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Hilbert Based Video To Timed-Image Filling and
Learning To Recognize Visual Violence

Abdourrahmane M. ATTO∗, Alexandre BENOIT, Patrick LAMBERT

Université Savoie Mont Blanc, LISTIC, EA 3703, France

Abstract—The paper addresses two issues relative to the ma-
chine learning on 2D+X data volumes, where 2D refers to image
observation and X denotes a variable that can be associated
with time, depth, wavelength, etc.. The first issue addressed
is conditioning these structured volumes for compatibility with
respect to convolutional neural networks operating on image
file formats. The second issue is associated with sensitive action
detection in the “2D+Time” case (video clips and image time
series). For the data conditioning issue, the paper first highlights
that referring 2D spatial convolution to its 1D Hilbert based
instance is highly accurate for information compressibility upon
tight frames of convolutional networks. As a consequence of this
compressibility, the paper proposes converting the 2D+X data
volume into a single meta-image file format, prior to machine
learning frameworks. This conversion is such that any 2D frame
of the 2D+X data is reshaped as a 1D array indexed by a Hilbert
space-filling curve and the third variable X of the initial file
format becomes the second variable in the meta-image format.
For the sensitive action recognition issue, the paper provides: (i)
a 3 category video database involving non-violent, moderate and
extreme violence actions; (ii) the conversion of this database
into a timed meta-image database from the 2D+Time to 2D
conditioning stage described above and (iii) outstanding 2-level
and 3-level violence classification results from deep convolutional
neural networks operating on meta-image databases.

Index Terms—Data conditioning, Video analysis, Deep learn-
ing, Convolution frames, Hilbert space-filling curve, Action recog-
nition, Violence detection.

I. INTRODUCTION

CONVOLUTIONAL Neural Networks (CNN) have
proven outstanding performance in recent image pro-

cessing engines. Many frameworks, specifically designed and
optimized for the image file format, see [1, MatConvNet], [2,
TensorFlow], [3, CAFFE], [4, CNTK], [5, KERAS], among
others, have led to filling the semantic gap between raw images
and the high level objects that can be recognized from their
contents.

When considering a video 2D+t or a stereoscopic 2D+d file
format1, CNN based feature extraction requires:
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1Convention: in the notation 2D+X , ‘2D’ relates spatial dimensions and
the variable X can refer to time (X , t), depth (X , d) or an arbitrary third
dimension (abusive notation 3D in some cases).

• [Option-1] either adapting the network configurations
according to dimension extents (by considering dimen-
sion extension for network parameters, by separating
spatial feature analysis and temporal/depth information
processing, etc.),

• [Option-2] or relating the 2D+X data to a 2D meta-image
format so as to use directly the above frameworks already
optimized for image analysis.

The literature has mainly addressed [Option-1]. For in-
stance, CPU2 and GPU3 based file architectures have been
proposed recently in [6] for 3D convolutions and max-pooling
operations that are consistent with MatConvNet and [7] has
addressed boundary detection in image volumes issued from
expansion microscopy by using these architectures.

In addition, references [8], [9] have proposed a two-level
architecture operating respectively on spatial and temporal
(optical flow) features for learning actions in 2D+t video
datasets. Another solution proposed in [10] is as well a two-
stream 3D architecture where images and their optical flows
are processed separately by using 3D convolution feature
extractors prior to late fusion. This reference highlights in
particular the difficulty in identifying good 3D architectures for
several action recognition benchmarks. Other approaches such
as [11] adopt bidirectional Long Short-Term Memory (LSTM)
framework for a recurrent feature description strategy, with a
constraint being the selection of specific video frames since,
otherwise, dimensionality leads to non-tractable algorithms on
limited computational resources.

On the one hand: the limitation affecting the 2D+X frame-
works on large data volumes is the intricacy of nD convolution
kernel updating strategies with respect to the capture of tiny
objects/events in huge data when n is large. For these huge
data and due to the above computational limitation, robust
network design is challenging and training is, at present time,
subject to assistance: for instance, in [7], only 2D spatial
directional convolution operations are used for a first stage
training and certain weights obtained are selected to guide the
3D MatConvNet on a patch-by-patch basis. The same holds
true for the two-stream spatial and temporal strategy given in
[10], [8] and [9]: the approaches are chosen separable (hand-
crafted extractions of spatial and optical flow features whereas
a single ‘intelligent’ 3D network could have itself performed
this extraction if exploratory of the intrinsic 3D feature space
was easy). Another solution to limit computational complexity
is the used of compressed domain video representations as in

2CPU: Central Processing Unit
3GPU: Graphics Processing Unit
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[12]. However, the results obtained by using this approach are
slightly less relevant than those obtained by the two-stream
fusion stages used in [10] for recognition of homogeneous
actions on the same databases. Thus, compression can limit
performance depending on its rate.

On the other hand: the major hardware issue when handling
huge 2D+X datasets is the limited random access memory
available on standard computer architectures and this leads to
limited training capabilities at present time since convergence
to a desirable solution cannot be guaranteed when using tiny
loads in the optimization batches.

The major contributions provided in this paper aims at:
• exploiting image spatial compressibility in order to re-

duce memory load issues,
• learning both spatial and temporal features jointly,
• deriving a framework that makes the use of well-known

2D image based frameworks such as standard MatCon-
vNet, TensorFlow, CAFFE, CNTK and KERAS straight-
forward.

In this respect, we consider [Option-2] hereafter.
It is worth mentioning that [Option-2] can be achieved by

compacting spatial dimensions in 1D format, thus converting a
2D+t video data to a 2D meta-image for instance. But not all
2D-to-1D transforms guaranty nice properties for capturing
dependencies that are intrinsic to spatial image features. In
order to perform [Option-2] while compacting at best im-
age spatial dependencies, the paper proposes to consider the
Hilbert space-filling 1D image description.

