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ABSTRACT

A statistical characterization of the turbulent flow produced in a vertical shock tube dedicated to the study

of the Richtmyer-Meshkov instability (RMI) is carried out using Laser Doppler Velocimetry (LDV), time-resolved

Schlieren images and pressure histories. The time evolution of the phase-averaged velocity field and the fluctuating

velocity levels produced behind the shock wave are first investigated for different configurations of a pure air,

homogeneous medium. This allows us to determine the background turbulence of the experimental apparatus.

Second, the RMI-induced turbulent Air/SF6 mixing zone (TMZ) is studied both in its early stage of development

and after its interaction with a reflected shock wave (reshock phenomenon). Here the gaseous interface is initially

produced by a thin nitrocellulosic membrane trapped between two grids. One of the most consistent issue regarding

such a process is the generation of a large number of fragments when the incident shock wave crosses the interface.

These fragments are likely to corrupt the optical measurements and to interact with the flow. This work seeks

to clarify the influence of these fragments on the statistical determination of the velocity field. In particular it

is shown that statistical convergence cannot be achieved when the fragments are crossing the LDV measurement

volume, even if a significant number of identical experiments are superimposed. Some specific locations for the
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LDV measurements are however identified to be more favourable than others in the Air/SF6 mixing configuration.

This finally allows us to quantify the surplus of turbulence induced by the reshock phenomenon.

1 Introduction

The Richtmyer-Meshkov instability (RMI) occurs when a shock wave impulsively accelerates a perturbed interface

between two gases of different densities. The interaction of the shock wave with the perturbed interface promotes the

production of vorticity through baroclinic effects, potentially leading to the development of a turbulent mixing zone (TMZ).

The RMI is observed in several engineering applications or natural phenomena, e.g. inertial confinement fusion, supersonic

combustion or supernova explosion. Since the pioneering works of Taylor [1], Richtmyer [2] and Meshkov [3], the linear

and non-linear stages of the RMI-induced perturbations of the interface have been and are still widely studied [4], either

theoretically, numerically and experimentally for a wide variety of well-characterized initial conditions.

In contrast, the consecutive turbulent stages corresponding first to the TMZ development and second to its interaction

with a reshock are still poorly documented, despite their practical interest. In order to analyze the late turbulent phase of

the mixing, a three-dimensional random perturbation is generally imposed to the initial interface in order to promote the

rapid transition to a turbulent state. Most of the corresponding experiments [3, 5–9] have been conducted in shock tubes

where the two gases are initially separated by a thin nitrocellulosic membrane. Aternative solutions have also been proposed

to obviate the need of a membrane [10, 11]. One should however mention the technical complexity of such membraneless

experiences and the difficulty in controlling both the shape of the initial perturbation and diffusive effects. These solutions

will not be further discussed in this paper. Considering the membrane-separated interface experiments, one of the main

resulting drawbacks is the generation of fragments in the flow consecutive to the breakup of the membrane by the incident

shock wave. Their influence on the growth rate of the mixing zone has been investigated by Erez et al. [12] who found that

this effect is only noticeable during the initial stages of the TMZ development (before the reshock), when the amplitude of

the perturbations is small, and is negligible when the amplitude of the perturbations gets larger (after the reshock). However,

even if the temporal growth rate of the TMZ is of prime interest for the study of the late turbulent phase of the RMI-induced

mixing, a thorough understanding of the mechanisms driving the spatio-temporal evolution of the TMZ still suffers a lack

of comprehensive analysis. This can be partly addressed by quantifying the turbulence levels experienced during the RMI-

induced mixing phase. This can be achieved using Laser Doppler Velocimetry (LDV), through the optical measurement

of the instantaneous velocity at specific locations inside the flow. Velocity statistics are then obtained by averaging over a

sufficient number of identical experiments. To the authors’ knowledge, the only published work following this approach can

be found in Poggi et al. [8]. This lack of data is due to the difficulty in getting converged statistics because of the presence

of membrane fragments inside the flow that drastically reduce the temporal acquisition rate, hereafter denoted data rate, of

the velocity measurements when they are crossing the LDV probe volume. One of the objectives of the present paper is to

address this issue by applying the above-mentioned approach in a light/heavy gas configuration with an Atwood number of

0.67, which corresponds to the crossing of the shock wave from air to sulfur hexafluoride (SF6). In particular this requires to

estimate the number of identical experiments necessary to ensure the convergence of the velocity statistics. This paper also



serves the identification of the most favourable locations for LDV measurements and the quantification of the influence of

the fragments on the mixing process, through, e.g., a potential surplus of turbulence production. More generally it aims at

shedding light on the mixing process before and after the reshock phenomenon.

