
HAL Id: hal-01920584
https://hal.science/hal-01920584

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-buffer simulations: Decidability and complexity
Milka Hutagalung, Norbert Hundeshagen, Dietrich Kuske, Martin Lange,

Etienne Lozes

To cite this version:
Milka Hutagalung, Norbert Hundeshagen, Dietrich Kuske, Martin Lange, Etienne Lozes. Multi-buffer
simulations: Decidability and complexity. Information and Computation, 2018, 262, pp.280 - 310.
�10.1016/j.ic.2018.09.008�. �hal-01920584�

https://hal.science/hal-01920584
https://hal.archives-ouvertes.fr

Multi-Buffer Simulations: Decidability and
Complexity

Milka Hutagalunga, Norbert Hundeshagena, Dietrich Kuskeb, Martin Langea,
Étienne Lozesc

aUniversity of Kassel, Germany
bTechnische Universität Ilmenau, Germany

cENS Paris-Saclay, France

Abstract

Multi-buffer simulation is a refinement of fair simulation between two nonde-
terministic Büchi automata (NBA). It is characterised by a game in which letters
get pushed to and taken from FIFO buffers of bounded or unbounded capacity.

Games with a single buffer approximate the PSPACE-complete language
inclusion problem for NBA. With multiple buffers and a fixed mapping of
letters to buffers these games approximate the undecidable inclusion problem
between Mazurkiewicz trace languages.

We study the decidability and complexity of multi-buffer simulations and
obtain the following results: P-completeness for fixed bounded buffers, EXPTIME-
completeness in case of a single unbounded buffer and high undecidability (in
the analytic hierarchy) with two buffers of which at least one is unbounded.
We also consider a variant in which the buffers are kept untouched or flushed
and show PSPACE-completeness for the single-buffer case.

Keywords: Büchi automata, simulation games, Mazurkiewicz traces

1. Introduction

Simulation Relations on Automata. Simulation is a pre-order between labeled
transition systemsT andT ′ that formalises the idea that “T ′ can do everything
that T can” [20]. Such relations have become popular in the area of automata
theory because they can be used to under-approximate language inclusion
problems for automata on finite or infinite words and trees and to minimise
such automata [1, 6, 9, 11]: if an automaton B can simulate an automaton A,
then the language of A is contained in the language of B. On the other hand,
inclusion of languages does not guarantee simulation.

Simulation relations are often computable in polynomial time whereas lan-
guage inclusion problems are PSPACE-complete for typical (finite, Büchi, par-
ity, etc.) automata on words and EXPTIME-complete for such automata on
trees. In this paper we focus on nondeterministic Büchi automata (NBA) [2].

Preprint submitted to Information and Computation November 13, 2018

Simulation Games. To reason about simulation relations, one very often charac-
terises them by the existence of winning strategies in two-player games played
on the state spaces of two automata with each player moving a pebble along
the transitions of their automaton. The game is strictly turn-based with the be-
ginning player, called Spoiler, moving in the automaton to be simulated, and
the responding player, called Duplicatormoving in the automaton that should
simulate the other. Both players construct runs of their automata piece-wise,
and it is Duplicator’s burden to make her run “correspond” to Spoiler’s run
in the sense that both are runs over the same ω-word. Moreover, Duplicator’s
run must be be an accepting one whenever Spoiler’s is. This is also known as
fair simulation. Other more refined winning conditions have been considered,
mainly for the purpose of automata minimisation, known as direct and delayed
simulation [9]. Here we are only concerned with cases of simulation games
with winning condition as in fair simulation, simply because it is the most
difficult case in terms of decidability and complexity concerns.

Refined Simulation Relations. The fact that simulation is too weak to capture lan-
guage inclusion in general has led to the study of extended simulation relations
and games. We briefly list them here; a thorough study of the relationships
amongst each other is beyond the scope of this paper.

• In multi-pebble simulation [8], Duplicator controls several pebbles which
allows her to follow several runs of which only one has to be “correspond-
ing” in the above sense. Hence Duplicator can act in foresight of several
of Spoiler’s later moves.
Multi-pebble simulation with a fixed number k of pebbles, i.e. k-pebble
simulation, is computable in polynomial time for any k [8, Thm. 4].

• Multi-letter simulation [4, 17], is equally parametrised by some k ∈ N.
In the characterising game, Spoiler first reveals k steps of his run and
Duplicator answers with the same number of steps in her run. Equally,
k-letter simulation is computable in polynomial time for any fixed k [17,
Thms. 4 and 8]. In fact, it is computable in time linear in the size of the
underlying automata – unlike multi-pebble simulations –, and genuinely
polynomial in the size of the underlying alphabet only.

• The idea underlying the dynamic multi-letter games is extended to form
buffered simulation games [18]. Here Spoiler chooses one letter in each
round, but Duplicator can store this letter in a FIFO buffer (bounded or
unbounded) for as long as the buffer’s capacity is not exceeded. When
she decides to move her pebble, she consumes the first letter(s) from
the buffer, thus delaying the construction of her run in comparison to
Spoiler’s. One can construct pairs of automata such that Duplicator
wins the buffered simulation game with an unbounded buffer but not
with any bounded buffer [18, Ex. 2.2].

• Simulation games can be seen as special Gale-Stewart games in which
input and output words must be equal. As such, one can also consider

2

delay games [14] as a form of refined simulation games. Here, one fixes
a sequence (ni)i≥0 of positive integers and an ω-regular set L of pairs of
ω-words as the winning condition. In round i, Spoiler produces ni letters
of his word and Duplicator answers with a single letter of her word.
Duplicatorwins if the pair of words constructed this way belongs to L.

What distinguishes delay games from buffered simulation is the pre-
described relative speed with which Spoiler advances. As a consequence,
one obtains: if Duplicator can win then she can win with a fixed delay
[14, Thm. 6.4].

Multi-Buffer Simulations. In this paper, we study a further extension of buffered
simulation called multi-buffer simulation. The characterising game is played on
two NBA with several FIFO buffers – parametrised by their capacities – to store
and delay Spoiler’s moves.

With several FIFO buffers at hand, one clearly needs to determine which
buffer(s) a letter gets stored in when Duplicatorwants to delay her correspond-
ing move. One can imagine several possibilities to do so, for instance giving
one of the players control over this. Here we follow a different way by fixing,
a priori, a mapping σ between letters and sets of buffers such that the letter a
always gets put into all the buffers in σ(a).

The motivation for having such a fixed mapping comes, again, from formal
language theory. It is easy to see that having multiple buffers in a buffered
simulation game leads to a relaxed notion of correspondence between the runs
constructed by both players. For instance, Duplicator can win the game on the
following two automata over letters Σ = {a, b} that get mapped to two separate
buffers.

a

b b
a

ΣΣ

b

a ab

ΣΣ

a
b

The picture shows the buffer content after Spoiler has moved his pebble to
the state at the bottom right in two rounds while Duplicator has skipped her
turns so far; her pebble is still on the initial state. The two letters played by
Spoiler have been stored in the two FIFO buffers whose heads are depicted on
the right-hand side.

Duplicator can now move her pebble along the b- and then the a-transition,
even though Spoiler has chosen these letters in the opposite order. The fact
that they get stored in different buffers introduces an independence between
the letters regarding the order in which they occur in a run, and this is why
multi-buffer simulations approximate language inclusion problems modulo
such independence between letters, also known by the name (Mazurkiewicz)
trace inclusion, known to be (highly) undecidable [10, 22].

3

Note that no such commutation in the order of letters in a run can occur
when only a single buffer is being used. Single-buffere simulation therefore
corresponds to trace inclusion with an empty underlying independence relation
which is easily seen to be the usual language inclusion problem between NBA.

Contribution and Organisation of the Paper. This paper contains a complete study
of decidability and complexity issues arising with multi-buffer simulation, in-
cluding the special case of single-buffer simulation. It provides complete proofs
of the results that were announced in preliminary work [15, 16, 18].

The paper is organised as follows. In Section 2 we recall the preliminary
notions of nondeterministic Büchi automata, trace equivalence, and fair sim-
ulation. Section 3 introduces multi-buffer simulation games, both informally
and formally as an infinite-duration game.

Section 4 is devoted to upper bounds. We start by considering parity games
and simulations of parity games. To prove upper bounds, we then transform
multi-buffer simulation games to parity games. Analysing these parity games,
we show that multi-buffer simulation can be decided in polynomial time for any
fixed number of buffers of fixed bounded capacities. When buffer capacities
can be unbounded then multi-buffer simulation does not comprise a game with
a finite state-space anymore, hence, decidability cannot be taken for granted. It
then hinges on the number of buffers involved in a game. Single-buffer games
can be decided in EXPTIME, whereas the general case of several buffers can only
be placed in ∆1

2 in the analytic hierarchy. We also consider a version of buffered
simulation that restricts Duplicator’s moves, called the flushing variant. Such
games are simpler to decide: the single-buffer case falls into PSPACE and the
multi-buffer case into Π1

1.
Section 5 shows that the results of Section 4 are essentially tight by present-

ing matching lower bounds. Note that ∆1
2 does not have complete problems

[21, Theorem 16.1.X]; however we can show that unbounded multi-buffer sim-
ulation is hard for Σ1

1 ∪ Π1
1 (and even more than that), already in the simplest

case of one unbounded and one bounded buffer of capacity 0.
Section 6 concludes the paper with remarks on further work.

2. Preliminaries

2.1. Nondeterministic Büchi Automata
Let Σ be an alphabet. Then Σ∗ denotes the set of finite words over Σ, Σω is

the set of all infinite words over Σ, and Σ∞ = Σ∗ ∪ Σω. For κ ∈ N ∪ {ω}, we
write Σ≤κ for the set of finite words w of length |w| ≤ κ. In particular, Σ≤ω = Σ∗

since we restrict to finite words. We write |w|a for a w ∈ Σ∞ and a ∈ Σ to denote
the number of occurrences of the letter a in the word w. For a natural number
k, we set [k] = {1, 2, . . . , k}.

A nondeterministic Büchi automaton or NBA is a tupleA = (Q,Σ, ι, δ, F) where
Q is a finite set of states, Σ is an alphabet, ι ∈ Q is the initial state, δ : Q×Σ→ P(Q)
is the transition function, and F ⊆ Q is the set of accepting states. We demand

4

the transition functions to be total, i.e. δ(q, a) , ∅ for every q ∈ Q and a ∈ Σ.
However, in order to keep the presentation short, our examples may show
NBAs with non-total transition relations. They can easily be extended to total
relations by adding one more non-accepting state without effecting the essence
of these examples.

For q ∈ Q, we write A[q] to denote (Q,Σ, q, δ,F), i.e. the NBA that results
fromA by taking q as initial state.

A run of A is a finite or infinite sequence ρ = (qi, ai, qi+1)0≤i<κ with qi+1 ∈

δ(qi, ai) for all 0 ≤ i < κ (where κ ∈ N ∪ {ω}); it is initial if q0 = ι or κ = 0. Its
label is the word lab(ρ) = (ai)0≤i<κ ∈ Σ∞. If κ ∈N \ {0}, then target(ρ) = qκ is the
target of the run ρ, if κ = 0, we set target(ρ) = ι. The set of finite runs is denoted
FRuns(A), iFRuns(A) is the set of finite and initial runs.

An infinite run ρ = (qi, ai, qi+1)i≥0 is accepting if it is initial and qi ∈ F for
infinitely many i ≥ 0. We write ARuns(A) for the set of infinite accepting runs
ofA and L(A) ⊆ Σω for the set of labels of accepting runs.

Let w ∈ Σ+ be some finite and nonempty word.To simplify notation, we
write δ(p,w) for the set of states reachable from p ∈ Q by some w-labeled run,
i.e., q ∈ δ(p,w) if there exists some w-labeled run ρ from p with q = target(ρ). For
w = ε, we set δ(q, ε) = {q}. A finite run ρ = (qi, ai, qi+1)0≤i<κ visits some accepting
state if there exists 0 ≤ i < κ with qi ∈ F or target(ρ) ∈ F. Then δF(p,w) is
the set of states reachable from p ∈ Q by some w-labeled run that visits some
accepting state, i.e., r ∈ δF(p,w) if there is some factorisation w = uv and some
q ∈ F ∩ δ(p,u) with r ∈ δ(q, v). For w = ε, this yields δF(q, ε) = {q} ∩ F.

2.2. Trace Languages
We shortly introduce the notions of finite and infinite traces, for a detailed

treatment see [5]. Traces generalise words – which can be seen as a sequence
of actions performed by a single process – to the setting of several parallel
processes. Then the order underlying the performed actions (or occurring
letters) is not a total one anymore since some actions may be performed by
different processes in parallel and therefore cannot be ordered in time.

Formally, a trace alphabet is a triple (Σ, σ, k) where Σ is an alphabet, k ∈N and
σ : Σ→ P([k])\{∅} is a mapping. Intuitively, a letter a ∈ Σ denotes an action that
is performed by the set of processes σ(a). For i ∈ [k], let Σi = {a ∈ Σ | i ∈ σ(a)} be
the alphabet of process i. Furthermore, πi : Σ∞ → Σ∞i is the natural projection
function that deletes all letters from a word that do not belong to Σi.

Two words u, v ∈ Σ∞ are σ-equivalent, denoted u ∼σ v, if πi(u) = πi(v) for all
i ∈ [k]. The relation ∼σ is called trace equivalence and [u] denotes the equivalence
class of u ∈ Σ∗ wrt. this trace equivalence.

2.3. Fair Simulation
Let A = (QA,Σ, pI, δA,FB) and B = (QB,Σ, qI, δB,FB) be two NBA. The fair

or ordinary simulation game is played between players Spoiler and Duplicator
by moving two pebbles across the NBAs’ state spaces.

The game starts with Spoiler’s pebble placed on pI and Duplicator’s on qI.
In each round with pebbles placed on pi and qi,

5

1. Spoiler first chooses a letter ai and a state pi+1 ∈ δA(pi, ai) and
2. Duplicator responds with a state qi+1 ∈ δB(qi, ai).

In an infinite play, Spoiler will have constructed a run ρ of A, and Dupli-
cator will have constructed a run ρ′ of B (note that ρ and ρ′ are runs on the
same ω-word). Such a play is won by Duplicator if ρ is not an accepting run
or ρ′ is an accepting run.

We writeAvB if Duplicator has a winning strategy for the fair simulation
game onA and B. The following is well-known.

Proposition 1 (e.g. [13]) Let A and B be two NBA. If A v B then L(A) ⊆ L(B).
There are, however, Büchi automataA and B such that L(A) ⊆ L(B) butA @ B.

2.4. Infinite-Duration Games
An infinite-duration game is a tuple G = (V,V0,V1,E, vI,W) such that

• V is a set of positions partitioned into the sets Vp of positions of Player p for
p ∈ {0, 1},

• E ⊆ V ×V is the set of moves such that, for every v ∈ V, there exists v′ ∈ V
with (v, v′) ∈ E,

• vI ∈ V is the initial position, and

• the winning conditionW is a set of infinite paths starting in vI.

Intuitively, the gameG is played between Player 0 and Player 1 by constructing
an infinite path step-by-step: first, a pebble is placed in the initial position vI.
Whenever the pebble is placed on a position v ∈ Vp, then it is Player p’s turn to
move it to one of the successors of v (for p ∈ {0, 1}). By the assumption on the
set of moves, this is always possible. This way, the players produce an infinite
path (called an infinite play). If that infinite play belongs toW, then it is won
by Player 1, otherwise it is won by Player 0.

Formally, a play is a finite or infinite path that starts at vI, i.e., a sequence
v0v1v2 · · · of positions such that v0 = vI and (vi, vi+1) ∈ E for all i. We write
Plays(G) ⊆ V∗ for the set of finite plays of G.

Whenever a finite play ends in a position from V1, Player 1 can choose
between possibly more than one ways to extend the play. A deterministic
strategy for Player 1 instructs her what to do exactly, a (nondeterministic)
strategy only gives some minimal requirement on how to extend. Formally, a
strategy (for Player 1) is a non-empty set of finite plays χ ⊆ Plays(G) such that
the following hold for all v ∈ V and all finite plays π v ∈ χ:

1. π ∈ χ,
2. if v ∈ V0, then π v v′ ∈ χ for all v′ ∈ vE = {w ∈ V | (v,w) ∈ E}, and
3. if v ∈ V1, then there is (at least one) v′ ∈ vE such that π v v′ ∈ χ.

6

A χ-play is an infinite play such that all finite prefixes are in χ. In other words,
all the choices made by Player 1 along a χ-play were made according to the
strategy χ. The strategy χ is a winning strategy (for Player 1) if all χ-plays are
won by Player 1, i.e., belong to W. Player 1 wins the infinite-duration game if
there exists a winning strategy for Player 1. A strategy χ for Player 1 is positional
if there exists a function s : V1 → V such that

π v v′ ∈ χ ⇐⇒ s(v) = v′

for all π v v′ ∈ Plays(G) with v ∈ V1. In other words, iff

χ = Plays(G) ∩ V∗ ·

⋃
v∈V0

{v} (vE) ∪
⋃
v∈V1

{v s(v)}

 . (1)

Strategies for Player 0 are defined similarly. (One has to exchange the roles
of V0 and V1 in the definitions above.) Then, as above, Player 0 wins the
infinite-duration game G if he has a winning strategy.

