) to type environments:

(Γ) = {A : ((τ ) , i) | A i : τ ∈ Γ} (Θ) = {A i : (θ) | A : (θ, i) ∈ Θ} ∪ Γaux ,
where Γaux = {Ln : q 1 ∈Q 1 q1 → • • • qn∈Qn qn → f | (Q1, . . . , Qn) |= f } is the type environment for all Ln. Note that (Γ) is well defined for the type environments used in the typing game of TG(LA, E (p) G ) because it only contains bindings A i : τ for intersection types τ that refine a type of the form κ .

We can show that the transformation preserves typing.

Lemma 16. Let e be a term of a HORS. If Θ HORS e : θ, then (Θ) HFL e 0 : (θ) . Conversely, if Γ HFL e 0 : τ , then (Γ) HORS e : (τ ) .

The following lemma guarantees that Ln : τ ∈ Γaux if and only if it is a winning position of TG(LA, E (p) G ). Lemma 17. Let f be a subformula of δ(q, a) with Σ(a) = n, and Q1, . . . , Qn ⊆ Q. Then HFL Ln :

q∈Q 1 q → q∈Q 2 q → • • • → q∈Qn q → f
is a winning position of the HFL typability game if and only if (Q1, . . . , Qn) |= f .

We can now prove that the reduction preserves typability. Notice that (.) and (.) are bijections between the positions of G and the ones of KG(G, A). By Lemma 16, these bijections are graph isomorphisms between the graphs of the arenas of the games. Moreover, the priority of every Opponent's position is 0 in both games, and for Player's positions, Ω(x m : τ ) = m = Ω x : (τ, m) holds. So both games are isomorphic.

Theorem 10 is an immediate corollary of Theorems 13, 15, and 18.

Remark 2. As mentioned in Section 1, since the decidability of HFL model checking is straightforward, the decidability of HORS model checking is an immediate corollary of Theorem 10. Our proof of Theorem 10 in this section, however, does not qualify as a new proof of the decidability of HORS model checking, because it relies on the soundness and completeness of the KO type system.

From HFL to HORS Model Checking

In this section, we present a reduction from HFL model checking to HORS model checking.

Recall that, over a (finite) LTS, by the Kleene Fixpoint Theorem, any fixpoint formula αF η .ψ with α ∈ {µ, ν} and η

= η1 → • • • → η → • is equivalent to F n where F 0 = λx1 : η1. • • • λx : η . if α = ν λx1 : η1. • • • λx : η .⊥ if α = µ F i+1 =[F i /F ]ψ
and n is greater than the height of the lattice of Dη. For η of order k, this height is a number k-fold exponential in the number of states of the LTS. Precise bounds can be found in [START_REF] Axelsson | The complexity of model checking higher-order fixpoint logic[END_REF]. Our aim is to create a HORS that generates the syntax tree of F (n) , and then runs it against an alternating automaton that encodes the LTS in question.

Overview of the Translation

We first give an overview of the translation using an example. Let us consider the following HES E:

S =ν F ( a ); F X =µ X ∨ b (F X).
It represents the property that the action a may be enabled after finitely many b transitions. For a sufficiently large number n, E is equivalent to the following HES E , obtained by unfolding F n times.

S =ν

F (n) ( a ); F (n) X =µ X ∨ b (F (n-1) X); • • • F (1) X =µ X ∨ b (F (0) X); F (0) X =µ ⊥.
The annotations ν and µ in E above actually do not matter, because E does not contain any recursion. Now, by replacing each logical connective with the corresponding tree constructor, we obtain the following HORS GE , which generates the syntax tree of the formula obtained by reducing E :

S → F (n) ( a ) F (n) X → ∨ X ( b (F (n) X)) • • • F (1) X → ∨ X ( b (F (0) X)) F (0) X → ⊥.
Let L = (U, A, -→, s init ) be an LTS. To check whether L |= E (hence also L |= E) holds, it suffices to run a tree automaton to evaluate (the formula represented by) the tree TG E against L. Such an automaton AL would be of the form ({qs | s ∈ U }, Σ, δ, qs init , Ω) where qs is a state for checking whether s satisfies the formula represented by the current subtree, the alphabet Σ consists of the tree constructors corresponding to logical connectives, and the transition function δ is defined by: 7

δ(qs, ) = tt δ(qs, ⊥) = ff δ(qs, ∨) = (1, qs) ∨ (2, qs) δ(qs, a ) = ∨{(1, q s | s a -→ s } • • • .
Then, we have L |= E if and only if GE |= AL; thus we have reduced HFL model checking to HORS model checking.

The remaining problem is that GE is too large, because the required number n of unfoldings is in general k-fold exponential in the size of L for an order-k HES. To address the problem, we parameterize each non-terminal F (j) above by the number j, and encode numbers as terms of HORS. Thus, the resulting HORS is given by:

S → F n ( a ) F j X → if (IsZero j) ⊥ (∨ X ( b (F (j -1) X))).
Below, we first prepare an encoding of numbers in Section 6.2. We then present the general translation from HFL model checking to HORS model checking in Section 6.3.

Counting with HORS

As a first step, we show how to implement large numbers in HORS. Our encoding follows that of Jones [START_REF] Jones | The expressive power of higher-order types or, life without CONS[END_REF]. Let exp k (r) denote the kfold exponent of r, defined by exp 0 (r) and exp i+1 (r) = 2 exp i (r) . 7 The full definition is given later in Section 6.3.

For our purpose, we need to represent numbers up to exp k (r) by terms of order at most k -1 and of size polynomial in r. Prepare Bit = {0, 1} and let Numi be defined by

Num1 = Bit × • • • × Bit r Numi+1 = Numi → Bit.
For every i, let . i : {0, . . . , exp i (r) -1} → Numi be the bijection defined as follows: (i) for every n ∈ {1, . . . , 2 r -1}, n 1 = (b0, . . . , br-1), where b0 . . . br-1 is the binary representation of n starting with b0 as the least significant bit; (ii) for every n ∈ {0, . . . , exp i+1 (r)-1}, for every m ∈ {0, . . . , exp i (r)-1} n i+1 maps m i to bm, where b0 . . . b exp i (r)-1 is the binary representation of n.

In order to compute with bits, we represent bit expressions as Σ Bit -labeled (possibly infinite) trees where Σ Bit = {1 → 0, 0 → 0, if → 3}. We define the relation T ⇓ b inductively, by: (i) 1 ⇓ 1, (ii) 0 ⇓ 0, (iii) if T0 T1 T2 ⇓ b if T0 ⇓ 1 and T1 ⇓ b, and (iv) if T0 T1 T2 ⇓ b if T0 ⇓ 0 and T2 ⇓ b. We call b the value of T when T ⇓ b holds. Note that a bit expression T may or may not have a value if T is infinite.

We prepare an automaton to evaluate bit expressions. Let A Bit be the APT ({q1, q0}, Σ Bit , δ, q1, Ω), with

δ(q, if) = ((1, q1) ∧ (2, q)) ∨ ((1, q0) ∧ (3, q))
for every q ∈ {q1, q0} δ(q1, 1) = δ(q0, 0) = tt δ(q1, 0) = δ(q0, 1) = ff Ω(q1) = Ω(q0) = 1. Lemma 19. A Bit accepts a tree T from state q1 (q0, resp.) if and only if T ⇓ 1 (T ⇓ 0, resp.).

We assume below that other bit operations are represented as order-1 non-terminals of HORS. For example, the bit complement Not and -ary disjunction OR can be defined by the following rewriting rules:

Not x → if x 0 1 OR1 x → x OR x1 • • • x → if x1 1 (OR -1 x2 • • • x )
We introduce the HORS types Bit = and Num i for all i ≥ 2 as follows:

Num 2 = → • • • → r →
, and for all i ≥ 2, Num i+1 = Num i → (note that Num 1 is undefined only because HORS types do not have product).

