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ABSTRACT 

 

Ground vehicle travelling along a road is subject to unsteady crosswinds in a number of 

situations. In windy conditions, for example, the natural atmospheric wind can exhibit strong 

lateral gusts. Other situations such as tunnel exits or overtaking induce sudden changes in 

crosswinds, as well. The interaction of this unsteady oncoming flow with the vehicle and the 

resulting aerodynamic forces and moments affect the vehicle stability and comfort. The 

objectives of the current study are to improve the understanding of flow physics of such transient 

flow and ultimately to develop measurement techniques to quantify the vehicle’s sensitivity to 

unsteady crosswind. 

 A squareback simplified car model is exposed to a forced oscillating yaw and results are 

compared to static measurements. Tests are conducted at Reynolds number Re=3.7x10
5
 and 

reduced frequencies ranging from 0.265x10
-2

 to 5.3x10
-2

. Unsteady side force and yawing 

moment measurements are associated to Particle Image Velocimetry flow fields to interpret 

dynamic loads in link with flow topology evolution. 

Phase average force and moment measurements are found to exhibit a phase shift between 

static and dynamic tests that increases with oscillating frequency. Velocity fields reveal that the 
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phase-shift seems to originate from the rear part of the car model. Moreover, lateral vortical 

structures appearing on lee side from =15° increase this phase-shift and consequently appear to 

be favourable to the lateral stability of the vehicle. 
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NOMENCLATURE 

xCP  longitudinal position of the center of pressure (m)  

f oscillation frequency 

f* reduced frequency  

Fy  side force (model coordinates system) (N) 

Ffront side force measured by the front load cell (N) 

Frear  side force measured by the rear load cell (N) 

Lref overall model length, reference length (m). Lref=0.28 m. 

Ly  model width (m) 

MZ  yawing moment (model coordinates system) (N/m) 

q0 free stream dynamic pressure   

Sref  vehicle frontal area (m
2
) 

U0 average free-stream velocity (m/s) 

V velocity vector V=(U,V,W) :longitudinal, lateral and vortical component 

(X,Y,Z) wind-tunnel coordinates system :longitudinal, lateral and vortical direction 

(x,y,Z)  model coordinates system 

 

CN yawing moment coefficient  

Cy overall side force coefficient  

Cy front front side force coefficient  

Cy rear rear side force coefficient  

 

Re Reynolds number  

 yaw angle (°) 

X steamwise component of the vorticity vector 

 air kinematic viscosity (m
2
/s) 
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INTRODUCTION 

 A car travelling along a road is subject to unsteady crosswinds in a number of situations. 

In windy conditions, for example, the natural atmospheric wind can exhibit strong lateral gusts. 

Other situations such as tunnel exits or overtaking induce sudden changes in crosswinds, as well.  

The response of aerodynamic side force and yaw moment to a sudden change in lateral wind can present 

transient effects and lead to a potential source of hazard for drivers [1,2]. A common approach to predict 

these transient effects is based on the definition of the aerodynamic admittance function representing the 

ratio, in the spectral domain, between the side wind velocity turbulent components and the aerodynamic 

forces applying on a fixed body [3-7]. Despite being a reliable and well documented technique, this 

approach gives little information about the unsteady interaction between the flow and the vehicle.  

A complete literature survey on experimental and numerical techniques available to simulate time-

dependent crosswind can be found in [7-10]. The more realistic approach so simulate a wind gust on a 

ground vehicle consists in propelling a vehicle model on a rail trough the flow generated by a lateral wind 

tunnel [8,11-13]. This approach has been recently studied numerically using large eddy simulation [14, 

