N
N

N

HAL

open science

Multi-buffer simulations: Decidability and complexity

Milka Hutagalung, Norbert Hundeshagen, Dietrich Kuske, Martin Lange,

Etienne Lozes

» To cite this version:

Milka Hutagalung, Norbert Hundeshagen, Dietrich Kuske, Martin Lange, Etienne Lozes. Multi-buffer
simulations: Decidability and complexity. Information and Computation, 2018, 262, pp.280 - 310.

10.1016/j.ic.2018.09.008 . hal-01920584

HAL Id: hal-01920584
https://hal.science/hal-01920584v1
Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01920584v1
https://hal.archives-ouvertes.fr

Multi-Buffer Simulations: Decidability and
Complexity

Milka Hutagalung?, Norbert Hundeshagen?, Dietrich Kuske®, Martin Lange?,
Etienne Lozes®

*University of Kassel, Germany
bTechnische Universitit Ilmenau, Germany
€ENS Paris-Saclay, France

Abstract

Multi-buffer simulation is a refinement of fair simulation between two nonde-
terministic Biichi automata (NBA). It is characterised by a game in which letters
get pushed to and taken from FIFO buffers of bounded or unbounded capacity.

Games with a single buffer approximate the PSPACE-complete language
inclusion problem for NBA. With multiple buffers and a fixed mapping of
letters to buffers these games approximate the undecidable inclusion problem
between Mazurkiewicz trace languages.

We study the decidability and complexity of multi-buffer simulations and
obtain the following results: P-completeness for fixed bounded buffers, EXPTIME-
completeness in case of a single unbounded buffer and high undecidability (in
the analytic hierarchy) with two buffers of which at least one is unbounded.
We also consider a variant in which the buffers are kept untouched or flushed
and show PSPACE-completeness for the single-buffer case.

Keywords: Biichi automata, simulation games, Mazurkiewicz traces

1. Introduction

Simulation Relations on Automata. Simulation is a pre-order between labeled
transition systems 7~ and 7 that formalises the idea that “7 can do everything
that 7 can” [20]. Such relations have become popular in the area of automata
theory because they can be used to under-approximate language inclusion
problems for automata on finite or infinite words and trees and to minimise
such automata [1,6,9,[11]]: if an automaton 8 can simulate an automaton A,
then the language of A is contained in the language of 8. On the other hand,
inclusion of languages does not guarantee simulation.

Simulation relations are often computable in polynomial time whereas lan-
guage inclusion problems are PSPACE-complete for typical (finite, Biichi, par-
ity, etc.) automata on words and EXPTIME-complete for such automata on
trees. In this paper we focus on nondeterministic Biichi automata (NBA) [2].

Preprint submitted to Information and Computation November 13, 2018

Simulation Games. To reason about simulation relations, one very often charac-
terises them by the existence of winning strategies in two-player games played
on the state spaces of two automata with each player moving a pebble along
the transitions of their automaton. The game is strictly turn-based with the be-
ginning player, called SpoiLER, moving in the automaton to be simulated, and
the responding player, called DupLicaATOR moving in the automaton that should
simulate the other. Both players construct runs of their automata piece-wise,
and it is DupLicaTOR’S burden to make her run “correspond” to SPOILER’s run
in the sense that both are runs over the same w-word. Moreover, DurLICATOR’S
run must be be an accepting one whenever SpoiLer’s is. This is also known as
fair simulation. Other more refined winning conditions have been considered,
mainly for the purpose of automata minimisation, known as direct and delayed
simulation [9]. Here we are only concerned with cases of simulation games
with winning condition as in fair simulation, simply because it is the most
difficult case in terms of decidability and complexity concerns.

Refined Simulation Relations. The fact that simulation is too weak to capture lan-
guage inclusion in general has led to the study of extended simulation relations
and games. We briefly list them here; a thorough study of the relationships
amongst each other is beyond the scope of this paper.

o In multi-pebble simulation [8]], DupLicATOR controls several pebbles which
allows her to follow several runs of which only one has to be “correspond-
ing” in the above sense. Hence DupLicATOR can act in foresight of several
of SPoILER’s later moves.

Multi-pebble simulation with a fixed number k of pebbles, i.e. k-pebble
simulation, is computable in polynomial time for any k [8, Thm. 4].

o Multi-letter simulation [4,[17], is equally parametrised by some k € IN.
In the characterising game, SpoILER first reveals k steps of his run and
DupLicaTor answers with the same number of steps in her run. Equally,
k-letter simulation is computable in polynomial time for any fixed k [17,
Thms. 4 and 8]. In fact, it is computable in time linear in the size of the
underlying automata — unlike multi-pebble simulations —, and genuinely
polynomial in the size of the underlying alphabet only.

o The idea underlying the dynamic multi-letter games is extended to form
buffered simulation games [18]. Here SporLER chooses one letter in each
round, but DurLicaTOR can store this letter in a FIFO buffer (bounded or
unbounded) for as long as the buffer’s capacity is not exceeded. When
she decides to move her pebble, she consumes the first letter(s) from
the buffer, thus delaying the construction of her run in comparison to
SpoILER’s. One can construct pairs of automata such that DupLicaTor
wins the buffered simulation game with an unbounded buffer but not
with any bounded buffer [18} Ex. 2.2].

e Simulation games can be seen as special Gale-Stewart games in which
input and output words must be equal. As such, one can also consider

delay games [14] as a form of refined simulation games. Here, one fixes
a sequence (1;);>0 of positive integers and an w-regular set L of pairs of
w-words as the winning condition. In round 7, SPoiLErR produces #; letters
of his word and DuprLicaTtor answers with a single letter of her word.
DuprLicaTor wins if the pair of words constructed this way belongs to L.

What distinguishes delay games from buffered simulation is the pre-
described relative speed with which Sro1LEr advances. As a consequence,
one obtains: if DurLIcATOR can win then she can win with a fixed delay
[14, Thm. 6.4].

Multi-Buffer Simulations. In this paper, we study a further extension of buffered
simulation called multi-buffer simulation. The characterising game is played on
two NBA with several FIFO buffers — parametrised by their capacities — to store
and delay SPoILER’S moves.

With several FIFO buffers at hand, one clearly needs to determine which
buffer(s) a letter gets stored in when DupLicaTOR wants to delay her correspond-
ing move. One can imagine several possibilities to do so, for instance giving
one of the players control over this. Here we follow a different way by fixing,
a priori, a mapping o between letters and sets of buffers such that the letter a
always gets put into all the buffers in o(a).

The motivation for having such a fixed mapping comes, again, from formal
language theory. It is easy to see that having multiple buffers in a buffered
simulation game leads to a relaxed notion of correspondence between the runs
constructed by both players. For instance, DurLicaTOR can win the game on the

following two automata over letters X = {4, b} that get mapped to two separate
buffers.

The picture shows the buffer content after SpoiLer has moved his pebble to
the state at the bottom right in two rounds while DupLicaTor has skipped her
turns so far; her pebble is still on the initial state. The two letters played by
SpoILER have been stored in the two FIFO buffers whose heads are depicted on
the right-hand side.

DurLicaTor can now move her pebble along the b- and then the a-transition,
even though SpoiLErR has chosen these letters in the opposite order. The fact
that they get stored in different buffers introduces an independence between
the letters regarding the order in which they occur in a run, and this is why
multi-buffer simulations approximate language inclusion problems modulo
such independence between letters, also known by the name (Mazurkiewicz)
trace inclusion, known to be (highly) undecidable [10}22].

Note that no such commutation in the order of letters in a run can occur
when only a single buffer is being used. Single-buffere simulation therefore
corresponds to trace inclusion with an empty underlying independence relation
which is easily seen to be the usual language inclusion problem between NBA.

Contribution and Organisation of the Paper. This paper contains a complete study
of decidability and complexity issues arising with multi-buffer simulation, in-
cluding the special case of single-buffer simulation. It provides complete proofs
of the results that were announced in preliminary work [15}(16}/18].

The paper is organised as follows. In Section 2| we recall the preliminary
notions of nondeterministic Biichi automata, trace equivalence, and fair sim-
ulation. Section (3| introduces multi-buffer simulation games, both informally
and formally as an infinite-duration game.