This paper is organized as follows. Section 2 is dedicated to the description of the experimental test-rig. Section 3

provides a characterization of the ‘background turbulence’ of the shock tube by performing LDV measurements without

any membrane fragments and without mixing (pure air configuration). Then we estimate the influence of the membrane

fragments on the statistical convergence and on the turbulence levels measured in the flow, first in pure air configuration

(section 4), second in Air/SF6 mixing configuration (section 5). Finally some insights are provided about the surplus of

turbulent fluctuations induced in the mixing zone by the reshock phenomenon.

2 Experimental setup and diagnostics

2.1 Description of the experimental setup

The experimental setup, sketched in Fig. 1, consists in a 5m long, 130mm square cross section vertical shock tube. For

studies involving RMI and the resulting turbulent mixing, a shock wave (Mach number 1.2) travels upwards and crosses

an air/SF6 interface, which sets the Atwood number at 0.67. The two gases are initially separated by a thin nitrocellulosic

membrane (0.5 µm thick) trapped between two square-meshed grids. The lower grid (mesh-spacing: 1mm, wire diameter:

70 µm, transparency: 87%) ensures the mechanical resistance of the membrane under hydrostatic pressure of the heavy

gas. The upper grid, of wire diameter 230 µm and of transparency 76%, imposes a three-dimensional initial perturbation

of wavelength equal to 1.8 mm, corresponding to its mesh-spacing. An illustration of the pattern of the initial perturbation

is provided in Fig. 2. In their study about the turbulent gaseous mixture induced by RMI, Poggi et al. [8] have shown that

such a perturbation imposes a fully developed turbulence in a short time compared to the arrival time of the mixing zone at

measurement locations comparable to the ones addressed in the present study.

A schematic of the experimental setup is shown in Fig. 1. All the experiments presented in this work are conducted with

a test section length L = 250 mm. The Mach 1.2 incident shock wave is generated by impacting a Mylar diaphragm, initially

separating the driven (Low Pressure, LP) and the driver (High Pressure, HP) sections of the shock tube, using a cross-shaped

sharp edges cutting device. The pressure in the driver section is controlled via a Keller pressure transmitter with an accuracy

of 0.1% of the full range (0-3bars relative to the ambient pressure). The electro pneumatic device driving the cutting device is

a Joucomatic Uniclair C25-AS-50 electrovalve. The pressure applied in the electro-pneumatic impacting device is controlled

via a Keller pressure transmitter (0-5bars relative to the ambient pressure).

2.2 Diagnostics

Pressure histories of the flow in the shock tube are recorded using five flush-mounted piezoelectric pressure transducers.

The acquisition frequency is fixed to 500 kHz which corresponds to the cut-off frequency of the pressure transducers and their

associated charge amplifiers. For each experiment, the incident Mach number is determined via the detection of the shock

wave by PPT1 and PPT2 pressure transducers located at X =−315 mm and X =−115 mm, relative to the interface position,



Fig. 1. Description of the experimental apparatus.

Fig. 2. Illustration of the pattern of the initial perturbation.

respectively (Fig. 1). In the test section, three additional pressure transducers PPT3, PPT4 and PPT5 are flush-mounted at

X = 43, 213 and 250 mm above the interface respectively.