3. Multi-buffer Simulations

3.1. An Intuitive Description
Let (Σ, σ, k) be a trace alphabet andA = (QA,Σ, pI, δA,FB) andB = (QB,Σ, qI,

δB,FB) be two NBAs. The multi-buffer simulation game is played between players
Spoiler and Duplicator using two pebbles on the state spaces of the two
automata, as well as k FIFO queues in order to buffer the choices made by
Spoiler so that Duplicator does not have to react to them immediately. Buffers
can be addressed by indices, i.e. the 1st, the 2nd, etc., and each of them has a
capacity which is either finite or infinite, also called bounded and unbounded.

The game starts with the two pebbles being placed on the initial states pI
and qI respectively and all buffers empty. It then proceeds in rounds as follows.

1. Spoilermoves his pebble along a transition inA that is labeled with some
letter a ∈ Σ.

2. This a is being put into all buffers named in σ(a).
3. Duplicator now has the choice to either skip her turn if no buffer capacity

is exceeded, or to choose a nonempty word u ∈ Σ+ such that the contents
of all buffers i ∈ [k] start with πi(u), shift her pebble along some u-labeled
path in B and, for all i, remove πi(u) from the front of buffer i, ensuring
that the buffer capacities are respected again after this move.1

Note that a buffer can be “overfilled” by one letter momentarily after Spoiler’s
choice. Duplicator then has to remove something from this buffer immediately
to ensure that the capacity is not exceeded at the end of the round.

1This concerns, most of all, the buffers i such that πi(u) = ε.

7

Let ρ and ρ′ be the paths (or runs) inA and B, respectively, that the players
have moved the pebbles along in a play. Then ρ is necessarily an infinite run
while ρ′ can be finite (if, from some round on, Duplicator always skips her
turn). Duplicatorwins this play if

• ρ is not an accepting run

• or

– ρ′ is an accepting infinite run and

– every letter that Spoiler puts into any of the buffers eventually gets
removed from that buffer by Duplicator.

We observe that no player can ever get stuck in such a play. For Spoiler this
is a simple consequence of the totality assumption on NBA. For Duplicator, it
can be proved by induction on the length of a play that the following invariant
holds: there exists a word w ∈ Σ+ such that, for all i ∈ [k], buffer i contains
the word πi(w). Hence, by the totality assumption on the NBA B, she can
always empty the buffers completely and therefore, in particular, make some
legal move.

Example 2 Consider the following two NBA over the trace alphabet Σ = {a, b, c}
with σ(a) = {1}, σ(b) = {1, 2}, and σ(c) = {3}.

A
b b

a c

a
B

c b b c

a

Duplicator wins the multi-buffer game on A and B with buffer capacities
(ω, 2, 0). Note that in this game, a and b get put into an unbounded buffer, b
also gets put into a buffer of capacity 2, and c gets put into a buffer of capacity
0, i.e. Duplicator has to respond immediately to any c-move made by Spoiler.
Duplicator’s winning strategy consists of skipping her turn until Spoiler pro-
duces a c. Note that he cannot produce more than two b’s beforehand, hence
he cannot win by exceeding the capacity of the second buffer. Note also that
he cannot loop on the first a-loop forever, otherwise he will lose for not pro-
ducing an accepting run. Once Spoiler eventually produced a c, Duplicator
consumes it together with the entire content of the second buffer and moves to
the accepting state in her automaton. After that she can immediately respond
to every state-changing move by Spoiler.

A variant of this multi-buffer simulation game is the multi-buffer flushing
game. In that game, Duplicator is required to either skip her turn or to empty
all buffers completely.

8

3.2. A Formal Definition as Infinite-Duration Game
LetA,B be NBA over a trace alphabet (Σ, σ, k) as above and κ : [k]→N∪{ω}

be a function that assigns a capacity to each of k buffers. Formally, the multi-
buffer simulation game onA andBwith buffer capacities κ is an infinite-duration
game

G
κ(A,B) := (V,V0,V1,E, vI,W) .

Here, Spoiler is Player 0 and Duplicator is Player 1. The game is defined as
follows.

Positions. As always, we have V := V0 ∪ V1 where

V0 := {0} ×QA × Σ≤κ(1)
1 × · · · × Σ≤κ(k)

k ×QB

is the set of tuples (0, p,w1, . . . ,wk, q) with wi ∈ Σ∗i and |wi| ≤ κ(i) for all i ∈ [k].
Likewise,

V1 := {1} ×QA × Σ≤1+κ(1)
1 × · · · × Σ≤1+κ(k)

k ×QB

is the set of tuples (1, p,w1, . . . ,wk, q) with wi ∈ Σ∗i and |wi| ≤ 1+κ(i) for all i ∈ [k].
(Recall that 1 + ω = ω such that Σ≤1+ω = Σ∗).

The initial node is
vI := (0, pI, ε, . . . , ε︸ ︷︷ ︸

k times

, qI) .

Moves. The set of moves, i.e., the set E, is the set of the following pairs from
(V0 × V1) ∪ (V1 × V0):

•

(
(0, p,w1, . . . ,wk, q), (1, p′,w′1, . . . ,w

′

k, q
′)
)

provided that there is a ∈ Σ such
that

– p′ ∈ δA(p, a),

– w′i = wi πi(a) for all i ∈ [k] (i.e., w′i = wia for i ∈ σ(a) and w′i = wi for
i ∈ [k] \ σ(a)), and

– q′ = q.

•

(
(1, p,w1, . . . ,wk, q), (0, p′,w′1, . . . ,w

′

k, q
′)
)

provided that there is u ∈ Σ∗ such
that

– p′ = p,

– πi(u) w′i = wi for all i ∈ [k], and

– q′ ∈ δB(q,u).

Note that in the description of moves from V0 to V1 (i.e., in moves made by
Player 0), the letter a is uniquely given by the two positions. Differently, the
word u in the description of moves from V1 to V0 is only unique up to trace
equivalence since the two positions only determine the projections πi(u) for all

9

i ∈ [k]. In particular, the two positions determine the number of occurrences of
every letter a in the word u.

Also note that Player 1’s skipping of a turn is modelled by the ability to
choose u = ε in her moves.

Winning conditions. For this, let π = (vn)n≥0 be an infinite play with v0 = vI
and vn = (pn,wn,1,wn,2, . . . ,wn,k, qn).

Since v0 ∈ V0 and since moves alternate between V0 and V1, we get v2n ∈ V0
and v2n+1 ∈ V1 for all n ≥ 0. Now let n ≥ 0. Since (v2n, v2n+1) ∈ E, there is a
unique letter an ∈ Σ that justifies this move. In particular p2n+1 ∈ δA(p2n, an)
and q2n+1 = q2n. Since (v2n+1, v2(n+1)) ∈ E, there is a word un ∈ Σ∗ that justifies
this move. In particular, p2(n+1) = p2n+1 and q2(n+1) ∈ δB(q2n+1,un). As explained
above, this word un is not uniquely determined. The infinite play π belongs to
the winning conditionW if the words un can be chosen in such a way that

• pn ∈ FA for finitely many n ≥ 0

• or

– q2(n+1) ∈ δBF (q2n+1,un) and un , ε for infinitely many n ≥ 0 and

– |a0a1a2 . . . |a = |u0u1u2 . . . |a for all letters a ∈ Σ.

The multi-buffer flushing game on A and B with buffer capacities κ is the
infinite-duration game

F
κ(A,B) := (V,V0,V1,E′, vI,W

′)

where V, V0, V1 and vI are as above. The set of moves E′ is a subset of the set
of moves of the multi-buffer simulation game: It contains all moves from V0
to V1 (i.e., moves of Player 0 are not restricted), but Player 1 can only do the
following moves:(

(1, p,w1, . . . ,wk, q), (0, p′,w′1, . . . ,w
′

k, q
′)
)
∈ E′ provided that there is u ∈ Σ∗

such that

• p′ = p,

• πi(u) = wi and w′i = ε for all i ∈ [k],
or u = ε and w′i = wi for all i ∈ [k] and

• q′ ∈ δB(q,u).

Since E′ ⊆ E, any play of the multi-buffer flushing game F κ(A,B) is also a
play of the multi-buffer simulation game Gκ(A,B). Hence we can define the
winning conditionW′ of the multi-buffer flushing game mutatis mutandis: it is
the set of infinite plays of the multi-buffer flushing game F κ(A,B) that belong
toW as defined above.

Definition 3 Let κ : [k]→N ∪ {ω} for some k ≥ 1.
Then vκ is the set of tuples (A,B,Σ, σ) such that (Σ, σ, k) is a trace alphabet,

A andB are NBAs over this trace alphabet, and Player 1 has a winning strategy

10

for the simulation game Gκ(A,B). For (A,B,Σ, σ) ∈ vκ, we writeAvκ B (and
let the trace alphabet be implicit).

Similarly,AvκflBdenotes that Player 1 has a winning strategy for the flushing
game F κ(A,B).

Sometimes we will consider the special case of k = 1, i.e., the multi-buffer
simulation or flushing game on a single buffer. This will also be referred to as
the single-buffer simulation, respectively flushing game.

4. Upper Bounds

In this section, we will determine upper bounds for the question whether
Player 1 can win the multi-buffer simulation, respectively the multi-buffer flush-
ing game. Qualitatively, these upper bounds depend on the number and capac-
ities of the buffers. In order to determine these upper bounds, we first translate
the games in question into parity games.

4.1. Parity Games
A parity game is a tuple (V,V0,V1,E, vI,Ω) such that

• (V,V0,V1,E, vI, ∅) is an infinite-duration game and

• Ω : V → {1, 2, . . . , o} is the priority function (for some number of priorities
o ≥ 1).

Such a parity game determines an infinite-duration game (V,V0,V1,E, vI,W)
whereW is the set of infinite plays π = (vn)n≥0 such that

lim sup
n→∞

Ω(vn) is odd.

We will identify the tuple (V,V0,V1,E, vI,Ω) with the infinite-duration game
(V,V0,V1,E, vI,W) and speak, e.g., of a winning strategy in the parity game.

In every parity game G, one of the players has a strategy that is both,
winning and memory-less [7]. In particular, one of the two players wins the
game. The question who of the two players is the winner, is refered to as
“solving the parity game”. The question whether finite parity games can be
solved in truly polynomial time is subject to current research and has led to a
multitude of algorithms. We only consider very special parity games, hence
for our purposes it is enough to appeal to a result which does not necessarily
provide the best asymptotic worst-case complexity but is simple to state.

Proposition 4 ([19]) Parity games with n nodes and o distinct priorities can be solved
in timeO(n2+do/2e). Hence, solving finite parity games with a fixed number of priorities
is in P.

11

We will – in the following sections – translate multi-buffer simulation and
flushing games into parity games. In order to solve these parity games, we
will simplify them further. Using simulations (that are defined next), we will
be able to prove that these simplifications are appropriate (i.e., preserve the
winner).

Definition 5 Let G = (V,V0,V1,E, vI,Ω) and G′ = (V′,V′0,V1,E′, v′I,Ω
′) be two

parity games. A relation R ⊆ V × V′ is a simulation of G in G′ if (vI, v′I) ∈ R and,
for all (v, v′) ∈ R, the following hold:

(1) v ∈ V0 iff v′ ∈ V′0;
(2) Ω(v) = Ω′(v′);
(3) if v ∈ V1 and w ∈ vE, then there exists w′ ∈ v′E′ with (w,w′) ∈ R;
(4) if v′ ∈ V′0 and w′ ∈ v′E′, then there exists w ∈ vE with (w,w′) ∈ R.

A bisimulation of G and G′ is a relation R ⊆ V ×V′ that is a simulation of G in
G
′ such that, conversely, R−1 = {(v′, v) | (v, v′) ∈ R} is a simulation of G′ in G.

Note that a relation R is a bisimulation iff, besides (1) and (2) from the above
definition, we have

(3+) if w ∈ vE, then there exists w′ ∈ v′E′ with (w,w′) ∈ R;
(4+) if w′ ∈ v′E′, then there exists w ∈ vE with (w,w′) ∈ R.

Lemma 6 Let G and G′ be two parity games and let R be a simulation of G in G′. If
Player 1 wins G, then she wins G′.

Proof Since Player 1 wins G, she has a winning strategy χ on G. Let ≤ be a
well-order on the set V of positions in the game G.

Let π = (vi)0≤i≤k ∈ Plays(G) and π′ = (v′i)0≤i≤k ∈ Plays(G′) be finite plays of
the same length. We say that π is the witness for π′ if the following holds for
all 0 ≤ i < k:

vi+1 ∈ V is the ≤-minimal position v such that (v0, v1, . . . , vi, v) ∈ χ and
(v, v′i+1) ∈ R.

Note that not every play π′ ∈ Plays(G′) has a witness, but that any play
π′ ∈ Plays(G′) has at most one witness. Note also that (with i = k − 1) any
witness belongs to the winning strategy χ. Furthermore, if π is the witness of
π′, then (vi, v′i) ∈ R for all 0 ≤ i ≤ k.

Now define χ′ ⊆ Plays(G′) as the set of plays in G′ that have a witness.
We will show that χ′ is a winning strategy for the game G′. To this aim, we

first verify that χ′ is a strategy:

• Note that (vI) ∈ Plays(G) is the witness for the play (v′I) ∈ Plays(G′).
Hence χ′ is not empty.

• By construction, χ′ is closed under prefixes.

12

• Let π′ = (v′i)0≤i≤k be a finite play in χ′ with v′k ∈ V′1. Then, by definition of
χ′, the play π′ has a witness π = (vi)0≤i≤k ∈ χ. Since, in particular, (vk, v′k) ∈
R, condition (1) from Definition 5 ensures vk ∈ V1. Since χ is a strategy,
there is v ∈ vkE with π v ∈ χ. Since ≤ is a well-order, there is a minimal
position v with this property that we call vk+1. Condition (3) implies the
existence of v′k+1 ∈ v′kE′ with (vk+1, v′k+1) ∈ R. Hence π′ v′k+1 ∈ Plays(G′)
and π vk+1 is a witness of this play, i.e., π′ v′k+1 ∈ χ

′.

• Let π′ = (v′i)0≤i≤k be a finite play in χ′ with v′k ∈ V′0 and let v′k+1 ∈ v′kE′.
By definition of χ′, the play π′ has a witness π = (vi)0≤i≤k ∈ χ. Since,
in particular, (vk, v′k) ∈ R, condition (1) ensures vk ∈ V0. Furthermore,
condition (4) implies the existence of v ∈ vkE with (v, v′k+1) ∈ R. Since ≤ is
a well-order, there is a minimal position v with this property that we call
vk+1. Since χ is a strategy, we get π vk+1 ∈ χ. Since this play is a witness of
π′ v′k+1, we obtain π′ v′k+1 ∈ χ

′ by definition of χ′.

Let us finally show that χ′ is a winning strategy, i.e., that Player 1 wins every
χ′-play. So letπ′ = (v′i)i≥0 be an (infinite)χ′-play, and, for k ∈N, letπ′k = (v′i)0≤i<k
be its prefix of length k. Then π′k ∈ χ

′ since π′ is a χ′-play. By definition of
χ′, there is, for every k ≥ 0, a witness πk ∈ χ for π′k. Since πk and πk+1 are
witnesses of π′k and π′k+1 = π′k v′k+1, resp., there is vk+1 such that πk+1 = πk vk+1
and (vk+1, v′k+1) ∈ R. Thus, the sequence π = (vi)i≥0 of positions is a χ-play and
thus a winning play. By condition (2), π′ is a winning play. �

In this paper, bisimulations will be used to simplify parity games. More
precisely, we consider a bisimulation R of G and G′ with G′ = G that is, at the
same time, an equivalence relation on the set of positions of the game G. The
following lemma is immediate:

Lemma 7 LetG = (V,V0,V1,E, vI,Ω) be a parity game and R an equivalence relation
on V. Then R is a bisimulation of G and G itself iff it satisfies (1) and (2) from
Definition 5 as well as the following: if (v, v′) ∈ R and w ∈ vE, then there exists
w′ ∈ v′E with (w,w′) ∈ R.

For the proof of this lemma, it actually suffices to have a symmetric rela-
tion R.

If R is a bisimulation of G and G itself and an equivalence relation, then it
makes sense to consider the following quotient of Gwrt. R.

Definition 8 Let G = (V,V0,V1,E, vI,Ω) be a parity game and let R be a bisim-
ulation of G and G that is, at the same time, an equivalence relation. Then we
define the quotient game G/R = (V/R,V0/R,V1/R,E/R, vI/R,Ω/R) as follows:

• V0/R = {[v] | v ∈ V0},

• V1/R = {[v] | v ∈ V1},

• vI/R = [vI],

13

• Ω/R([v]) = Ω(v), and

• ([v1], [v2]) ∈ E/R whenever (v1, v2) ∈ E.

Lemma 9 Let G = (V,V0,V1,E, vI,Ω) be a parity game and let R be a bisimulation
of G and G that is, at the same time, an equivalence relation. Then the relation
S = {(v, [v]) | v ∈ V} is a bisimulation of the parity game G and the quotient game
G/R. Hence Player 1 wins the game G iff she wins the game G/R.

Proof We have to verify the conditions (1) and (2) from Definition 5 as well as
(3+) and (4+). So let (v, [v]) ∈ S.