Section[d]is devoted to upper bounds. We start by considering parity games
and simulations of parity games. To prove upper bounds, we then transform
multi-buffer simulation games to parity games. Analysing these parity games,
we show that multi-buffer simulation can be decided in polynomial time for any
fixed number of buffers of fixed bounded capacities. When buffer capacities
can be unbounded then multi-buffer simulation does not comprise a game with
a finite state-space anymore, hence, decidability cannot be taken for granted. It
then hinges on the number of buffers involved in a game. Single-buffer games
canbe decided in EXPTIME, whereas the general case of several buffers can only
be placed in A} in the analytic hierarchy. We also consider a version of buffered
simulation that restricts DupLicATOR’s moves, called the flushing variant. Such
games are simpler to decide: the single-buffer case falls into PSPACE and the
multi-buffer case into IT}.

Section 5|shows that the results of Section[dare essentially tight by present-
ing matching lower bounds. Note that A} does not have complete problems
[21, Theorem 16.1.X]; however we can show that unbounded multi-buffer sim-
ulation is hard for £} UTT; (and even more than that), already in the simplest
case of one unbounded and one bounded buffer of capacity 0.

Section 6| concludes the paper with remarks on further work.

2. Preliminaries

2.1. Nondeterministic Biichi Automata

Let £ be an alphabet. Then Z* denotes the set of finite words over X, £ is
the set of all infinite words over X, and X® = X* U X%, For x € N U {w}, we
write X=* for the set of finite words w of length |w| < k. In particular, 2=¢ = ¥
since we restrict to finite words. We write |wl, for aw € £* and a € £ to denote
the number of occurrences of the letter a4 in the word w. For a natural number
k,weset[k]=1{1,2,...,k}.

A nondeterministic Biichi automaton or NBA is a tuple A = (Q, L, 1, 6, F) where
Qis a finite set of states, L is an alphabet, 1 € Q is the initial state, 5: QXL — P(Q)
is the transition function, and F C Q is the set of accepting states. We demand

the transition functions to be total, i.e. 5(g,4) # 0 for every g € Q and a € L.
However, in order to keep the presentation short, our examples may show
NBAs with non-total transition relations. They can easily be extended to total
relations by adding one more non-accepting state without effecting the essence
of these examples.

For q € Q, we write A[g] to denote (Q, L, g, 6, F), i.e. the NBA that results
from A by taking g as initial state.

A run of A is a finite or infinite sequence p = (§i,ai, §ir1)o<i<x With gi11 €
0(gi,a;) for all 0 < i < k (where x € IN U {w}); it is initial if go = ¢ or k = 0. Its
label is the word lab(p) = (a;)o<i<ic € Z%. If x € N \ {0}, then target(p) = g, is the
target of the run p, if k¥ = 0, we set target(p) = 1. The set of finite runs is denoted
FRuns(A), iFRuns(A) is the set of finite and initial runs.

An infinite run p = (g;,4i, gi+1)is0 is accepting if it is initial and g; € F for
infinitely many i > 0. We write ARUns(A) for the set of infinite accepting runs
of A and L(A) C X« for the set of labels of accepting runs.

Let w € L* be some finite and nonempty word.To simplify notation, we
write 0(p, w) for the set of states reachable from p € Q by some w-labeled run,
ie., q € 0(p, w) if there exists some w-labeled run p from p with g = target(p). For
w = ¢, we set 0(q, €) = {g}. A finite run p = (g;, 4, gi+1)o<i<x Visits some accepting
state if there exists 0 < i < x with g; € F or target(p) € F. Then 6r(p, w) is
the set of states reachable from p € Q by some w-labeled run that visits some
accepting state, i.e., ¥ € 6p(p, w) if there is some factorisation w = uv and some
g € FNo(p, u) with r € 6(g,v). For w = ¢, this yields 0r(q, €) = {g} N F.

2.2. Trace Languages

We shortly introduce the notions of finite and infinite traces, for a detailed
treatment see [5]. Traces generalise words — which can be seen as a sequence
of actions performed by a single process — to the setting of several parallel
processes. Then the order underlying the performed actions (or occurring
letters) is not a total one anymore since some actions may be performed by
different processes in parallel and therefore cannot be ordered in time.

Formally, a trace alphabet is a triple (X, 0, k) where X is an alphabet, k € IN and
o: X — P([k]) \ {0} is a mapping. Intuitively, a letter a € © denotes an action that
is performed by the set of processes o(a). Fori € [k], letX; = {a € £ | i € 6(a)} be
the alphabet of process i. Furthermore, 71;: £ — L is the natural projection
function that deletes all letters from a word that do not belong to X;.

Two words u, v € Z* are o-equivalent, denoted u ~, v, if m;(1) = 7;(v) for all
i € [k]. The relation ~, is called trace equivalence and [u] denotes the equivalence
class of u € X* wrt. this trace equivalence.

2.3. Fair Simulation

Let A = (QA, L, p1, 67, F?) and B = (Q%, %, q1,6%, F?) be two NBA. The fair
or ordinary simulation game is played between players SPoiLER and DUPLICATOR
by moving two pebbles across the NBAs’ state spaces.

The game starts with SporLER’s pebble placed on p; and DupLicaTOR’s on g;.
In each round with pebbles placed on p; and g;,

1. SpoiLer first chooses a letter a; and a state pj;1 € 6&7{(]0,-,11,-) and
2. DurLicaToRr responds with a state g4 € 6B(qi, a;).

In an infinite play, SpoiLer will have constructed a run p of A, and DurLi-
cator will have constructed a run p’ of 8 (note that p and p’ are runs on the
same w-word). Such a play is won by DurLicaror if p is not an accepting run
or p’ is an accepting run.

We write AL B if DupLicaTOR has a winning strategy for the fair simulation
game on A and B. The following is well-known.

Proposition 1 (e.g. [13]) Let A and B be two NBA. If AC B then L(A) C L(B).
There are, however, Biichi automata A and B such that L(A) € L(B) but AL B.

2.4. Infinite-Duration Games
An infinite-duration game is a tuple G = (V, Vo, V1, E, v;, W) such that

e Vs aset of positions partitioned into the sets V), of positions of Player p for
p€{0,1},

e E£ C V x Vis the set of moves such that, for every v € V, there exists v’ € V
with (v,v) € E,

e v; € V is the initial position, and
o the winning condition ‘W is a set of infinite paths starting in .

Intuitively, the game G is played between Player 0 and Player 1 by constructing
an infinite path step-by-step: first, a pebble is placed in the initial position v;.
Whenever the pebble is placed on a position v € V), then it is Player p’s turn to
move it to one of the successors of v (for p € {0,1}). By the assumption on the
set of moves, this is always possible. This way, the players produce an infinite
path (called an infinite play). If that infinite play belongs to W, then it is won
by Player 1, otherwise it is won by Player 0.

Formally, a play is a finite or infinite path that starts at vy, i.e., a sequence
vov10y - - of positions such that vy = v; and (v;,vi41) € E for all i. We write
Plays(G) € V* for the set of finite plays of G.

Whenever a finite play ends in a position from V;, Player 1 can choose
between possibly more than one ways to extend the play. A deterministic
strategy for Player 1 instructs her what to do exactly, a (nondeterministic)
strategy only gives some minimal requirement on how to extend. Formally, a
strategy (for Player 1) is a non-empty set of finite plays x € Plays(G) such that
the following hold for all v € V and all finite plays 7 v € x:

1. mey,
2. ifveVy thenntov € yforallv' e vE = {w e V| (v,w) € E}, and
3. if v € V3, then there is (at least one) v’ € vE such that tv v’ € y.

A x-play is an infinite play such that all finite prefixes are in x. In other words,
all the choices made by Player 1 along a y-play were made according to the
strategy x. The strategy x is a winning strategy (for Player 1) if all x-plays are
won by Player 1, i.e., belong to W. Player 1 wins the infinite-duration game if
there exists a winning strategy for Player 1. A strategy x for Player 1 is positional
if there exists a function s: V1 — V such that

nov €y & s(v) =0

for all tv v’ € Plays(G) with v € V. In other words, iff

x =Plays@ n V' | | 1ol @E) U 1os@)| - M

veVy veVy

Strategies for Player 0 are defined similarly. (One has to exchange the roles
of Vy and V; in the definitions above.) Then, as above, Player 0 wins the
infinite-duration game G if he has a winning strategy.