For a given configuration, the set of instantaneous LDV measurements obtained from the corresponding set of runs are

synchronized on the time of detection t0 of the shock wave on the LDV signals (in other words, the instant of passage of

the shock wave in the LDV probe volume). An ensemble averaging, hereafter denoted phase-averaging, is then applied and

phase-averaged mean (U) and r.m.s. fluctuating (
√

u′2) X−velocities are obtained. The LDV probe volume, of approximate

dimensions ∆X = 46 µm, ∆Y = 46 µm, ∆Z = 850 µm, is located at the center of the test section of the tube, at different

X−locations above the initial position of the nitrocellulosic membrane (X = 0). The fluid is seeded with 0.8 µm-diameter

olive oil spherical particles. This value corresponds to the Sauter mean diameter and was measured thanks to a Spraytec

Malvern system. The seeding particles response time is estimated to 1.6 µs [13]. Defining the cut-off frequency of the



particle-flow system as the fluctuation frequency of the flow velocity for which the particle response, in amplitude, has

decreased by 3dB, or 30%, the particles are therefore supposed to follow velocity fluctuations over 100kHz, which gives

access to most of the turbulence scales of interest in such flows. In the spatio-temporal region of interest, spanning between

the incident and the reflected shock waves, LDV data rates range between 180 kHz and 550 kHz, depending on the considered

flow configurations described in the next sections. The LDV measurements are triggered on the PPT2 pressure signal.

Time-resolved Schlieren visualizations are simultaneously acquired. Videos of the travelling shock wave, resulting

series of compression/expansion waves and the TMZ are recorded thanks to a high-speed Phantom V12 camera. The data

rate of the image recording is fixed to 27000 images per second. The characterization of the flow relies on the combined

analysis of time-resolved flow visualizations, phase-averaged velocity measurements and pressure histories.

2.3 Discussion on the turbulence concept in shock tube experiments

Shock tube experiments intrinsically suffer small shock wave velocity run-to-run variations. Typical repeatability values

of the shock wave velocity obtained for various shock tube setups are given in Table 1. The sources of these variations are

difficult to discriminate. However in the present study, since moderate stagnation pressure changes in the driver section only

weakly affect the Mach number of the shock wave and since the experimental setup is installed in a temperature-regulated

room and the pressure in the driver section is controlled, the diaphragm rupture process is the most probable cause for these

unpredictable Mach number run-to-run variations. This rupture process may be influenced by, e.g., local defects of the

diaphragm material (such as microscopic thickness variations, local prestresses or matter anisotropy, etc.), tiny variations

in the manufacturing process of the fracture initiation lines used to calibrate the rupture of the diaphragm [9, 14] or small

variations in the impact force of driven striking devices [9]. In the present study, the shock wave Mach number repeatability

has been determined on the basis of 172 consecutive runs. It reaches 90% in the range ±1% of the shock wave velocity

target value (412m/s for a shock wave Mach number M = 1.2), which represents a total of 155 validated shots. The 10%

unvalidated shots correspond to prematury or partial breaking of the diaphragm and were removed from the test campaign

database. In the range ±0.5% of the SW velocity target value, the repeatability equals 87% of the whole shots. It is still over

80% in the range ±0.2%, corresponding to 138 shots. These correspond to 96.5% and 88.7% of the total number of validated

shots considered for the present study respectively. It is thus reasonable to assume that the post-shock velocity fluctuations

induced by run-to-run shock wave velocity variations should mainly be comprised in the range [105.3 m/s ; 107.65 m/s] in

air (for a shock wave Mach number M=1.2, the expected velocity in shocked air is 106.2 m/s) and in the range [71.4 m/s

; 72.5 m/s] in SF6 (the expected velocity in shocked SF6 is 72m/s). In this work, an experiment is considered as validated

when the Mach number of the incident shock wave is within the range ±1% of the expected value. This range was fixed as

a compromise given the repeatability values reported in Table 1. However one should consider this value as overestimated

since 96.5% of the runs considered for this work lie in the range ±0.5% and 88.7% in the range ±0.2% of the theoretical

Mach number value. In the range ±0.2%, the transcript of these run-to-run Mach number variations in terms of resulting

velocity fluctuations in shocked air (resp. SF6) is ±1.45 m/s (resp. ±0.5 m/s), or 1.36% (resp. 0.7%) of the theoretical

shocked fluid velocity (106.2 m/s in air and 72 m/s in SF6).