(1) v ∈ V0 ⇐⇒ [v] ∈ V0/R

(2) Ω(v) = Ω/R([v])
(3+) Suppose w ∈ vE. Then [w] ∈ [v]E/R and (w, [w]) ∈ S.
(4+) Suppose and y ∈ [v]E/R. Then there is some position w ∈ vE with y = [w].

Hence y = [w] ∈ [v]E/R and (w, y) ∈ S.

�

4.2. The Multi-Buffer Simulation Game
4.2.1. Multi-Buffer Simulation Games as Parity Games

In this section, we define for any multi-buffer simulation game an equivalent
parity game, i.e., a parity game won by the same player as the multi-buffer
simulation game. The idea of this construction is as follows:

1. First, we add priorities 1, 2, and 3 to the positions of the multi-buffer
simulation game. The game moves into a position of priority 2 if Spoiler
moves his pebble into some accepting state of the NBAA. Similarly, the
game moves into some position of priority 3 if Duplicator moves her
pebble along some path that contains an accepting state of the NBA B; in
addition, it is required that she reads from all nonempty buffers between
any two visits of priority-3-positions.

2. In order to ensure this last condition, we add another counter taking
values between 0 and k to the game positions. This counter can only be
increased from i to i + 1 (modulo k) if buffer i is either empty or read from.
Duplicator can only move into a priority-3-position in case the counter
has value 0.

3. Finally, note that the multi-buffer simulation game cannot move into a
position where the buffer contents are “inconsistent” (meaning that, e.g.,
a ∈ Σ1 ∩ Σ2 appears more often in the first than in the second buffer).
More precisely, the multi-buffer simulation game can only move into a
position (X, p,w1, . . . ,wk, q) if there is a word w ∈ Σ∗ with wi = πi(w) for
all i ∈ [k]. Our parity game contains only those positions, i.e., the buffer
contents are encoded by a single word.

14

More formally, letA = (QA,Σ, pI, δA,FA) andB = (QB,Σ, qI, δB,FB) be NBA,
let (Σ, σ, k) be a trace alphabet and let κ : [k] → N ∪ {ω} be a capacity function
for k buffers.

The parity simulation game onA and Bwith capacities κ is the parity game

G
κ
par(A,B) = (Vpar,Vpar

0 ,Vpar
1 ,Epar, vpar

I ,Ωpar)

defined as follows.

Positions. The set Vpar
0 of Player 0’s positions is the set of tuples

(0, p,w, q, c, r) ∈ {0} ×QA × Σ∗ ×QB × {0, 1, . . . , k} × {1, 3}

with |πi(w)| ≤ κ(i) for all i ∈ [k]. The set Vpar
1 of Player 1’s positions is the set of

tuples
(1, p,w, q, c, r) ∈ {1} ×QA × Σ∗ ×QB × {0, 1, . . . , k} × {1, 2}

with |πi(w)| ≤ 1 + κ(i) for all i ∈ [k]. As always, the set of positions is Vpar :=
Vpar

0 ∪ Vpar
1 .

The initial position is vpar
I := (0, pI, ε, qI, 0, 1). Note that (0, pI, π1(ε), . . . , πk(ε), qI)

is the initial position in the multi-buffer simulation game.

Priorities. The priority of position v = (X, p,w, q, c, r) is Ωpar(v) = r. In particular,
positions of Player 0 have priority 1 or 3 and positions of Player 1 have priority
1 or 2.

Moves. The set Epar of moves is the set of the following pairs from (Vpar
0 ×

Vpar
1) ∪ (Vpar

1 × Vpar
0):

(P0)
(
(0, p,w, q, c, r), (1, p′,w′, q′, c′, r′)

)
, provided that there is a ∈ Σ such that

• p′ ∈ δA(p, a),

• w′ = wa,

• q′ = q,

• c′ = c, and

• r′ =

2 if p′ ∈ FA

1 otherwise

Note that the first three conditions are equivalent to saying that there is
a move from (0, p, π1(w), . . . , πk(w), q) to (1, p′, π1(w′), . . . , πk(w′), q′) in the
multi-buffer simulation game Gκ(A,B).

(P1)
(
(1, p,w, q, c, r), (0, p′,w′, q′, c′, r′)

)
, provided that there is u ∈ Σ∗ such that

• p′ = p,

• uw′ ∼σ w,

• q′ ∈ δB(q,u),

15

• c′ =


1 if c = 0,u , ε, and ∃u′ ∼σ u : q′ ∈ δBF (q,u′)
(c + 1) mod k if c > 0 and πc(w) , πc(w′) or πc(w) = ε

c otherwise,

• and r′ =

3 if c = 0 and c′ = 1
1 otherwise.

As above, the first three conditions describe a move in the multi-buffer
simulation game Gκ(A,B) from position (1, p, π1(w), . . . , πk(w), q) to posi-
tion (0, p′, π1(w′), . . . , πk(w′), q′).

In order to prove that the multi-buffer simulation game Gκ(A,B) and the
parity simulation game Gκpar(A,B) are equivalent, we first map the positions
of the parity simulation game to positions of the multi-buffer simulation game.
So let v = (X, p,w, q, c, r) ∈ Vpar be some position in the parity simulation game.
Then define f (v) = (X, p, π1(w), . . . , πk(w), q). Then f (v) is a position in the multi-
buffer simulation game, i.e., f (v) ∈ V. Now let π = (vn)0≤n≤N be a finite play in
the parity simulation game. We extend the function f from positions to plays
by setting f (π) = (f (vn))0≤n≤N. The remarks in the definition of the moves in the
parity simulation game show that f (π) is a play in the multi-buffer simulation
game.

Using this function f , we can now translate winning strategies from the
parity simulation game into winning strategies in the multi-buffer simulation
game.

Lemma 10 Let χpar be a winning strategy for Player 0 in the parity simulation game
G
κ
par(A,B). Then

χ = { f (π) | π ∈ χpar}

is a winning strategy for Player 0 in the multi-buffer simulation game Gκ(A,B).

Proof We first verify that χ is a strategy for Player 0 in the multi-buffer sim-
ulation game. Since χpar is a strategy, the shortest play (vpar

I) belongs to χpar.
Since f (vpar

I) = vI, the play (vI) belongs to χ, hence χ , ∅.
Let π v ∈ χ with v ∈ V. By the definition of χ, there exists a play πpar vpar

∈

χpar with π v = f (πpar vpar). Since χpar is a strategy, we get πpar
∈ χpar and

therefore π = f (πpar) ∈ χ.
Let π v ∈ χ with v ∈ V1 and let (v, v′) ∈ E. We have to show π v v′ ∈

χ. As above, there exists a play πpar vpar
∈ χpar with π v = f (πpar vpar).

Suppose vpar = (1, p,w, q, c, r). Then v = (1, p, π1(w), . . . , πk(w), q) and v′ =
(0, p, π1(uw), . . . , πk(uw), q′) for some u ∈ Σ∗ and some q′ ∈ δB(q,u). Then there
are c′ ∈ {0, 1, . . . , j} and r′ ∈ {1, 2, 3} such that the position

v′par = (0, p,uw, q′, c′, r′)

satisfies f (v′par) = v′ and (vpar, v′par) ∈ Epar. Since χpar is a strategy for Player 0,
this implies πpar vpar v′par

∈ χpar. Now we get π v v′ = f (πpar vpar v′par) ∈ χ.

16

Let π v ∈ χ with v ∈ V0. We have to find v′ ∈ vE with π v v′ ∈ χ. As above,
there is a play πpar vpar

∈ χpar with f (πpar vpar) = π v. Since χpar is a strategy
for Player 0, there is a play πpar vpar v′par

∈ χpar. Setting v′ = f (v′par), we get
π v v′ = f (πpar vpar v′par) ∈ χ.

Thus, indeed, χ is a strategy for Player 0 in the multi-buffer simulation
game. It remains to be shown that this strategy is winning for Player 0. So let
(vn)n≥0 be some χ-play.

Let T denote the set of finite plays πpar = (vpar
n)0≤n≤N ∈ χpar with f (πpar) =

(vn)0≤n≤N, i.e., f (vpar
n) = vn for all 0 ≤ n ≤ N. The edge relation K on this

set describes the extension of a finite play by one move, i.e., K is the set of
all pairs (πpar, πpar vpar) for πpar vpar

∈ T. Since the function f : V → Vpar is
finite-to-one, this tree is finitely branching. Since (vn)n≥0 is a χ-play, all its
finite prefixes belong to χ. Hence, for all N ≥ 0, there exists πpar

N ∈ χpar with
f (πpar

N) = (vn)0≤n≤N. It follows that the tree T is infinite. By Kőnig’s lemma, the
tree T has an infinite branch which defines an infinite χpar-play (vpar

n)n≥0 with
f (vpar

n) = vn for all n ≥ 0. Since χpar is a winning strategy, this play is won by
Player 0. In other words, we have Ωpar(vpar

n) = 2 for infinitely many n ≥ 0 and
Ωpar(vnpar) = 3 for finitely many n ≥ 0.

For n ≥ 0, let vpar
n = (Xn, pn,wn, qn, cn, rn) such that

vn = (Xn, pn, π1(wn), . . . , πk(wn), qn) .

For n ≥ 0, let an ∈ Σ be the letter that justifies the move from v2n to v2n+1 and let
un ∈ Σ∗ be the word that justifies the move from v2n+1 to v2(n+1).

There are infinitely many n ≥ 0 with Ωpar(vpar
n) = 2. Since the positions

of Player 0 cannot have parity 2, there are infinitely many n ≥ 0 such that
Ωpar(vpar

2n+1) = 2, i.e., p2(n+1) = p2n+1 ∈ FB. Hence the infinite run (p2n, an, p2(n+1))n≥0
is accepting.

Furthermore, Ωpar(vpar
n) = 3 holds for only finitely many n ≥ 0. Hence, there

is c ∈ {0, 1, . . . , k} such that cn = c for all but finitely many n.
First, suppose cn = 0 holds for all but finitely many n. Then, for almost all

n ≥ 0, we have
un , ε =⇒ q2(n+1) < δ

B

F (q2n+1, [un]) .

But this ensures that, for only finitely many n ≥ 0, we have un , ε and q2(n+1) ∈

δBF (q2n+1, [un]). Thus, if c = 0, then the χ-play (vn)n≥0 is won by Player 0.
It remains to consider the case c > 0. Then, for almost all n ≥ 0, we have

c = cn and ε , πc(w2n+1) = πc(w2(n+1)). Hence, some letter a written into the
buffer number c does never get read. Hence |a0a1 . . . |a , |u0u1 . . . |a, i.e., Player 0
wins the χ-play (vn)n≥0 also in case c > 0. �

Now we prove the analogous lemma for strategies of Player 1:

Lemma 11 Let χpar be a winning strategy for Player 1 in the parity simulation game
G
κ
par(A,B). Then

χ = { f (π) | π ∈ χpar}

is a winning strategy for Player 1 in the multi-buffer simulation game Gκ(A,B).

17

Proof We first verify that χ is a strategy for Player 1 in the multi-buffer sim-
ulation game. Since χpar is a strategy, the shortest play (vpar

I) belongs to χpar.
Since f (vpar

I) = vI, the play (vI) belongs to χ, hence χ , ∅.
Let π v ∈ χ with v ∈ V0 and let (v, v′) ∈ E. We have to show π v v′ ∈ χ. By

the definition of χ, there exists a play πpar vpar
∈ χpar with π v = f (πpar vpar).

Suppose vpar = (0, p,w, q, c, r). Then v = (0, p, π1(w), . . . , πk(w), q) and v′ =
(1, p′, π1(wa), . . . , πk(wa), q) for some a ∈ Σ and p′ ∈ δA(p, a). Set

v′par = (1, p′,wa, q, c, r)

with r = 2 if p′ ∈ FA and r = 1 otherwise. Then (vpar, v′par) ∈ Epar. Since χpar is a
strategy, this impliesπpar vpar v′par

∈ χpar. Now we getπ v v′ = f (πpar vpar v′par) ∈
χ.

Let π v ∈ χ with v ∈ V1. We have to find v′ ∈ vE with π v v′ ∈ χ. As above,
there is a play πpar vpar

∈ χpar with f (πpar vpar) = π v. Since χpar is a strategy
for Player 1, there is a play πpar vpar v′par

∈ χpar. Setting v′ = f (v′par), we get
π v v′ = f (πpar vpar v′par) ∈ χ.

Thus, indeed, χ is a strategy for Player 1 in the multi-buffer simulation
game. It remains to be shown that this strategy is winning. So let (vn)n≥0 be
someχ-play. Then, for all N ≥ 0, there existsπpar

N ∈ χpar with f (πpar
N) = (vn)0≤n≤N.

Since the function f : V → Vpar is finite-to-one, we obtain, as in the proof of
Lemma 10, from Kőnigs Lemma a χpar-play (vpar

n)n≥0 with f (vpar
n) = vn for all

n ≥ 0. Since χpar is a winning strategy, this play is won by Player 1. In other
words, we have Ωpar(vpar

n) = 1 for almost all n ≥ 0 or we have Ωpar(vnpar) = 3
for infinitely many n ≥ 0.

For n ≥ 0, let vpar
n = (Xn, pn,wn, qn, cn, rn) such that

vn = (Xn, pn, π1(wn), . . . , πk(wn), qn) .

In the first case, i.e., if Ωpar(vnpar) = 1 for all but finitely many n ≥ 0, we have
pn < FB for almost all n ≥ 0. Hence the play (vn)n≥0 is won by Player 1.

Now consider the latter case Ωpar(vpar
n) = 3 for infinitely many n ≥ 0. Note

that the parity of positions of Player 1 cannot be 3, hence there are infinitely
many n ≥ 0 with r2(n+1) = 3. For any such n ≥ 0, there is a word un ∈ Σ+

justifying the move (vpar
2n+1, v

par
2(n+1)) with q2(n+1) ∈ δBF (q2n+1,un). Furthermore, the

counter cn moves infinitely often from 0 to 1 such that, any buffer i ∈ [k], is empty
infinitely often or shortened by Player 1 infinitely often. As a consequence, all
letters ever put into buffer i is eventually read. Thus, Player 1 wins the play
(vn)n≥0. �

The following result is an immediate consequence of the above two lemmata.
It allows to analyse the multi-buffer simulation game in terms of parity games.

Theorem 12 Let A and B be NBA over the trace alphabet (Σ, σ, k) and let κ : [k] →
N∪ {ω} be a capacity function. Then the games Gκ(A,B) and Gκpar(A,B) are won by
the same player and the multi-buffer simulation game is determined.

18

Proof By [7], one of the players has a winning strategy in the parity simulation
game Gκpar(A,B). By Lemma 10 and 11, the same player wins the multi-buffer
simulation game Gκ(A,B). Thus, the two games are equivalent. In particular,
the multi-buffer simulation game is determined. �

4.2.2. Solving the multi-buffer simulation game
In this section, we will give upper bounds for the complexity of determining

the winner in the multi-buffer simulation game, depending on the number of
channels and the capacity function κ. In light of Theorem 12, this can be
achieved by analysing the parity simulation game. The first result in this
direction gives an upper bound in the analytical hierarchy for the general case.

Corollary 13 The relations vκ belong to ∆1
2, even uniformly in the capacity function

κ : [k]→N ∪ {ω}.
In other words, the set of tuples (A,B, (Σ, σ, k), κ) where A and B are NBA over

the trace alphabet (Σ, σ, k) and κ : [k] → N ∪ {ω} is a capacity function such that
Player 1 wins the multi-buffer simulation game Gκ(A,B) belongs to ∆1

2.

Recall that ∆1
2 = Σ1

2 ∩Π1
2 is the intersection of the second existential and the

second universal level of the analytical hierarchy.

Proof It suffices to prove this claim for the parity simulation game Gκpar(A,B).
The existence of a winning strategy for Player 1 in this parity game is a

statement of the form

∃ some strategy χ∀ sequences π = (vn)n≥0 : α

where α is the following arithmetical statement:(
∀n : (v0, . . . , vn) ∈ χ

)
=⇒ ∃k∀` : Ωpar(vk+`) = 1 ∨ ∃k∀`∃m : Ωpar(vk+`+m) = 3 .

Since strategies as well as sequences are infinite sets, this is a typical statement
from Σ1

2. Hence the set in question belongs to Σ1
2.

By Theorem 12, the tuple (A,B, (Σ, σ, k), κ) belongs to the set in question if
Player 0 does not have a winning strategy for Gκ(A,B), which is a negated Σ1

2-
statement and therefore a Π1

2-statement. Hence the set in question also belongs
to Π1

2. �

In Section 5, we will see that this upper bound cannot be improved much
in case we have at least two buffers of which at least one is unbounded (in
particular, the game is highly undecidable in that case). Upper bounds for the
two remaining cases, namely k = 1 (i.e., only one buffer) and κ(i) ∈ N for all
i ∈ [k] (i.e., all buffers are bounded) are given by the following two corollaries
of this section. First, we consider the case that all buffers are bounded:

Corollary 14 The relations v(c1,c2,...,ck) with k ≥ 1 and c1, c2, . . . , ck ∈ N are decidable
in polynomial time (uniformly, they are decidable in time polynomial in the automata
and exponential in k ·max{κ(i) + 1 | 1 ≤ i ≤ k}).

19

More precisely, given two NBA A and B over the trace alphabet (Σ, σ, k) and a
capacity function κ : [k] → N, it can be decided in time polynomial in |A| + |B| +
|Σ|k·max{κ(i)+1|i∈[k]} whether Player 1 wins the multi-buffer simulation game Gκ(A,B).