For the purpose of encoding HFL formulas, we need to prepare the following terms of HORS: 

Maxi : Num i (which represents exp i (r) -1) Deci : Num i → Num i (decrement function) IsZeroi : Num i → Bit (check if
if (ExistsOnei+1 f n) (f n) (Not(f n)) ExistsOnei+1 f n → (* Check whether some bit of f lower than the n-th bit is 0 *) if (IsZeroi n) 0 (OR2 (f (Deci n)) ExistsOnei+1 f (Deci n) )) IsZero1 (b0, . . . , br-1) → Not(ORr b0 • • • br-1) IsZeroi+1 f → Not(OR2 (f Maxi) (ExistsOnei+1 f Maxi)).
Here, ≡ indicates that the lefthand side is a shorthand (or a macro) for the righthand side, and → indicates that the head symbol on the lefthand side is a non-terminal of HORS defined by the rewriting rule. The meta-variable i ranges over {1, . . . , k -1}, and j ranges over {1, . . . , r}. The encodings above should be easy to understand; Maxi represents the number whose bit representation is 11

• • • 1 exp i-1 (r)
, hence defined as a function that always returns 1.

The following lemma states the correctness of our number encoding.

Lemma 20. Let T be the tree generated by IsZeroi(Dec m i Maxi). Then, (i

) if m = exp i (r) -1, then T ⇓ 1; (ii) if m < exp i (r) -1, then T ⇓ 0.

The Translation

Let L be an LTS (U, A, -→, s init ), and E be an order-k HES Fn =α n ϕn; • • • ; F0 =α 0 ϕ0 where Fi is of type ηi (and thus ηn = •). We assume that each ϕj is of the form λx1. • • • λx j .ψj such that ψj does not contain lambda abstractions.

Let hj be the height of the lattice of Dη j , and M the largest arity of types occurring in η0, . . . , ηn. By [START_REF] Axelsson | The complexity of model checking higher-order fixpoint logic[END_REF], Lemma 3.5, exp k (r) -1 ≥ max(h0, . . . , hn) for r > log |U | + |U | • (M + k) k . Let mh be exp k (r) -1 for the least such natural number r. Note that r is polynomial in |U | and M , assuming that the order k of E is a constant.

Let β = (βn, . . . , βj) be a collection of non-negative integers. If βj > 0, define

β( ) = (βn, . . . , β ) if > j β( ) = (βn, . . . , βj -1, mh, . . . , mh j-times ) if ≤ j
Let < be the lexicographic order on β's, i.e., the least transitive relation that satisfies: (βn, . . . , βj+1) < (βn, . . . , βj+1, βj) and (βn, . . . , βj+1, βj) < (βn, . . . , βj+1, βj + 1). We define the HFL formula F (mn,...,m j ) j

for each j ∈ {0, . . . , n}, mn, . . . , mj ∈ {0, . . . , mh} as follows, by well-founded induction on <. F (mn,...,m j+1 ,0) j

= λx1. • • • λx j . αj F β j = [F β(0) 0 /F0, . . . , F β(n) n
/Fn]ϕj if β = (mn, . . . , mj) with mj > 0.

Here, αj = if αj = ν and αj = ⊥ if αj = µ. By the Kleene Fixpoint Theorem, we have:

Lemma 21. toHFL(E) = F (mh) n . Since F (mh) n
contains no fixpoint operators, we can reduce it to a formula in basic modal logic. Below we create a HORS that generates the syntax tree of this formula.

For each Fj(j ∈ {0, . . . , n}) of E, we prepare a non-terminal of the same name Fj of a HORS, and the following rewriting rule: Fj yn, . . . , yj, x1, . . . , x j → if (IsZero k yj) αj ([[ψj]] yn,...,y j+1 ,Dec k (y j ) ).

Here, [[ψ j ]] yn,...,y j is defined by induction on formulas: Here, c ranges over ∨, ∧, a , [a], , ⊥; so, for example, ϕ1 ∧ ϕ2 is considered as (∧ ϕ1) ϕ2 in the above definition. In the image of the translation, those constants are treated as tree constructors of the HORS. The arguments y1, . . . , yj are of type Num k ; intuitively,

Fj n1 k • • • nj k corresponds to F (n 1 ,...,n j ) j .
We write GE,L8 for the HORS consisting of the above rules for Fj, S → Fn Max k (where S is the start symbol), and the rules in Section 6.2 for encoding numbers. 

S =ν F B; F =ν λX : • → •. a (X(F (G X))); G =ν λX : • → •.λY : •. b (X Y ); B =ν λY : •. b Y.
We obtain the HORS GE 0 ,L 0 with

S → S Max2 S yS → if (IsZero2 yS) (F (Dec2 yS) Max2 (B yS Max2 Max2 Max2)) F yS yF x → if (IsZero2 yF ) ( a (x (F yS (Dec2 yF ) (G yS (Dec2 yF ) Max2 x)))) G yS yF yG x y → if (IsZero2 yG) ( b (x y)) B yS yF yG yB y → if (IsZero2 yB) ( b y)
where the yj's have been renamed to their respective nonterminal for ease of understanding and the parameters xj have been renamed to lower case versions of their HFL correspondents, and the rules for Dec2 and IsZero2 are as per their definition.

Let AL be the APT ({qs | s ∈ U } ∪ {q1, q0}, Σ, δ, qs init , Ω) where:

Σ = Σ Bit ∪ {∨ → 2, ∧ → 2, → 0, ⊥ → 0} ∪ a∈A { a → 1, [a] → 1} δ(qs, a ) = ∨{(1, q s ) | s a -→ s } δ(qs, [a]) = ∧{(1, q s ) | s a -→ s } δ(qs, ) = tt δ(qs, ⊥) = ff δ(qs, ∨) = (1, qs) ∨ (2, qs) δ(qs, ∧) = (1, qs) ∧ (2, qs) δ(qs, 1) = δ(qs, 0) = ff (for each s ∈ U ) δ(q, if) = ((1, q1) ∧ (2, q)) ∨ ((1, q0) ∧ (3, q)) (for every q ∈ {qs | s ∈ U } ∪ {q1, q0}) δ(q1, 1) = tt δ(q1, a) = ff if a ∈ {1, if} δ(q0, 0) = tt δ(q0, a) = ff if a ∈ {0, if}
and Ω(q) = 1 for every q. Note that AL is an extension of the automaton A Bit in the previous subsection.

Theorem 22. Let L be an LTS and let E be an HES. Then AL accepts the tree generated by GE,L if and only if L |= E. The size of GE,L is polynomial in the size of E and L; and AL has m + 2 states where m is the number of states of L. Furthermore, they can be constructed in time polynomial in the size of E and L (assuming that the order k of E is a constant).

By the above theorem, the reduction combined with an optimal algorithm for HORS model checking yields an k-EXPTIME HFL model checking algorithm, which is optimal [START_REF] Axelsson | The complexity of model checking higher-order fixpoint logic[END_REF].