Ref. Shock tube characteristics Shock wave generating device M Repeatability

[15] 254mm squared cross section, WiSTL metal diaphragm ruptured by a

static cross-shaped sharp knife

1.25 - 3.08 ±0.4%

[9] 80mm squared cross section predetermined ruptured mylar

diaphragm impacted with a driven

striking pin

1.15 - 1.45 ±1%

[14] 80mm squared cross section, IUSTI T80 predetermined ruptured steel

diaphragm

1.3 - 1.5 ±3%

[16] 127mm squared cross section, LANL VST piston-driven driver 1.21 - 1.29 ±1.6%

[17] 140×20 mm cross section not communicated 1.21 ±0.8%

Table 1. Summary of typical values of the Mach number repeatability in various shock tubes.

At this stage one can wonder the influence of such run-to-run shock wave Mach number variations on the determination

of statistical quantities of interest for the study of turbulence when it is based on ensemble average of transitional flows

such as the ones involved in shock tube experiments. In this context the concept of turbulence is challenging, if not partly

controversial. Indeed, if one considers the incident shock wave velocity as the initial condition of the experiment, regardless

of the way this shock wave is generated, then the use of the term ‘turbulence’ to qualify these velocity fluctuations is not

appropriate since the shock wave velocity variations can not be considered as tiny. However, considering the turbulence

concept at the global experimental setup level, tiny variations in the initial conditions of the shock wave generating device,

induced by undetectable variations in the resistance of the diaphragm or in the force of the impacting device for instance,

can lead to unpredictable perturbations leading to erratic fluctuations of the incident shock wave velocity. From the above-

mentioned perspective these velocity fluctuations can then be interpreted as turbulence. Thereafter, the turbulence notion

will be defined from this perspective.

3 Background turbulence of the shock tube

Before analyzing the air/SF6 mixing configuration, the homogeneous, pure air configuration without the nitrocellulosic

membrane and without mixing is first investigated. This will serve the discrimination of a potential surplus of turbulence

produced in the wake of the membrane fragments from the background turbulence of the shock tube. We thus consider the

following pure air configurations :

− Conf1: experiments with a clean test section (no grid and no nitrocellulosic membrane inside the shock tube);

− Conf2: experiments with two grids positioned at the interface location (bottom wire mesh with a wire spacing of 1 mm,

upper wire mesh with a wire spacing of 1.8 mm), without nitrocellulosic membrane, in order to quantify the influence

of the grids on the velocity turbulence levels experienced in the flow.

The schematic (X , t) diagram of these two configurations is provided in Fig. 3. The LDV probe volume is located at X = 43

mm above the virtual position of the nitrocellulosic membrane (not inserted in these runs). This position corresponds to the

location of PPT3 pressure transducer. It thus allows us to correlate velocity and pressure histories of the main phenomena



(incident and reflected shock waves) crossing the measurement volume at a similar X−location. The analysis starts at the

instant of passage of the incident shock wave at X = 0 and ends at the instant of passage of the main expansion waves in the

LDV probe volume. It corresponds to the temporal window of observation used for the analysis (see Fig. 3).

Fig. 3. Schematic (X − t) diagram representative of an homogeneous experiment

For both Conf1 and Conf2 configurations, 40 experiments are conducted and the phase-averaged, mean and r.m.s.

fluctuating X−velocities U and
√

u′2 are computed. This procedure requires a given sampling of the velocity data for the

whole set of experiments, that can not be obtained from raw LDV data due to the random detection of the seeding particles in

the LDV probe volume. To this avail, each velocity signal obtained from each individual experiment is sampled into a given

set of time steps, relative to t0. The width of these time steps is fixed to 10 µs around the incident and reflected shock waves

and to 30 µs elsewhere. All the velocity samples obtained from the full set of experiments and contained inside a given time

step are cumulated and averaged. This provides the corresponding mean and r.m.s. fluctuating velocities as a function of

the time step. It has to be noticed that the width of the time steps is determined as a compromise between sufficiently high

number of samples per time step (imposing a minimum temporal width), and the temporal averaging effect induced by too

large time steps. Figure 4 displays typical convergence curves of the mean and r.m.s. fluctuating X−velocities U and
√

u′2

obtained for different time steps. It shows that sample numbers above 150 ensures the convergence of the first and second

order statistics with a variance of less than 0.2% and 5% respectively. The convergence of the first order statistics still depicts

a variance of less than 1% for a sample number of 100 and close to 1.5% for a sample number of 50. For the second order

statistics it equals 12.5% and 30% for sample numbers of 100 and 50 respectively.