Proof Let w ∈ Σ∗ with |πi(w)| ≤ 1 +κ(i) for all i ∈ κ. Then |w| ≤
∑

i∈[k](1 +κ(i)) =:
N. It follows that, with s = |Σ|, there are at most sN+1

−s
s−1 ≤ sN+1 many such

words w. Consequently,

|Vpar
| ≤ 2 · |QA| · |Σ|N+1

· |QB| · (k + 1) · 3 ,

i.e., the parity simulation game is polynomial in |A|+ |B|+ |Σ|k·max{κ(i)|i∈[k]}. Since
the parity simulation game uses only three priorities, the result follows from
Theorem 12 and Proposition 4. �

The remaining section is devoted to the case k = 1 and κ(1) = ω, i.e., to a
single unbounded buffer. In this case, we will construct a finite parity game that
is equivalent to the parity game Gκpar(A,B). This is achieved by first defining a
“modified simulation game” that is equivalent to Gκpar(A,B). On this modified
simulation game, we then define a bisimulation. The quotient of the modified
game wrt. this bisimulation will be the announced finite parity game.

For the rest of this section, we fix the number of buffers by k = 1 and the
capacity function κ by setting κ(1) = ω. Consequently, for any trace alphabet
(Σ, σ, [1]), we have σ(a) = {1} for all a ∈ Σ.

The idea of the announced modification of the multi-buffer simulation game
is as follows:

1. Recall that the two players build runs in their NBA A and B, resp., and
that the game positions recall the states reached so far. In the modified
game, the game position recalls the complete runs built so far.

2. Let w be the word in the current game position in the parity simulation
game. If the position belongs to Player 1, then she can use an arbitrary
prefix of w to extend her run. In the subsequent rounds (while Player 1
skips her turns), Player 0 will extend the remaining word w1 by some
word w2 until Player 1 decides to use an arbitrary prefix of the resulting
word w1w2. In the modified game, Player 1 is forced to use w1, i.e., all the
letters left in the buffer after her last proper move, entirely.

More formally, the modified simulation game onA and B is the parity game

Gmod(A,B) = (Vmod,Vmod
0 ,Vmod

1 ,Emod, vmod
I ,Ωmod)

defined as follows.

Positions. Vmod
0 is the set of tuples

(0, ρA,w1,w2, ρ
B, c, r) ∈ {0} × iFRuns(A) × Σ∗ × Σ∗ × iFRuns(B) × {0, 1} × {1, 3}

and Vmod
1 is the set of tuples

(1, ρA,w1,w2, ρ
B, c, r) ∈ {0} × iFRuns(A) × Σ∗ × Σ∗ × iFRuns(B) × {0, 1} × {1, 2} .

20

As always, Vmod = Vmod
0 ∪ Vmod

1 .
Intuitively, (X, ρA,w1,w2, ρB, c, r) corresponds to the position (X, target(ρA),

w1w2, target(ρB), c, r) in the parity simulation game.
The initial position is vmod

I := (0, ε, ε, ε, ε, 0, 1).

Priorities. The priority of position v = (X, ρA,w1,w2, ρB, c, r) is Ωmod(v) := r. In
particular, positions of Player 0 have priority 1 or 3 and positions of Player 1
have priority 1 or 2.

Moves. The set of moves, i.e., the set Emod, is the set of the following pairs from
(Vmod

0 × Vmod
1) ∪ (Vmod

1 × Vmod
0):

(P0)
(
(0, ρA,w1,w2, ρB, c, r), (1, ρ′A,w′1,w

′

2, ρ
′B, c′, r′)

)
, provided that there is a ∈

Σ such that

• ρ′A is the extension of ρA by some a-labeled transition,

• w′1 = w1 and w′2 = w2a,

• ρ′B = ρB,

• c′ = c, and

• r′ =

2 if target(ρ′A) ∈ FA

1 otherwise.

(P1)
(
(1, ρA,w1,w2, ρB, c, r), (0, ρ′A,w′1,w

′

2, ρ
′B, c′, r′)

)
, provided that

1. (ρ′A,w′1,w
′

2, ρ
′B, c′) = (ρA,w1,w2, ρB, c) and r′ = 1 or

2. • ρ′A = ρA,
• w′1 = w2, w′2 = ε,
• ρ′B is an extension of ρB by some w1-labeled run ρ′′B,

• c′ =

1 if ρ′′B , ε sees some accepting state
0 otherwise

• and r′ =

3 if ρ′′B , ε sees some accepting state
1 otherwise.

Remark 15 The “counter” c is only used to notationally simplify the following
proof.

We want to prove that the parity simulation gameGκpar(A,B) and the modi-
fied simulation gameGmod(A,B) are equivalent. Providing a simulation, it can
be easily shown that Player 1 wins the parity simulation game whenever she
wins the modified simulation game (see proof of Lemma 17). For the other im-
plication, we use some topological argument that we prepare by the following
definition and result.

The set ARuns(A) of accepting runs of the NBAA carries a natural metric:
two runs are “close” if they share a long common prefix. More precisely,

21

the distance between the distinct infinite accepting runs ρ = (pi, ai, pi+1)i≥0 and
ρ′ = (p′i , a

′

i , p
′

i+1)i≥0 equals 2−` where

` = min{i | (pi, ai, pi+1) , (p′i , a
′

i , p
′

i+1)} .

A function f from ARuns(A) to ARuns(B) is trace preserving if the runs ρ and
f (ρ) carry the same trace (for all ρ ∈ ARuns(A)), i.e., πi(u) = πi(v) for all i ∈ [k]
for the words u and v accepted by ρ and f (ρ), respectively. Given these notions,
we have

Proposition 16 ([15, Theorem 18]) Let A and B be NBA over the trace alphabet
(Σ, σ, k) and κ(i) = ω for all i ∈ [k]. Then Player 1 has a winning strategy in the
multi-buffer simulation game Gκ(A,B) if, and only if, there exists a continuous trace
preserving function from ARuns(A) to ARuns(B).

Lemma 17 LetA andB be two NBA over the trace alphabet (Σ, σ, 1) and let κ(1) = ω.
Then the the multi-buffer simulation gameGκ(A,B) and the modified simulation game
Gmod(A,B) are won by the same player.

Proof First suppose Player 1 wins the modified simulation game. The set of
pairs (

(X, ρA,w1,w2, ρ
B, c, r), (X, target(ρA),w1w2, target(ρB), c, r)

)
forms a simulation of the modified game in the parity simulation game. Hence,
by Lemma 6, she also wins the parity simulation game and therefore (by Theo-
rem 12) the multi-buffer simulation game.

Conversely, suppose Player 1 wins the multi-buffer simulation gameGκ(A,B).
Hence, by Proposition 16, there is a continuous and trace preserving func-
tion f : ARuns(A) → ARuns(B). Since k = 1, we get lab(ρA) = lab(f (ρA))
for all ρA ∈ ARuns(A). We will define a positional strategy χ for Player 1
in the modified simulation game Gmod(A,B). This requires us to define a
function s : Vmod

1 → Vmod. So let (1, ρA,w1,w2, ρB, c, i) ∈ VGmod(A,B)
1 be a po-

sition of Player 1 in the modified simulation game. We consider the set
RA ⊆ ARuns(A) of all infinite accepting runs ρAω that extend the finite run
ρA and let RB = { f (ρAω) | ρAω ∈ RA} ⊆ ARuns(B). First suppose RA , ∅ and there
is a run ρ′B of length |w1| such that ρB ρ′B is a prefix of all runs in RB. Then set

s(1, ρA,w1,w2, ρ
B, c, r) = (0, ρA,w2, ε, ρ

B ρ′B, c′, r′) with (2)

(c′, r′) =

(1, 3) if ρ′B , ε meets some state from FB

(0, 1) otherwise

If RA = ∅ or there is no such run ρ′B, then set

s(1, ρA,w1,w2, ρ
B, c, r) = (0, ρA,w1,w2, ρ

B, 0, 1) .

This function s : Vmod
1 → Vmod defines a positional strategy χ in the modified

game.

22

Let π = (vi)i≥0 be a χ-play with vi = (Xi, ρAi ,w
i
1,w

i
2, ρ
B

i , ci, ri). Since the
players play alternatingly, we get Xi = 1 ⇐⇒ i is odd. Note that the run ρAi
is a prefix of the run ρAi+1 and a proper prefix of ρAi+2. Hence there is a unique
infinite and initial run ρA such that all finite runs ρAi are prefixes of ρA. If this
run is not accepting, then there are only finitely many i ≥ 0 with ri = 2. Hence,
in that case, Player 1 wins the play. Now suppose that ρA is accepting. Then set
ρB = f (ρA). By the definition of the function s and the positional strategy χ, any
of the finite runs ρBi is a prefix of ρB. Suppose there is k ≥ 0 such that |ρBi | ≤ k for
all i ≥ 0. Then, for all i ≥ 0, there are infinite accepting runs ρi

1, ρ
i
2 ∈ ARuns(A)

that extend ρAi (implying d(ρi
1, ρ

i
2) ≤ 2−|ρ

A

i | = 2−b
i
2 c) such that f (ρi

1) and f (ρi
2)

have different prefixes of length k + 1 (i.e., d(f (ρi
1), f (ρi

2)) ≥ 2−k−1). But this
contradicts the continuity of f . Consequently, ρB can be written as the infinite
run

ρ′B0 ρ′B1 ρ′B2 · · ·

where the finite nonempty runs ρ′Bi are the consecutive extensions originating
from (2). Since ρB = f (ρA) is accepting, infinitely many of these runs meet some
accepting state. Hence, Ωmod(vi) = 3 for infinitely many i ≥ 0, i.e., Player 1 wins
the play π. Thus, we showed that χ is a winning strategy for Player 1. �

Let (X, ρA,w1,w2, ρB, c, r) be some position in the modified game. Then, all
that is really needed to know are the target states of the two runs ρA and ρB as
well as the “behavior” of w1 and w2 in the NBAB, i.e., the sets δB(target(ρB),w1),
δBF (target(ρB),w1) as well as δB(p,w2) and δBF (p,w2) for all p ∈ QB.

We capture this “behavior” by the following function: For a word w ∈ Σ∗,
we define the function fw : QB ×QB → {0, 1}2 setting fw(p, q) = (i, j) with

i =


1 if there is a nonempty w-labeled run from p to q

that sees an accepting state
0 otherwise

j =


1 if there is some w-labeled run from p to q

that does not see an accepting state or is empty
0 otherwise

Note that the number of functions fu is at most 4|Q
B
|
2
, i.e., exponential in the

number of states of B.
From these functions, we derive a binary relation on the positions of the

modified game Gmod(A,B): Let R be the set of pairs of positions(
(X1, ρ1A,w11,w12, ρ1B, c1, r1), (X2, ρ2A,w21,w22, ρ2B, c2, r2),)

)
∈ Vmod

× Vmod

satisfying

• target(ρ1A) = target(ρ2A),

23

• fw11 = fw21 and fw12 = fw22 ,

• target(ρ1B) = target(ρ2B), and

• (X1, c1, r1) = (X2, c2, r2).

Lemma 18 The relation R is a bisimulation of the modified game Gmod(A,B) and
itself and, at the same time, an equivalence relation.

Proof Clearly, R is an equivalence relation. Now let vi = (Xi, ρiA,wi1,wi2, ρiB, ci, ri)
for i ∈ {1, 2} be two positions in the modified game with (v1, v2) ∈ R. By the
definition of R, we obtain (X1, c1, r1) = (X2, c2, r2).

Hence v1 ∈ V0 ⇐⇒ X1 = 0 ⇐⇒ X2 = 0 ⇐⇒ v2 ∈ V0 and Ωmod(v1) = r1 =
r2 = Ωmod(v2).

Next let v1 ∈ Vmod
1 and v′1 ∈ v2Emod. If v′1 = (0, ρ1A,w11,w12, ρ1B, c1, r1),

set v′2 = (0, ρ2A,w21,w22, ρ2B, c2, r2). Then v′2 ∈ v1Emod and (v1, v2) ∈ R implies
(v′1, v

′

2) ∈ R.
Alternatively, v′1 = (0, ρ1A,w12, ε, ρ1B ρ′1B, c

′

1, r
′

1) whereρ′1B is some w11-labeled
run starting in target(ρ1B) and

(c′1, r
′

1) =

(1, 3) if this run is nonempty and sees some accepting state
(0, 1) otherwise.

First, suppose that the run ρ′1B is nonempty and sees some accepting state. Then
fw11 (target(ρ1B), target(ρ′1B)) ∈ {(1, 0), (1, 1)}. Since fw11 = fw21 , there exists some
nonempty w21-labeled run ρ′2B from target(ρ1B) = target(ρ2B) to target(ρ′1B) that
sees some accepting state. Set

v′2 = (0, ρ2A,w22, ε, ρ2B ρ
′

2B, 1, 3) .

Then v′2 ∈ v2Emod and (v′1, v
′

2) ∈ R.
Next, suppose that the run ρ′1B is empty or does not see an accepting state.

Then fw11 (target(ρ1B), target(ρ1Bρ′1B) ∈ {(0, 1), (1, 1)}. Since fw11 = fw21 , we can
extend ρ2B by some w21-labeled run ρ′2B that is empty or does not see an
accepting state such that target(ρ1Bρ′1B) = target(ρ2Bρ′2B). We set, similarly to
above,

v′2 = (0, ρ2A,w22, ε, ρ2B ρ
′

2B, 0, 1) .

Then v′2 ∈ v2Emod and (v′1, v
′

2) ∈ R.

Next let v2 ∈ Vmod
0 and v′2 ∈ v2Emod. Then there exist a ∈ Σ, an a-

labeled run ρ′
A

from target(ρ2A) to some state q, and r′ ∈ {1, 2} such that
v′2 = (1, ρ2Aρ′A,w21,w22a, ρ2B, c2, r′2) where r′ = 2 if q ∈ FA and r′ = 1 other-
wise. Then set

v′1 = (1, ρ1Aρ
′

A
,w11,w12a, ρ1B, c1, r′) .

such that v′1 ∈ v1Emod. By the definition of the function fw12 = fw22 , we also
obtain fw12a = fw22a and therefore (v′1, v

′

2) ∈ R. �

24

We consider the quotient game Q(A,B) = Gmod(A,B)/R: Its number of
positions is bounded by

|QA| · 4|Q
2
B
|
· |QB| · 2 · 3

and therefore polynomial in the size of the automaton A and exponential in
the sizes of the automaton B. Furthermore, it uses 3 priorities. Hence, by
Proposition 4, the winner can be decided in time polynomial in the size of the
quotient game and therefore exponential in the size of the automata.

In summary, we get the following result.

Theorem 19 v(ω) is decidable in exponential time. In other words, let κ : [1] →
N∪ {ω} with κ(1) = ω. For a trace alphabet (Σ, σ, 1) and two NBAA andB, it can be
decided in exponential time whether Player 1 wins the single-buffer simulation game
G
κ(A,B).

Proof By Theorem 12 and Lemma 17, Player 1 wins the multi-buffer simulation
game Gκ(A,B) iff she wins the modified game Gmod(A,B). By Lemma 18,
the relation R is a bisimulation and an equivalence relation on the modified
simulation game. Hence, by Lemma 9, Player 1 wins the modified simulation
game iff she wins the quotient game Gmod(A,B)/R. Since this quotient game
uses a fixed number of priorities, its winner can be computed in size polynomial
in Gmod(A,B)/R and therefore exponential inA and B. �

This finishes our consideration of upper bounds for solving the multi-buffer
simulation game: the problem is in general in ∆1

2, it can be solved in exponential
time if we have a single buffer that is unbounded and in polynomial time if all
buffers are bounded.

4.3. The Multi-Buffer Flushing Game
We now turn to the consideration of the multi-buffer flushing game. Recall

that, differently from the multi-buffer simulation game, Duplicator now has
only the choice of leaving the buffers untouched or emptying them completely.

We will proceed similarly to the above considerations: first, we define a
parity game that is equivalent to the multi-buffer flushing game. This parity
game will then be studied for four special cases: all buffers are unbounded,
there is a single buffer which is unbounded, there is at most one unbounded
buffer (and possibly some bounded ones), and all buffers are bounded. In
all but the last of these cases, we obtain upper bounds that are (sometimes
marginally, sometimes drastically) better than for the multi-buffer simulation
game.

4.3.1. Multi-Buffer Flushing Games as Parity Games
In this section, we define for any multi-buffer flushing game an equivalent

parity game, i.e., a parity game won by Player 1 iff the multi-buffer game is won
by Player 1. The idea is very similar to the definition of the parity simulation
game Gκpar(A,B): we add priorities 1, 2 and 3 to the positions and replace the
contents of the k buffers by a single word in order to restrict the buffer contents

25

to “consistent” ones. The counter c is not needed here since the rules of the
flushing game ensure that all buffers are emptied whenever Duplicator does
not skip her move.

LetA = (QA,Σ, pI, δA,FA) and B = (QB,Σ, qI, δB,FB) be NBA, let (Σ, σ, k) be
a trace alphabet and let κ : [k]→N ∪ {ω} be a capacity function for k buffers.

The parity flushing game onA and Bwith capacities κ is the parity game

F
κ

par(A,B) = (Vpar,Vpar
0 ,Vpar

1 ,Epar, vpar
I ,Ωpar)

defined as follows.