15]. Whereas nearly all the authors show transient force overshoot compared to yawed vehicle steady 

force, little concordant results have been presented on the evolution of forces as a function of time, 

especially when discussing the entrance in the gust. Another approach to simulate gust propagation on a 

vehicle is the moving side jet facility studied both experimentally and numerically [10,16,17]. The model 

is fixed to the ground and the main wind tunnel is classically used to simulate the streamwise vehicle 

motion while a moving side jet produces the wind gust. This facility has supplied reliable measurements 

of unsteady aerodynamic efforts without any noise due to rail vibration from which suffers the previous 

approach. Moreover, the application of time resolved Particle Image Velocimetry offers very interesting 

new perspectives in the interpretation of transient aerodynamic forces apparition in link with unsteady 

flow development along the vehicle, as announced in the recent paper of Volpe et al [10]. Nevertheless, 

this method limits the analyse to one given step of yaw angle, while it appears useful to investigate and 
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compare cross wind effects in the whole yaw angle range potentially encountered on road, that is up to 

=30°. 

The experimental method applied in the current study consists of a model rotation about the vertical axis 

in a uniform upstream flow [18-20]. This approach does not directly simulate the side gust of wind, but 

allows for the analysis of flow and load responses when exposed to a dynamic yaw of various oscillating 

frequencies and mean yaw angles. A phase shift phenomena in the aerodynamic loads on bluff bodies for 

simulation of dynamic rather than quasi-static variation in yaw angle was observed in [18] but with no 

detailed explanation on responsible mechanisms. A coupling between vortex shedding and model stability 

has been suspected as a potential mechanism but with no formal proof [19]. In another experiment the 

wake of an oscillating vehicle was shown to exhibit significant sensitivity to yaw unsteadiness, at least 

within the explored range, =-10° and =+10° [20]. Drag calculated from wake data presented a phase 

shift between the dynamic and static approaches. However, side force or yawing moment, that are more 

relevant quantities to qualify crosswind sensitivity, were not available. Unsteady wall pressure distribution 

was recently investigated on realistic vehicle geometry under small amplitude yawing motion [21]. The 

observed difference between unsteady and steady side loads was attributed to the rear side of the vehicle. 

Recent numerical simulations of vehicle oscillation around the vertical axis offer new prospects in the 

interpretation of side loads unsteadiness in dynamic yaw ([22-24]). In other respects, unsteady bridge 

aerodynamics studies reported very similar phase shift between aerodynamic forces and instantaneous 

angle of attack [25,26]. Both measurements and numerical model show that non-linearities of the mean 

aerodynamics forces affect the unsteady force response to angle of attack fluctuations. 

  The current study proposes to enrich the experimental data base with unsteady side force 

and yawing moment measurements associated to Particle Image Velocimetry flow fields. The 

experimental facility presented in [20] is used for two yaw ranges. For the “low” yaw range 

 the flow does not present any lateral separation whereas for the “high” yaw 

range , vortical structures appear in the lee side ([27]) and interrupt the linearity 



 

 

                                                                        6 

of the yawing moment evolution with respect to the yaw angle, as shown later in figure 8. It 

seems useful to analyze the role of these lee side structures and the corresponding yawing 

moment non-linearities in the dynamic lateral stability of vehicles.  

 

EXPERIMENTAL SETUP 

Wind tunnel characteristics 

 Measurements are performed in a closed loop wind-tunnel of ISAE (Institut Supérieur de 

l’Aéronautique et de l’Espace, Toulouse, France). The test section has a square cross-section of 

0.45x0.45 m
2
 and a length of 0.7 m. The upstream average velocity is U0=21 m/s corresponding 

to a Reynolds number of Re=3.7x10
5
, based on the model length Lref. This Reynolds number is 

much lower than the one around real ground vehicles but physical mechanisms that will be 

highlighted around model bluff body in crosswind situations will constitute elements to interpret 

behavior of full scale vehicle. The turbulence level at the center of the test section is 2%. The free 

stream velocity and turbulence intensity show a maximum spatial deviation of respectively 1% 

and 0.5% within the test section. The model is fixed on a turntable that is able to rotate around the 

vertical axis (figure 1). In order to reduce the thickness of the incoming boundary layer, the 

turntable is fixed on an elevated floor. The measured thickness is 99%=6mm and the boundary 

layer shape factor (ratio of the displacement thickness to momentum thickness) is 1.31, at 

0.41Lref downstream the leading edge. 