The contributions involved in the paper are twofold. The
first set of contributions concerns the analysis of Hilbert space-
filling curves with respect to a concise and compressible
spatial feature representation with respect to convolution op-
erators. This analysis is performed in terms of: (a) maximal
spatial shifts loaded in regard to the length of the convolution
filer and (b) sparsity degrees of convolution operators when
the convolution is performed in the Hilbert 1D domain, see
Sections II and III respectively.

The second set of contributions, provided in Section IV as
a valuable application of the former contribution, concerns
a solution to the challenging issue of heterogeneous action
recognition in 2D+t data. In contrast with the homogeneous
action recognition issue where any category is composed of
approximately the same types of motion (for example ‘run-
ning’, ‘smiles’, etc. handled among others in [10], [8] and [9]
thanks to homogeneous motion databases), the heterogeneous
case of violence interpretation (several types of actions having
the same consequence: a violence feeling) is very intricate and
somewhat subjective. We will present a state of the art on
violence detection in Section IV and address violence action
recognition on the basis of: (i) violence data benchmarking
and (ii) 2D CNN operating heterogeneous action learning
from Hilbert based timed meta-image datasets.

II. HILBERT SPACE-FILLING CURVES: SPATIAL DATA
LOADS WITH RESPECT TO CONVOLUTION SIZE

Throughout, G(M) always refers to a square grid indexing
2M ×2M pixels and associated with a left-upper (0, 0) corner.

This indexing is for convenience: Hilbert space-filling curves
can be computed on non-square grids.

A. Reshaping 2D grid G(M) to 1D vector V(M)

Let (m,n) be a point on G(M). We have m,n ∈
{0, 1, . . . , 2M − 1} by definition of G(M). By decomposing
m,n in binary forms, we can write:

m =

M∑
`=1

ε1`2
M−`, n =

M∑
`=1

ε2`2
M−`, (1)

with (ε1` , ε
2
`) ∈ {0, 1}

2 for every ` ∈ {1, 2, . . . ,M}. Point
(m,n) can be univoquely associated with a quaternary 1D
array representation V(M) = {0, 1, . . . , 4M − 1} as follows:

(m,n) ∈ G(M)
F7−→ k =

M∑
`=1

ξ`4
M−` ∈ V(M), (2)

where ξ` ∈ {0, 1, 2, 3} for every ` = 0, 1, 2, . . . ,M and F is
a bijective application that can be re-written as:

ε =


ε11, ε

2
1

ε12, ε
2
2

...
ε1M , ε

2
M

 F7−→ ξ =


ξ1
ξ2
...
ξM


with ε ∈ {0, 1}M × {0, 1}M and ξ ∈ {0, 1, 2, 3}M .

Several choices are possible for the correspondence function
F in order to convert the binary representation of G(M) into a
quaternary 1D array enumeration. Among them, one can cite:
• The lexicographic ordering VL(M), which consists in

column-wise concatenations of the 2M rows of G(M).
• The natural recursive quaternary decomposition of grid
G(M) into adjacent quadrants where we obtain a 1D array
VN (M) subject to: ξ` = ε1` + 2ε2` .

• The Hilbert based representation [13] denoted VH(M)
hereafter is a variant of the above recursive quaternary
decomposition where enumeration involves splits into
4 congruent blocs at each recursion. The congruence
imposes connections with consecutive k values when
moving locally in G(M) and it can be geometrically
explained in terms several affine transformations on the
doubly binary sequence ε. More details on space-filling
curves, their recurrent definitions, algebraic and statistical
properties, fast coding and convergence to a continuous
space can be found in references [14], [15], [16], [17],
among others.

Figure 1 provides lexicographic, natural and Hilbert 1D
scan of G(M) for M = 2. As it can be seen in this
figure, consecutive indices 7 and 8 are associated with non-
close spatial points (m,n) for the lexicographic and natural
orderings. This can lead, when using convolution in 1D array
domain, to mixing non-homogeneous pixel information. The
Hilbert ordering ensure a more relevant description in the
sense that the neighbors of index k are associated with a tight
spatial neighborhood. More precisely, the following section
provides, when M is large, the spatial range loaded by a
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Fig. 1. Correspondance (m,n) ∈ G(2) 7→ k ∈ V•(2) for the lexicographic,
natural and Hilbert based scan of G(2). Color ranges from dark-red to
bright-orange when k increases from 0 to 15. Hilbert scan properties: [no-
jump]: 1D convolution will involve spatially close neighbors and [remoteness]:
few pixels, among large-scale neighborhoods, are dislodged to form later,
somewhat distant islands but always with spatially close pixels in every island.

P -length convolution filter4 operating in the Hilbert array
domain. Before developing this section, we need to select a
metric between sample points of G(M).

Given two points A = (m,n) and B = (m′, n′) pertaining

4We use the terminology of filter to denote the standard impulse response
of the filter, the latter being in general defined in Fourier domain. This choice
is made for sake of abbreviation and because no confusion is possible: Fourier
transform is not addressed in the paper.

to G(M), the Chebyshev distance between these points is
associated with the uniform norm of their difference, that is:

dC(A,B) = ‖A−B‖∞ = max {|m−m′|, |n− n′|}

This metric is particularly relevant for measuring the distance
between points that are constrained to belong to a discrete
grid in the sense that the circle of radius ρ exactly matches a
square containing (2ρ+ 1)× (2ρ+ 1) grid points.