Positions. The set Vpar
0 of Player 0’s positions is the set of tuples

(0, p,w, q, r) ∈ {0} ×QA × Σ∗ ×QB × {1, 3}

with |πi(w)| ≤ κ(i) for all i ∈ [k] such that r = 3 implies w = ε. The set Vpar
1 of

Player 1’s positions is the set of tuples

(1, p,w, q, r) ∈ {1} ×QA × Σ∗ ×QB × {1, 2}

with |πi(w)| ≤ 1 + κ(i) for all i ∈ [k].
As always, the set of positions is Vpar = Vpar

0 ∪ Vpar
1 .

The initial position is vpar
I := (0, pI, ε, qI, 3). Recall that (0, pI, π1(ε), . . . , πk(ε), qI)

is the initial position in the multi-buffer flushing game.

Priorities. The priority of position v = (X, p,w, q, r) is Ωpar(v) = r. In particular,
positions of Player 0 have priorities 1 or 3 and positions of Player 1 have
priorities 1 or 2.

Moves. The set Epar of moves is the set of the following pairs from (Vpar
0 ×

Vpar
1) ∪ (Vpar

1 × Vpar
0):

(P0)
(
(0, p,w, q, r), (1, p′,w′, q′, r′)

)
, provided that there is a ∈ Σ such that

• p′ ∈ δA(p, a),

• w′ = wa,

• q′ = q,

• r′ =

2 if p′ ∈ FA

1 otherwise

Note that the first three conditions are equivalent to saying that there is
a move from (0, p, π1(w), . . . , πk(w), q) to (1, p′, π1(w′), . . . , πk(w′), q′) in the
multi-buffer flushing game F κ(A,B).

(P1)
(
(1, p,w, q, r), (0, p′,w′, q′, r′)

)
, provided that there is u ∈ Σ∗ with u = ε or

u ∼σ w such that

• p′ = p,

26

• uw′ ∼σ w (i.e., w′ = ε if u ∼σ w and w′ ∼σ w otherwise)

• q′ ∈ δB(q,u),

• and r′ ∈ {1, 3} such that r′ = 3 implies u , ε and ∃u′ ∼σ u : q′ ∈
δBF (q,u′).

As above, the first three conditions describe a move in the multi-buffer
flushing gameF κ(A,B) from position (1, p, π1(w), . . . , πk(w), q) to position
(0, p′, π1(w′), . . . , πk(w′), q′).

The proof of the following theorem follows the same lines as that of Theo-
rem 12 and is therefore omitted.

Theorem 20 Let A and B be NBA over the trace alphabet (Σ, σ, k) and let κ : [k] →
N ∪ {ω} be a capacity function. Then Player 1 wins the multi-buffer flushing game
F
κ(A,B) if, and only if, she wins the parity flushing game F κ

par(A,B).

From this result, we get the following corollary in the same way as Theo-
rem 12 implies Corollary 14.

Corollary 21 Given two NBAA andB over the trace alphabet (Σ, σ, k) and a capacity
function κ : [k]→N, it can be decided in time polynomial in |A|+ |B|+ |Σ|k·max{κ(i)|i∈[k]}

whether Player 1 wins the multi-buffer flushing game F κ(A,B).

4.3.2. Unbounded Buffers, only
Suppose κ(i) = ω for all i ∈ [k], i.e., all buffers are unbounded. We define

a restricted version of the above parity flushing game by only allowing some
of the moves of Player 1, namely those that do not flush the buffer and those
that lead to some position of parity 3. The idea is that Player 1 postpones her
moves until she can move into a parity-3-position. More precisely, the sets of
positions, the parities, and the moves of Player 0 are as in the parity flushing
game, but the set of moves of Player 1 is defined as follows:

(P1)
(
(1, p,w, q, r), (0, p′,w′, q′, r′)

)
is a move provided that there is u ∈ Σ∗ justi-

fying
(
(1, p,w, q, r), (0, p′,w′, q′, r′)

)
∈ Epar such that, in addition,

• u , ε implies r′ = 3.

We refer to this restricted flushing game by F κ
res(A,B) = (Vres,Vres

0 ,Vres
1 , vres

I ,
Eres,Ωres).

Lemma 22 LetA andB be two NBA over the trace alphabet (Σ, σ, k) and let κ(i) = ω
for all i ∈ [k]. Then there exists a simulation of the parity flushing game F κ

par(A,B) in
the restricted flushing game F κ

res(A,B).

Proof Let vpar = (Xpar, ppar,wpar, qpar, rpar) ∈ Vpar be a position in the parity
flushing game and let vres = (Xres, pres,wres, qres, rres) ∈ Vres be a position in the
restricted flushing game. Then we set (vpar, vres) ∈ R iff there exists a finite word
x ∈ Σ∗ such that

27

(i) Xpar = Xres,
(ii) ppar = pres,

(iii) x wpar ∼σ wres,
(iv) qpar ∈ δB(qres, x), and
(v) rpar = rres.

We verify that R is indeed a simulation. So let vpar and vres be as above with
(vpar, vres) ∈ R. We have

vpar ∈ Vpar
0 ⇐⇒ Xpar = 0

(i)
⇐⇒ Xres = 0 ⇐⇒ vres ∈ Vres

0

and
Ωpar(vpar) = rpar

(v)
= rres = Ωres(vres)

It remains to be seen that the moves can be matched as well. This is split into
two cases: (i) for Player 1’s moves, and (ii) further below for Player 0’s moves.

(i) Suppose vpar ∈ Vpar
1 , i.e., Xpar = 1, and let v′par = (X′par, p′par,w′par, q′par, r′par) ∈

Vpar be a position from vparEpar, i.e., Player 1 can move in the parity flushing
game from vpar to v′par. Since (vpar, v′par) ∈ Epar and since the players alternate in
the parity flushing game, we obtain X′par = 0.

Since Player 1 can move from vpar to v′par in the parity flushing game
F
κ

par(A,B), there exists upar ∈ Σ∗ with upar = ε or upar ∼σ wpar such that

• p′par = ppar,

• uparw′par ∼σ wpar,

• q′par ∈ δ
B(qpar,upar),

• and r′par ∈ {1, 3}with r′par = 3 only in case upar , ε and q′par ∈ δ
B

F (qpar, [upar]).

Depending on the value of r′par, we construct a position v′res in the restricted
flushing game F κ

res(A,B) such that (vres, v′res) ∈ Eres and (v′par, v′res) ∈ R.
First suppose r′par = 3 such that upar , ε and q′par ∈ δ

B

F (qpar,u′par) for some
word u′par ∼σ upar. Recall that upar , ε implies w′par = ε. Then set ures = xu′par
and v′res = (X′res, p′res,w′res, q′res, r′res) with

• X′res = 0,

• p′res = pres,

• w′res = ε,

• q′res = q′par, and

• r′res = 3.

28

We first verify that Player 1 can move from vres to v′res in the restricted flushing
game F κ

res(A,B). Note that

ures = xu′par ∼σ xupar = xuparw′par ∼σ xwpar ∼σ wres .

Furthermore, we obtain

• p′res = pres,

• uresw′res = ures ∼σ wres,

• q′res = q′par ∈ δ
B

F (qpar,u′par) ⊆ δ
B

F (qres, xu′par) = δBF (qres,ures) and therefore in
particular q′res ∈ δ

B(qres,ures),

• From upar , ε, we obtain u′par , ε, and therefore ures , ε. Furthermore,
(by the previous item) q′res ∈ δ

B

F (qres,ures). Since r′res = 3, this finishes our
verification of (vres, v′res) ∈ Eres.

Next, we verify (v′par, v′res) ∈ R. To this aim, let x′ = ε. Then we get

• X′par = 0 = X′res,

• p′par = ppar = pres = p′res,

• x′w′par = ε = w′res,

• q′par ∈ δ
B(q′par, ε) = δB(q′res, x′), and

• r′par = 3 = r′res.

This finishes the case r′par = 3. So suppose now that r′par = 1. Then set ures = ε
and v′res = (X′res, p′res,w′res, q′res, r′res) with

• X′res = 0,

• p′res = pres,

• w′res = wres,2

• q′res = qres, and

• r′res = 1.

Then we immediately get (vres, v′res) ∈ Eres and it remains to verify (v′par, v′res) ∈ R.
To this aim, set x′ = xupar. Then we get

• X′par = 0 = X′res,

2Since vres ∈ Vres
1 , we have |πi(wres)| ≤ 1 + κ(i) for all i ∈ [k]. To ensure v′res ∈ Vres

0 , we need
|πi(w′res)| ≤ κ(i). Since κ(i) = ω, this is indeed the case. It is not clear whether the lemma can be
shown without the assumption κ(i) = ω for all i ∈ [k].

29

• p′par = ppar = pres = p′res,

• w′res = wres ∼σ xwpar ∼σ xuparw′par = x′w′par,

• q′par ∈ δ
B(qpar,upar) ⊆ δB(qres, xupar) = δB(q′res, x′), and

• r′par = 1 = r′res

which also settles the case r′par = 1.

(ii) Now suppose vres ∈ Vres
0 , i.e., Xres = 0, and let v′res = (X′res, p′res,w′res, q′res, r′res) ∈

Vres be a position from vresEres, i.e., Player 0 can move in the restricted flushing
game from vres to v′res. It follows that there is a ∈ Σ such that

• p′res ∈ δ
A(pres, a),

• w′res = wresa,

• q′res = qres, and

• r′res =

2 if p′res ∈ FA

1 otherwise.

Then set v′par = (X′par, p′par,w′par, q′par, r′par) with

• X′par = 1,

• p′par = p′res,

• w′par = wpara,

• q′par = qpar, and

• r′par =

2 if p′par ∈ FA

1 otherwise.

It is immediate that (vpar, v′par) ∈ Epar, i.e., Player 0 can move from vpar to v′par in
the parity flushing game. We show (v′par, v′res) ∈ R:

• X′par = 1 = X′res,

• p′par = p′res,

• xw′par = xwpara ∼σ wresa,

• q′par = qpar ∈ δB(qres, x) = δB(q′res, x), and

• r′par = 2 iff p′par ∈ FA iff p′res ∈ FA iff r′res = 2.

Thus, indeed, R is a simulation of the parity flushing game F κ
par(A,B) in the

restricted flushing game F κ
res(A,B). �

30

Lemma 23 LetA andB be two NBA over the trace alphabet (Σ, σ, k) and let κ(i) = ω
for all i ∈ [k]. Then Player 1 wins the multi-buffer flushing game F κ(A,B) if, and
only if, she wins the restricted flushing game F κ

res(A,B).

Proof First suppose Player 1 wins the restricted flushing game F κ
res(A,B).

The set R of pairs (v, v) for v ∈ Vres = Vpar is a simulation of F κ
res(A,B) in

the parity flushing game F κ
par(A,B). Hence, by Lemma 6, Player 1 wins the

parity flushing gameF κ
par(A,B) and therefore (by Theorem 20), the multi-buffer

flushing game F κ(A,B).
Conversely, suppose Player 1 wins the multi-buffer flushing gameGκ(A,B)

and therefore (by Theorem 20) the parity flushing game F κ
par(A,B). The pre-

vious lemma provides a simulation of F κ
par(A,B) in F κ

res(A,B), hence Player 1
also wins the latter game by Lemma 6. �

Let S0 = {0} × QA × {ε} × QB × {3} be the set of all parity-3-positions in
the restricted flushing game F κ

res(A,B). We define, inductively, a decreasing
sequence of sets S0 ⊇ S1 ⊇ S2 · · · by defining Sn+1 to be the set of priority-3-
positions v = (0, p, ε, q, 3) ∈ Sn such that the following holds:

For all infinite accepting runs (pi, ai, pi+1)i≥0 ∈ ARuns(A[p]), there exist
i ≥ 0, wi ∼σ a0a1 . . . ai, and q′ ∈ δBF (q,wi) with (0, pi+1, ε, q′, 3) ∈ Sn.

Since this defines a decreasing sequence of subsets of S0 and since |S0| =
|QA ×QB| is finite, we get S|QA×QB | =

⋂
n≥0 Sn.

Lemma 24
⋂

n≥0 Sn is the set of parity-3-positions in the winning region for player 1.

Proof First we provide a strategy for Player 1 that is winning from every posi-
tion in

⋂
n≥0 Sn. This positional strategy χ tries to move into

⋂
n≥0 Sn whenever

possible: if the position is (1, p,w, q, r) and there are w′ ∼σ w and q′ ∈ δBF (q,w′)
such that (0, p, ε, q′, 3) ∈

⋂
n≥0 Sn, then Player 1 moves to such a position. Oth-

erwise, she moves to (0, p,w, q, 1).
The claim is that χ is a winning strategy for Player 1 starting from an

arbitrary position in
⋂

n≥0 Sn. Assume by contradiction that there is a χ-play
starting in

⋂
n≥0 Sn and lost by Player 1. Since that play meets a priority-3-

position (and therefore a position from
⋂

n≥0 Sn) only finitely often, there is
such a play π = (vi)i≥0 satisfying v0 ∈

⋂
n≥0 Sn and vi <

⋂
n≥0 Sn for all i > 0.

Let vi = (Xi, pi,wi, qi, ri) for i ≥ 0. By the definition of the restricted flushing
game F κ

res(A,B), there are letters ai ∈ Σ with p2(i+1) = p2i+1 ∈ δA(p2i, ai) and
w2i+1 = w2iai for all i ≥ 0. Since Player 1 looses the play π, there are infinitely
many i ≥ 0 with Ω(vi) = 2. Since p2(i+1) = p2i+1, there are consequently infinitely
many i ≥ 0 with p2i ∈ FA. Hence (p2i, ai, p2(i+1))i≥0 is an accepting run of A[p0].
Let N = |QA×QB| such that

⋂
n≥0 Sn = SN. Since v0 ∈ SN = SN+1, there exist i ≥ 0,

w ∼σ a0a1 . . . ai, and q′ ∈ δBF (q0,w) with (0, p2(i+1), ε, q′, 3) ∈ SN. Let i be minimal
with this property. Since π is a χ-play, we get v2i+1 = (1, p2i+1, a0a1 . . . ai, q0, r2i+1)
and v2(i+1) ∈ SN =

⋂
n≥0 Sn. But this contradicts the choice of the infinite play π.

Hence, indeed, Player 1 has a winning strategy from all positions in
⋂

n≥0 Sn.

31

To prove the converse implication, we provide, by induction on n, a winning
strategy for Player 0 for every v = (0, p, ε, q, 3) ∈ Sn \ Sn+1. So first let n = 0, i.e.,
v ∈ S0 \ S1. By definition of S1, there is some accepting run ρ = (pi, ai, pi+1)i≥0 ∈

ARuns(A[p]) such that (0, pi, ε, q, 3) < S0 for all i ≥ 0, all w ∼σ a0a1 . . . ai, and
all q ∈ δBF (p,w). The strategy χv for Player 0 now is to follow this accepting
run ρ such that every χv-play π = (v j) j≥0 with v0 = v satisfies v j = (j mod
2, p⌊ j

2

⌋,w j, q j, r j) for all j ≥ 0. We want to show that χv is winning for Player 0.

Towards a contradiction, suppose the χv-play π = (v j) j≥0 is won by Player 1.
Since pi ∈ FA for infinitely many i ≥ 0, we get r2i+1 = 2 for infinitely many
i ≥ 0. Since the play π is won by Player 1, there must be infinitely many i ≥ 0
with r2i = 3. Let i ≥ 0 be minimal with r2i = 3. It follows that i > 0 and
w2i−1 = a0a1 . . . ai. Since r2i = 3, there are w ∼σ w2i−1 and q2i ∈ δBF (q0,w) with
v2i = (0, pi, ε, q2i, 3) ∈ S0. But this contradicts the choice of the run ρ. Hence,
indeed, for every v ∈ S1 \ S0, Player 0 has a winning strategy (namely, χv).

Now let v ∈ Sn \ Sn+1. Then, again, there is some accepting run ρ =
(pi, ai, pi+1)i≥0 ∈ ARuns(A[p]) such that (0, pi, ε, q′, 3)) < Sn for all i ≥ 0, all
w ∼σ a0a1 . . . ai, and all q′ ∈ δ∗

B,F(q,w). Player 0’s strategy χv is now to first
play that run ρ. If Player 1 never moves into a priority-3-position, then the
play is lost by Player 1 since it meets a priority-2-position infinitely often and
a priority-3-position only once. Now suppose Player 1 moves into a priority-
3-position w. Then, by the assumption on the run ρ, we get w ∈ S0 \ Sn. Hence
there is m ∈ [n− 1] with w ∈ Sm \Sm+1. From that moment on, Player 0 plays his
winning strategy χw that was already constructed by the induction hypothesis.

Thus, Player 0 wins from every position in S0 \
⋂

n≥0 Sn. In other words,
Player 1’s winning priority-3-positions are all contained in

⋂
n≥0 Sn. �

Lemma 25
⋂

n≥0 Sn ∈ Π1
1.