 The wind tunnel coordinates system (X,Y,Z) and the model coordinates system (x,y,Z) are 

reported in figure 1. The origin of both systems is defined by the turntable center for the X 

(respectively x) and Y (respectively y) axes and the elevated floor for the Z axis. The Z axis is the 
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rotation axis. The yaw angle is defined positive ( >0) when the upstream wind comes from the 

side of positive y (referred as windward). Leeward refers to the side of negative y. 

 

Oscillating yaw device 

The mechanism generating the yaw oscillation is constituted of a rod linking the turntable to 

the head of a step motor. The set-up generates an amplitude of yaw angle =20°. Different 

angular ranges can be obtained by using the rod fixation point on the turntable. Two distinct 

angular ranges are studied: and The motor rotation speed fixes 

the frequency f of the oscillations. Beyond the quasi-static movement reference case obtained at: 

f=0.2 Hz, three frequencies are studied, i.e. f=1 Hz, f=2 Hz and f=4 Hz. The highest oscillation 

frequency corresponds to a reduced frequency . This normalized frequency is in the 

range of the smallest frequencies encountered on road [28]. 

The movement (t) is measured by an angular probe and is plotted in figure 2 for f*=1.325x10
-2

 

and demonstrating a close match with a pure sine function. 

 

Model description 

Dynamic
 
yaw effects on flow structures and forces are performed on a simplified car model 

(figure 3). A complete description of the model, referred as “Willy”, is given in [20]. The 

analytical definition of the body geometry can be downloaded at 

http://www.cnam.fr/laboaero/willy.htm. This squareback model presents a geometrical similarity 

to a mini-van type vehicle. Its rounded edges are showed to prevent any lateral flow separation 

for moderate yaw angle ( <15°). As a consequence, this model appears to be well adapted to 

crosswind studies ([20, 22-24, 27]). 
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The overall length of the model tested in this paper is Lref=0.28m, the considered reference 

surface is the maximum cross section, Sref=7.19x10
-3

m
2
. The model is mounted on the turntable 

via four cylindrical struts with a diameter of 8x10
-3

m ensuring a ground clearance of 12x10
-3

m. 

 

Measurement methods 

Force measurement. Unsteady forces are measured with a force balance internally mounted 

in the model. Among the full 6 component aerodynamic tensor, the side force Fy and the yawing 

moment MZ are the most relevant to characterize when analyzing cross-wind sensitivity of road 

vehicles [1]. In response to that basic requirement, a simple two-component balance has been 

designed and manufactured to measure Fy and MZ. A schematic view of the balance configuration 

is shown in figure 4a. Force measurements are performed by means of two beam load cells of 

nominal capacity of 2Kg. The front and rear load cell centers are respectively situated at -/+ 

0.19Lref. The measured side force results from the addition of the 2 load cells signals. Figure 4b 

illustrates the front and rear load cell contributions when applying a point side force Fcalibration 

along the x axis. Balance accuracy is estimated to be within 2.5% for the side force and the 

moment data.  

 

This balance and the model have been custom made to be both light and stiff in order to 

optimize the dynamic response. A balance dynamic calibration system composed of a mechanical 

shaker and a reference dynamic force transducer rigidly connected with the balance was applied 

to characterize the balance response frequency (figure 5, [29]). Exited by a broad band white 

noise in the range 0-256 Hz, the balance system fixed inside the model showed to measure 

comparable side force as the reference transducer up to 47 Hz. However, during oscillating tests, 
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a vibration originating from the plate motion was found to limit the exploitable frequency range 

of the balance system. Consequently, a low pass filter with a cut-off frequency of 17.5 Hz was 

then applied to all transient data. Twenty measurement periods of 20s with a data rate of 500 

samples per second were performed for each configuration; this protocol was found to give a 

good statistical convergence of the phase average values with a relative deviation smaller than 

0.1%. 