Note the maximal distance measurable on G(M) is 2M − 1
and it corresponds to the distance between two consecutive
corners. This maximal distance corresponds as well to the
distance between left-upper corner (0, 0) and right-bottom
corner (2M − 1, 2M − 1). It is worth emphasizing that point
(2M − 1, 2M − 1) is at the same Chebyshev distance from
(0, 0) as point (0, 2M − 1), which is not true when using the
standard Euclidean distance.

B. Spatial range of G(M) indices loaded by a convolution
operator relating the 1D array V(M) domain

On G(M) indexing, the convolution of an image I with
respect to a 2D filter h is defined by:

J(p, q) =
∑
m,n

h(m,n)I(p−m, q − n)

where (m,n) ranges over the support of h in the latter
equation.

For V(M) description of G(M), pixel I(F−1(k)) corre-
sponds to I(m,n) thanks to Eq. (2) and convolution involves
a 1D filter denoted h∗ from now on. The convolution of
I(F−1(k)) with respect to h∗ is given by:

J∗(`) =
∑
k

h∗(k)I(F−1(`− k)) (3)

The latter can be rewritten, with notation convention
F−1(k) = (U(k), V (k))

J∗(U(`), V (`)) =
∑
k

h∗(k)I(U(`− k), V (`− k)) (4)

Assuming that:

h∗ = {h∗(k), k = 0, 1, . . . , P − 1}

then image I indices loaded for computing J∗(U(`), V (`))
corresponds to: {F−1(`), F−1(`− 1), . . . , F−1(`− P + 1)}.

1) Case of a 2-length convolution operator: For P = 2, the
loaded indices are {F−1(`), F−1(`− 1)} and one can remark
that:
• the Hilbert ordering (notation F , FH in Eq. (2)) yields:

dC(F−1H (`), F−1H (`− 1)) = 1 (5)

for any ` such that both ` and `− 1 pertain to VH(M),
• whereas the Lexicographic and natural orderings (nota-

tions F , FL and F , FN respectively in Eq. (2)) lead
to:

max
`∈VL(M)

dC(F−1L (`), F−1L (`− 1)) = 2M − 1 (6)
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and

max
`∈VN (M)

dC(F−1N (`), F−1N (`− 1)) = 2M − 1 (7)

Eq. (5) highlights that the ‘previous’ pixel I(F−1H (` − 1))
is always spatially very close to the current pixel I(F−1H (`))
when considering the VH(M) Hilbert ordering. However, this
pixel can be far, spatially, from the current pixel position in
the lexicographic and natural quaternary orderings thanks to
Eqs. (6) and (7). This good property of FH is a consequence
of the neighborhood-based congruence constraint imposed at
any step of the Hilbert recursive filling.

Another consequence of Eq. (5) is that: when h∗ is chosen
so as to perform a discrete order differencing, h∗ = [1,−1]
for instance, then the corresponding convolution5 performed
in the Hilbert domain involves spatially, the difference be-
tween I(m,n) and only one among {I(m − 1, n), I(m,n −
1), I(m− 1, n− 1)}. Thus, this convolution performs a direct
vertical, horizontal or diagonal pixel differencing alternatively
with respect to k. In a wavelet based convolution framework
associated with Haar differencing filters, this amounts to say
that vertical, horizontal and diagonal Haar coefficients are
fused into a single detail subband containing all these 3 types
of edge information.

From now on, we focus only on Hilbert space-filling image
description and we omit symbol H in FH and VH since no
confusion is possible. The following provides for this descrip-
tion, the characterization of Chebyshev distances associated
with spatial indices loaded by a P > 2-length convolution
operator.

2) Case of a P -length convolution operator for P > 2: In
contrast with Eq. (5), dC(F−1H (`), F−1H (`− q)) > 1 in general
as long as q > 1.

For characterizing the spatial load of the set
{F−1(`), F−1(` − 1), . . . , F−1(` − P + 1)}, we need
to determine for any k ∈ V(M), the distances:

XQ,M [k] = dC(F−1(k), F−1(k −Q)) (8)

when Q = 1, 2, . . . , P − 1.
We recall that XQ,M [k] provides the maximal spatial index

shift with respect to Chebyshev distance when looking at the
Q-st point far behind the current position k in Hilbert V(M)
indexing. Let

M∧Q,M = max
k∈V(M)

XQ,M [k]

Then for any M > 1, we have:

M∧Q,M 6 2d
√
Qe+ 1 (9)

where dxe denotes the smallest integer greater than or equal
to a given real number.

Eq. (9) shows that whatever the size of grid G(M), then
(mQ, nQ) = F−1(k − Q) pertains to a very close spatial
neighborhood of (m,n) = F−1(k) since the bound 2d

√
Qe+1

is small and independent with M . Table I provides M∧Q,9

5This convolution performed in the Hilbert domain yields sequence:(
I(F−1
H (k))− I(F−1

H (k − 1)
)
k=0,1,...,4M−1

.

when Q = 1, 2, . . . , 32. This table highlights that for a filter
length P = 33, then the spatial range loaded on G(M) for
a single convolution operation is included in a small 12× 12
box. Table I also provides the statistics

M◦Q,M = mode {XQ,M [k] : k ∈ V(M)}

for M = 9 and Q = 1, 2, . . . , 32, in order to emphasize the
location of the most occurrent value in XQ,M . For information
on the whole distributional behavior of XQ,M , we show an
example for fixed Q = 32,M = 9 at Figure 2. This figure
shows that more than 90% of the selected spatial indices
pertain to a square neighborhood with side 8, the latter being
very close to

√
32 ≈ 5.66.

Fig. 2. Distribution of X32,9 (see Eq. (8)). Set X32,9 contains 218 index
values, but a 32 distance in the Hilbert indexing yields a maximum distance
of 11 when relating to the spatial domain.