Proof With N = |QA × QB|, we get SN = SN+1 and therefore
⋂

n≥0 Sn = SN.
Hence it suffices to be shown that Sn belongs to Π1

1 for all n ∈ N. Note that S0

is finite and decidable. Hence, this set belongs to Π1
1. The definition of Sn+1 has

the form

∀ f : N→ QA, g : N→ Σ∃i : ϕ(f , g)→ ψ(f (i + 1), g(0)g(1) · · · g(i))

with the following subexpressions ϕ and ψ:

ϕ(f , g) = ∀ j : f (j + 1) ∈ δA(f (j), g(j))
∧ f (0) = p

∧ ∀ j∃k : f (j + k) ∈ FA

and

ψ(p′,u) =
∨

w∼σu
q′∈δBF (q,w)

(0, p′, ε, q′, 3) ∈ Sn .

32

Since the disjunction in ψ is finite and computable from u (the automaton B
and the trace alphabet σ), the expression ψ belongs to Π1

1. Clearly, ϕ is an
arithmetical expression (since its quantification extends over natural numbers).
In summary, the definition of Sn+1 has the form

∀F∃i∀G : ξ

for some arithmetical expression ξ. By [21, Theorem 16.1.III], it can be refor-
mulated into an equivalent expression of the form

∀F∀G∃i : ξ′

where, again, ξ′ is arithmetical. But this expression belongs to Π1
1. Thus, we

obtain a Π1
1-definition for Sn+1 and therefore for SN =

⋂
n≥0 Sn. �

Theorem 26 The relations v(ω,ω,...,ω) belong to Π1
1, even uniformly in the number of

buffers k. In other words, the set of all tuples (A,B,Σ, σ, k) where

• (Σ, σ, k) is a trace alphabet andA and B are NBA over Σ and

• Player 1 wins the multi-buffer flushing game F κ(A,B) with κ(i) = ω for all
i ∈ [k]

belongs to Π1
1.

Proof LetA and B be two NBA over a trace alphabet (Σ, σ, k) and let κ : [k]→
{ω} be a capacity function. Then Player 1 wins the multi-buffer flushing
game F κ(A,B) iff she wins the restricted flushing game F κ

res(A,B) (Lemma 23)
iff the initial position vres

I of this game belongs to
⋃

n≥0 Sn (Lemma 24 since the
parity of vres

I is 3). But this latter is a statement from Π1
1 by Lemma 25. �

4.3.3. A single and unbounded buffer
We next consider the case of a single buffer that is unbounded, i.e., k = 1 and

κ(1) = ω. In that case, we can improve the result of Lemma 25 considerably:

Lemma 27
⋂

n≥0 Sn is computable in space polynomial in |QA ×QB|.

Proof As in the proof of Lemma 25, it suffices to compute Sn in polynomial
space for all n ∈N. This claim is trivial for n = 0 since S0 = {0}×QA×{ε}×QB×{3}.
Since in case k = 1, the relation∼σ is the identity on Σ∗, we have v = (0, p, ε, q, 3) ∈
Sn+1 if, for all infinite accepting runs (pi, ai, pi+1)i≥0 ∈ ARuns(A[p]), there exist
i ≥ 0 and q′ ∈ δBF (q, a0a1 . . . ai) with (0, pi+1, ε, q′, 3) ∈ Sn.

To verify whether this holds, we consider the following NBA C. It is meant
to accept the empty language if, and only if, v = (0, p, ε, q, 3) < Sn+1.

• States are the tuples (r,M,N) ∈ QA × P(QB) × P(QB) such that, for all
s ∈ N, we have (0, r, ε, s, 3) < Sn. In addition, we have the initial state ι.

• δ((r,M,N), a) is the set of all states (r′, δB(M, a), δB(N, a) ∪ (M ∩ FB)) of C
that satisfy r′ ∈ δA(r, a).

33

• δ(ι, a) is the set of all states (r, δB(p, a), δB(q, a) ∩ FB) of C that satisfy r ∈
δA(p, a).

• A state (r,M,N) is accepting iff r ∈ FA.

Let w ∈ Σ∗ be some finite word and let (r,M,N) be a state from C that is reachable
from the initial state ι. Then r ∈ δA(p,w), M = δB(q,w), and N = δBF (q,w). In
addition, all states (r′,M′,N′) on the path from ι to (r,M,N) satisfy (0, r′, ε, s, 3) <
Sn for all s ∈ N′.

Hence the Büchi-automaton C accepts α = a0a1a2 · · · ∈ Σω iff there is an
accepting run (ri, ai, ri+1)i≥0 ∈ ARuns(A[p]) such that, for all i ≥ 0, the set
δBF (q, a0a1 . . . ai) does not contain any state s with (0, ri, ε, s, 3) ∈ Sn. But this is the
case iff v < Sn+1.

Since the size of the Büchi-automaton C is exponential in |QA × QB|, the
emptiness of its language can be decided in space polynomial in |QA ×QB|. �

Replacing in the proof of Theorem 26 the reference to Lemma 25 by a
reference to Lemma 27, we obtain the following result.

Theorem 28 The relation v(ω)
fl is decidable in polynomial space. In other words,

given two NBA A and B over the trace alphabet (Σ, σ, 1) and the capacity function
κ : [1] → {ω}, it can be decided in space polynomial in |QA × QB| whether Player 1
wins the multi-buffer flushing game F κ(A,B).

4.3.4. One unbounded and some bounded buffers
We now consider the case of capacity functions κ with κ(i) ∈ N for all

i ∈ [k−1] and κ(k) = ω. In this situation, we show that the parity flushing game
can be solved algorthmically (consequently, the multi-buffer flushing game is
solvable). To this aim, we abstract the word w in a position (X, p,w, q, r) of the
parity flushing game. All that is needed to know about this word is how it
behaves in the NBA B, i.e., we need to know the sets

δB(q, [w]) :=
⋃

w′∼σw

δB(q,w′) and δBF (q, [w]) :=
⋃

w′∼σw

δBF (q,w′) .

Therefore, our first aim is to show that this information can be maintained
while Player 0 makes his moves. More precisely, we need some finite piece of
information on the word w that allows

1. the sets δB(q, [w]) and δBF (q, [w]) to be determined, and
2. the corresponding information on wa for a ∈ Σ to be computed.

The finite piece of information alluded to above is defined as follows.

Definition 29 Let q ∈ QB and w ∈ Σ∗ with |πi(w)| ≤ κ(i) for all i ∈ [k − 1]. The
set I(q,w) consists of all tuples

t = (q′, (u′i , v
′

i)i∈[k−1], b′)

with q′ ∈ QB, u′i , v
′

i ∈ Σ≤κ(i)
i for all i ∈ [k − 1] and b′ ∈ {0, 1} such that there exists

z ∈ Σ∗ satisfying

34

(i) u′i = πi(w) and v′i = πi(z) for all i ∈ [k − 1],
(ii) πk(z) = πk(w),

(iii) q′ ∈ δB(q, z), and
(iv) b′ = 1 ⇐⇒ q′ ∈ δBF (q, z).

Let z ∼σ w and q′ ∈ δB(q, z). Since πi(w) = πi(z) for all i ∈ [k], there exists
a tuple t = (q′, (u′i , v

′

i)i∈[k−1], b′) in I(q,w) with u′i = v′i = πi(w) for all i ∈ [k − 1].
In addition, there is such a tuple with b′ = 1 iff q′ ∈ δBF (q, [w]). Thus, the sets
δB(q, [w]) and δBF (q, [w]) can be determined from those tuples t ∈ I(q,w) that
satisfy u′i = v′i for all i ∈ [k−1]. But from these tuples alone, we cannot determine
the corresponding tuples from I(q,wa). Therefore, in the above definition, the
set I(q,w) contains tuples with u′i , v′i .

We now prove that I(q,wa) can be computed from I(q,w) and the letter
a ∈ Σ.

Lemma 30 Let q0
∈ QB, w ∈ Σ∗ and a ∈ Σ with |πi(wa)| ≤ κ(i) for all i ∈ [k − 1].

Then I(q0,wa) is the set of tuples

t2 = (q2, (u2
i , v

2
i)i∈[k−1], b2)

with q2
∈ QB, u2

i , v
2
i ∈ Σ≤κ(i)

i for all i ∈ [k − 1] and b2
∈ {0, 1} such that there exist a

tuple
t1 = (q1, (u1

i , v
1
i)i∈[k−1], b1) ∈ I(q0,w)

and a word x ∈ Σ∗ with

(a) u2
i = u1

i πi(a) and v2
i = v1

i πi(x) for all i ∈ [k − 1],
(b) πk(x) = πk(w),
(c) q2

∈ δB(q1, x), and
(d) b2 = 1 ⇐⇒ b1 = 1 or q2

∈ δBF (q1, x).

Proof First suppose t1
∈ I(q0,w) and x ∈ Σ∗ satisfying (a)-(d). From t1

∈

I(q0,w), we obtain a word z1
∈ Σ∗ such that the tuple (w, t1, z1) satisfies (i)-(iv).

Set z2 = z1 x We have to verify conditions (i)-(iv) for (wa, t2, z2):

(i) u2
i = u1

i πi(a) = πi(w)πi(a) = πi(wa) and v2
i = v1

i πi(x) = πi(z1)πi(x) = πi(z2)
for all i ∈ [k − 1].

(ii) πk(z2) = πk(z1x) = πk(w)πk(a) = πk(wa).
(iii) q2

∈ δB(q1, x) ⊆ δB(q0, z1x) = δB(q0, z2).
(iv) b2 = 1 iff b1 = 1 or q2

∈ δBF (q1, x) iff q1
∈ δBF (q0, z1) or q2

∈ δBF (q1, x) iff
q2
∈ δBF (q0, z1x) = δBF (q0, z2).

Thus, indeed, t2
∈ I(q0,wa).

Conversely, suppose t2
∈ I(q0,wa). Then there exists z2

∈ Σ∗ such that
(wa, t2, z2) satisfies (i)-(iv).

We define a tuple t1 and a word z1 such that (w, t1, z1) satisfies (i)-(iv) and
such that (a)-(d) hold.

35

Since πk(w) is a prefix of πk(wa) = πk(z2), there exists a factorization z2 = z1 x
with πk(w) = πk(z1). This already ensures (ii) for (w, t1, z1). Next let u1

i = πi(w)
and v1

i = πi(z1) for all i ∈ [k]. This ensures (i) for (w, t1, z1). Since w is a
prefix of wa and z1 is a prefix of z2, we also get |u1

i | ≤ |u
2
i | ≤ κ(i) as well as

|v1
i | ≤ |v

2
i | ≤ κ(i). Since q2

∈ δB(q0, z2), there is some z2-labeled path ρ from q0

to q2. If q2
∈ δBF (q0, z2), then chose ρ such that it contains some accepting state.

Since z2 = z1 x, there is a state q1 such that ρ splits into some z1-labeled path ρ1
from q0 to q1 and some x-labeled path ρ2 from q1 to q2. If ρ sees some accepting
state, then one of the paths ρ1 and ρ2 sees some accepting state. In particular,
we have q1

∈ δB(q0, z1) (ensuring (iii) for (w, t1, z1)) and q2
∈ δB(q1, x) (ensuring

(c)). Finally, set b1 = 1 iff q1
∈ δBF (q0,w) (ensuring (iv) for (w, t1, z1)).

Thus, we defined t1 = (q1, (u1
i , v

1
i)i∈[k−1], b1) ∈ I(q0,w) and it remains to verify

(a)-(d) (note that (c) has already been checked).

(a) u2
i = πi(wa) = u1

i πi(w) and v2
i = πi(z2) = πi(z1 x) = v1

1 πi(x) for all i ∈ [k − 1].
(b) πk(w)πk(x) = πk(z1x) = πk(z2) = πk(wa) = πk(w)πk(a) implies πk(x) = πk(a).
(d) b2 = 1 iff q2

∈ δBF (q0, z2) iff q2
∈ δBF (q1, x) or q1

∈ δBF (q0, z1) (by the choice of
the path ρ) iff b1 = 1 or q2

∈ δBF (q1, x).

�

The information I(q,w) can be used to define a bisimulation of the parity
flushing game that is also an equivalence relation. Since the quotient of the par-
ity flushing game wrt. this simulation is finite, the quotient game and therefore
the parity flushing game is solvable.

Theorem 31 The relationsv(c1,c2,...,ck−1,ω)
fl (for k ≥ 1 and c1, . . . , ck−1 ∈N) are decidable

in doubly exponential time, even uniformly in k and the tuple (c1, . . . , ck−1) ∈Nk−1.
In other words, given two NBA A and B over the trace alphabet (Σ, σ, k) and a

capacity function κ : [k] → N ∪ {ω} with κ(i) ∈ N for all i ∈ [k − 1] and κ(k) = ω,
it can be decided in doubly exponential time whether Player 1 wins the multi-buffer
flushing game F κ(A,B).

Proof By Theorem 20, it suffices to solve the parity flushing game F κ
par(A,B).

Let R be the set of pairs(
(X1, p1,w1, q1, r1), (X2, p2,w2, q2, r2)

)
of positions of the parity flushing game F κ

par(A,B) with

• X1 = X2, p1 = p2, q1 = q2, r1 = r2, and

• I(q1,w1) = I(q2,w2).

Then the relation R is clearly an equivalence relation and it is not difficult to
verify that it is also a bisimulation of F κ

par(A,B) and F κ
par(A,B): Let (v1, v2) ∈ R.

Then vi = (X, p,wi, q, r) for i ∈ {1, 2} and we get the following:

36

1. v1 ∈ Vpar
0 ⇐⇒ X = 0 ⇐⇒ v2 ∈ Vpar

0
2. Ωpar(v1) = r = Ωpar(v2)
3. Suppose v1 ∈ Vpar

1 and (v1, v′1) ∈ Epar. Then there is some word u1 ∈

{ε} ∪ [w1] that justifies the move from v1 to v′1.
If u1 = ε, then v′1 = (0, p,w1, q, 1). In this case, we set v′2 = (0, p,w2, q, 1)
which satisfies v′2 ∈ v2Epar and (v′1, v

′

2) ∈ R.
Now let u1 , ε and therefore u1 ∼σ w1. Then v′ = (0, p, ε, q′, r′) with
q′ ∈ δB(q,u1) and r′ = 1 or q′ ∈ δBF (q, [u1]) = δBF (q, [w1]). Consider the tuple
t = (q′, (u′i , v

′

i)i∈[k−1], b) from I(q,w1) that results from this word z = u1.
Note that u′i = v′i since z = u1 ∼σ w1. Since I(q,w1) = I(q,w2), this tuple
also belongs to the latter set. Hence there exists a word u2 ∈ Σ∗ that
induces this tuple in I(q,w2). From u′i = v′i for i ∈ [k − 1], we obtain
u2 ∼σ w2. Set v′2 = (0, p, ε, q′, r′). Then v′2 ∈ v2Epar and (v′1, v

′

2) ∈ R.
4. Similarly, we can argue if v1 ∈ Vpar

0 and (v1, v′1) ∈ Epar.

Consequently, by Lemmas 9 and 6, Player 1 wins the parity flushing game
F
κ

par(A,B) if and only if she wins the quotient game G = F κ
par(A,B)/R.

The positions of this quotient gameG can be given as tuples (X, p,W, q, r) for
some X ∈ {0, 1}, p ∈ QA, q ∈ QB, r ∈ {0, 1, 2} and W a subset of

QB ×
∏

i∈[k−1]

(
Σ≤κ(i)

i × Σ≤κ(i)
i

)
× {0, 1} .

Hence the number of positions of the quotient game G is bounded by

2 · |QA| · 2|Q
B
|·Πi∈[k−1] |Σi |

2(κ(i)+1)
·2
· |QB| · 3 ≤ 6 · |QA| · |QB| · 4|Q

B
|·|Σ|2(K+k)

with K =
∑

i∈[k−1] κ(i). In other words, the game G is polynomial in the size of
the NBAA, exponential in the size of the NBA B and the size of the alphabets,
and doubly exponential in the size and number of buffers. Hence the claim
follows from Proposition 4. �

5. Lower Bounds

The aim of this section is to show that the upper bounds of the previous sec-
tion are tight by providing matching lower bounds. The general upper bound
of ∆1

2 from Cor. 13 for solving unbounded multi-buffer games is an exception,
since this class does not contain complete problems [21, Theorem 16.1.X]. In-
stead we will provide a lower bound that gets very close to it. We start with
the computationally easier cases of single-buffer games, though.

5.1. A PSPACE lower bound for unbounded single-buffer flushing games
A typical PSPACE-complete problem is the n-corridor tiling problem [23]. Its

input is a tiling systemT = (T,H,V, tI), where T is a finite set of tiles, H,V ⊆ T×T
are the horizontal and vertical matching relations, tI ∈ T is the initial tile, and a
natural number n encoded unarily. The problem is to decide whether there is a
function τ :N × {0, . . . ,n − 1} → T satisfying

37

1. t(0, 0) = tI,
2. for all i ∈N, all j < n − 1 we have (τ(i, j), τ(i, j + 1)) ∈ H,
3. for all i ∈N, all j < n we have (τ(i, j), τ(i + 1, j)) ∈ V.

Such a function is also called a valid tiling.

Theorem 32 Deciding v(ω)
fl is PSPACE-hard.

Proof By a reduction from the n-corridor tiling problem. Given a tiling system
T = (T,H,V, tI) and a unarily encoded n, we construct two NBAA,B over the
(trace) alphabet T such that Player 0 wins F (ω)(A,B) iff there is a valid T -tiling
for the n-corridor. Note that PSPACE is closed under complements. Hence, we
also get PSPACE-hardness of the question whether Player 1 wins this game.