3. Multi-buffer Simulations

3.1. An Intuitive Description

Let (%, 0, k) be a trace alphabet and A = (Q7, =, p;, 67, F%) and B = (Q%, L, q1,
68, F%) be two NBAs. The multi-buffer simulation game is played between players
SporLer and DurLicaTor using two pebbles on the state spaces of the two
automata, as well as k FIFO queues in order to buffer the choices made by
SpoiLER so that DuprLicaTor does not have to react to them immediately. Buffers
can be addressed by indices, i.e. the 1st, the 2nd, etc., and each of them has a
capacity which is either finite or infinite, also called bounded and unbounded.

The game starts with the two pebbles being placed on the initial states p;
and gy respectively and all buffers empty. It then proceeds in rounds as follows.

1. SpoiLEr moves his pebble along a transition in A that is labeled with some
lettera € X.

2. This a is being put into all buffers named in o(a).

3. Durricator now has the choice to either skip her turn if no buffer capacity
is exceeded, or to choose a nonempty word u € L* such that the contents
of all buffers i € [k] start with 7t;(u), shift her pebble along some u-labeled
path in 8 and, for all i, remove 7;(1) from the front of buffer i, ensuring
that the buffer capacities are respected again after this rnove

Note that a buffer can be “overfilled” by one letter momentarily after SPoILER’s
choice. DurLicaTOR then has to remove something from this buffer immediately
to ensure that the capacity is not exceeded at the end of the round.

1This concerns, most of all, the buffers i such that 7;(u) = e.

Let p and p’ be the paths (or runs) in A and B, respectively, that the players
have moved the pebbles along in a play. Then p is necessarily an infinite run
while p’ can be finite (if, from some round on, DurricaTor always skips her
turn). DupLicaTOR Wins this play if

e pisnot an accepting run
e or

- p’ is an accepting infinite run and

- every letter that SPoILER puts into any of the buffers eventually gets
removed from that buffer by DupLicaTOR.

We observe that no player can ever get stuck in such a play. For SpoiLERr this
is a simple consequence of the totality assumption on NBA. For DupLICATOR, it
can be proved by induction on the length of a play that the following invariant
holds: there exists a word w € L* such that, for all i € [k], buffer i contains
the word m;i(w). Hence, by the totality assumption on the NBA 8, she can
always empty the buffers completely and therefore, in particular, make some
legal move.

Example 2 Consider the following two NBA over the trace alphabet X = {4, b, c}
with o(a) = {1}, a(b) = {1, 2}, and o(c) = {3}.

an ¢ C
a—obtor &0 s—o0folotao
a a

DurLicaTor wins the multi-buffer game on A and B with buffer capacities
(w,2,0). Note that in this game, a and b get put into an unbounded buffer, b
also gets put into a buffer of capacity 2, and c gets put into a buffer of capacity
0, i.e. DupLicaTOR has to respond immediately to any c-move made by SPoOILER.
DupLicaToR’s winning strategy consists of skipping her turn until SPoILER pro-
duces a c. Note that he cannot produce more than two b’s beforehand, hence
he cannot win by exceeding the capacity of the second buffer. Note also that
he cannot loop on the first a-loop forever, otherwise he will lose for not pro-
ducing an accepting run. Once SpoILER eventually produced a ¢, DupLicATOR
consumes it together with the entire content of the second buffer and moves to
the accepting state in her automaton. After that she can immediately respond
to every state-changing move by SPOILER.

A variant of this multi-buffer simulation game is the multi-buffer flushing
game. In that game, DupLicATOR is required to either skip her turn or to empty
all buffers completely.

3.2. A Formal Definition as Infinite-Duration Game

Let A, Bbe NBA over a trace alphabet (X, 0, k) as above and «: [k] = NU{w}
be a function that assigns a capacity to each of k buffers. Formally, the multi-
buffer simulation game on A and B with buffer capacities «x is an infinite-duration
game

QK(‘?[/B) = (‘/I VOI Vl/ E/ UI/ w) .

Here, SpoiLEr is Player 0 and DupLicaTor is Player 1. The game is defined as
follows.

Positions. As always, we have V := V, U V; where
Vo= {0} x Q7 x 25 . x £50 x 0F

is the set of tuples (0,p, wy, ..., wi, q) with w; € I} and |w;| < «(i) for all i € [k].
Likewise,
V= (1 x Q7 x I W o mEHW 5 B
is the set of tuples (1, p,wy, ..., wy, q) withw; € X7 and |w;| < 1+x(i) foralli € [].
(Recall that 1 + @ = w such that 251+ = 1),
The initial node is

o = (O,p[,é‘,...,é‘,ql).
——

k times

Moves. The set of moves, i.e., the set E, is the set of the following pairs from
(V() X V1) U (V1 X VQ)I

° ((O, powi, ..., wiq),1,p,w,... ,wl’(, q’)) provided that there is a € X such
that
- p' €6™(p,a),
- w! = w;7;(a) for all i € [k] (i.e., w! = w;a for i € o(a) and w; = w; for
i € [k]\ o(a)), and
-4 =q
° ((1,p, w1, ..., W, q),0,p Wy, ..., w, q’)) provided that there is # € X* such
that

-r=p
- mi(u) w = w; for alli € [k], and
- q’ € 6%(q,u).
Note that in the description of moves from Vj to V; (i.e., in moves made by
Player 0), the letter a is uniquely given by the two positions. Differently, the

word u in the description of moves from Vi to Vj is only unique up to trace
equivalence since the two positions only determine the projections m;(u) for all

i € [k]. In particular, the two positions determine the number of occurrences of
every letter a in the word u.

Also note that Player 1’s skipping of a turn is modelled by the ability to
choose 1 = ¢ in her moves.

Winning conditions. For this, let © = (v,),>0 be an infinite play with vy = v;
and vy = (Pn, W1, Wnp, - - -, Wik Gn)-

Since vy € V and since moves alternate between Vj and V1, we get v,, € V)
and vy,41 € Vq forall m > 0. Now let n > 0. Since (vp,, v241) € E, there is a
unique letter a, € L that justifies this move. In particular pa,41 € 63‘(;72”,11,1)
and §ons1 = Gon. Since (Vzn41, Von+1)) € E, there is a word u,, € L* that justifies
this move. In particular, pyu+1) = pan+1 and goge1) € 6B(q2n+1, u,). As explained
above, this word u, is not uniquely determined. The infinite play 7 belongs to
the winning condition ‘W if the words u, can be chosen in such a way that

e p, € F/ for finitely many n > 0
e or

= Gon+1) € 62(Gans1, Un) and u, # ¢ for infinitely many n > 0 and
- lapmas .. .|, = luourus .. .|, for all letters a € X.

The multi-buffer flushing game on A and B with buffer capacities « is the
infinite-duration game

FH A B) :=(V, Vo, V1, E', v, W)

where V, V,, V1 and v; are as above. The set of moves E’ is a subset of the set
of moves of the multi-buffer simulation game: It contains all moves from Vj
to Vi (i.e., moves of Player O are not restricted), but Player 1 can only do the
following moves:

((1,p, wy, ..., Wk q), (0, p’,wg,...,wl’c, q’)) € E’ provided that there is u € "
such that

o p =p,

e 71t;(u) = w; and w] = ¢ forall i € [k],
oru = ¢and w; = w; for all i € [k] and

o g €5%(q,u).

Since E’ C E, any play of the multi-buffer flushing game 7*(A, B) is also a
play of the multi-buffer simulation game G*(A, B). Hence we can define the
winning condition W’ of the multi-buffer flushing game mutatis mutandis: it is
the set of infinite plays of the multi-buffer flushing game ¥ (A, B) that belong
to W as defined above.

Definition 3 Let «: [k] » IN U {w} for some k > 1.
Then C* is the set of tuples (A, B, L, 0) such that (X, g, k) is a trace alphabet,
Aand B are NBAs over this trace alphabet, and Player 1 has a winning strategy

10

for the simulation game G*(A, B). For (A, B, L, 0) € EX, we write AC* B (and
let the trace alphabet be implicit).
Similarly, ACE B denotes that Player 1 has a winning strategy for the flushing

game F (A, B).