III. STATISTICAL PROPERTIES OF CNN OPERATORS WITH
RESPECT TO HILBERT SPACE-FILLING CURVES

A. Non-stationarity of Hilbert domain convolution outputs

In this section, we are interested on the statistical properties
of the convolution output J∗ given by Eq. (3). One can first
note that if input image I is with constant mean, then the same
holds true for J∗ since for any `,

E [J∗(`)] =
∑
k

h∗(k)E [I(U(`− k), V (`− k))]

= E[I]×
∑
k

h∗(k) (10)

Thus, we can assume without loss of generality that I is with
zero-mean in the following.

The autocorrelation function of J∗ is

E [J∗(`)J∗(`+ τ)] =
∑
k,k′

h∗(k)h∗(k′)E
[

(11)

I(U(`− k), V (`− k))×
I (U(`+ τ − k′), V (`+ τ − k′))

]
If I is stationary, then there exists a function Θ such that
E
[
I(t1, t2)I(s1, s2)

]
= Θ(t1 − t2, s1 − s2) and we can write:

E[J∗(`)J∗(`+ τ)] =
∑
k,k′

h∗(k)h∗(k′)× (12)

Θ (U(`− k)− U(`+ τ − k′), V (`− k))− V (`+ τ − k′))
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TABLE I
MAXIMUM M∧Q,9 AND MODE M◦Q,9 OF THE DISTRIBUTIONS ASSOCIATED WITH THE DISTANCE SETS XQ,9 WHEN Q = 1, 2, . . . , 32. WE RECALL

THAT M∧Q,9 REPRESENTS THE MAXIMAL SPATIAL SHIFT WHEN LOOKING AT THE Q-TH PREVIOUS PIXEL WITH RESPECT TO THE CURRENT POSITION.

Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
M∧Q,9 1 2 3 3 3 4 5 5 5 6 7 7 7 6 7 7 7 7 7 7 7 8 9 9 9 10 11 11 11 10 11 11
M◦Q,9 1 1 2 2 3 3 2 2 3 3 4 4 5 3 3 4 4 5 5 6 4 4 5 6 6 4 4 4 5 5 4 4

For an arbitrary h∗, the latter quantity cannot be written as
a function of τ since Hilbert reshaping functions ` 7→ U(`−
k)−U(`+ τ − k′) and ` 7→ V (`− k)−V (`+ τ − k′) are not
shift invariants. Thus stationarity of image or image patch, in
its standard spatial shift definition, is not in general preserved
through the Hilbert 1D image description.

In order to force stationarity from spatial to Hilbert projec-
tion, the expectation involved in Eq. (12) must not be applied
with respect to shifts of `, but to those of U(`) and V (`). This
amounts to consider filter h∗ as defined spatially and being
latter transposed to 1D Hilbert description. Our motivation
being to derive an alternative to the full 2D to 1D transpose
for both image and filters, we will keep the natural 1D filter
indexing and analyze its consequence on several 1D based
convolution operators.

B. Compressibility of Hilbert domain convolution outputs

Hilbert indexing is recursive, associated with a non-smooth
F function and this makes finding its statistical properties
intricate. However, assuming available a large variety of
billions of natural images, we can assess the effectiveness
and conciseness of Hilbert domain description. This will be
performed hereafter in terms of compressibility property with
respect to the convolution filters having proven relevance in
image processing. We consider the following experimental
framework for evaluating this compressibility.

1) Database: denoted D. It consists of a tree structured
library including images extracted from the UCF6 video
database: the tree structure has 101 first level nodes, where
every node relates a content category. Any category is asso-
ciated with a set of video examples (category child nodes,
second level of the tree). A total of 13 320 video files form
the second level of this tree. The third level is composed by
images extracted from any video file, the number of images
per video being larger than 50 and lower than 500 in general
(variable sizes). This database is chosen because it provides
a wide range of non-stationarities that can be encountered in
indoor (example: category “RockClimbingIndoor”) and out-
door (example: category “SoccerPenalty”) scenes, including
human body features, smooth objects with sharp geometries
and natural textures, etc. It also has the advantage of providing
videos at several spatial resolutions, which makes it relevant
with respect to a wide range of modern imaging sensors
boarded on a wide range of supports.

6UCF-101: see http://crcv.ucf.edu/data/UCF101.php for more information.

2) Compressive operator: We consider a compressive
wavelet based convolution operator having the form:

T compress
ρ,η =W−1η ◦ Tρ ◦Wη (13)

where the composition takes into consideration:
• a wavelet transform Wη and its inverse W−1η given in a

matrix based representation, the parameter η relating the
choice of the wavelet name ;

• a thresholding operator Tρ associated with a compression
rate ρ with 0 < ρ < 1. Operator Tρ keeps unchanged the
(1 − ρ)N greatest values of a given vector and force to
zero the remaining ρN values of this vector, where N is
the vector length (total number of pixels in the context
of this paper).

We will keep the same notation for the spatial analog of this
operator: the one which applies on 2D image features and for
which W is a standard separable 2D wavelet transform. This
consideration is for comparison purpose.

3) Compressibility testing: Given an image I and its Hilbert
vectorization I∗(`) = I(U(`), V (`)), the compressibility test-
ing consists in:
• selecting ρ and η among their possible values;
• computing J∗ρ,η = T compress

ρ,η (I∗)
• computing the Peak Signal-to-Noise Ratio (PSNR, in

deciBel unit) associated with quality loss due to com-
pression:

PSNR(J∗ρ,η) = 10 log10

2552N
N−1∑
`=0

(J∗ρ,η(`)− J∗(`))2
(14)

where N is the total number of pixels, with higher PSNR
corresponding to better image quality.