Related Work

The model checking problem for HORS has been studied since around 2000. Knapik et al. [START_REF] Knapik | Higher-order pushdown trees are easy[END_REF] proved the decidability of the problem for HORS with the safety restriction, and Ong [START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF] proved the decidability for arbitrary HORS, without the safety restriction and showed that the problem is k-EXPTIME complete for order-k HORS. Since Ong's proof was complex, a number of alternative proofs have been developed since then [START_REF] Hague | Collapsible pushdown automata and recursion schemes[END_REF][START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF][START_REF] Salvati | Krivine machines and higher-order schemes[END_REF][START_REF] Tsukada | Compositional higher-order model checking via ω-regular games over böhm trees[END_REF]. Among others, Kobayashi and Ong [START_REF] Kobayashi | Model checking higher-order programs[END_REF][START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF] have provided a type-based characterization of HORS model checking, which inspired our type system for HFL model checking in Section 4. The type-based characterization of HORS model checking has lead to development of practical algorithms for HORS model checking [START_REF] Broadbent | Saturation-based model checking of higher-order recursion schemes[END_REF][START_REF] Kobayashi | Model-checking higher-order functions[END_REF][START_REF] Kobayashi | A practical linear time algorithm for trivial automata model checking of higher-order recursion schemes[END_REF][START_REF] Neatherway | A traversal-based algorithm for higher-order model checking[END_REF][START_REF] Ramsay | An abstraction refinement approach to higher-order model checking[END_REF]. We therefore expect that our type-based characterization of HFL model checking also yields practical algorithms for HFL model checking. The proof of the correctness of our type-based characterization (found in the longer version [START_REF] Kobayashi | On the relationship between higher-order recursion schemes and higher-order fixpoint logic[END_REF]) has been partially inspired by Salvati and Walukiewicz's model theoretic approach to HORS model checking [START_REF] Salvati | Typing weak MSOL properties[END_REF]. On the practical side, HORS model checking has been applied to automated verification of higher-order programs [START_REF] Kobayashi | Types and higher-order recursion schemes for verification of higher-order programs[END_REF][START_REF] Kobayashi | Predicate abstraction and CEGAR for higher-order model checking[END_REF][START_REF] Kuwahara | Automatic termination verification for higher-order functional programs[END_REF][START_REF] Kuwahara | Predicate abstraction and CEGAR for disproving termination of higher-order functional programs[END_REF][START_REF] Murase | Temporal verification of higher-order functional programs[END_REF][START_REF] Ong | Verifying higher-order programs with pattern-matching algebraic data types[END_REF][START_REF] Unno | Automating relatively complete verification of higher-order functional programs[END_REF][START_REF] Yasukata | Pairwise reachability analysis for higher order concurrent programs by higher-order model checking[END_REF]. Independently of the above line of work, Viswanathan and Viswanathan [START_REF] Viswanathan | A higher order modal fixed point logic[END_REF] introduced HFL, a higher-order extension of modal µ-calculus, and showed that, while model checking remains decidable for finite state systems, HFL is strictly more expressive than modal µ-calculus and FLC (Modal Fixpoint Logic with Chop) [START_REF] Müller-Olm | A modal fixpoint logic with chop[END_REF], another extension of modal µ-calculus. Axelsson et al. [START_REF] Axelsson | The complexity of model checking higher-order fixpoint logic[END_REF] proved that the model checking problem for order-k HFL formulas is k-EXPTIME complete. The state of the art on practical algorithms for HFL model checking is much behind that on HORS model checking algorithms. In [START_REF] Lange | Model-checking process equivalences[END_REF], the authors sketch a global model-checking algorithm that does not compute the entire representation of functions, but relies on neededness analysis in order to partially represent them. By contrast, the typing game presented in this paper may be seen as a higher-order extension of local model-checking [START_REF] Stirling | Local model checking in the modal mucalculus[END_REF].

Somewhat surprisingly, despite that both problems are higherorder extensions of finite state model checking that have been introduced and studied in the 2000's, and despite that both are k-EXPTIME complete for the order-k fragment, we are not aware of any previous work that studies the connection between HORS and HFL model checking. The translation from HORS to HFL in Section 3 has been partially inspired by Kobayashi and Ong's type system for HORS model checking [START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF]. Their type system statically keeps track of the largest priority of states visited using types, whereas our translation dynamically keeps that information by duplicating arguments. This fact is reflected in the translation from their types to our types for HFL presented in Section 3. The translation from HORS to HFL model checking may also have some connection to Salvati and and Walukiewicz's recent work [START_REF] Salvati | A model for behavioural properties of higher-order programs[END_REF], which uses a model-theoretic approach to reduce HORS model checking to nested least/greatest fixpoint computations. In the translation from HFL to HORS, the key challenge was how to encode big numbers into order-(k-1) terms of HORS. Our encoding may be seen as a combination of Jones' encoding of big numbers as functions [START_REF] Jones | The expressive power of higher-order types or, life without CONS[END_REF], and encoding of Boolean expressions into order-0 terms (with an added automaton to evaluate these expressions); the latter encoding was used in the benchmark of the HORS model checker PREFACE [START_REF] Ramsay | An abstraction refinement approach to higher-order model checking[END_REF].

Conclusion

We have presented mutual translations between the HORS and HFL model checking problems, both higher-order extensions of finite state model checking. We have also proved the correctness of both translations. These translations preserve complexity, in the sense that the translation followed by an optimal algorithm for the target problem yields an optimal (i.e., k-EXPTIME) algorithm for the source problem. The results reveal the close connection between the two problems, enabling the cross-fertilization of the two threads of research. The type-based characterization of HFL model checking developed in Section 4 may be seen as the first outcome of such cross-fertilization, which may yield a practical algorithm for HFL model checking.

an extended HES if ϕi may contain fixpoint operators. As for HES, we assume: (i) α k is ν if k is even and µ otherwise; and (ii) Fn occurs in none of ϕj, . . . , ϕn. Thus, ΩE (Fi) = i -j if j is even, and ΩE (Fi) = i -j + 1 otherwise.

The advantage of semantic type judgments introduced in the previous subsection is that we can define a typability game also for extended HES's.

The semantic typability game for an extended HES E := (F ηn n =α n ϕn; • • • ; F η j j =α j ϕj) and an LTS L = (U, A, -→, s init ), written SG(L, E), is a parity game (V ∀ , V ∃ , v init , E, Ω), where:

• The set V ∀ of Opponent's positions is the set of intersection type environments {Γ | ∀Fi : τ ∈ Γ.τ :: ηi}.

• The set V ∃ of Player's positions is the set of type bindings that respect simple types, i.e., {Fi : τ | τ :: ηi}.

• v init is the initial position F : s init .

• E = E1 ∪ E2, where E1, the set of Player's moves, is {(Fi : τ, Γ) | Γ |= ϕi : τ }; and E2, the set of Opponent's moves, is {(Γ, Fi : τ ) | Fi : τ ∈ Γ}.

• The priority function Ω is defined by: Ω(Γ) = 0 for every Γ ∈ V ∀ , and Ω(Fi : τ ) = ΩE (Fi) for every Fi : τ ∈ V ∃ .

For an ordinary HES (i.e., HES where fixpoint operators do not occur on the righthand side), the semantic typability game coincides with the (syntactic) typability game. Proof. By the definition of the games, the sets of Opponent's Player's moves in TG(L, E) and SG(L, E) are identical. By Lemmas 25 and Lemmas 29, the sets of Player's moves are also identical. Thus, the two games are isomorphic.

A.3 Soundness of the Semantic Typability Game

We shall show that if Player wins the semantic typability game SG(L, E), then L |= E holds. To this end, we transform the semantic parity game step by step, until we obtain the trivial semantic parity game for E := (Fn =α n toHFL(E)). Player winning the game means ∅ |= toHFL(E) : s init , i.e., s init ∈ toHFL(E) , which implies L |= E.

For i = 0, . . . , n, we define an (extended) HES E (i) as follows.

E (0) is E = (F ηn n =α n ϕn; • • • ; F η 0 0 =α 0 ϕ0). Given E (i) : F ηn n =α n ϕ (i) n ; • • • ; F η i i =α i ϕ (i) i , E (i+1) is defined as F ηn n =α n ϕ (i+1) n ; • • • ; F η i i+1 =α i+1 ϕ (i+1) i+1 ,
where ϕ

(i+1) j = [αiF η i i .ϕ (i) i /Fi]ϕ (i) j . Thus, E (i+1) is obtained by removing the last equation F η i i =α i ϕ (i)
i , and replacing Fi with αiF η i i .ϕ

i . Note that E (n) = (Fn =α n toHFL(E)) (recall that we assumed that Fn does not occur on the righthand side of E). We write ϕ (i) j below for the righthand side of the equation for Fj in E (i) .