Sometimes we will consider the special case of k = 1, i.e., the multi-buffer
simulation or flushing game on a single buffer. This will also be referred to as
the single-buffer simulation, respectively flushing game.

4. Upper Bounds

In this section, we will determine upper bounds for the question whether
Player 1 can win the multi-buffer simulation, respectively the multi-buffer flush-
ing game. Qualitatively, these upper bounds depend on the number and capac-
ities of the buffers. In order to determine these upper bounds, we first translate
the games in question into parity games.

4.1. Parity Games
A parity game is a tuple (V, Vo, V1, E, v, Q) such that

o (V,Vy,V1,E, v, 0) is an infinite-duration game and

e O:V —{1,2,...,0} is the priority function (for some number of priorities
0>1).

Such a parity game determines an infinite-duration game (V, Vo, V3, E, v;, W)
where W is the set of infinite plays 7 = (v,),50 such that

lim sup Q(v,) is odd.

n—oo0

We will identify the tuple (V, Vo, V1, E, v1, QQ) with the infinite-duration game
(V, Vo, V1, E,v1, W) and speak, e.g., of a winning strategy in the parity game.

In every parity game G, one of the players has a strategy that is both,
winning and memory-less [7]. In particular, one of the two players wins the
game. The question who of the two players is the winner, is refered to as
“solving the parity game”. The question whether finite parity games can be
solved in truly polynomial time is subject to current research and has led to a
multitude of algorithms. We only consider very special parity games, hence
for our purposes it is enough to appeal to a result which does not necessarily
provide the best asymptotic worst-case complexity but is simple to state.

Proposition 4 ([19]) Parity games with n nodes and o distinct priorities can be solved
in time O(n**1°/21). Hence, solving finite parity games with a fixed number of priorities
isin P.

11

We will — in the following sections — translate multi-buffer simulation and
flushing games into parity games. In order to solve these parity games, we
will simplify them further. Using simulations (that are defined next), we will
be able to prove that these simplifications are appropriate (i.e., preserve the
winner).

Definition 5 Let G = (V, Vo, V1, E, v, Q) and G' = (V’, V{, V4, E’, 0}, (') be two
parity games. A relation R C V X V" is a simulation of G in G' if (v;,v}) € R and,
for all (v,v’) € R, the following hold:

(1) ve Vyiffv' € V;

(2) Q@) =Y (@);

(3) if v € V1 and w € vE, then there exists w’ € v'E’ with (w, w’) € R;
(4) if v’ € Vi and w’ € v'F’, then there exists w € vE with (w,w’) € R.

A bisimulation of G and G’ is a relation R € V x V’ that is a simulation of G in
G’ such that, conversely, R ={(@,v) | (v,v') € R} is a simulation of G’ in G.

Note that a relation R is a bisimulation iff, besides (1) and (2) from the above
definition, we have

(3%) if w € vE, then there exists w’ € v'E’ with (w,w’) € R;
(4%) if w’ € v'E’, then there exists w € vE with (w, w’) € R.

Lemma 6 Let G and G’ be two parity games and let R be a simulation of G in G'. If
Player 1 wins G, then she wins G'.

Proor Since Player 1 wins G, she has a winning strategy x on G. Let < be a
well-order on the set V of positions in the game G.

Let 7 = (vi)o<i<k € Plays(G) and 7" = (v))o<i<k € Plays(G’) be finite plays of
the same length. We say that n is the witness for n’ if the following holds for
all0<i<k

vi41 € V is the <-minimal position v such that (v, vy, ...,v;,v) € x and
(v,v,;) €R.

Note that not every play n’ € Plays(G’) has a witness, but that any play
' € Plays(G’) has at most one witness. Note also that (with i = k — 1) any
witness belongs to the winning strategy x. Furthermore, if 7 is the witness of
7/, then (v;,v)) € Rforall 0 <i <k

Now define y’ C Plays(G’) as the set of plays in G’ that have a witness.

We will show that)’ is a winning strategy for the game G’. To this aim, we
first verify that x’ is a strategy:

¢ Note that (v;) € Plays(G) is the witness for the play (v)) € Plays(G).
Hence)’ is not empty.

o By construction, x’ is closed under prefixes.

12

e Let 7’ = (v])o<i<k be a finite play in x” with v} € V]. Then, by definition of
X', the play 7" has a witness 7t = (v;)o<i<k € X. Since, in particular, (v, v) €
R, condition from Definition ensures vx € Vq. Since x is a strategy,
there is v € vy E with tv € x. Since < is a well-order, there is a minimal
position v with this property that we call v,1. Condition (3) implies the

existence of v, € v} E’ with (vy41,7,,,) € R. Hence 7' v, € Plays(G’)
and 7 k4 is a witness of this play, i.e., 7/ Vi €X'

e Let @' = (v))o<i<k be a finite play in x” with v € V{ and let v, € v,E".
By definition of x’, the play 7’ has a witness ™ = (v;)o<i<k € x. Since,
in particular, (v, v;) € R, condition ensures v, € V. Furthermore,
condition @) implies the existence of v € vE with (v, vi,1) € R. Since < is
a well-order, there is a minimal position v with this property that we call
Uk41. Since yx is a strategy, we get 1 vy € x. Since this play is a witness of
7' v,,, we obtain 7’ v, € x’ by definition of x’.

Let us finally show that y’ is a winning strategy, i.e., that Player 1 wins every
X'-play. Solet i’ = (v])i>o be an (infinite) x’-play, and, fork € IN, let 7t; = (v/)o<i<k
be its prefix of length k. Then 7, € x’ since 7’ is a x’-play. By definition of
X', there is, for every k > 0, a witness 7, € x for 7. Since 7 and 74 are
witnesses of n}’c and n,’(= n,’(vl’C .17 Tesp., there is vy such that 7 = 7 Ukt
and (Vk+1,7;,,) € R. Thus, the sequence © = (v;);»0 of positions is a y-play and
thus a winning play. By condition (@), 7’ is a winning play. .

In this paper, bisimulations will be used to simplify parity games. More
precisely, we consider a bisimulation R of G and G’ with G’ = G that is, at the
same time, an equivalence relation on the set of positions of the game G. The
following lemma is immediate:

Lemma 7 Let G = (V,Vy, V1, E, v;, Q) be a parity game and R an equivalence relation
on V. Then R is a bisimulation of G and G itself iff it satisfies (1) and (2) from
Definition |5| as well as the following: if (v,v") € R and w € vE, then there exists
w' € v'E with (w,w’) € R.

For the proof of this lemma, it actually suffices to have a symmetric rela-
tion R.

If R is a bisimulation of G and G itself and an equivalence relation, then it
makes sense to consider the following quotient of G wrt. R.

Definition 8 Let G = (V, Vy, V1, E, v}, QQ) be a parity game and let R be a bisim-
ulation of G and G that is, at the same time, an equivalence relation. Then we
define the quotient game G/R = (V/r, Vo/r, V1/r, E/r, v1/r, /Rr) as follows:

e Vo/r ={[v]|veVy,
o Vi/r={lv]lveVy},

o v /r =[uv1l,

13

e Q/r([v]) = Q(v), and
e ([v1],[v2]) € E/r whenever (v1,v2) € E.

Lemma9 Let G = (V,Vy, V1, E, v, Q) be a parity game and let R be a bisimulation
of G and G that is, at the same time, an equivalence relation. Then the relation
S ={(v,[v]) | v € V} is a bisimulation of the parity game G and the quotient game
G/R. Hence Player 1 wins the game G iff she wins the game G/R.

Proor We have to verify the conditions (1) and (2) from Deﬁnitionas well as
(3%) and (4*). So let (v, [v]) € S.

(1) veVy & [v]e Vy/r
(2) Qo) = Q/r([v])
(3*) Suppose w € vE. Then [w] € [v]E/r and (w, [w]) € S.
(4*) Suppose and y € [v]E/r. Then there is some position w € vE with y = [w].
Hence y = [w] € [v]E/g and (w, y) € S.