For each of the four oscillation frequencies (associated respectively to the reduced 

frequencies f*= 0.265x10
-2

, 1.325x10
-2

, 2.65x10
-2

, 5.3x10
-2

), inertial loads are measured without 

any wind (U0=0) and subtracted to the measured loads for U0>0. This protocol used to isolate 

pure aerodynamic load is justified by the fact that the yaw movement (t) (and then inertial 

loads) is checked to be completely independent of U0.  

 

Particle Image Velocimetry (PIV). PIV measurements are conducted to characterize the flow 

field along the leeward side of the “Willy” model. Horizontal planes (X,Y) are characterized with 

a standard 2 component configuration (camera normal to the measurement plane), the vertical 

velocity component W is not measured. Cross-flow planes (Y,Z) are characterized with a 

stereoscopic configuration giving access to the 3 components of the velocity vector (U,V,W). PIV 

configurations are illustrated in figure 6. The pulse laser is an Nd-YAG 2x30 mJ laser with a 

wave length of 532 nm. The Hisense CCD camera resolution is 1280x1024 pixels. The images 

cross correlations are performed with the Dantec Dynamics “Flow manager” software. The vector 

maps have a typical size of 150x187 mm
2
 with a spatial resolution of 2.25 mm. To keep this 

spatial resolution, horizontal velocity fields are obtained from two side by side cameras. A peak 
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validation filter of 1.2 is applied to analyze the quality of velocity vectors. Reflections 

interference is minimized using a special fluorescent paint (FP R6G) on the model walls. 

 Instantaneous velocity fields are obtained from cross-correlation of a pair of images 

acquired sequentially with a delay of 40 s; presented results correspond to an average of 500 

velocity fields registered with an acquisition frequency of 4Hz. For the dynamic case, vectors 

statistics are associated with phase average at a fixed yaw angle. In that case a specific 

synchronization device triggers separately “forward motion”  (from =-10° to =10° for 

example) and “backward motion”  (from =10° to =-10° for example). In that case, the 

acquisition frequency of the pair of images is equivalent to the oscillation frequency. For each 

selected angle , two PIV fields are then recorded: one corresponding to the forward motion and 

the other corresponding to the backward motion. 

 

RESULTS 

Steady configuration results 

 

Forces measurements. Side force and yaw moment coefficients, Cy and CN are showed in 

figures 7 and 8 for static yaw angles ranging from =-10° to =30°. These coefficients are 

normalized with the maximum cross section Sref, the model length Lref and the free stream 

dynamic pressure q0. Results are presented in the model coordinates system and CN is transported 

at the origin of the coordinates system.  
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As observed for real road vehicles ([1]), Cy decreases linearly with up to yaw angle as large 

as 40° (figure 7). The yaw moment coefficient CN rises linearly with up to  (figure 8). 

For larger yaw angles, a reduction in the slope dCN/d  is observed. The positive destabilising 

slope dCN/d  is attributed to the unbalance between strong upwind side forces (referred as “front” 

side forces) and weak downwind side forces (referred as “rear” side forces). When increasing 

over 15° a rise in rear side forces reduces the unbalance and can explain the observed slope 

reduction ([27]). This explanation is confirmed by the longitudinal position of the centre of 

pressure  (figure 9). Globally, XCP is in forward position which indicates that 

side forces are dominated by front side forces contribution. For , XCP clearly moves 

backwards, indicating a larger rear side force contribution. 