We shall show that the transformation from E (i) to E (i+1) preserves the winner of the semantic parity game. To this end, we construct a winning strategy for SG(L, E (j+1) ) from that for SG(L, E (j) ). Let W (j) be a (memoryless) winning strategy for SG(L, E (j) ). For each winning position F : τ of SG(L, E (j) ), we define the closure of F : τ , written clos W (j) (F : τ ), as the least type environment such that:

• W (j) (F : τ ) ⊆ clos W (j) (F : τ )

• If Fj :τ ∈ clos W (j) (F :τ ), then W (j) (Fj :τ ) ⊆ clos W (j) (F : τ ).

For example, if W (j) (F :τ1) = {F :τ2, Fj :τ3} and W (j) (Fj :τ3) = {F : τ4, Fj : τ3}, then clos W (j) (F : τ1) = {F : τ2, Fj : τ3, F : τ4}. We define Player's memoryless strategy W (j+1) for SG(L, E (j+1) ) by: W (j+1) (F k : τ ) = {F : τ | F : τ ∈ closW (F k : τ ), > j} if k > j and F k :τ is a winning position of ϕ (j) , and W (j+1) (F k :τ ) is undefined otherwise. We show that W (j+1) is a valid strategy (i.e., ((F k :, τ ), W (j+1) (F k : τ )) ∈ E), and W (j+1) is a winning strategy. To show that W (j+1) is valid, it suffices to prove: Proof. This follows by straightforward induction on the structure of ϕ.

W (j+1) (F k : τ ) |= ϕ
Using the lemma above, we show that W (j+1) is a valid strategy, by case analysis on αj.

• Case αj = µ:

Let us define clos 

W (j) (F k : τ ) | F = Fj} ∪ F j :τ ∈clos (i)
W (j) (F k :τ ) W (j) (Fj : τ ). Since the set of types is finite, and W (j) is a winning strategy, we have clos 

C. Proofs for Section 6

Proof of Lemma 20. Recall that a number n > 0 is decremented by one by flipping exactly those bits in its binary representation such that all bits of lesser significance are zero. In particular, the least significant bit must be flipped.

Note that the order 1 nonterminals representing boolean operations work as intended: If T is the tree generated by x, and T is the tree generated by Not x then T ⇓ b iff T ⇓ b, where b ∈ {1, 0} and b is the opposite constant. Moreover, if Tj is the tree generated by xj, for 1 ≤ j ≤ , and T is the tree generated by OR x1, • • • , x , then T ⇓ 1 iff Tj ⇓ 1 for at least one j, and T ⇓ 0 iff Ti ⇓ 0 for all j.

The proof of the lemma is by induction on i. Let i = 1. By the above, if T is the tree generated by IsZero1 (b0, . . . , br-1) and Tj is the tree generated by bj, for j with 0 ≤ j ≤ r -1, then T ⇓ 1 if Tj ⇓ 0 for all j and T ⇓ 1 if there exists j such that Tj ⇓ 1 and T j ⇓ 0 for all j < j. Consider Dec m 1 Max1 for 0 ≤ m ≤ exp 1 (r) -1 and let Tj be the tree generated by the j-th bit in this tuple. We observe that Tj ⇓ 0 if the j-th bit in the binary representation of exp 1 (r)-1-m is zero and Tj ⇓ 1 if it is one. We prove this by induction over m. For m = 0 the claim is by definition since Tj ⇓ 1 for all j. Consider the statement proved for m < r -1 and let T j the the tree generated by bit number j in Dec m+1 we conclude that, if Tj ⇓ b then T j ⇓ b iff T j ⇓ 0 for all j < j and T j ⇓ b else. If T j ⇓ b then, by the induction hypothesis, all bits of lesser significance than j in the binary representation of exp 1 (r) -1 -m are zero, whence the j-th bit must be flipped in the binary representation of exp 1 (r) -1 -m -1 = exp 1 (r) -1 -(m + 1), which it is. Conversely, if Tj ⇓ b then T j ⇓ b iff T j ⇓ 1 for some j < j. Hence, by the induction hypothesis, the j -th bit of m is one and, hence the j-th bit of exp 1 (r) -1 -m -1 = exp 1 (r) -1 -(m + 1) equals the j-th bit of exp 1 (r) -1 -m -1 = exp 1 (r) -1 -(m). This finishes the induction and yields the claim of the lemma for i = 1.

Assume that the lemma is proved for some i. Note that the binary representation of exp i+1 (r) -1 has exp i (r) -1 bits, none of which are zero.

Consider the trees T m m generated by (Dec There are two cases: If the exp i (r) -1 -m -th bit of the binary representation of exp i+1 (r) -1 -m is one for some m with exp i (r) -1 ≥ m > m , then, by the induction hypothesis, T m m ⇓ 1 and the second clause of the if statement is relevant. In other words, if T m m ⇓ b then T m+1 m ⇓ b, which is as desired since the exp i (r) -1 -m -th bit of exp i+1 (r) -1 -(m + 1) must equal the same bit of exp 1 (r) -1 -m, whence the claim holds for this case. If the exp i (r) -1 -m -th bit of the binary representation of exp i+1 (r) -1 -m is zero for all m with exp i (r) -1 ≥ m > m , then the exp i (r) -1 -m -th bit of exp i+1 (r) -1 -(m + 1) must be opposite to that of exp i+1 (r) -1 -m. By the induction hypothesis, T m m ⇓ 0 whence, if T m m ⇓ b, then T m+1

Figure 1 .

 1 Figure 1. The tree generated by G0 in Example 2.

Definition 4 (Example 3 .

 43 model checking of HORS). We write G |= A if TG ∈ L(A). The HORS model checking problem is the problem of deciding whether G |= A, given a HORS G and an alternating parity tree automaton A. Consider the APT A0 in Example 1 and the HORS G0 in Example 2. Then, G0 |= A0 holds.

Figure 2 .

 2 Figure 2. The LTS LA 0 associated to the APT A0 of Example 1, where f = (1, q0) ∧ (2, q0), and q0 is the initial state.

νX. 1

 1 ϕc ∨ 2 ϕ b c ∨ ( and ∧ [and]X) ∨ ( or X) ∨ true , where ϕc and ϕ b c describe the properties that the current state has transitions corresponding to accepting runs for c and b c respectively, which can be defined by: ϕc := c0 νX.( and ∧ [and]X) ∨ ( or X) ∨ true ϕ b c := b0 νX. 1 ϕc ∨ ( and ∧ [and]X) ∨ ( or X) ∨ true . By preparing the following formula Ln: νX.λy1, . . . , yn. n j=1 j yj ∨ ( and ∧ [and](X y1 . . . yn)) ∨ or (X y1 . . . yn) ∨ true the formula ϕG can be simplified to:

n

  j=1 j yj ∨ ( and ∧ [and](Ln y1 . . . yn)) ∨ or (Ln y1 . . . yn) ∨ true for n ∈ {1, . . . , k} with k being the largest arity; (ii) A0, . . . , Am are the non-terminals of G with S = A0; (iii) ei = R(Ai); and (iv) (e) † is defined by induction on e as follows.

a-

  → s such that s satisfies ϕ. The rules HFL-T-ABS and HFL-T-APP are the standard typing rules for abstractions and applications. The subtyping relation τ ≤ τ means, as usual, that a value of type τ may also be used as a value of type τ . Example 11. Consider the HES E0 of Example 6 and the LTS L0 of Example 4. Let Γ = {G :(s0 → s1) → s0 → s1, G : (s1 → s1) → s1 → s1, F : (s0 → s1) ∧ (s1 → s1) → s0}.Then the type judgment Γ E(F ) : (s0 → s1) ∧ (s1 → s1) → s0 holds (see the derivation in Figure4).

  Γ ϕ : s Γ a ϕ : s (HFL-T-SOME) Γ ϕ : s for every s such that s a -→ s Γ [a]ϕ : s (HFL-T-ALL) Γ ϕ1 : s Γ ϕ2 : s Γ ϕ1 ∧ ϕ2 : s (HFL-T-AND)

Example 12 .