4.2. The Multi-Buffer Simulation Game

4.2.1. Multi-Buffer Simulation Games as Parity Games

In this section, we define for any multi-buffer simulation game an equivalent
parity game, i.e., a parity game won by the same player as the multi-buffer
simulation game. The idea of this construction is as follows:

1. First, we add priorities 1, 2, and 3 to the positions of the multi-buffer
simulation game. The game moves into a position of priority 2 if SPOILER
moves his pebble into some accepting state of the NBA A. Similarly, the
game moves into some position of priority 3 if DupLicATOR moves her
pebble along some path that contains an accepting state of the NBA $; in
addition, it is required that she reads from all nonempty buffers between
any two visits of priority-3-positions.

2. In order to ensure this last condition, we add another counter taking
values between 0 and k to the game positions. This counter can only be
increased from i to i + 1 (modulo k) if buffer i is either empty or read from.
DupLicaTor can only move into a priority-3-position in case the counter
has value 0.

3. Finally, note that the multi-buffer simulation game cannot move into a
position where the buffer contents are “inconsistent” (meaning that, e.g.,
a € L1 N I, appears more often in the first than in the second buffer).
More precisely, the multi-buffer simulation game can only move into a
position (X, p,ws, ..., wy, q) if there is a word w € £* with w; = m;(w) for
all i € [k]. Our parity game contains only those positions, i.e., the buffer
contents are encoded by a single word.

14

More formally, let A = (Q7, =, p;, 67, F') and B = (Q%, L, q1, 6%, F%) be NBA,
let (X, 0, k) be a trace alphabet and let x: [k] = IN U {w} be a capacity function
for k buffers.

The parity simulation game on ‘A and B with capacities « is the parity game

_ par y,par par
5 (A, B) = (VP VB YR pRar b cypar)

defined as follows.

Positions. The set V"' of Player 0s positions is the set of tuples
0,p,w,q,¢,7) € {0} x Q' x T x Q¥ x{0,1,..., k} x {1,3}

with |7t;(w)| < x(i) for all i € [k]. The set V}far of Player 1’s positions is the set of
tuples
(1,pw,q,c,7)e{l} x QM x ' x Q% x{0,1,...,k} x {1,2}

with |ri(w)| < 1 + (i) for all i € [k]. As always, the set of positions is VP :=
Vpar U Vpar
0 .1 . : g . ar
Theinitial positionis vf = (0,pr1,¢,41,0,1). Note that (0, pr, 1 (), . .., m(€), q1)
is the initial position in the multi-buffer simulation game.

Priorities. The priority of positionv = (X, p, w, g, ¢, r) is QP*(v) = r. In particular,
positions of Player 0 have priority 1 or 3 and positions of Player 1 have priority
1or2.

Moves. The set EP?" of moves is the set of the following pairs from (V5" x
par par pary |
Vi U XVt
(P0) ((O, p,w,q,¢c1),Lp,w,q9,c, r’)), provided that there is a € X such that
o p' €5M(p,a),
o w =wa,
*q=4q
e ¢ =c,and
o {2 ifpern
e 7 =
1 otherwise
Note that the first three conditions are equivalent to saying that there is

a move from (0, p, m1(w), ..., (W), q) to (L, p’, m(@w’), ..., m(w’),q’) in the
multi-buffer simulation game G*(A, B).

(P1) ((1,p, w,q,c,1),0,p,w,q,c, r’)), provided that there is u € X* such that
° p’ =p,

o uw ~;w,

o 7 €55(q,u),

15

1 ifc=0,u#¢and I ~; u: q € 65(q,u')
e ¢’ ={(c+1)modk ifc>0and m.(w)# (w’) or m.(w) = ¢
c otherwise,

3 ifc=0andc¢ =1
e and ' = .
1 otherwise.

As above, the first three conditions describe a move in the multi-buffer
simulation game G*(A, B) from position (1, p, m1(w), ..., m(w), q) to posi-
tion (0,p’, y(@’),. .., m(w’),q).

In order to prove that the multi-buffer simulation game G*(A, B) and the
parity simulation game Gp,.(A, B) are equivalent, we first map the positions
of the parity simulation game to positions of the multi-buffer simulation game.
Soletv = (X,p,w,q,c,r) € VP be some position in the parity simulation game.
Then define f(v) = (X, p, m1(w), .. ., Te(w), q). Then f(v) is a position in the multi-
buffer simulation game, i.e., f(v) € V. Now let m = (v,,)o<n<n be a finite play in
the parity simulation game. We extend the function f from positions to plays
by setting f(r) = (f(vs))o<n<n. The remarks in the definition of the moves in the
parity simulation game show that f(r7) is a play in the multi-buffer simulation
game.

Using this function f, we can now translate winning strategies from the
parity simulation game into winning strategies in the multi-buffer simulation
game.

Lemma 10 Let Xpar be a winning strategy for Player 0 in the parity simulation game
bar(A, B). Then

X = {f(T() | 7t e)(par}
is a winning strategy for Player 0 in the multi-buffer simulation game G*(A, B).

Proor We first verify that x is a strategy for Player 0 in the multi-buffer sim-
ulation game. Since Xpar 15 a strategy, the shortest play (Ufar) belongs to Xpar-
Since f(oF™) = vy, the play (v;) belongs to x, hence x # 0.

Let mov € x with v € V. By the definition of y, there exists a play P vP*" €
Xpar With mo = f(tP¥ 0P"). Since xpar is a strategy, we get mP%" € xpar and
therefore = f(7P*) € yx.

Let v € x with v € V7 and let (v,v") € E. We have to show novv €
X- As above, there exists a play P oP* € X, with mo = f(rP¥" oP?).
Suppose vP*" = (1,p,w,q,c,7). Then v = (1,p, y(w),..., m(w),q) and v =
0, p, 1 (uw), . .., mp(uw), q’) for some u € * and some ¢’ € 63(q,u). Then there
arec’ €1{0,1,...,jland " € {1,2, 3} such that the position

,U/par — (0/ p, uw, q,,C’,T’,)
satisfies f(v'P?") = 0" and (vP*, v’P?") € EP?". Since xpar is a strategy for Player 0,

this implies 7P 0P 0P € xpar. Now we get mo v’ = f(rPa oP¥r o'Par) € y.

16

Let mv € y with v € V. We have to find v' € vE with mv v’ € x. As above,
there is a play mP® 0P € xp,r with f(rP¥ oP%) = mo. Since xpar is a strategy
for Player 0, there is a play 7P 0P 0'Pa € X, Setting v = f(0'P%), we get
nov = f(rP¥ oPT P € x.

Thus, indeed, yx is a strategy for Player 0 in the multi-buffer simulation
game. It remains to be shown that this strategy is winning for Player 0. So let
(Un)n=0 be some x-play.

Let T denote the set of finite plays 7P = (0" o<n<n € Xpar With f(riP®) =
(Un)o<n<n, i-€., f(vf;ar) = v, for all 0 < n < N. The edge relation K on this
set describes the extension of a finite play by one move, ie., K is the set of
all pairs (7P, P vP?") for mP** vP?* € T. Since the function f: V — VP* is
finite-to-one, this tree is finitely branching. Since (v,),50 is a x-play, all its
finite prefixes belong to x. Hence, for all N > 0, there exists ni,ar € Xpar With
f (nilar) = (Un)o<n<n- It follows that the tree T is infinite. By K6nig’'s lemma, the
tree T has an infinite branch which defines an infinite xpa,-play (07,50 with
f(@5") = v, forall n > 0. Since xpqr is a winning strategy, this play is won by
Player 0. In other words, we have QP (vh"") = 2 for infinitely many n > 0 and
QP¥(v,par) = 3 for finitely many n > 0.

Forn >0, let vﬁar = (Xu, Pn, Wn, Gn, Cn, tn) such that

Uy = (X, P, 11 (W), - ., T (W), Gn) -

Forn > 0, let a, € X be the letter that justifies the move from vy, to v3,41 and let
u, € L be the word that justifies the move from vy,,1 t0 V(1)

There are infinitely many n > 0 with QP¥(0)™") = 2. Since the positions
of Player 0 cannot have parity 2, there are infinitely many n > 0 such that
QpPar(ob™) = 2,1.e., pague1) = pans1 € F. Hence the infinite run (p2,, an, pagn+1)nz0
is accepting.

Furthermore, QP (vh™") = 3 holds for only finitely many n > 0. Hence, there
isce€{0,1,...,k} such that ¢, = c for all but finitely many n.