W.l.o.g. assume that T = {t1, . . . , tm} and tI = t1. Intuitively, A allows
Player 0 to construct a tiling of the n-corridor by simply choosing the tiles
τ(0, 0), τ(0, 1), . . . , τ(0,n − 1), τ(1, 0), . . . , τ(1,n − 1), τ(2, 0), . . .

A
tI

T

The intuition behind Player 1’s NBAB is that it allows her to spot any mistakes
which Player 0 might have made. Note that A has an accepting run for any
sequence of tiles starting with tI, not just those that respect the horizontal and
vertical matching relation on the n-corridor. B allows Player 1 to wait until
Player 0 produces a tile that is either not matching vertically to the one in the
row below, i.e. the n-last in the sequence that Player 0 produced; or does not
match the immediate predecessor in this sequence, with the exception of every
n-th tile at the beginning of each row. B makes use of nondeterminism to let
Player 1 guess which tile Player 0 cannot produce a match for.

38

q0B q1 . . . qn−2 qn−1 f T
T T T T

T

h1 . . . hm

t1
tm

t1 tm
t1

tm

{t | (tm, t) < H}

{t | (t1, t) < H}

v1
1

. . . v1
m

v2
1

. . . v2
m

...
...

vn
1

. . . vn
m

t1

tm t1

tm t1

tm

t1

tm

T T

{t | (tm, t) < V}

{t | (t1, t) < V}

The size of A is 2, and that of B is (n + 1) · (|T| + 1), and both can clearly
be constructed in polynomial time. It remains to be seen that Player 1 wins
F
ω(A,B) iff there is no valid T -tiling of the n-corridor.

“⇒” Suppose there is a valid tiling τ. A strategy for Player 0 consists
of playing the sequence τ(0, 0), τ(0, 1), . . . , τ(0,n − 1), τ(1, 0), . . . as above. The
only run on B that is trace-equivalent to this is cycling through the sequence
(q0, . . . , qn−1) of states of B, i.e. it does not form an accepting run. Hence, this is
a winning strategy for Player 0.

“⇐” Suppose conversely that there is no valid tiling for the n-corridor. Take
an arbitrary word w = a0a1 . . . ∈ tITω which Player 0 could play. This induces a
tiling τw in a natural way: τw(i, j) = ai·n+ j. By assumption, no such τw is a valid
tiling. Since all of them start with tI, it must contain a horizontal or a vertical
mismatch, i.e. there is an h ∈N such that

1. (ah−1, ah) < H and h . 0 (mod n), or
2. (ah−n, ah) < V.

This gives Player 1 the following strategy χ: she skips her turns until Player 0
has played ah. At this point, the buffer content is a0 . . . ah. Let (i, j) be uniquely
chosen such that h = i · n + j and j < n. Player 1 then flushes the entire buffer
producing one of the following runs.

• If the defect is a horizontal one then we must have j > 0, and there are
x, y such that ah−1 = tx, ah = ty and (tx, ty) < H. Player 1 chooses the run
(q0, . . . , qn−1)i, q0, . . . , q j−1, hx, f to flush the buffer. From then on she can

39

consume every letter played by Player 0 whilst staying in state f and thus
producing an accepting run.

• If the defect is a vertical one then we have i > 0 and there are x, y such
that ah−n = tx, ah = ty and (tx, ty) < V. Likewise, Player 1 can now flush the
buffer along the sequence (q0, . . . , qn−1)i−1, q0, . . . , q j, v1

x, . . . , vn
x , f and then

react to each of Player 0’s moves immediately, producing an accepting
run.

Note that χ does not depend on the word w played by Player 0. It is a winning
strategy in the flushing game because it allows Player 1 to produce an accepting
run regardless of which word is chosen by Player 0, and whenever it requires
her to move she can do so by flushing the buffer. �

We note that the NBA in the construction above is very small with only two
states. It is a standard exercise to amendB such that Player 1 can check whether
Spoiler played tI first, thus reducing A to a single state only. Moreover, there
is a fixed tiling system for which the n-corridor tiling problem is PSPACE-
hard (similar to the availability of universal Turing machines). Using standard
coding tricks, it is possible to reduce the alphabet to a binary one, resulting in
the following.

Corollary 33 There is an NBA A such that deciding whether Player 1 wins the
flushing game F (ω)(A,B) for a given NBA B is PSPACE-hard.

5.2. An EXPTIME lower bound for unbounded single-buffer simulation games
Next we turn to the non-flushing variant, i.e. the single-buffer simulation

game played with an unbounded buffer. We show that this is – under some
standard complexity-theoretic assumptions – harder than the flushing variant,
namely EXPTIME-hard. A candidate for a suitable reduction is the tiling game
played on the corridor of width n [3]. It is played by two players called Starter
and Completer in order to produce a valid tiling of the n-corridor, given some
tiling system T = (T,H,V, tI). The game proceeds in rows, beginning with the
lowest. Starter chooses the tile in the first column with the exception of the first
row; here the tile has to be tI. Then Completer chooses tiles for the remaining
columns in this row. A player wins if their opponent is unable to place a tile that
matches its horizontal and vertical predecessors. (Note that Starter never has to
obey the horizontal matching relation but only the vertical one.) Additionally,
Completer wins any infinite play.

Intuitively, the two players in the simulation game model the two players
in the tiling game: as in the reduction above, Player 0 produces the tilings for
the rows and Player 1 checks that the tiling is correct. Additionally, it should
be Player 0’s opponent, i.e. Player 1, who chooses the first tile of each row. This
is problematic in principle because in the simulation game on an unbounded
buffer, there is no obvious mechanism which can be used to force Player 1
to make a move. Moreover, Player 0 has to move in each round; so a more

40

sophisticated trick is needed to model the interaction of the players in the tiling
game.

We will construct Player 1’s NBA as a product of four automata. The first
three monitor the content of the buffer and check that it corresponds to a sensible
encoding of a tiling of the n-corridor. In the fourth component, Player 1 keeps
a record of the first tile of the currently constructed row and, by moving to a
certain state, implicitly makes a choice about the first tile of the next row.

To formalise this, let T = (T,H,V, tI) be a tiling system and n ∈ N. W.l.o.g.
we assume T = {t1, . . . , tm} and tI = t1. We use the alphabet Σ = T ∪ {#, •}. The
two additional symbols are used to mark the beginning of a row in a row-wise
encoding of a tiling of the n-corridor.

Let τ be a tiling of the n-corridor. We say that a word w ∈ Σω encodes τ, if it
is of the form (# Tn(•Tn)∗)ω such that the following holds. Let

w = # v0,0 • . . . • v0,n0 # v1,0 • . . . • v1,n1 # v2,0 • . . . • v2,n2 # . . .

such that vi, j ∈ Tn for all i, j. We then require that vi, j = τ(i, 0) . . . τ(i,n − 1) for
each i ∈ N and j ≤ ni. Note that this implies that vi, j = vi, j′ for all i, j, j′, i.e. all
the T-words before the i-th occurrence of # represent the i-th row of the tiling τ.

The first automaton Cn checks that Player 0 produces sequences of the form
((# + •)Tn)ω in the sense that whenever he does not, then Player 1 can reach a
particular state. Note that this is just one component of Player 1’s NBA B.

i1Cn . . . f1

Σ

#, •

T

#, •

T

#, •

T T

#, •

T

T

Σ

n

Lemma 34 There is a run in Cn from i1 to f1 under a word w iff w = u(# + •)v v′ for
some u, v, v′ such that v is not of the form Tn(# + •).

The next component is used by Player 1 to check that each adjacent two tiles
match horizontally. We write tH for {t′ ∈ T | (t, t′) < H} and likewise for tV.

i2CH f2
...

Σ
t1

tm

t1H

tmH

Σ

Lemma 35 There is a run in CH from i2 to f2 under a word w iff w = u t t′ , v for some
u, t, t′, v such that t, t′ ∈ T and (t, t′) < H.

The third component is used to check the vertical matching relation. It
examines two letters representing tiles that are exactly n+1 positions apart and

41

assumes that in between there is exactly one occurrence of either # or •. If it
is • then the two tiles must be equal. If it is # then they must be adjacent with
repsect to V.

i3CV

. . .

. . .

. . .

. . .

. . .

. . .

f3

Σ

t1

tm

#
T

•

#
T

• •

T

T T T

t1V

T T T
t1

#
T

•

#
T

• •

T

T T T
tmV

T T T

tm

Σ

n − 1

Note the asymmetry w.r.t. the handling of • and # at the end of each of the triples
of horizontal rows. This ensures that Player 1 can only detect mismatches of
the form t Ti # t′ with (t, t′) < V and i < n − 1 because only then do t and t′

represent tiles that are not first in their respective row. Remember that Player 1
needs to choose the first tiles in each row, hence she should not be able to win
by deliberately creating a mismatch and then detecting it herself.

Lemma 36 There is a run in CV from i3 to f3 under a word w iff w = u t u′ x v′ t′ v for
some t, t′ ∈ T, u, v ∈ Σ∗, u′, v′ ∈ T∗, x ∈ {#, •} such that

• |u′ v′| = n − 1,

• t , t′ if x = •,

• (t, t′) < V and |u′| < n − 1 if x = #.

The last component C is used to make Player 1 choose the first tile in each
row. It is shown in Fig. 1. C has two states ci, c′i for each tile ti. Intuitively,
by being in state ci, Player 1 has made a choice of ti as the first tile in the row
currently under construction. In these states she can read any symbol but #
which takes her to c′i . Here, she needs any letter other than ti in order to reach
f4. With ti she can get to any ci′ for i′ ∈ [m] such that (ti, ti′) ∈ V.

Lemma 37 There is a run in C from any ci to f4 under a word w containing a single
occurrence of #, iff w is of the form u # t jv and j , i.

42

f4

c′1

c′m

c1

cm

C

#
T, •

t1

#
T, •

tm

ΣA
#

Σ

t1

tm

Figure 1: Automata used in the proof of Thm. 38.

Theorem 38 Deciding v(ω) is EXPTIME-hard.

Proof By a reduction from the n-corridor tiling game problem. Let T and n be
given as above. We construct two NBAA and B of size polynomial in |T| and
(the value of) n such that Player 1 wins G(ω)(A,B) iff Starter wins the T -tiling
game on the n-corridor. Player 0’s NBAA is shown in Fig. 1 on the left. .

Player 1’s NBA B is obtained as the synchronous product of Cn,CH,CV and
C. Its initial state is (i1, i2, i3, c1). Transitions are of the form (q1, q2, q3, q4) a

−→(q′1, q
′

2, q
′

3, q
′

4)
whenever qi

a
−→ q′i for all i = 1, . . . , 4. The acceptance condition is disjunctive,

deviating from the usual notion of a synchronous product of finite automata:
a state (q1, q2, q3, q4) is accepting iff qi = fi for some i = 1, . . . , 4. Clearly, the size
of A is O(1), and the size of B is polynomial in |T | and n. Correctness of this
construction remains to be shown.

“⇒” By contraposition. Suppose that Completer has a winning strategy χ
for the n-corridorT -tiling game. We writeχ(i, j) with i ∈N, 0 < j < n for the tile
placed at position (i, j) when all previous rows and all previous columns in row
i have been filled already. Note that Completer’s choices with χ will naturally
depend on Starter’s choices of the first tiles in the current and previous rows.

We describe a strategy for Player 0 in G(ω)(A,B). It divides the game into
phases. The i-th phase in the simulation game corresponds to the construction
of the i-th row in the tiling game. At the beginning of each phase, Player 1 has
her pebble on a state (i1, i2, i3, ch) for some h ∈ [m]. Let wi = th χ(i, 1) . . . χ(i,n−1).
Player 0 plays the letters of the word # wi(•wi)ω for as long as Player 1 remains in
state ch (of the 4th component inB). Note that Player 1 can only move out of ch
by moving to c′h with #, and this is the first letter in the buffer at the beginning.
Moreover, since wi starts with th, Player 1 cannot reach f4. Hence, in order not
to lose by never moving she eventually has to make the move ch

#
−→ c′h which

can only be followed by a move c′h
th
−−→ ch′ such that (th, th′) ∈ V. Now she is on a

non-accepting state and would therefore also lose unless she eventually moves
to some ch′ . Then Player 0 possibly continues until he has played a word of
the form # wi(•wi)∗. This completes the i-th phase, and Player 0 moves to the
(i + 1)-th phase.

43

It should be clear that any run constructed by Player 1 in this way is ac-
cepting. Thus, it remains to be seen that Player 0 cannot construct an accepting
run against this strategy. In order to do so, she would have four possibilities,
namely reaching any of the states f1, . . . , f4 in the respective component. She
cannot reach f1 by Lemma 34 because there are always exactly n letters from T
between each times that Player 0 play # or •. She also cannot reach f2 or f3 by
Lemmas 35 and 36 since χ is supposed to be a winning strategy in the tiling
game. Hence, Player 0 does not produce horizontal mismatches anywhere, or
vertical mismatches in either of the columns 1, . . . ,n − 1.

Finally, she cannot reach f4 because of the invariant about phases stated
above and Lemma 37: when Player 0 is in state ci of component C, then the
letter following the next # in the buffer is ti.

“⇐” In a similar way. Suppose that Starter has a winning strategy χ in the
tiling game. We write χ(i) to denote the tile that is placed at position (i, 0) by
Starter according to strategy χ, provided that the rows 0, . . . , i − 1 have been
constructed already. This induces a strategy for Player 1 in the simulation
game. Starting in position (i1, i2, i3, c1) she maintains the following invariant:
she consumes any x ∈ T ∪ {•} until the buffer content is of the form # Tn(•Tn)+.
If the T-parts between each occurrence of # or • are not exactly of length n then
she moves to state f1 using Lemma 34. If there is a horizontal mismatch in
any of these words she moves to f2 using Lemma 35; and if the T-parts are not
identical then she moves to f3 using Lemma 36. Otherwise, she interprets any
such T-part as the tiles in the previous row i − 1, and then moves to state ch if
χ(i) = th, via c′i .

Since Completer would win any infinite play in the tiling game, he must
eventually get stuck, i.e. produce a horizontal mismatch (which Player 1 can
deal with as described above) or a vertical mismatch. This can also be detected
by Player 1 once Player 0 has placed the tiles of the second row: then she can
always play such that the buffer content contains a word in Tn before the first
occurrence of #, representing the current row, followed by the next row. Using
Lemma 36 she can move to q3 in case there was a vertical mismatch. �

5.3. Undecidability for flushing games
In the remainder of this section, we provide undecidability results. We start

with the relatively simple case of two unbounded buffers for the flushing game.
We give a reduction from the following problem, known as theω-regular Post’s
Correspondence Problem (ω-PCP(REG)).

Input: a list of pairs of non-empty words
(
(u1, v1), . . . , (un, vn)

)
over some

alphabet ∆, and an NBA C over the alphabet [n]
Output: is there an ω-word w = i0i1i2 . . . ∈ L(C) such that ui0 ui1 ui2 . . . =

vi0 vi1 vi2 . . .?

Theorem 39 Let κ = (ω,ω, κ′) be a vector of capacities with at least two unbounded
buffers. Then vκfl is Π1

1-hard.

44

Proof It suffices to prove the claim for κ = (ω,ω) since the availability of
more buffers (that are possibly unused by the trace alphabet) cannot make the
problem simpler.

The proof provides a reduction from the complement ofω-PCP(REG) which
is known to be Σ1

1-hard [10]. Let P =
(
(u1, v1), . . . , (un, vn)

)
be a list of pairs of

words over some finite alphabet ∆ and an NBA C over [n] be given. We
construct two NBA A and B over a 2-partitioned alphabet Σ := Σ1 ∪ Σ2 with
Σ1 := ∆ and Σ2 := {â | a ∈ Σ1} as follows. For a word w ∈ Σ∗1 we write ŵ for its
translation into Σ2 via the homomorphic extension of ·̂.
A is obtained from C by replacing every transition of the form p i

−→ p′ by a
sequence of transitions (adding states correspondingly) for the word uiv̂i. B is
the following NBA.

{âa | a ∈ Σ1}
{âb | a, b ∈ Σ1, a , b}

Σ

We claim that Player 0 wins F (ω,ω)(A,B) iff (P,C) is a positive instance of ω-
PCP(REG). For the direction “⇐” suppose there is a w = i0i1 . . . ∈ [n]ω such that
(1) w ∈ L(C) and (2) ui0 ui1 . . . = vi0 vi1 Let ρ be an accepting run of C on w.
This induces a strategy for Player 0 in F (ω,ω)(A,B): starting in the initial state
and with j = 0, if the j-th letter of w is i then he moves to the (j + 1)-th state in ρ,
thus putting ui into buffer 1 and v̂i into buffer 2. Because of assumption (1), the
run he produces inA is accepting. Because of (2), the limit of the contents of the
two buffers is the same, which means that Player 1 cannot reach her accepting
state. Hence, this is a winning strategy for Player 0.