 12 Consider again the HES E0 of Example 6 and the LTS L0 of Example 4. Let Γ be like in Example 11. Then Player has a winning strategy by always moving to the type environment Γ or the empty type environment (in which case Player wins).

Example 14 .

 14 Consider the unsatisfiable HES E ⊥ of Example 7; recall that ΩE ⊥ (S) = 3, ΩE ⊥ (Y ) = 2, and ΩE ⊥ (X) = 1. Let L = ({s}, {a}, -→, s) with s a -→ s.

Figure 4 .

 4 Figure 4. Type derivation for Γ E(F ) : (s1 → s1) ∧ (s0 → s1) → s0 in Example 11.

Figure 5 .

 5 Figure 5. A Player's strategy in the typing game of Example 14.

Theorem 18 .

 18 Let G be a HORS and A be an alternating parity tree automaton. Then, HORS A G if and only if LA HFL E (p) G . Proof. Let G be the parity game obtained from TG(LA, E (p) G ) by removing Player's positions of the form Ln :τ , and the edges from/to those positions. By Lemma 17, the winners of TG(LA, E (p) G ) and G are the same.

[

  [c]] yn,...,y j = c [[ x ]] yn,...,y j = x [[F ]] yn,...,y j =    F yn . . . y if ≥ j F yn . . . yj Max k . . . Max k j-l times if < j [[ϕ1ϕ2]] yn,...,y j = [[ϕ1 ]] yn,...,y j [[ϕ2]] yn,...,y j

Example 15 .

 15 Recall the LTS L0 from Example 4, and the HES E0 from Example 6:

Lemma 30 .

 30 Let E be an HES. Player wins TG(L, E) if and only if Player wins SG(L, E).

  We shall use the following lemma.Lemma 31 (semantic substitution lemma). If Γ0, F : τ1, . . . , F : τ k |= ϕ : τ with F ∈ dom(Γ0) and Γi |= ϕ : τi for each i ∈ {1, . . . , k}, then Γ0, Γ1, . . . , Γ k |= [ϕ /F ]ϕ : τ .

W

  (j) (F k :τ ) by: clos(0) W (j) (F k :τ ) = W (j) (F k : τ ) and clos

W

  (j) (F k : τ ) = {F : τ ∈ clos

W•W

  (j) (F k : τ ) = W (j+1) (F k : τ ) for some m. By repeatedly applying the semantic substitution lemma to W (j) (F k : τ ) |= ϕ (j) k : τ , we obtain:W (j+1) (F k : τ ) |= [ϕ (j) j /Fj] m ϕ (j)k : τ. Thus, we haveW (j+1) (F k : τ ) |= [µF η j Case αj = ν: Let {τ1, . . . , τ } be {τ | Fj : τ ∈ clos W (j) (F k : τ )}.Then, we have:W (j+1) (F k : τ ), Fj : τ1, . . . , Fj : τ |= ϕ (j+1) (F k : τ ) |= λFj.ϕ (j) j : τ1 ∧ • • • ∧ τ → τifor every i ∈ {1, . . . , }. By Lemma 26, we have:⊥τ 1 ∧•••∧τ η j λFj.ϕ (j) j (ρ W (j+1) (F k :τ ) )(⊥τ 1 ∧•••∧τ ). (j+1) (F k :τ ) ),from which we obtainW (j+1) (F k : τ ) |= νFj.ϕ(j) j : τ1 ∧ • • • ∧ τ by using Lemma 26. Thus, by Lemma 31, we have: W (j+1) (F k : τ ) |= [νFj.ϕ (j) j /Fj]ϕ (j) k : τ as required.

1 .

 1 Max1For j = 0, via DecSub0 b0 → Not bj we obtain that T0 ⇓ b iff T 0 ⇓ b. Since the least significant bit of exp 1 (r) -1 -(m + 1) must be the opposite of the least significant bit of exp 1 (r) -1 -m, this proves the statement for j = 0. FromDecSubj b0 • • • bj → if (ORj b0 • • • bj-1) bj (Not bj)

⇓ 0 ⇓ 1 ⇓ 1

 011 iff the exp i (r) -1 -m -th bit of exp i+1 (r) -1 -m is zero and thatT m m ⇓ 1 if it is one. Moreover we claim that T m m ⇓ 1 if T m m for some m with exp i+1 (r) -1 ≥ m > m and that T m m ⇓ 0 if T m m ⇓ 0 for all exp i+1 (r) -1 ≥ m > m. The proof is by double induction on m and m . For the outer induction, consider the case m = 0. Clearly Maxi+1 (Dec m i Maxi) generates the tree T 0 m = 1 for all m . Hence, also T 0 m ⇓ 1 if m < exp i (r) -1 and T 0 m ⇓ 0 if m = exp i (r) -1 by induction over m .Consider the claim proved for some m < exp i+1 (r) -1. We have to show thatT m+1 m ⇓ 1 if the exp i (r) -1 -m -th bit of exp i+1 (r) -1 -(m + 1) is zero and that T m+1 m if it is one. Consider Deci+1 f g → if (ExistsOnei+1 f g) (f g) (Not(f g)).

  the argument is 0) for all i ≥ 2. They are defined as follows, using the auxiliary functions ExistsOnei and DecSubj:

	Max1 ≡ (1, . . . , 1)	Maxi+1 g → 1
	Dec1 (b0, . . . , br-1) ≡	
	(DecSub0 b0, . . . , DecSubr-1 b0 • • • br-1)
	DecSub0 b0 → Not b0	
	DecSubj b0 • • • bj →	
	(* Flip bj only if b0, . . . , bj-1 are all 0 *)
	if (ORj b0 • • • bj-1) bj (Not bj)
	Deci+1 f n →	
	(* Flip the n-th bit of f only if all the lower bits are 0.*)

It is necessarily so because the decidability of HORS model checking is non-trivial (and in fact, it has been the subject of many papers[6, 13, 

[START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF][START_REF] Salvati | Krivine machines and higher-order schemes[END_REF]) whereas that of HFL model checking is straightforward; a proof of the correctness of the HORS-to-HFL translation would therefore serve as an alternative proof of the decidability of HORS model checking.

The least upper bound always exists, as -→ is confluent.

For example, since the priority 0 does not occur, we can eliminate the first argument g 0 of F . Similarly, we can also eliminate c 2 L 0 from ϕ F because the c 2 transition cannot be taken at the end of a path labeled with (a 0 + a 1 )(1 + 2 + and + or) * .

Thus, for example, is actually annotated like κ . Without this assumption on the implicit annotation, Stype( ) cannot be determined.

The only dependence of G E,L on L is via r.

Acknowledgments

We would like to thank Martin Lange, Takeshi Tsukada, and anonymous referees for useful comments. This work was partially supported by JSPS KAKENHI Grant Number JP15H05706.

Appendix

A. Proof of Theorem 13

We fix an LTS L = (U, A, -→, s init ) and a HES: E := (F ηn n =α n ϕn; • • • ; F η 0 0 =α 0 ϕ0), where ηn = •.

We assume: (i) α k is ν if k is even and µ otherwise; and (ii) Fn occurs in none of ϕ0, . . . , ϕn. Those assumptions do not lose generality, because (i) if αi = αi+1 = µ (αi = αi+1 = µ, resp.), then we can insert a dummy equation F • =ν F (F • =µ F , resp.) between the equations for Fi and Fi+1, without changing the semantics and typability of E; and (ii) if Fn occurs in ϕi, we can add F • n+1 =α n+1 Fn. By the assumption above, Ω(F k ) = k. As sketched in Section 4, we show Theorem 13 through semantic typability games. We first define the semantics of types and semantic typability games in Section A.1. We then introduce in Section A.2 the semantic typability game, a semantic counterpart of the typability game defined in Section 4, and show that it is equivalent to the (syntactic) typability game introduced in Section 4. We then show soundness and completeness of the semantic typability game (with respect to L |= E) in Sections A.3 and A.4 respectively.