First, suppose c, = 0 holds for all but finitely many #n. Then, for almost all
n > 0, we have

Uy & = Go+1) € 61{-“8(q2”+1’ [ua]) -

But this ensures that, for only finitely many n > 0, we have u, # ¢ and go(+1) €
6? (g2n+1, [Un]). Thus, if ¢ = 0, then the x-play (v,,),>0 is won by Player 0.

It remains to consider the case ¢ > 0. Then, for almost all n > 0, we have
¢ = ¢y and € # 1 (Wans1) = Te(Wome1)). Hence, some letter a written into the
buffer number c does never get read. Hence |apa; ... |, # |uouy ... s, i.e., Player 0
wins the y-play (v,).0 also in case ¢ > 0. -

Now we prove the analogous lemma for strategies of Player 1:

Lemma 11 Let xpar be a winning strategy for Player 1 in the parity simulation game
S ar(A, B). Then

par

x={f(m)Ine Xpar}
is a winning strategy for Player 1 in the multi-buffer simulation game G*(A, B).

17

Proor We first verify that x is a strategy for Player 1 in the multi-buffer sim-
ulation game. Since xpar is a strategy, the shortest play (v?ar) belongs to Xpar-
Since f(v}"") = v}, the play (v;) belongs to x, hence x # 0.

Let mov € y with v € Vj and let (v,v") € E. We have to show mvv’ € x. By
the definition of x, there exists a play mP* vP*" € xpor with o = f(rP" oP?").
Suppose vP*" = (0,p,w,q,c,7). Then v = (0,p, y(w),..., m(w),q) and v' =
(1,p’, mi(wa), ..., mr(wa),q) for somea € T and p’ € 57(p, a). Set

P = (1,p",wa, q,c,71)

with r = 2if p’ € F'and r = 1 otherwise. Then (P, v'P3r) € EP". Since Xpar 18 @
strategy, this implies 7iP*" vP" v'P2" € ypor. Now we getmo v’ = f(riPa" oP?" 'Pr) €
X

Let mv € y with v € V1. We have to find v' € vE with mv v’ € . As above,
there is a play 7P 0P € xp,r with f(rP¥ oP%) = mo. Since xpar is a strategy
for Player 1, there is a play 7P¥ 0P 0'Pa € X, Setting v = f(0'P%), we get
nov = f(rP oPT P € x.

Thus, indeed, yx is a strategy for Player 1 in the multi-buffer simulation
game. It remains to be shown that this strategy is winning. So let (v,),0 be
some y-play. Then, forall N > 0, there exists ni,ar € Xpar With f (nlp\’]ar) = (Un)o<n<N-
Since the function f: V — VP is finite-to-one, we obtain, as in the proof of
Lemma from Kénigs Lemma a xpar-play (07) nz0 with f(0F) = v, for all
n > 0. Since xpar is @ winning strategy, this play is won by Player 1. In other
words, we have QP¥(v"™) = 1 for almost all n > 0 or we have QP (v, par) = 3
for infinitely many n > 0.

Forn >0, let v = (X,,, pu, Wn, G, Cn,) such that

Un = (X, P, T1(Wh), . . ., (W1, Gn) -

In the first case, i.e., if QP (v,par) = 1 for all but finitely many n > 0, we have
Pn ¢ F3 for almost all nn > 0. Hence the play (v,)us0 is won by Player 1.

Now consider the latter case QP (vh™") = 3 for infinitely many n > 0. Note
that the parity of positions of Player 1 cannot be 3, hence there are infinitely
many n > 0 with 7,41y = 3. For any such n > 0, there is a word u, € X*
justifying the move (05211, vg(a;m) with go(u41) € 6?(q2n+1, u,). Furthermore, the
counter ¢, moves infinitely often from 0 to 1 such that, any bufferi € [k], isempty
infinitely often or shortened by Player 1 infinitely often. As a consequence, all
letters ever put into buffer i is eventually read. Thus, Player 1 wins the play

(Un)nz0- n

The following resultis an immediate consequence of the above two lemmata.
It allows to analyse the multi-buffer simulation game in terms of parity games.

Theorem 12 Let A and B be NBA over the trace alphabet (L, 0, k) and let x: [k] —
N U{w} be a capacity function. Then the games G*(A, B) and G,,(A, B) are won by
the same player and the multi-buffer simulation game is determined.

18

Proor By [7], one of the players has a winning strategy in the parity simulation
game G, (A, B). By Lemm and [T1] the same player wins the multi-buffer
simulation game G*(A, B). Thus, the two games are equivalent. In particular,
the multi-buffer simulation game is determined. .

4.2.2. Solving the multi-buffer simulation game

In this section, we will give upper bounds for the complexity of determining
the winner in the multi-buffer simulation game, depending on the number of
channels and the capacity function x. In light of Theorem this can be
achieved by analysing the parity simulation game. The first result in this
direction gives an upper bound in the analytical hierarchy for the general case.

Corollary 13 The relations C* belong to A}, even uniformly in the capacity function
x: [k] = N U {w}.

In other words, the set of tuples (A, B, (L, 0, k), ¥) where A and B are NBA over
the trace alphabet (L,0,k) and x: [k] — NN U {w} is a capacity function such that
Player 1 wins the multi-buffer simulation game G*(A, B) belongs to A}.

Recall that Al = ©) N1} is the intersection of the second existential and the
second universal level of the analytical hierarchy.

Proor It suffices to prove this claim for the parity simulation game G, (A, B).
The existence of a winning strategy for Player 1 in this parity game is a
statement of the form

J some strategy x V sequences 1 = (Up)nz0: @

where «a is the following arithmetical statement:
(Vn: (vo,...,00) € x) = FVL: QP (0pp) = 1V Tk VL Tm: QP (Op) = 3.

Since strategies as well as sequences are infinite sets, this is a typical statement
from . Hence the set in question belongs to X.

By Theorem the tuple (A, B, (L, 0, k), k) belongs to the set in question if
Player 0 does not have a winning strategy for G*(A, B), which is a negated X.-
statement and therefore a IT}-statement. Hence the set in question also belongs
to H% L]

In Section 5| we will see that this upper bound cannot be improved much
in case we have at least two buffers of which at least one is unbounded (in
particular, the game is highly undecidable in that case). Upper bounds for the
two remaining cases, namely k = 1 (i.e., only one buffer) and (i) € IN for all
i € [k] (i.e., all buffers are bounded) are given by the following two corollaries
of this section. First, we consider the case that all buffers are bounded:

Corollary 14 The relations (@2 with k > 1 and ¢, ca, . . ., cx € IN are decidable
in polynomial time (uniformly, they are decidable in time polynomial in the automata
and exponential in k - max{x(@) + 1|1 <i <k}).

19

More precisely, given two NBA A and B over the trace alphabet (L, 0,k) and a
capacity fungtion x: [k] = IN, it can be decided in time polynomial in |A| + |B| +
|Z[emaxte+I€K) owhether Player 1 wins the multi-buffer simulation game G*(A, B).

Proor Letw € I* with |r;(w)] < 1+x(i) foralli € k. Then [w]| < ¥ ;epq(1+x(0) =
N. It follows that, with s = |X|, there are at most % < sM! many such
words w. Consequently,

[VPar| < 2+ 1Q7 - |ZN* - 1Q®] - (k+ 1) - 3,

i.e., the parity simulation game is polynomial in |A| +|B] + |Z[Fmaxx@liclkll | Since

the parity simulation game uses only three priorities, the result follows from
Theorem [12]and Proposition 4] .

The remaining section is devoted to the case k = 1 and x(1) = w, i.e,, to a
single unbounded buffer. In this case, we will construct a finite parity game that
is equivalent to the parity game Gy, (A, B). This is achieved by first defining a
“modified simulation game” that is equivalent to Gi,,(A, B). On this modified
simulation game, we then define a bisimulation. The quotient of the modified
game wrt. this bisimulation will be the announced finite parity game.

For the rest of this section, we fix the number of buffers by k = 1 and the
capacity function « by setting x(1) = w. Consequently, for any trace alphabet
(X,0,[1]), we have o(a) = {1} for alla € X.

The idea of the announced modification of the multi-buffer simulation game
is as follows:

1. Recall that the two players build runs in their NBA A and 8, resp., and
that the game positions recall the states reached so far. In the modified
game, the game position recalls the complete runs built so far.