When applying a direct compression of image I by using
the standard 2D wavelet based instance of T compress

ρ,η , then the
output will be simply denoted Jρ,η .

4) Compressibility results and comparison with a direct 2D
approach: Experimental runs are performed and displayed per
category for the sake of interpretability. In addition, only Haar
wavelet based results are provided (see Figure 3) due to that
other wavelets show approximately the same global behavior.
From Figure 3, one can remark that the Hilbert based image
description yields a more performant compression framework
and this, although the fact that 1D image description may
intuitively be objectionable.

Note also that despite the fact that Haar wavelet transform
requires 4 filters in the 2D implementation and 2 filters in
the Hilbert based 1D implementation, the convolution outputs
have the same nature for both:
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PSNR(J∗50%,Haar) PSNR(J∗75%,Haar)

Fig. 3. PSNR(J∗ρ,Haar) for compression rates ρ = 50% [Top] and ρ = 75% [Bottom].
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• the spatial 2D convolutions with Haar detail filters per-
form horizontal, vertical and diagonal differencing what-
ever the input pixel,

• the Hilbert based convolution with 1D detail Haar filter
outperforms the above 3 types of differencing in a single
run alternatively with respect to pixel location.

One can also remark, from Figure 3, that performance at very
high compression rate ρ = 75% depends on the category
content. For categories associated with large scale smooth
and uniform objects (bowling, diving, drumming and surfing
scenes, as well as zooms of human faces when applying
Makeup and Lipstick, among others), performance of both
2D and 1D strategies is higher, and in these cases, the 1D
approach is significantly more relevant than the standard 2D
framework.

C. Rectifier and max-pooling compositions on Hilbert domain
convolution outputs

1) Sparse rectifier: A rectifier operator or Rectified Linear
Unit (ReLU) applied to J∗ given by Eq. (3) yields outputs:

Γ∗(`) = 1lJ∗(`)>0J
∗(`) (15)

If the convolution filter h∗ operates as a differencing filter,
that is

∑
k h
∗(k) = 0, then from Eq. (10) and as long as I

is piecewise constant, we have E [J∗(`)] = 0 for almost all
` (excepted those corresponding to edges of I). In this case
where the distribution of J∗ is approximately centered, Eq.
(15) implies that half content of Γ∗ is expected to be zero,
causing sparsity for the ReLU neural outputs.

2) Max-pooling in the Hilbert image domain: In the spatial
image domain, standard max-pooling operator involved in
CNNs operates on 2D intervals (rectangular image regions)
and replace such a region by a single point associated with
the maximal pixel value over this region. When referring to
a max-pooling operator applied in the 1D Hilbert domain,
any interval with form [a, b] spreads over a specific spatial
neighborhood thanks to F−1 (see Eq. (2)). The 1D concern
provides more flexibility in terms of the selection of non-
rectangular windows, for instance, a 3-length window perform
in a single image run, max-pooling successively on corners and
arcs having several orientations (see Figure 1).

In addition, we have: for any natural number r, a 4r max-
pooling operation with stride 4 on V(M) is equivalent to a
2r × 2r max-pooling operation with stride 2 × 2 on G(M).
The proof of this property relies on the quad-tree structure of
the Hilbert split of G(M) and is let to the reader. When the
max-pooling strides involve overlapping windows such as in
the framework of [18], then Hilbert domain pooling provides
more flexible overlap sizes as these overlaps can be 1, 2,
3, . . . pixels, whereas a one-pixel spatial shift on horizontal
or vertical axes produces a larger number of overlaps in
the standard 2D case (otherwise, one operates row-wise or
column-wise operators and thus, loses spatial dependencies).

In the following, we address 2D+t data analysis and all the
properties highlighted above will be integrated to derive a con-
sistent video-to-image conversion, prior to machine learning
for violence detection. This validating application on violence

has the following specificity: when one considers heteroge-
neous actions in the same framework, then performance is
weak from a state of the art tour. Thus, a large number of
formalisms and frameworks have to be investigated in order
to provide relevant solutions.

provided in Section IV as a valuable application of the
former contribution

IV. VISUAL VIOLENCE DETECTION IN VIDEOS: THE
HILBERT IMAGE FRAMEWORK

A. Positioning

With the explosion in the number of digital imaging and
communication systems, it becomes crucial to develop au-
tomatic tools for the supervision of sensitive multimedia
contents. Some supervisors for personalizing content delivery
are already available in terms of filtering websites and specific
web-data, for example SafeSearch [19].

However, despite their relevancy when file metadata as-
sociated with a content are concise and accurate or when
image data contains explicit sensitive symbols, these software
solutions are inefficient for violent action recognition because
they are not trained for a systematic video analysis on the wide
variety of violent, somewhat subjective actions.

Some benchmarking initiatives have thus been proposed re-
cently in order to address emotional impacts of video contents.
Among these initiatives, one can mention:
• the construction of Violent Scene Datasets (VSD) from

Technicolor [20] and Mediaeval [21], [22] on the basis
of evaluation performed by a consortium of experts.

• the proposal of feature extraction and learning for certain
specific violence facts, for example the violence:

– induced by the crowd [23], [24], [25], [26],
– in cartoon videos [27],
– associated with the presence of blood [28] or a crime

scene [29] or a violent shot [30].
However, the general case remains intricate as even in the

limited case of violent shot detection with respect to some
Hollywood movies [30], the best strategy involving temporal
features and interest points is limited to 72% accuracy. The
main issues leading to this limitation are:
• [Issue 1] Generalizability of concepts relating violence

with respect to the representativeness and coverability of
collected examples: the large number of situations that
lead to violent affect feeling and the subjective interpreta-
tion of these situations make collecting the representative
examples intricate.