A.1 Semantics of types

The semantics of types Dτ (⊆ D Stype(τ ) ) and Dσ (⊆ D Stype(σ) ) are defined by:

Recall that we are assuming that each τ or σ is implicitly annotated with the corresponding simple type, so that Stype(τ ) and Stype(σ) are well defined. For each intersection type τ , we define ⊥τ ∈ Dτ by:

When τ :: η, the restriction of (Dη, η , η ) to Dτ forms a complete sublattice, having ⊥τ as the least element.

Lemma 23. Suppose τ :: η. Then, the following conditions hold.

1. If x, y ∈ Dτ , then x η y, x η y ∈ Dτ . 2. Dτ is upward-closed, i.e., x ∈ Dτ and x η y imply y ∈ Dτ . 3. ⊥τ is the least element of Dτ . 4. If x ∈ Dη, then x ∈ Dτ if and only if ⊥τ η x.

Proof. The first property can be shown by induction on η.

• If η = •, then τ = q∈Q q for some Q ⊆ U with Q ⊆ x, Q ⊆ y. So Q ⊆ x ∩ y ⊆ x ∪ y, henceforth x • y, x • y ∈ Dτ . • Assume η = η1 → η2 and the property 1 holds for η2. Let

x, y ∈ Dη 1 →η 2 . For all z ∈ Dη 1 . Then (x η 1 →η 2 y)(z) = x(z) η 2 y(z) ∈ Dη 2 and (x η 1 →η 2 y)(z) = x(z) η 2 y(z) ∈ Dη 2 by induction, henceforth x η 1 →η 2 y, x η 1 →η 2 y ∈ Dη 1 →η 2 .

The second and third properties also follow by straightforward induction on η. The fourth property follows as an immediate corollary of the second and third properties.

Lemma 24. If σ ≤ σ has a derivation then Dσ ⊆ D σ .

Proof. By straightforward induction on the derivation of σ ≤ σ (see the three rules HFL-T-SUBT-BASE, HFL-SUBT-FUN, and HFL-SUBT-INT of Figure 4).

Let ρ be an interpretation (i.e., a map from a finite set of variables to η Dη). We write ρ |= Γ if ρ(X) ∈ Dτ for every binding X : τ ∈ dom(Γ). We write Γ |= ϕ : τ (Γ |= ϕ : σ, resp.) if ϕ (ρ) ∈ Dτ ( ϕ (ρ) ∈ Dσ, resp.) holds for every interpretation ρ such that ρ |= Γ.

We shall show that, for any formula ϕ that does not contain fixpoint operators, the syntactic type judgment Γ ϕ : τ is sound and complete with respect to the semantic type judgment Γ |= ϕ : τ Lemma 25 (soundness of syntactic type judgment). Let ϕ be a formula without fixpoint operators. Then, Γ ϕ : τ implies Γ |= ϕ : τ .

Proof. By induction on the derivation of Γ ϕ : τ . To prove the converse (completeness), we need some preparation. Given a type environment Γ, we define a canonical interpretation ρΓ by:

We have: For each value x ∈ Dη, we define the corresponding type σx,η by:

Here, σ1 → σ2 is defined by:

Lemma 27. If x ∈ Dη, then x η y if and only if y ∈ Dσ x,η .

Proof. We first show that x ∈ Dη implies x = ⊥σ x,η by induction on η.

• Case η = •: In this case, x = {s1, . . . , s k } and σx,η = s1 ∧ • • • ∧ s k . Thus, x ∈ ⊥σ x,η follows immediately.

• Case η = η1 → η2: In this case, we have:

Suppose y ∈ Dη 1 . We need to show

By the induction hypothesis, the righthand side is equal to: Proof. We show that ⊥τ Stype(τ ) ⊥τ 1 ∧•••∧τ k implies τi ≤ τ for some i ∈ {1, . . . , k} by induction on the structure of η = Stype(τ ). The lemma follows as a special case, where k = 1.

• Case η = •: In this case, τ = s and τi = si. Thus, by the assumption ⊥τ η ⊥τ 1 ∧•••∧τ k , we have {s} ⊆ {s1, . . . , s k }, which implies τ = s = si = τi for some i.

• Case η = η1 → η2: In this case, τ = σ → τ and τi = σi → τ i . By the condition ⊥τ η ⊥τ 1 ∧•••∧τ k , we have

The righthand side is equal to:

. . , k}, ⊥σ i ⊥σ}. Thus, by the induction hypothesis, there must exist i such that τ i ≤ τ and ⊥σ i ⊥σ.

⊥σ implies ⊥ τ j ⊥σ for each j ∈ {1, . . . , n}. By the induction hypothesis, for each j, there exists j ∈ {1, . . . , m} such that τ j ≤ τ j . Thus, we have σ ≤ σi. We have, therefore, τi ≤ τ as required.

We are now ready to prove the completeness of the syntactic type judgment.

Lemma 29 (completeness of syntactic type judgment). Let ϕ be a formula without fixpoint operators. Then, Γ |= ϕ : τ implies Γ ϕ : τ .

Proof. The proof proceeds by induction on the structure of ϕ.

• Case ϕ = : Since ϕ (ρΓ) = U , we have U ∈ Dτ , which implies τ = s ∈ U . Thus, by using HFL-T-TRUE we obtain Γ ϕ : τ .

• Case ϕ = ⊥: This cannot happen, since ⊥ (ρ) = ∅.

• Case ϕ = X: By Lemma 28, we have ⊥τ

. By Lemma 28, we have Γ(X) ≤ τ . By using HFL-T-VAR and HFL-T-SUB, we obtain Γ X : τ as required.

• Case ϕ = a ϕ : By Lemma 26, we have:

Thus, τ = s with s a -→ s and s ∈ ϕ (ρΓ) for some s, s . By s ∈ ϕ (ρΓ) and Lemma 26, we have Γ |= ϕ : s . By the induction hypothesis, we have Γ ϕ : s . Thus, by using HFL-T-SOME, we obtain Γ ϕ : τ as required.

• Case ϕ = [a]ϕ : By Lemma 26, we have:

Thus, τ = s form some s ∈ U , and s ∈ ϕ (ρΓ) holds for every s ∈ U such that s a -→ s . By Lemma 26 and the induction hypothesis, we have Γ ϕ : s for every s ∈ U such that s a -→ s . Thus, by using HFL-T-ALL, we obtain Γ ϕ : τ as required.

• Case ϕ = ϕ1 ∧ ϕ2: By Lemma 26, we have:

Thus, by using Lemma 26 and the induction hypothesis, we get Γ ϕ1 : τ and Γ ϕ2 : τ . Thus, by using HFL-T-AND, we obtain Γ ϕ : τ as required.

• Case ϕ = ϕ1 ∨ ϕ2: By Lemma 26, we have:

Thus, τ = s for some s ∈ U , and s ∈ ϕi (ρΓ) for i = 1 or 2. By using Lemma 26 and the induction hypothesis, we get Γ ϕ1 : τ or Γ ϕ2 : τ . Thus, by using HFL-T-OR, we obtain Γ ϕ : τ as required.

• Case ϕ = ϕ1ϕ2: By the assumption Γ |= ϕ1ϕ2 : τ , we have:

, where η2 is the simple type of ϕ2. By Lemma 27, ϕ2 (ρΓ)

x. By the monotonicity of ϕ1 (ρΓ), we have ϕ1 (ρΓ)( ϕ2 (ρΓ) ϕ1 (ρΓ)(x). Since Dσ ϕ 2 (ρ Γ ),η 2 is upward-closed (Lemma 23), ϕ1 (ρΓ)(x) ∈ Dτ . Thus, we have:

by Lemma 26. By the induction hypothesis, we have Γ ϕ1 :

, which imply Γ ϕ1ϕ2 : τ as required.