2. Let w be the word in the current game position in the parity simulation
game. If the position belongs to Player 1, then she can use an arbitrary
prefix of w to extend her run. In the subsequent rounds (while Player 1
skips her turns), Player 0 will extend the remaining word w; by some
word w, until Player 1 decides to use an arbitrary prefix of the resulting
word wiw,. In the modified game, Player 1 is forced to use wy, i.e., all the
letters left in the buffer after her last proper move, entirely.

More formally, the modified simulation game on A and 8 is the parity game
gmod(ﬂ/ B) — (Vmod/ V(r)nod’ V‘;nod, Emod, Z];nocl/ Qmod)

defined as follows.

Positions. V™ is the set of tuples
0, p™, w1, wy, p®, ¢, 7) € {0} X IFRUNs(A) X Z* x * x iFRuns(B) x {0,1} x {1,3}
and V"4 s the set of tuples

(1, py‘,wl,wz, pB, ¢, 1) € {0} X iFRuns(A) x &* x X* x iFRuns(B) x {0, 1} x {1, 2}.

20

As always, Vmed = ymod (j ymod,

Intuitively, (X, pﬂ, wy, Wo, pB, ¢, r) corresponds to the position (X, target(p
wywy, target(p?), ¢, r) in the parity simulation game.

The initial position is "% := (0, ¢, ¢, ¢, ¢,0,1).

7,

Priorities. The priority of position v = (X, p™, wy, w, p%, ¢, 1) is Q™4(v) := r. In
particular, positions of Player 0 have priority 1 or 3 and positions of Player 1
have priority 1 or 2.

Moves. The set of moves, i.e., the set E™4 is the set of the following pairs from
(Vmod X Vmod) U (Vmod X Vmod).
0 1 1 o /

(PO) ((0, p7 w1, wa, p%,¢,1), (1, p", w0, wh, p8, r’)), provided that there is a €
L such that

p"is the extension of p” by some a-labeled transition,
e w; = w; and wy, = wya,
o p%=p%
e ¢! =¢,and
y 2 if target(p") € F
[] =
1 otherwise.

(P1) ((1, p?,wy,wy, %, ¢,1), (0, p" ", wi, wh, p'8, r’)), provided that

L 0%, ¢) = (p7, wi, wy, pB,c)and ¥ =1 or
2. e p=p7,

/
Wy

e 0’8 is an extension of p® by some w;-labeled run p”’%,
P p= by P

1. (p", w), w

= wy, wé =g,

4

|1 if p”® # ¢ sees some accepting state
0 otherwise

and 7 = 3 ifp"® i ¢ sees some accepting state
1 otherwise.

Remark 15 The “counter” c is only used to notationally simplify the following

proof.

We want to prove that the parity simulation game Gy,,(A, B) and the modi-
fied simulation game Gmod (A, B) are equivalent. Providing a simulation, it can
be easily shown that Player 1 wins the parity simulation game whenever she
wins the modified simulation game (see proof of Lemma([17). For the other im-
plication, we use some topological argument that we prepare by the following
definition and result.

The set ARuns(A) of accepting runs of the NBA A carries a natural metric:
two runs are “close” if they share a long common prefix. More precisely,

21

the distance between the distinct infinite accepting runs p = (p;, a;, pi+1)i=0 and
o’ =, a.,p,,,)iz0 equals 2~ where

¢ =min{i | (p;,a;, piv1) # ;. a.,pi.)} -

A function f from ARuns(A) to ARuns(8) is trace preserving if the runs p and
f(p) carry the same trace (for all p € ARuns(A)), i.e., mi(u) = m;(v) for all i € [k]
for the words u and v accepted by p and f(p), respectively. Given these notions,
we have

Proposition 16 ([15, Theorem 18]) Let A and B be NBA over the trace alphabet
(X,0,k) and «(i) = w for all i € [k]. Then Player 1 has a winning strategy in the
multi-buffer simulation game G*(A, B) if, and only if, there exists a continuous trace
preserving function from ARuns(A) to ARuns(8).

Lemma 17 Let Aand B be two NBA over the trace alphabet (£, 0, 1) and let k(1) = w.
Then the the multi-buffer simulation game G*(A, B) and the modified simulation game
Gmod (A, B) are won by the same player.

Proor First suppose Player 1 wins the modified simulation game. The set of
pairs
((X/ Pﬂ; wi, Wy, pB/ c, 1’), (X/ target(Pﬂ)/ wiws, target(PB)z c, 7’))

forms a simulation of the modified game in the parity simulation game. Hence,
by Lemma 6} she also wins the parity simulation game and therefore (by Theo-
rem[12) the multi-buffer simulation game.

Conversely, suppose Player 1 wins the multi-buffer simulation game G*(A, B).
Hence, by Proposition there is a continuous and trace preserving func-
tion f: ARuns(A) — ARuns(B). Since k = 1, we get lab(p”™) = lab(f(p™))
for all p™ € ARuns(A). We will define a positional strategy x for Player 1
in the modified simulation game Gmoda(A, B). This requires us to define a
function s: VInod — ymed - So let (1, p™, wy, ws, p?,¢,i) € Vlg mod(AB) e po-
sition of Player 1 in the modified simulation game. We consider the set
R™ € ARuns(A) of all infinite accepting runs p;! that extend the finite run
pMandlet R® = {f(p7) | p?* € R™'} C ARuns(8B). First suppose R” # () and there
is a run p'® of length |wy| such that p® p'® is a prefix of all runs in R%. Then set

s(1, pﬂ, w1, W, pg, c,7)=(0, pﬂ, wy, &, pﬂ p’g, c’,r') with (2)

) = (1,3) if p’B # & meets some state from FZ
77 1(0,1) otherwise
If R™ = 0 or there is no such run p’%, then set

s(1, p7, w1, w2, p%,¢,7) = (0, p™, w1, w2, p%,0,1).

This function s: V"4 — V™mod defines a positional strategy x in the modified
game.

22

Let 1 = (v))is0 be a x-play with v; = (X, p!, wi, wi, p?,c;,7j). Since the
players play alternatingly, we get X; =1 <= iis odd. Note that the run piﬂ
is a prefix of the run p!, and a proper prefix of p/,. Hence there is a unique
infinite and initial run p” such that all finite runs pfZI are prefixes of p™. If this
run is not accepting, then there are only finitely many i > 0 with 7' = 2. Hence,
in that case, Player 1 wins the play. Now suppose that p” is accepting. Then set
p® = f(p™). By the definition of the function s and the positional strategy x, any
of the finite runs p? is a prefix of p®. Suppose there is k > 0 such that [p?| < k for

all i > 0. Then, for all i > 0, there are infinite accepting runs p!, p), € ARuns(A)
that extend p! (implying d(p, p}) < 27107 = 27151y such that f(p}) and f(p})
have different prefixes of length k + 1 (i.e., d(f(pg), f(pé)) > 271y But this
contradicts the continuity of f. Consequently, p? can be written as the infinite
run

B 1B 1B
Po PT Py
where the finite nonempty runs p;B are the consecutive extensions originating
from (). Since p? = f(p™) is accepting, infinitely many of these runs meet some
accepting state. Hence, Q™°(v;) = 3 for infinitely many i > 0, i.e., Player 1 wins
the play ©. Thus, we showed that x is a winning strategy for Player 1. .

Let (X, pﬂ, w1, Wo, pB, ¢, r) be some position in the modified game. Then, all
that is really needed to know are the target states of the two runs p™ and p? as
well as the “behavior” of w; and w, in the NBA B, i.e., the sets 6% (target(pfg), w1),
62 (target(p®), wy) as well as 6%(p, w,) and 6% (p, w») for all p € Q.

We capture this “behavior” by the following function: For a word w € X*,
we define the function f,,: Q% x Q% — {0, 1}? setting f,,(p, 9) = (i, j) with

1 if there is a nonempty w-labeled run from p to g
i= that sees an accepting state
0 otherwise

1 if there is some w-labeled run from p to g
j= that does not see an accepting state or is empty
0 otherwise

Note that the number of functions f, is at most 42”7, i.e., exponential in the
number of states of 8.