• [Issue 2] Generalizability of detection experimentations
in terms of compatibility of the video feature extraction
stage with respect to existing machine learning frame-
works

For handling [Issue 1], the following Section IV-B proposes
two benchmarking frameworks: the first one considers in
a joint framework VSD@Mediaeval and VSD@Technicolor.
The second proposes upgrading the database obtained by
fusing VSD@Mediaeval and VSD@Technicolor into a 3-level
violence category database.
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For solving [Issue 2], we propose in IV-C, converting
the library of video sequences just obtained to RGB timed-
image databases by using Hilbert based 2D→1D projection
for any color channel. This will provide us with a more
flexible framework that can be spread over all available CNNs
platforms having their design constrained to operate on image
format.

B. Multi-concept violence detection framework

1) 3-level violence partitioning : VSD@Mediaeval (2015
edition) provides a set of short video clips extracted from 199
movies under Creative Commons license and associated with
binary 0 and 1 violent categories. The non-violent category “0”
consists of 10398 video clips whereas the violent “1” category
is composed by 502 video clips. The binary annotations have
been made by a team of Mediaeval international challenge,
see [21], [22] for details. The clips cover a wide range of
violent actions. However, the binary categorization performed
by Mediaeval is very restrictive due to the fact that one can find
in the same category, slap and vampirism simulations whereas
the difference of affect induced by these actions is clearly
huge.

We propose hereafter from an experimental benchmark, a
split VSD@Mediaeval violent category into 2 sub-categories:
moderately and extremely violent. In this benchmark, the
following experimental setup has been deployed:
• Consider the ‘violent’ category of VSD@Mediaeval (502

video clips available).
• For any clip of this category, ask examiners and experts

to provide a violence scale (emotional impact felt). The
scales are chosen to range from 0 to 4, in ascending
violence feeling. A total of 19 examiners (researchers and
students) have provided a degree for at least one video
and 4 experts have meticulously watched and annotated
the whole set of clips.

• Fuse, by using a majority vote rule, the scales [0, 2] to
form the moderate violence category and assign [3, 4]
scales to the extreme violence category. In case of conflict,
the corresponding video file is excluded from the 3-level
benchmark. This provides 266 moderate violence exam-
ples and 232 extreme violence ones for VSD@Mediaeval
(4 violence files have been excluded due to conflict in the
majority vote).

From this expert based benchmarking and by taking the non-
violent category into account, we obtain a 3-category split of

2) Violent category augmentation from VSD@Technicolor:
In order to augment the number of violence examples in
3-category split of VSD@Mediaeval, we supplemented this
database by including VSD@Technicolor dataset.

For VSD@Mediaeval complementation by using
VSD@Technicolor, we consider only VSD@Technicolor
videos having similar examples in the wide range of
situations covered by VSD@Mediaeval. For situations
where a VSD@Technicolor scene has no related example in
VSD@Mediaeval (case for airplane crashes), we exclude the
corresponding files from the 3-level categories. However, we

include these examples in the 2-level categories as they are
known violent behavior that can balance the large number of
10398 collected non-violent files.

TABLE II
DATABASES DERIVED FROM CATEGORY REFINEMENTS AND COMPLETION

ON MEDIAEVAL AND VSD VIOLENCE DATABASES.

Name Categories and number of video samples

VSD-L2 Violence Non-Violence
1 137 10398

VSD-L3 Moderate Violence Extreme Violence Non-Violence
406 418 10398

The 2 datasets obtained from this experimental setup de-
scribed have sample characteristics summarized in Table II.
These datasets are referred from now on as VSD-LK where
the Level K denotes the number of violence categories, with
K ∈ {2, 3} in this paper.

Finally, we have derived from an analysis of the different
expert annotations, the violence feeling diagram presented in
Figure 4.

Fig. 4. Balance sheet of main variables governing violence feelings and some
annotation examples for moderate and extreme violence occurrence: the blue
diagram is representative of a short altercation between few persons and the
red one is representative of an airliner crash (involving a large number of
victims).

This diagram highlights that if one tries to see violence
as a mathematical function, then it has to be increasing
when the following variables increase: intensity of impact,
duration of violent facts and their frequency (recurrence and
ferity), number of protagonists (agent and victims), agent
intentionality, victim impactance and violence exhibitance.

3) Representativeness and coverage of VSD-L2 and VSD-
L3 : Table III provides 10 major observables relating violence.
The observables involve interacting humans, objects and fluids,
as well as warning symbols and violence perceptible without
explicit interacting causes.

In interacting categories, the direct cause and its im-
plicit/explicit effects are visible in general. For instance, a
car accident can imply 2 or more interacting cars, or a car
and another object. Implicit human presence in the cars under
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TABLE III
TEN OBSERVABLES AT LARGE REFERRING VIOLENCE. PEGI REFERS TO
Pan European Game Information (AUDIOVISUAL ANNOTATION SYMBOL

FOR PUBLIC AGE RESTRICTIONS).

Observables Examples

Violence from interactions (external induction)
1 Human/Human Battle, slap, punch.
2 Human/Object Surgery, mutilation, projectile throw.
3 Human/Fluid Drowning, gazing.
4 Human/Animal Human attack by animals,

animal hunting and shoot.
5 Object/Object Car versus car accidents,

crash of an airplane (ground or sea).
6 Animal/Animal Animals fight clubs,

predator versus prey showdowns.
Suspicious motions (self-induction)

7 Living body Terror or aggressive faces,
abnormal motion person falling down

8 Inert structure Conflagrations, explosion, smoke,
abnormal motion flames and ashes, flowing blood.

Sensitive objects and symbols
9 Sensitive objects Guns, weapons, bombs, broken glasses,

stripped electrical socket, blood stain
frightful masks and veils.