For the direction “⇒” suppose that (P,C) is not a positive instance to ω-
PCP(REG). Hence, for every word w = i0i1 . . . we have (1) w < L(C) or (2)
there is a minimal j ∈ N such that the j-th letters of ui0 ui1 . . . and vi0 vi1 . . .
differ. Consider any accepting run ρ by Player 0 through A. It determines
a unique word wρ ∈ [n]ω with w ∈ L(C). Hence, assumption (2) must be the
case. Then Player 0 can wait until both buffers contain at least j many elements.
Remember that P only contains non-empty words. Hence, such a moment must
be reached eventually. Then Player 1 can flush both buffers whilst moving to
her accepting state. From then on, she can react immediately to any letter put
into either buffer, forming an accepting run. Hence, this is a winning strategy
for Player 1. �

5.4. Undecidability for simulation games
An immediate consequence of the proof of Thm. 39 is Π1

1-hardness of v(ω,ω).
Note that Player 0’s winning strategy in the proof above also prevails against
any of Player 1’s strategies in which she is allowed not to flush the buffers
entirely at any point. However, for simulation games we can show an even
higher degree of undecidability (including Σ1

1-hardness as well) for an even
more restricted form of buffer capacities, namely (ω, 0).

45

For any class S of languages let B(S) denote the closure of S under the
Boolean operations union, intersection and complement. We write B+(S) for
the positive Boolean closure, i.e. closure under union and intersection only.
Due to the deMorgan laws, B(S) = B+(S ∪ {L | L ∈ S}).

We are particularly interested in the classB(Σ1
1) or, equivalently,B+(Σ1

1∪Π1
1).

Lemma 40 From two pairs of NBA (A1,B1) and (A2,B2) over some trace alphabet
(Σ, σ, k) and some vector κ = (κ′, 0) of capacities, one can construct pairs of NBA
(A∨,B∨) and (A∧,B∧) such that

a) Player 1 wins Gκ(A∨,B∨) iff she wins one of the games Gκ(A1,B1) and
G
κ(A2,B2),

b) Player 1 winsGκ(A∧,B∧) iff she wins both games,Gκ(A1,B1) andGκ(A2,B2).

Proof The simple constructions hinge on the fact that the positive Boolean
combinations∨ and∧ can be mimicked by choices made by the players, namely
Player 0 in case of conjunctions and Player 1 for disjunctions. Let c, c1, c2 be
three new symbols that are assigned to the last buffer (that has capacity 0).

(a) Consider the following NBA

A
∨

A1

A2

c
c1

c2

B
∨

B1

B2

c

c

c1

c2

c2

c1

Σ

Note that by reacting appropriately to Player 0’s first choice of c, Player 1 makes
an effective choice of whether to continue the play onA1 and B1, or onA2 and
B2.

(b) The conjunction can be modelled in an even simpler way because logi-
cally it should be Player 0 who makes the choice which of the two subgames
to play in. This is achieved using a single new state with c1- and c2-transitions
into the initial states ofA1 andA2, respectively, and the same on the other side
with B1 and B2. �

Lemma 40 allows us to transfer hardness results for simulation games to
positive Boolean closures, provided that an appropriate buffer is available.

Corollary 41 Let κ be a capacity vector s.t. κ = (κ′, 0) for some κ′. If deciding vκ is
hard for a class S of languages, then it is also hard for B+(S).

Hence, all that remains to see is that deciding v(ω,0) is hard for both Σ1
1 and

Π1
1. The latter is relatively easy.

Theorem 42 Deciding v(ω,0) is Π1
1-hard.

46

A
c c1

cm

u1v̂1

um v̂m

Bch

q1

qm

f

c

c

Σ \ {c}
c1

c1

cm

cm

Σ

B2

â

b̂

Σ \ {â, b̂} a

b

Figure 2: NBA used to show that v(ω,0) is also Σ1
1-hard.

Proof By adjusting the proof of Thm. 39 which uses capacities (ω,ω) appropri-
ately. First we note that the standard Σ1

1-hardness proof of the ω-PCP(REG) is
obtained by a reduction from the problem of deciding whether a given Turing
machine has an infinite computation that satisfies a Büchi condition [10, 12].
The reduction produces a list of word pairs

(
(ui, vi) | i = 1, . . . ,n

)
such that for

all i = 1, . . . ,n we have |ui| ≥ |vi|.
Now consider the flushing game constructed from such instances in the

proof of Thm. 39. During the course of the game, buffer 2 can never contain a
word that is longer than the current word in buffer 1. This is because the rules
require Player 1 to either skip her turn or flush both buffers. Hence, she cannot
remove something from buffer 1 unless she also does so for buffer 2 and in both
cases, it has to be the entire content. Moreover, since |ui| ≥ |vi| for all i, and
Player 0 can only add buffer content in the form uiv̂i we maintain the invariant
that at any position in the game where the buffer contents are (w1,w2), we have
|w1| ≥ |w2|.

In order to prove the claim of the current theorem, which regards the simu-
lation rather than flushing game, we note that Player 1 is now allowed to remove
content from any buffer without flushing it, in particular buffer 2. Since she can
never reach a situation in which buffer 2 contains a letter but buffer 1 does not,
and her automaton B as shown in the proof of Thm. 39 allows her to always
make steps by taking one letter from each buffer, she can in fact play in such a
way that any letter put into buffer 2 is immediately removed. Hence, if she is
not required to play according to the flushing game rules then she can already
win using buffer capacities (ω, 0) only. �

Theorem 43 Deciding v(ω,0) is Σ1
1-hard.

Proof Again, we use the ω-PCP(REG). However, here we construct two NBA
A,B such that the game G(ω,0)(A,B) is won by Player 1 iff the given ω-
PCP(REG) instance has a solution. Let (L,C) be such an instance with L =(
(u1, v1), . . . , (um, vm)

)
. W.l.o.g. we can assume the PCP-alphabet to be binary,

say, {a, b}. Moreover, as used in the proof of Thm. 42 already, we can re-
strict our attention to solutions that are of the form w = i0i1i2 . . . such that

47

w ∈ L(C), ui0 ui1 . . . = vi0 vi1 . . . and, additionally, for every n ∈ N we have
|ui0 . . . uin | ≥ |vi0 . . . vin |.

The two NBA are defined over the alphabet Σ := Σ1∪Σ2 with Σ1 := {a, b} and
Σ2 := {â, b̂, c}∪ {ci | i = 1, . . . ,m}. Intuitively, buffer 1 is used to hold the u-part of
a potential solution produced by Player 1, the letters â and b̂ are used to encode
the v-part of the proposed solution, and c, c1, . . . , cm are used to inform Player 0
about Player 1’s choices of the next index in such a potential solution.

The NBA A for Player 0 is shown in Fig. 2. Intuitively, it lets Player 0 ask
Player 1 for a choice of an i ∈ [m] by playing c. Since this letter goes into the
capacity-0-buffer, Player 1 has to respond to it immediately. Suppose it takes
her to some state which has outgoing transitions labeled with c j for all but one
j ∈ [m] to a state that can accept anything. Then this implicitly models a choice
of hers of this j ∈ [m] which is communicated to Player 0 who, after playing c j
next, does not lose immediately. After doing so, A requires Player 0 to put u j
into the first buffer and v j into the second. We use the shorthand notation v̂ for
the word that results from v by applying the function ·̂ to every letter.

Again, it is easier to present Player 1’s NBA as a product of three automata
Bch,B2 and BC. The first two components are shown in Fig. 2 as well. The
automaton Bch is used to communicate Player 1’s choices of the next index ih
in successively constructing a solution i0i1 The automaton B2 is used to
consume letters from the ω-buffer as soon as there is a letter pending to be
consumed from buffer 2, i.e. the one with capacity 0.

The third component BC is simply obtained from C by relabelling every
transition q i

−→ q′ as q ci
−−→ q′, and adding self-loops q x

−→ q for every x ∈ {a, b, â, b̂, c}
to any state q in it. Then the projection of any run inBC onto the letters c1, . . . , cm
is a run of C.

Player 1’s NBA B is obtained as the direct product of Bch,B2 and BC. Here,
the acceptance condition is a conjunct, i.e. a state (q, q′, q′′) is accepting iff all
three of them are accepting in their respective components. Clearly, A and B
are constructible in polynomial time in the size of (L,C). It remains to be seen
that this construction is correct.

“⇐” Suppose i0i1 . . . is a solution to the ω-PCP(REG) instance (L,C). We
describe a strategy for Player 1. Again, we divide the game into phases, each
phase starting when Player 0 is in the initial state of A, and Player 1 is in a
state composed of the initial states of Bch and B2, together with any state from
BC. Then Player 0 opens the j-th phase by playing c. Player 1 then reacts by
moving to qi j . If Player 0’s next move is not ci j then Player 1 can easily win the
remaining play by moving to f. So, Player 0 is forced to play ci j next, followed
by ui j v̂i j . The first part ui j is put into buffer 1, and the second part v̂i j needs to be
consumed by Player 1 immediately. By assumption, this matches the current
beginning of buffer 1, so she does not get stuck in component B2 which forces
her to remove this matching part from buffer 1. The play then continues in the
(j + 1)-th phase.

By assumption, i0i1 . . . ∈ L(C). Hence, the unique play enforced by this
strategy constructs an accepting run because it visits final states in BC, and

48

therefore in B, infinitely often.
“⇒” We can define a simple universal strategy for Player 0: whenever

Player 1 is in state qi in her component Bch then play ci next. It should be
clear that he will not get stuck with this strategy, and Player 1 cannot reach
state f with it. Now suppose that the underlying ω-PCP(REG) (L,C) has no
solution. Then any word i0i1 . . . is not accepted by C or contains a mismatch,
i.e. ui0 ui1 . . . , vi0 vi1 Any Player 1 strategy gives rise to such a word by
considering the sequence of states qi0 ,qi1 , . . . visited by this strategy against
Player 0’s universal strategy. If i0i1 . . . < L(C) then the run corresponding to this
word in Bwill eventually not see any accepting states in BC and therefore in B
anymore. Moreover, if the sequences ui0 ui1 . . . and vi0 vi1 . . . contain a mismatch,
then Player 1 will eventually get stuck in component B2. In both cases she is
not able to construct an accepting run, thus, this universal strategy for Player 0
is winning if the ω-PCP(REG) has no solution. �

Putting these constructions together we obain the following.

Corollary 44 Let κ be a vector of capacities with at least one unbounded and at least
one bounded capacity. Deciding vκ is B(Σ1

1)-hard.

Proof From Thm. 42 and 43, and Cor. 41, we obtain that v(ω,0) is hard forB(Σ1
1).

By [16, Thm. 7], v(ω,n) can be reduced to v(ω,0) for any n ≥ 0, hence also v(ω,n) is
hard for B(Σ1

1). Finally, having more buffers (that are possibly unused by the
trace alphabet (Σ, σ, k)) cannot make the problem simpler. �

6. Conclusion and Further Work

We have studied the decidability and computational complexity of multi-
buffer simulation games – a variant of fair simulation, characterised by a game
between Spoiler and Duplicator in which Spoiler’s moves get stored in FIFO
buffers of bounded or unbounded capacities. This gives Duplicator the possi-
bility to delay her responses and therefore better foresight in constructing a run
corresponding to the one constructed by Spoiler. This better foresight leads
to better approximations to language-theoretic inclusion problems which are
important in the verification of reactive and concurrent systems.

Considerations on the expressive power of such games, namely how well
they approximate such inclusion problems etc. have not been studied here,
simply not to make this article even longer. Nevertheless, a thorough, complete
and overviewing study of the expressive power of multi-buffer simulation
games, including their relationship to other simulation games, is planned future
work. Some results on this can be found scattered in the preliminary work
that the decidability-and-complexity study in this article is also based upon
[15, 16, 18].

It is worth mentioning that the range of complexities of solving multi-buffer
simulation games – including levels of undecidability, and when parametrised

49


````````````capacities
game type

multi-buffer simulation multi-buffer flushing

(ω, . . . , ω, n, . . . ,n) ?

(ω, . . . , ω)
∈ ∆1

2, B(Σ1
1)-hard Π1

1-complete

[Cor. 13, Cor. 44] [Thm. 26,Thm. 39]

(ω,n, . . . ,n)
∈ 2EXPTIME

[Thm. 31]

(ω)
EXPTIME-complete PSPACE-complete

[Thm. 19, Thm. 38] [Thm. 28, Thm. 32]

(n, . . . ,n) P-complete

Figure 3: Summary of the decidability and complexity results on multi-buffer games. Here, n
stands for an arbitrary finite capacity; when two references are given then the first one contains the
upper, the second the lower bound. Lower bounds hold when (n, . . . ,n) = (0) already.

by buffer capacities – spans a wide range from P (when all buffers are bounded)
to somewhere between B(Σ1

1) and ∆1
2 in the analytic hierarchy (when at least

one unbounded and one more buffer are available), and capturing PSPACE and
EXPTIME in special cases. This can be seen as an indication of the richness of
this framework.

Our results show in particular that the flushing variant is a genuinely sim-
pler subcase of multi-buffer simulations. This becomes particularly clear in the
case of a single unbounded and several bounded buffers (where multi-buffer
simulation is highly undecidable of maximal complexity and the flushing vari-
ant is solvable in doubly exponential time).

Besides the aforementioned conclusive study on expressiveness that re-
mains to be done in the future, there is a little bit of work left to be done on
complexity issues, which we could not answer to full satisfaction here. These
concern the exact complexity of the flushing variant in the case when some
buffers are bounded and some are unbounded, see Fig. 3.

References

[1] P. A. Abdulla, A. Bouajjani, L. Holı́k, L. Kaati, and T. Vojnar, Computing simulations over tree
automata, TACAS’08, 2008, pp. 93–108.

[2] J. R. Büchi, On a decision method in restricted second order arithmetic, Proc. Congress on Logic,
Method., and Philosophy of Science, 1962, pp. 1–12.

[3] B. S. Chlebus, Domino-tiling games, Journal of Computer and System Sciences 32 (1986), 374–
392.

[4] L. Clemente and R. Mayr, Advanced automata minimization, POPL’13, 2013, pp. 63–74.

50



[5] V. Diekert and G. Rozenberg, The book of traces, World Scientific Publ. Co., 1995.

[6] D. L. Dill, A. J. Hu, and H. Wong-Toi, Checking for language inclusion using simulation relations,
CAV’91, 1992, pp. 255–265.

[7] E. A. Emerson and C. S. Jutla, Tree automata, µ-calculus and determinacy, FOCS’91, 1991, pp. 368–
377.

[8] K. Etessami, A hierarchy of polynomial-time computable simulations for automata, CONCUR’02,
2002, pp. 131–144.

[9] K. Etessami, T. Wilke, and R. A. Schuller, Fair simulation relations, parity games, and state space
reduction for Büchi automata, ICALP’01, 2001, pp. 694–707.

[10] O. Finkel, Three applications to rational relations of the high undecidability of the infinite Post
Correspondence Problem in a regular ω-language, Int. J. Found. Comput. Sci. 23 (2012), no. 7,
1481–1498.

[11] C. Fritz and T. Wilke, Simulation relations for alternating Büchi automata, Theor. Comput. Sci. 338
(2005), no. 1-3, 275–314.

[12] D. Harel, Effective transformations on infinite trees, with applications to high undecidability, dominoes,
and fairness, J. ACM 33 (1986), no. 1, 224–248.

[13] T. A. Henzinger, O. Kupferman, and S. K. Rajamani, Fair simulation, Inf. Comput. 173 (2002),
no. 1, 64–81.

[14] M. Holtmann, L. Kaiser, and W. Thomas, Degrees of lookahead in regular infinite games, Log.
Meth. in Comp. Sci. 8 (2012), no. 3.

[15] M. Hutagalung, N. Hundeshagen, D. Kuske, M. Lange, and É. Lozes, Multi-buffer simulations
for trace language inclusion, GandALF’16, 2016, pp. 213–227.

[16] , Two-buffer simulation games, CASSTING’16, 2016, pp. 27–38.

[17] M. Hutagalung, M. Lange, and É. Lozes, Revealing vs. concealing: More simulation games for
Büchi inclusion, LATA’13, 2013, pp. 347–358.

[18] M. Hutagalung, M. Lange, and E. Lozes, Buffered simulation games for Büchi automata, AFL’14,
2014, pp. 286–300.

[19] M. Jurdziński, Small progress measures for solving parity games, STACS’00, 2000, pp. 290–301.

[20] R. Milner, An algebraic definition of simulation between programs, IJCAI’71, 1971, pp. 481–489.

[21] H. Rogers, Theory of recursive functions and effective computability (reprint from 1967), MIT Press,
1987.

[22] J. Sakarovitch, The ”last” decision problem for rational trace languages, LATIN’92, 1992, pp. 460–
473.

[23] P. van Emde Boas, The convenience of tilings, Complexity, Logic, and Recursion Theory, 1997,
pp. 331–363.

51


	Introduction
	Preliminaries
	Nondeterministic Büchi Automata
	Trace Languages
	Fair Simulation
	Infinite-Duration Games

	Multi-buffer Simulations
	An Intuitive Description
	A Formal Definition as Infinite-Duration Game

	Upper Bounds
	Parity Games
	The Multi-Buffer Simulation Game
	Multi-Buffer Simulation Games as Parity Games
	Solving the multi-buffer simulation game

	The Multi-Buffer Flushing Game
	Multi-Buffer Flushing Games as Parity Games
	Unbounded Buffers, only
	A single and unbounded buffer
	One unbounded and some bounded buffers


	Lower Bounds
	A PSPACE lower bound for unbounded single-buffer flushing games
	An EXPTIME lower bound for unbounded single-buffer simulation games
	Undecidability for flushing games
	Undecidability for simulation games

	Conclusion and Further Work