 

Velocity fields measurements. The cross-flow plane on the rear end of the Willy model 

(X/Lref=0.5) is analysed for increasing yaw angles from =10° to =35°. Figure 10 presents 

mean velocity field on the lee side of this X-plane, colored by the normalised mean vorticity 

distribution . From =10-15°, PIV measurements show the development of two 

counter-rotating longitudinal structures on the leeward side. The upper one presents a positive 

vorticity that grows with yaw angle and remains attached to the body wall. The lower one 

exhibits negative vorticity and tends to move away from the body walls with increasing . This 

behaviour is attributed to the interaction of the low structure with the wake of the front leeward 

strut. These vortical structures were identified similarly in previous studies on the Willy model in 

static yaw configurations ([22, 27])). They are believed to be responsible for the increase of rear 

side force contribution, the decrease of the unstable yawing moment and in turn the backward 

displacement of the centre of pressure for >15° (figures 8-9). 
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Velocity fields on the horizontal plane Z/Lref=0.45 show a strong local acceleration on the 

leeward front side with increasing  (figure 11). The forward position of the centre of pressure 

(figure 9) originates from this local acceleration associated with a suction peak resulting in a 

strong local (front) side force. The curvilinear velocity distribution along the leeward side, at 8 

mm from the surface, is presented in figure 12 for =0°,10°,20° and 30°. This distance has been 

found to be the best compromise to remain as close as possible to the model wall while being 

outside de boundary layer that develops along the side wall of the body. It is observed that the 

acceleration peak grows in intensity and moves backward when increasing . The decrease in 

velocity with  for 0X , is attributed to the loss of longitudinal velocity in the upper vortical 

structure. 

 

Dynamic yaw angle 

 

Dynamic forces measurements. The dynamic response of side force and yawing moment 

coefficients are presented in figures 13-14 for reduced frequencies ranging from 0.265x10
-2

 to 

5.3x10
-2

 and compared to the corresponding static values. Figure 13 refers to the yaw angle range 

 whereas figure 14 refers to the yaw angle range . In the 

following, “Forward motion” will refer to the motion from =-10° to =10° (or from =10° to 

=30°) while “backward motion” will refer to the motion from =10° to =-10° (or from =30° 

to =10°). The lowest reduced frequency f*= 0.265x10
-2

 seems not very sensitive to the 

unsteadiness of and can be considered as “quasi-static” Effectively, for this very low 

oscillating frequency, the side force and yawing moment coefficients measured in the forward 

and backward motion are very similar to the corresponding static values. For other frequencies, 
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Cy( ) and CN( ) exhibit an aerodynamic hysteresis loop around the static curves. These hysteresis 

loops highlight a de-phasing of dynamic curves compared to static curves that grows with the 

oscillation frequency. The phase lag is calculated for Cy curves with 

 and CN curves with. . Positive  

is associated to a delay of dynamic coefficients in forward motion and an advance in backward 

motion. The observed  always corresponds to a delay of the dynamic coefficient compared to 

the static coefficient (figures 13, 14, 15).  increases with the frequency and reaches 3° for the 

lower yaw angle range  at f*=5.3x10
-2

. Although the side force coefficient 

presents a similar behavior for the larger yaw range ( ), the yaw moment 

coefficient exhibits a stronger phase lag between 20 and 30°: for f*=5.3x10
-2

, 2 peak phase lag of 

5° are observed around 28° both in forward and backward motion (figure 15).  

 

Unsteady yaw angle effects on velocity fields. Synchronisation of PIV measurements at a 

given yaw angle  allows the comparison of velocity fields in forward and backward motions. 

Considering the same horizontal PIV plane Z/Lref=0.45 as in figure 11, the curvilinear velocity 

distribution is plotted, distinguishing the forward and backward motions, at f*=5.3x10
-2

 and = 

20°, along with the reference static case (figure 16). 

It appears interesting to point that the longitudinal velocity differences between forward 

and backward motion are more pronounced in the pressure recovery area ( ) 

whereas they are not visible in the acceleration area ( ) and weak in the 

velocity peak area ( ).  

The PIV cross-flow planes on the rear end of Willy (X/Lref=0.5) are presented in figure 

17, for the dynamic case f*=5.3x10
-2

 and the static case, for =28°. Unsteadiness of  leads to a 
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change in longitudinal structures identified on the leeward side: structures visualized in the 

forward motion present intensities and position equivalent to a smaller static yaw angle whereas 

structures visualized in the backward motion present intensities and position equivalent to a 

larger static yaw angle. These observations highlight a delay of longitudinal structures compared 

to the static case.  