10 Sensitive symbols PEGI “-18” / “-16” / “-12” / “-10”,
flammable material signs, swastika
injury and hatred posters

accident is the direct source of emotional impacts, even if the
video does not show car occupants.

In the categories where violence is not due to multiple agent
interactions, for example in-air burn of an airplane, the direct
cause is not visible in general, but violence feeling is not
necessarily diminished.

VSD-L2 and VSD-L3 contain several examples for almost
all 10 observables given in Table III, excepted the observables
involving animals. These can be collected and processed
separately. Note also that some particular sensitive objects
and symbols relating violence (example of PEGI symbols)
are considered as specific in this paper: their physical and
geometrical appearance lead to very limited confusion and
disambiguation, when necessary, requires only few additional
samples. These observables can be detected very well by using
specialized CNNs and as such, the corresponding symbols
are excluded from VSD-L2 and VSD-L3. In the sequel, we
will thus focus on brute-force violence detection from scratch
(without the aid of additional specialized system or expert) on
VSD-L2 and VSD-L3.

C. Violence detection: Hilbert based Video to Timed-Image
framework

Consider a T -length video clip C = C(x, y, t) defined on
grid G(M), with t = 1, 2, . . . , T referring to the time vari-
able. In order to derive a framework directly transposable to
standard image classification architectures, we consider a 2D
Hilbert based timed meta-image (timed-image terminology)
representation for this image time series. This representation
consists in converting, for any given t, the 2D array C(•, •, t)
in a 1D array associated with V(M) indexing by using Hilbert
space-filling curve (see Section II-A). This yields a timed-

image with size 4M × T pixels for clip C. Color components
are added as multiple channels when available.

From this representation, video clips in VSD-L2 and VSD-
L3 are converted in timed-image databases without loss of
information and with the nice compressibility properties with
respect to convolution operators illustrated in Section III-B.
The 2D timed-image based CNN framework is expected to
ensure a good balance in machine learning between spatial
(considered as one variable) and temporal variables. This
framework also avoids resorting to three directional convolu-
tions where oriented weight updating strategies are intricate,
given a direct 2D+t learning framework.

Table IV presents visual violence detection results obtained
on VSD-L2 from the timed-image CNN framework, when the
CNN is trained from scratch7. The CNN model used is a
lightweight variant8 of [31], both pertain to the framework
given in [18]. In addition, we have used a weighted entropy
function to handle imbalance in VSD categories, the weights
used corresponding to the proportions of elements in VSD-L2.
This CNN has characteristics summarized in Table VI. The
results obtained in Table IV show that one can reach a good
level of accuracy with a timed-image CNN in heterogeneous9

action recognition.
We have also provided in Table IV and for the sake of

comparison, experimental results obtained on a 3D CNN
trained from scratch, where convolution kernels and pooling
are both 3D [6] for any layer associated with such operators.
For this 3D CNN framework, several simulations have shown
limited performance on VSD-L2, despite their satisfactory
training performance in terms of decay of the loss function
and increase of the training batch accuracies. In contrast, it is
worth noticing that several simulations have led to more than
75% accuracy for timed-image version of VSD-L2 (variable
accuracies on the 2 categories).

In addition, for VSD-L3, the 3D CNN framework fails in
categorization on a huge number of tests as it assigns almost
all tested images to a single category (thus 33% accuracy
that are comparable to a random uniform categorization). In
contrast, for the timed-image framework, Table V provides
an illustrative example showing more than 20% accuracy
when compared to a uniform random categorization. These
results motivate us in the pursuit of violence data collection
and benchmarking as a natural augmentation of the number
of moderate and extreme violence examples will lead to
a more relevant discrimination for the multi-level violence
categorization.

From the intricacy of finding good performance on a direct
3D CNN when no privileged dimension is imposed, we may
conjecture that standard weight updating strategies should

7Simulations have been performed by using an Nvidia Tesla V100-PCIE
having GPU compute capability 7.0 and 16GB of dedicated memory. The
mini-batch size used is 128 timed-images (approximately 12 seconds of video
clip per timed-image).

8We recall that [31] designs in terms of convolution filter sizes have been
made with respect to capturing fractional order dependencies, see [31] for
details.

9Heterogeneous action case study is such that a wide range of different,
non-necessarily correlated scenarios, pertain to the same category. Example:
car accidents, battle, bloody scenes, terror faces, all are in the same category.
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TABLE IV
CONFUSION MATRIX (AVERAGE RETRIEVAL PER CATEGORY AND AVERAGE INTER-CLASS CONFUSION) FOR VSD-L2 TIMED-IMAGE VERSUS 3D CNN

CATEGORIZATION. VSD-L2 IS DESCRIBED IN TABLE II.

Experimental results on VSD-L2
3D CNN

Category Non-Violence Violence
Non-Violence 94 % 06 %
Violence 78 % 22 %
Mean accuracy 58 %

2D-Timed-Image CNN
Category Non-Violence Violence
Non-Violence 94 % 6 %
Violence 36 % 64 %
Mean accuracy 79 %

TABLE V
CONFUSION MATRIX (AVERAGE RETRIEVAL PER CATEGORY AND AVERAGE INTER-CLASS CONFUSION) FOR VSD-L3 TIMED-IMAGE CATEGORIZATION.

VSD-L3 IS DESCRIBED IN TABLE II.