• Case ϕ = λX.ϕ : In this case, τ = σ → τ for some σ and τ . By the assumption Γ |= λX.ϕ : τ and Lemma 26, we have λX.ϕ (ρΓ) ∈ Dτ , which implies λX.ϕ (ρΓ)(⊥σ) = ϕ (ρΓ{X → ⊥σ}) ∈ D τ . Thus, we have Γ, X : σ |= ϕ : τ . By the induction hypothesis, we have Γ, X : σ ϕ : τ . Therefore, we obtain Γ ϕ : τ as required.

A.2 Semantic typability games

We call

Finally, to see that W (j+1) is a winning strategy, notice that for each segment (F k : τ )(W (j+1) (F k : τ ))(F : τ ) of a play that conforms to the strategy W (j+1) , there is a corresponding segment

a play that conforms to the strategy W (j) , where the largest priorities in the segments are the same. Thus, every play that conforms to W (j+1) is won by Player.

By the discussion above, we have:

Lemma 32. Let E be an HES and L be an LTS. If Player wins SG(L, E), then L |= E.

A.4 Completeness of the Semantic Typability Game

We show the converse of Lemma 32: if L |= E then Player wins the semantic typability game SG(E, L). Essentially, we just need to do the inverse of the argument for the soundness proof. We start with a winning strategy for the semantic typability game of E (n) and construct those for the semantic parity games of E (n-1) , . . . , E (0) = E step by step, where E (0) , . . . , E (n) are as defined in Section A.3. Actually, we use a slightly different notion of semantic typability game. The fat semantic typability game for an extended E:

, where:

• The set V ∀ of Opponent's positions is the set of intersection type environments {Γ | ∀Fi : τ ∈ Γ.τ :: ηi}.

• The set V ∃ of Player's positions is the set of type bindings that respect simple types, i.e., {Fi : σ | σ :: ηi, σ = }.

• V init is the set of initial positions:

• E = E1 ∪ E2, where E1, the set of Player's moves, is {(Fi : σ, Γ) | Γ |= ϕi : σ}; and E2, the set of Opponent's moves, is {(Γ, Fi : σ) | σ = Γ(Fi)}.

• The priority function Ω, is defined by: Ω(Γ) = 0 for every Γ ∈ V ∀ , and Ω(Fi : σ) = ΩE (Fi) for every Fi : τ ∈ V ∃ .

In the last but one clause, Γ(Fj) denotes {τ | Fj : τ ∈ Γ}. Player wins if there is a winning strategy from one of the initial positions.

The difference from the (non-fat) semantic typability game is that Player's position is of the form F : σ, instead of F : τ . Assuming L |= E, we construct winning strategies for FG(L, E (n) ), FG(L, E (n-1) ),. . . , FG(L, E (0) ) in this order. For E (n) , there is a trivial winning strategy defined by: W

Assume we are given a memoryless winning strategy W (j+1) for FG(L, E (j+1) ). Recall that E (j+1) is:

i . Without loss of generality, we assume that W (j+1) is defined only for Player's winning positions of FG(L, E (j+1) ).

We define Player's history-sensitive strategy 9 W (j) for FG(L, E (j) ) as the partial function given by:

Here, the formula

occurring in the last clause is defined by:

(Thus, F

(ρΓ) for a sufficiently large .) W (j) (h) is undefined if it does not match any of the three clauses above.

We show that W (j) is a valid strategy, i.e., W (j) (h(

k : σ. We perform case analysis on which caluse has been used for deriving W (j) (h(F k : σ)) = Γ.

• The first clause:

In this case, Γ = Γ , Fj :

, with k > j and

. By the validity of the strategy W (j+1) , we have

k : σ. Thus, we have

• The second clause:

In this case, h = h Γ and Γ = Γ , Fj : σj with αj = ν and σj = σ νF j .ϕ (j) j (ρ Γ ),η j

. Thus, we have Γ , Fj :σj |= ϕ (j) j

: σj as required.

• The third clause:

In this case, h = h (Γ, Fj : σ j, ) and Γ = Γ , Fj : σ j, -1 , with αj = µ, and σ j, = σ F ( )

To check that W (j) is a winning strategy, it suffices to observe that (i) for each fragment (F k :σ)h (F k :σ ) of a play with k, k > j, there exists a corresponding fragment of a play (consisting of two moves) (F k : σ)Γ(F k : σ ) conforming to W (j+1) ; (ii) if there exists an infinite play that visits only Fj, then αj must be even (since the third clause in the definition of W (j) can generate only finite plays); and (iii) Player never gets stuck (note that in the third clause, σj,0 = , and that in the first clause, F k : σ comes from the co-domain of W (j+1) ). Now, by a standard theorem on parity games, there is also a memoryless winning strategy W (j) . 9 Player's history-sensitive strategy W for a parity game is a partial map from

It is winning if Player wins every play that conforms to W, i.e., every play

It is known that if there is a history-sensitive winning strategy, there also exists a memoryless winning strategy [START_REF] Grädel | Automata, Logics, and Infinite Games: A Guide to Current Research[END_REF].

By repeating the above steps, we obtain a memoryless winning stragety W (0) for FG(L, E). From W (0) , we can construct a history-sensitve winning strategy W for the non-fat semantic typability game SG(L, E) as follows.

W (Fn : s init ) = W (0) (Fn : σ0)

where Fn : σ0 is an initial, winning position of the fat game. W (hΓ(F : τ )) = W (0) (F : Γ(F )).

We can further convert W to a memoryless winning strategy W for SG(L, E).

Thus, we have:

Lemma 33. Let E be an HES and L be an LTS. If L |= E, then Player wins SG(L, E).

Theorem 13 follows as an immediate corollary of Lemmas 30, 32, and 33.

B. Proofs for Lemmas in Section 5

We show that the KO typing game TG(G, A) is isomorphic to the HFL typing game TG(LA, EG) where positions of the form Ln : τ have been omitted.

Let Γaux = {Ln :

The positions that are omitted precisely are the ones of Γaux . We first show that these are winning positions for Player.

Proof of Lemma 17. The claim is that always playing Γaux is a winning strategy for Player in the typing game starting at position HFL Ln : q∈Q 1 q → q∈Q 2 q → • • • → q∈Qn q → f . To prove this, we reason by induction on f . Let σ l = q∈Q l q, Γ = {y1 : σ1, . . . , yn} and ϕ = and tt∧[and](Ln y1 . . . yn))∨ or (Ln y1 . . . yn) ∨ n j=1 j yj ∨ true . By case analysis on f , we show that Γ, Γaux HFL ϕ : f iff (Q1, . . . , Qn) |= f .

• if f = (j, q), then f j -→ q and this is the only transition from f , so HFL ϕ : f iff HFL j yj : f , if and only if HFL yj : q, if and only if q ∈ Qj, if and only if (Q1, . . . , Qn) |= f .

• if f = f1 ∧ f2, then f and -→ f1, f and -→ f2. Then Γ, Γaux HFL ϕ : f iff Γ, Γaux HFL Ln y1 . . . yn : fi for i = 1, 2, iff (by induction) (Q1, . . . , Qn) |= fi for i = 1, 2 iff (Q1, . . . , Qn) |= f .

• the case f = f1 ∨ f2 is similar

: f and Γ HFL ϕ : f . Moreover, (Q1, . . . , Qn) |= tt, so the equivalence holds.

Hence Γ, Γaux HFL ϕ : f iff (Q1, . . . , Qn) |= f , which ends the proof.

We now move to identifying Player's positions of the KO typing game with Players' position of the HFL typing game. Lemma 34. Let e be a term of a HORS. If Γ HFL e m : τ then there exists Θ such that Θ HORS e : (τ ) with Γ ⊇ (Θ↑m) .

Proof. By induction on e:

• if e = x for a variable or a non-terminal x, then by T-VAR Γ ⊇ x m : τ = (Θ↑m) with Θ := {x : (τ ) , 0 } such that Θ HORS x : (τ )

• if e = a with Σ(a) = n, then by definition of (.) m and by T-ABS, there are σ l,m = q ∈Q l,m q and q ∈ Q such that

By construction of LA, fixing m := Ω(q), Γ, Γ HFL Ln y m 1 . . . y m n : δA(q, a), and by Lemma 17 there is Q ∈ (2 Q ) n such that Q |= δA(q, a) and Γ, Γ HFL y m l : q ∈Q l q for all l = 1, . . . , n. So it holds that (Q 1,m , . . . , Q n,m ) |= δA(q, a), and by T-CONST in KO type system, HORS a : θ with

Finally, (τ ) ≤ θ, hence by T-SUB HORS a : (τ ) .