 

DISCUSSION AND PERSPECTIVES 

The two tested oscillating cases present a delay in side force and yaw moment response for 

f*>0.265x10
-2

 compared to the static case. These two cases differ from the yaw angle ranges: the 

lower range  does not exhibit any leeward vortical structures (see the static 

cross flow planes in figure 10) whereas upper and lower vortical structures are present on the 

leeward side for the upper range from =15°. The role of these lateral structures 

in the dynamic response of aerodynamic efforts can then be discussed. 

 

Even in absence of any lateral vortical structure ( <15°), the delay can reach 3° on Cy and CN 

and f*=5.3x10
-2

 (figure 15). Analyzing velocity fields, this delay seems to originate from the 

pressure recovery area (figure 16). This point is confirmed by the relative side force measured by 

the front and the rear load cell of the balance. It clearly appears that the side force coefficient is 

dominated by the front part contribution but that the rear part is more sensitive to the 

unsteadiness of the yaw angle and presents stronger phase lag than the front part (figure 18). One 

can note that surface pressure measurements on a realistic model indicate similarly that the delay 

between quasi steady and unsteady loads originates from the rear part of the vehicle [21].  
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Static forces measurements have shown that leeward longitudinal vortices effects are not 

really visible on global value of Cy but on side force distribution along the body. Their presence is 

then more visible on CN with the curve inflection from =15 ° (figure 8). In dynamic yawing 

situations, the time delay of vortical structures (figure 10) seems to emphasize the phase lag on 

CN that can reach 5° for =28° and f*=5.3x10
-2

 (figure 15). For the studied squareback model, 

the contribution of longitudinal vortices in the dynamic response of the yaw moment is visible 

but rather weak. For fastback models, these leeward longitudinal vortices issued for the yawing 

may interact with the backlight longitudinal vortices and introduce a more complex modification 

on the transient response of aerodynamic efforts. Additional studies on a fastback model are to be 

performed to compare squareback and fastback sensibility to dynamic yawing and analyse their 

respective behaviour in link with the flow topology. 

 

CONCLUSIONS 

This paper focuses on dynamic yawing effect on the lateral stability of a simplified 

squareback vehicle. The objectives are to improve the understanding of flow physics interpreting 

unsteady aerodynamic forces in respect with the unsteady development of the fluid flow around 

the body. The role of coherent leeward vortical structures on the aerodynamic response to a 

harmonic crosswind is particularly explored. An existing test bench ([20]) has been extended to 

create model oscillations within two yaw angle ranges  and . 

The later presents strong vortical structures on the lee side similar to those observed on real 

ground vehicles in yawing configurations ([1]). Four reduced oscillation frequencies ranging 

from f*=0.265x10
-2

 to f*=5.3x10
-2 

are studied; the larger one corresponding to the smallest 

frequencies encountered on road [21].  
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Static measurements have provided interpretation of global side force and yawing moment 

evolution with  in link with velocity fields obtained by Particle Image Velocimetry. The velocity 

peak observed on the front leeward side of the model explains the domination of front side forces 

and the destabilising resulting yawing moment. Leeward vortical structures appearing from 

=15° are shown to induce a weak stabilising effect on the yawing moment. 

Model oscillation leads to a delay in side force and yawing moment responses compared 

to the reference static case. This delay increases with the reduced oscillating frequency. For the 

larger tested frequency, it can reach five degrees on the yawing moment and appears to be 

favourable to the lateral stability of the vehicle. This situation would correspond to a decrease of 

15% of the yawing moment comparing to the static case for a real vehicle driving at 28 m/s 

entering within 1.5 seconds in a side gust of 16m/s.  

Velocity fields do not present a uniform sensibility to unsteadiness: the delay seems to 

originate from the pressure recovery area. Moreover, lateral vortical structures increase the delay 

for the studied squareback model. It is believed that the role of lateral vortical structures will be 

more pronounced on fastback models, hypothesis to be confirmed with further studies. 
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