Experimental results on VSD-L3
2D-Timed-Image CNN

Category Non-Violence
Moderate−
V iolence

Extreme−
V iolence

Non-Violence 84 % 8 % 8 %
Moderate−
V iolence 43 % 30 % 27 %

Extreme−
V iolence 29 % 14 % 57 %

Mean accuracy 57 %

integrate in the 3D framework, penalty terms with respect to
space and time dimensions (so as to penalize highly spatial
dimensions and less temporal dimension for instance). Solving
this conjecture is out of the scope of the present paper.
However, this conjecture is strengthened by the fact that in
other action recognition frameworks involving homogeneous10

categories, authors have separated spatial and temporal flow
features instead of a direct 3D learning on 3D data. We believe
that this separation is a somewhat counterintuitive procedure
as we may expect the CNN to extract itself the necessary
features for a discriminant analysis when dominant dimensions
are integrated with respect to training objectives.

V. CONCLUSION AND PROSPECTS

This work has addressed intrinsic 3D feature learning
from Hilbert based meta-image description of 3D data. The
3D=2D+X description has been designed on the basis of dual-
ity between spatial 2D observations and the additional dimen-
sion X that can relate time, wavelength or depth information.
The aim of this description was obtaining a good balance
between spatial information (compacted in one dimension) and
the additional information provided by variations in X .

More specifically, we have shown that Hilbert based scan
of a 2D grid yields a highly compressible 1D data description
when the grid relates image content. Thus, by concatenating
the third X dimension observations to this Hilbert 1D data
description, we have derived an image description (termed
meta-image) of the 2D+X data. Different characterizations of
the meta-image description have also been derived.

10Homogeneous action case study is such that any given category is
composed by visually correlated features. Example: in a ‘soccer penalty kick’
category, all video samples are visually correlated in the sense that the scene
contains a ball and the optical flow shows interaction between this ball and a
foot.

From experimental simulations, it appears that this descrip-
tion makes obtaining good performance possible in heteroge-
neous visual violence action recognition from 2D+t video data.
More precisely, in this case of sensitive action recognition,
the issue addressed has concerned providing an alternative
to handcrafted supervision and learning of 2D+t discriminant
features. Indeed, it is more trivial to deploy existing image
based learning frameworks on the meta-image description
(called timed-image when X = t) than expending energy in
the search of stealth 2D+t information in 3 directions.

From a theoretical point of view, the meta-image framework
is equivalent in some sense to a direct 3D framework: the
reverse implication is trivial because a 3D convolution filter
can be easily reshaped in the Hilbert meta-image domain prior
to analysis. However, the direct implication is computationally
intricate: for instance, given a 1D convolution in the Hilbert
domain, its 2D concern involves imposing some zeros at
specific locations on the 2D grid and further concatenate the
third variable coefficients by respecting the same rule, which
is not thinkable for any iteration of the several hundreds of
convolution filters associated with a deep CNN.

A problem of both theoretical and practical interests is
the analysis of this framework in several problems where
the additional dimension X can play several types of roles
in information retrieval. This will allow, depending on per-
formance decays with respect to information compression in
this dimension, understanding which feature plays the main
discriminant role in practice, where it is worth noting that
information compression can be due to large convolution
strides or pooling sizes, to data re-sampling prior to learning,
etc. Such analysis will require several years of simulations on
a wide range of heterogeneous visual actions and is reported
here as an open issue.

We end by providing an experimental fact observed for bidi-
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TABLE VI
CONVOLUTIONAL NEURAL NETWORK FOR VIOLENCE DETECTION ON VSD-L2 AND VSD-L3 CHARACTERISTICS.

# of Layer Content #N of Elements Element size # of Channels

1
VSD-L2
VSD-L3

11535

11222
4M × T = 1024×256 3

2 ‘Convolution’ 96 11×11 3
3 ‘ReLU’11 Element-wise (one to one)
4 ‘Normalization’ Cross channel with 5 channels/element and (α = 1, β = 0.75, κ = 1)
5 ‘Max Pooling’ Sub-sampling: maximum over a 3×3 spatial neighborhood
6 ‘Convolution’ 128 9×9 96
7 ‘ReLU’ Element-wise (one to one)
8 ‘Normalization’ Cross channel with 5 channels/element and (α = 1, β = 0.75, κ = 1)
9 ‘Max Pooling’ Sub-sampling: maximum over a 3×3 spatial neighborhood

10 ‘Convolution’ 384 7×7 128
11 ‘ReLU’ Element-wise (one to one)
12 ‘Convolution’ 192 5×5 384
13 ‘ReLU’ Element-wise (one to one)
14 ‘Convolution’ 128 3×3 192
15 ‘ReLU’ Element-wise (one to one)
16 ‘Max Pooling’ Sub-sampling: maximum over a 3×3 spatial neighborhood
17 ‘Fully Connected’ Neuron matrix [Input size 8192 / Output size 16 ]
18 ‘ReLU’ Element-wise (one to one)

19 ‘Fully Connected’ Neuron matrix / Input size: 16 / Output size:
VSD-L2: 2

VSD-L3: 3

20 ‘Softmax’ Probability distributions with respect to 4 outputs
21 ‘Classification’ Weighted cross-entropy loss (Output: VSD-L2/VSD-L3 categories)

VSD-L2: Training samples are 65% of VSD-L2 and testing samples are the remaining 35%.
VSD-L3: Training samples are 75% of VSD-L3 and testing samples are the remaining 25%.

rectional recurrent LSTM: despite the fact that Hilbert timed-
image provides a natural way of converting video data into
vectorized and dependent sequences of time series, training
failed (no decaying trend in the error function) for a wide range
of LSTM setups tested for VSD classification. This can be due
to the heterogeneous issue for which examples provided in
VSD show very few, almost no explicit temporal similarities.
We may expect performance for LSTM on timed-images
involved in homogeneous action recognition frameworks.
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[22] M. Sjöberg, Y. Baveye, H. Wang, V. L. Quang, B. Ionescu,
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