• if e = e1 e2, then there are types τ m ,j such that 1. : τ m ,j for all m = 0, . . . , p -1 and for all j ∈ J m By induction hypothesis 1. there is Θ1 such that Γ ⊇ (Θ1↑m) and Θ1 HORS e1 :

Then Γ ⊇ (Θ↑m) , and Θ HORS e1 e2 : (τ ) Lemma 35. Let e be a term of a HORS. If Θ HORS e : θ, then (Θ↑m) HORS e m : (θ)

Proof. By induction on e:

• if e = x, then Θ ⊇ {x : (θ, 0)}, so (Θ↑m) ⊇ {x m : (θ) }, and (Θ↑m) HFL x m : (θ)

• if e = a with Σ(a) = n then by T-CONST it holds that θ = j∈J 1 (q1j, Ω(q))) → • • • → j∈Jn (qnj, Ω(q))) → q for some q, q lj such that (l, q lj ) | l ∈ {1, . . . , n}, j ∈ J l |= δ(q, a). Let m = Ω(q) and Γ = y m l : q lj | l ∈ {1, . . . , n}, j ∈ J l . Then (Θ↑m) HFL am (Ln

. . y m n ) : q, and finally (Θ↑m) HFL (a) m : (θ) .

• if e = e1 e2, then by T-APP Θ = Θ0 ∪ j∈J Θj↑m j for some Θj and mj, and Θ HORS e1 : j∈J (θj, mj) → θ, and

By definition, (Θ↑m) = (Θ0↑m) ∪ j∈J Θj↑ max(i,m j ) By induction hypothesis, (Θ↑m)

(θj) for all j ∈ J and for all m . In particular, for all m = 0, . . . , p-1, for all j ∈ J m , (Θ↑m) HORS e max(i,m ) 2 : (θj) , so by T-APP and by definition of (.) m , (Θ↑m) HORS (e1 e2) m : (θ) . Consider it proved for m > 0. We show that it holds for m -1. By definition of ExistsOnei+1, we have that Putting it all together, we obtain that, if T is the tree generated by IsZeroi+1 Dec m i+1 Maxi+1, then T ⇓ 1 if m = exp i (r) -1 and T ⇓ 0 if m < exp i (r) -1, which is the claim for the case i + 1 in the main induction. Hence, the lemma is proved.

Below we write FV(ϕ) for the set of free variables occurring in ϕ.

Proof of Lemma 21. We define the substitution γi (i ∈ {0, . . . , n, n+ 1}) by: γ0 = [ ] (i.e., the empty substitution) γi+1 = [αiFi.γiϕi/Fi] • γi Note that toHFL(E) = γn+1Fn = αnFn.γnϕn.

For β ∈ {0, . . . , mh} n-j+1 , we define the HFL formula ϕ β j by: ϕ (mn,...,m j+1 ,0) j

/Fn, . . . , ϕ β(j) j

/Fj]γjϕj if β = (mn, . . . , mj) with 0 < mj < mh.

/Fn, . . . , ϕ β(j+1) j+1

/Fj+1]αjFj.γjϕj if β = (mn, . . . , mj) with mj = mh.

We shall show that ϕ β j = F β j by well-founded induction on β. Let β = (βn, . . . , βj).

• Case βj = 0: The result follows immediately, since

/Fn, . . . , ϕ β(j) j

/Fj]γjF ( * ) holds for every < j, by induction on j -> 0. Since β( ) = (β( + 1), mh), by the definition of ϕ β j , we have: 

By the induction hypothesis, F

β( ) = ϕ β( ) for ≥ j. For < j, we have:

(by the induction hypothesis) = γ γjF (by property (*) above).

Thus, we have the required result.

The remaining is the case where βj = mh. For any β = (βn, . . . , βj+1, m) for 0 < m ≤ mh, we have

Thus, we have:

/Fj+1](γjϕj)) . By the Knaster-Tarski Theorem, we have:

Finally, the required result follows as a special case of ϕ β j = F β j , where j = n and β = mh.

We assume below that ηj = ηj,1 → • • • → η j, j → •. We define λ-terms e β j for each j ∈ {0, . . . , n}, β ∈ {0, . . . , mh} n-j+1 by induction on β (with respect to the well-founded relation <): e (mn,...,m j+1 ,0) j

/Gn]ϕ ! j if β = (mn, . . . , mj) with mj > 0.

Here, (•) ! translates HFL formulas and types to terms and types of HORS, by simply replacing the proposition type with the tree type, and every logical connective with the corresponding tree constructor:

In the above definition, c ranges over ∨, ∧, a , [a], , ⊥, and the righthand side of (c) ! is the corresponding tree constructor of the same name. Notice that e β j is essentially the same as the HFL formula F β j defined in Section 6, except that each logical connective has been replaced by the corresponding tree constructor. We have: ) is accepted by AL.

Proof. We define the logical relation ∼η between closed (fixpointfree) HFL formulas and λ-terms by:

• ϕ ∼• e if (i) ϕ : •, (ii) e : , and (iii) for every s ∈ U , s ∈ ϕ if and only if Te is accepted by AL from qs. • ϕ ∼η 1 →η 2 e if (i) ϕ : η1 → η2, (ii) e : (η1 → η2) ! , and (iii) ϕϕ ∼η 2 ee holds for every ϕ , e such that ϕ ∼η 1 e .

Then, it follows that for every logical connective c (and the corresponding tree constructor), c ∼η c c holds (where

. By using the standard argument on logical relations and well-founded induction on β, we can prove F β j ∼η j e β j , from which

follows as a special case. Thus, we have the required result. Now it remains to show that e (mh) n is essentially equivalent to GE,L. For a term e of HORS GE,L, we just write Te for the tree generated from e (instead of the start symbol S).

Lemma 37. T e (mh) n is accepted by AL if and only if so is TG E,L .

Proof. Let N be the second component of GE,L (which is a map from non-terminals to their simple types). We define another logical relation ∼ κ between terms of GE,L (which may contain λabstractions) by:

• e ∼ e if (i) e : , (ii) N e : , and (iii) for every s ∈ U , Te is accepted by AL from qs if and only if T e is accepted by AL from qs. • e ∼ κ 1 →κ 2 e if (i) e : κ1 → κ2, (ii) N e : κ1 → κ2, and (iii) ee1 ∼ κ 2 e e 1 holds for every e1, e 1 such that e1 ∼ η 1 e 1 .

Below we write i # for Dec mh-i Max k . When β = (βn, . . . , βj), we also write β # for the sequence βn # • • • βj # . We show: for every e1, . . . , e j , e 1 , . . . , e j such that ei ∼ η j,i e i .

• Case βj = 0: By the definition of e By the assumption βj = 0 and by Lemma 20, T IsZero i (β j # ) is accepted from q1. Thus, the whole tree is accepted from qs if and only if αj is. Thus, we have the required result. The else part is actually equivalent to:

[G0 (β(0)) # /G0, . . . , Gn (β(n)) # /Gn, e 1 /x1, . . . , e j /x j ]ψ ! j .

By the induction hypothesis, e /Gn, e1/x1, . . . , e j /x j ]ψ ! j ∼ η ! j [G0 (β(0)) # /G0, . . . , Gn (β(n)) # /Gn, e 1 /x1, . . . , e j /x j ]ψ ! j .

By the condition βj > 0 and Lemma 20, T IsZero k (β j # ) is accepted from q0. Thus, we have the required result.

Proof of Theorem 22. This follows immediately from Lemmas 21, 36, and 37.