From these functions, we derive a binary relation on the positions of the
modified game Gmod(A, B): Let R be the set of pairs of positions

d d
((Xl,Pm, W11, W12, P18, €1, 11), (X2, P24, W21, W2, P28, C2, 12),)) € VMot x yme
satisfying

o target(p1a) = target(pax),

23

hd fwn = fwﬂ and fwu = fwzzl
o target(pi1g) = target(p.g), and
o (Xy,c1,11) = (X2, 02, 12).

Lemma 18 The relation R is a bisimulation of the modified game Gmoa(A, B) and
itself and, at the same time, an equivalence relation.

Proor Clearly, Ris an equivalence relation. Now letv; = (X;, pia, wi1, Wi, pig, Ci, ti)
for i € {1,2} be two positions in the modified game with (v1,v;) € R. By the
definition of R, we obtain (X1, c1,71) = (X3, ¢2,12)-

Hencev, € V) &= X1 =0 & X, =0 & vy € Vopand Q™)) =1, =
ry = Qm4(0y).

Next let v; € V?“’d and v] € v Emod If v} = (0, pra, w11, w12, P18, €1,11),
set v), = (0, paa, Wa1, W2, P23, C2,12). Then v} € v E™9 and (v1,v,) € R implies
(v],75) €R.

Alternatively, v} = (0, p1a, w12, €, P18 Pis' c1,77) where pig is some wy1-labeled
run starting in target(p;g) and

(. 7) = (1,3) if this run is nonempty and sees some accepting state

1771(0,1) otherwise.
First, suppose that the run p/ ; is nonempty and sees some accepting state. Then
fon (target(p1g), target(p)z)) € {(1,0), (1, 1)}. Since fu,, = fu,, there exists some
nonempty ws;-labeled run p;, from target(p1g) = target(pas) to target(p] ;) that
sees some accepting state. Set

’Ué = (O/ PZ?I/ w22/ gl PZB p/ZB/ 1/ 3) .

Then v}, € v,E™9 and (v}, v}) € R.

Next, suppose that the run p}, is empty or does not see an accepting state.
Then f,, (target(plg),target(plgpig) € {(0,1),(1,1)}. Since fu, = fuw,, We can
extend pyg by some wy;-labeled run p}, that is empty or does not see an
accepting state such that target(pi1gp},) = target(pagp;,). We set, similarly to
above,

v = (0, pot, W22, €, P28 Preg, 0, 1) .

Then v/, € v,E™9 and (v}, v}) € R.

2

Next let v, € V(I)nOd and v, € v, E™d Then there exist a € X, an a-
labeled run p’; from target(p,x) to some state g, and ' € {1,2} such that
v’z = (1, pmp;{, W1, Wad, P28, C2, ré) where v’ = 2if g € Fand ¥ = 1 other-
wise. Then set

v, = (1, prap’y, w11, w124, p18,¢1, 1) -
such that v} € v1E™°d. By the definition of the function f,,, = fu,,, we also
obtain fy,s = fuy,q and therefore (v, v7) € R. -

24

We consider the quotient game Q(A, B) = Gmod(A, B)/r: Its number of
positions is bounded by

|Qﬂ|.4|Q§9| 1Qg|-2-3

and therefore polynomial in the size of the automaton A and exponential in
the sizes of the automaton 8. Furthermore, it uses 3 priorities. Hence, by
Proposition 4, the winner can be decided in time polynomial in the size of the
quotient game and therefore exponential in the size of the automata.

In summary, we get the following result.

Theorem 19 C) is decidable in exponential time. In other words, let x: [1] —
IN U {w} with k(1) = w. For a trace alphabet (£, 0, 1) and two NBA A and B, it can be
decided in exponential time whether Player 1 wins the single-buffer simulation game
G* (A B).

Proor By Theorem[12Jand Lemma([l7] Player 1 wins the multi-buffer simulation
game G“(A, B) iff she wins the modified game Gmod(A, B). By Lemma
the relation R is a bisimulation and an equivalence relation on the modified
simulation game. Hence, by Lemma 9} Player 1 wins the modified simulation
game iff she wins the quotient game Gmod(A, B)/r. Since this quotient game
uses a fixed number of priorities, its winner can be computed in size polynomial
in Gmod(A, B)/r and therefore exponential in A and 5. -

This finishes our consideration of upper bounds for solving the multi-buffer
simulation game: the problem is in general in A}, it can be solved in exponential
time if we have a single buffer that is unbounded and in polynomial time if all
buffers are bounded.

4.3. The Multi-Buffer Flushing Game

We now turn to the consideration of the multi-buffer flushing game. Recall
that, differently from the multi-buffer simulation game, DupLicaTOR now has
only the choice of leaving the buffers untouched or emptying them completely.

We will proceed similarly to the above considerations: first, we define a
parity game that is equivalent to the multi-buffer flushing game. This parity
game will then be studied for four special cases: all buffers are unbounded,
there is a single buffer which is unbounded, there is at most one unbounded
buffer (and possibly some bounded ones), and all buffers are bounded. In
all but the last of these cases, we obtain upper bounds that are (sometimes
marginally, sometimes drastically) better than for the multi-buffer simulation
game.

4.3.1. Multi-Buffer Flushing Games as Parity Games

In this section, we define for any multi-buffer flushing game an equivalent
parity game, i.e., a parity game won by Player 1 iff the multi-buffer game is won
by Player 1. The idea is very similar to the definition of the parity simulation
game Gy, (A, B): we add priorities 1, 2 and 3 to the positions and replace the
contents of the k buffers by a single word in order to restrict the buffer contents

25

to “consistent” ones. The counter ¢ is not needed here since the rules of the
flushing game ensure that all buffers are emptied whenever DurLicaTor does
not skip her move.
Let A = (Q7, =, p1, 67, F") and B = (Q%, L, q1, 6%, F%) be NBA, let (%, 0, k) be
a trace alphabet and let x: [k] = IN U {w} be a capacity function for k buffers.
The parity flushing game on A and B with capacities « is the parity game

_ par ,par par
7:11)1;1‘(‘?(/ B) - (Vpar’ VO 7 Vl 7 Epal‘, UI 7 Qpar)

defined as follows.

Positions. The set V5" of Player 0s positions is the set of tuples

O,p,w,q,7) € {0} x Q7 x £* x Q¥ x {1,3}
with [m;(w)| < k(i) for all i € [k] such that ¥ = 3 implies w = €. The set Vfar of
Player 1’s positions is the set of tuples

1,p,w,q,7) € {1} x QX " x Q¥ x (1,2}

with |r(w)| < 1+ «(i) for all i € [K].

As always, the set of positions is VP = VP U VP,

The initial positionis o' := (0, py, €, 41, 3). Recall that (0, pr, m1(e), . . ., (&), q1)
is the initial position in the multi-buffer flushing game.

Priorities. The priority of position v = (X, p,w,q,7) is QP*(v) = r. In particular,
positions of Player 0 have priorities 1 or 3 and positions of Player 1 have
priorities 1 or 2.

Moves. The set EP?" of moves is the set of the following pairs from (V5" x
V) U (VF x VBT
(P0) ((0, p,w,q,r),Lp,w,q, r’)), provided that there is 4 € such that

o p' €6%(pa),

o w =wa,

*q7=q

.r,z{z if p € P

1 otherwise

Note that the first three conditions are equivalent to saying that there is
a move from (0, p, m1(w), ..., (W), q) to (1, p’, m@’), ..., m(w’),q’) in the
multi-buffer flushing game F*(A, B).

P1) ((1,p, w,q,t), (0, p’,w’,q’,r’)), provided that there is u € " with u = ¢ or
u ~, w such that

° p’:p,

26

o uw ~, w (e, w =c¢ifu~, wand w ~, w otherwise)
o g €5%(q,u),

e and v € {1,3} such that ¥ = 3 implies u # ¢ and Ju’ ~, u: g’ €
62, u).

As above, the first three conditions describe a move in the multi-buffer
flushing game ¥ *(A, B) from position (1, p, 1 (w), .. ., me(w),) to position
(0/ P,/ 7zl(u)’)/ ey nk(w’)/ q,)

The proof of the following theorem follows the same lines as that of Theo-
rem[I2land is therefore omitted.

Theorem 20 Let A and B be NBA over the trace alphabet (L, 0,k