0 100 200 300 400 500 600
90

92

94

96

98

100

102

104

106

108

110

Number of samples

U
(m

/
s
)

0 100 200 300 400 500 600
0

1

2

3

4

5

6

Number of samples

√

u
′
2
(m

/
s
)

(a) (b)

Fig. 4. Convergence curves of the first and second order statistics at different time steps located between the incident and reflected shock

waves, resulting from the cumulation of 40 identical experiments in pure air configuration. (a) mean X−velocity (b) r.m.s. fluctuating

X−velocity.

Figure 5 reveals that the statistical convergence is reached for all the time steps ranging from t = t0 (incident shock wave

detected in the LDV probe volume) to t = t0 + 1150 µs (reflected shock wave detected in the LDV probe volume), where

high data rates are obtained from the LDV measurements. Beyond this range, the data rates drastically decrease due to lower

velocities. This leads to a number of samples below the convergence threshold. However one can notice that the global

evolution of the mean and r.m.s. fluctuating velocity histories remains consistent with the converged part of the curves in

these regions of coarser convergence.

Figure 5(a) depicts time evolutions of U for the two previously described flow configurations. Corresponding PPT3

pressure signals are illustrated on Fig. 6, and Fig. 7 shows the simultaneously acquired Schlieren images. Interestingly

enough, those images reveal a complex acoustic field in the wake of the incident shock wave, comprising series of compres-

sion/expansion non planar waves. Those waves are induced by the travelling of the shock wave over slight parietal defaults,

in the form of steps a few tens of micron deep, at the junction of the different modules constituting the tube. The analysis

of the time evolution of U for the first configuration Conf1 reveals the progressive increase of the mean velocity level from

U ≈ 100 m/s to U ≈ 106 m/s which corresponds to the expected velocity behind the M=1.2 incident shock wave. This pro-

gressive increase of the mean velocity results from the combined effect of the above-mentioned acoustic field in the wake of

the incident shock wave and from the development of the boundary layers on the walls of the test section. The time evolution

of U is also characterized by slight oscillations whose periods are in good agreement with both the PPT3 pressure signals

(Fig. 6) and the tracks of the previously evoked series of compression/expansion waves clearly observable on the Schlieren

images (Fig. 7).

The analysis of the history of
√

u′2 for Conf1 (Fig. 5(b)) reveals the concomitant increase of
√

u′2 with U . It re-

flects the nearly constant turbulent activity of the flow between the incident and reflected shock waves. Thus the values

of both the r.m.s. fluctuating X−velocity and the associated turbulence intensity, hereafter denoted (
√

u′2,
√

u′2/U) equal

(3.2 m/s,3.2%) just after the passage of the incident shock wave in the LDV probe volume, at t = t0, and (3.8 m/s,3.6%)

just before the passage of the reflected shock wave in the LDV probe volume, at t = t0+1.2 ms. As mentioned in section 2.3,

run-to-run SW velocity variations are partly responsible for these velocity fluctuations. However this does not fully explain



the actual fluctuation levels, since it is over twice the fluctuation values attributed to run-to-run SW velocity variations. The

influence of the complex acoustic field observed through both Schlieren visualizations and pressure measurements can thus

be considered as partly responsible for the measured velocity fluctuations.

For Conf2, while the time evolution of the mean velocity U is analogous to Conf1, the history of the r.m.s. fluctuating

velocity
√

u′2 notably differs and reveals the influence of the grids on the fluctuation levels experienced by the flow. Two

distinct levels are thus observed between the incident and reflected shock waves. The first one, spanning between t = t0 and

t = t0 +430 µs, reflects the turbulent properties of the fluid initially located above the grids and equals (3.2 m/s,3.2%). As

expected, this is in good accordance with Conf1 since this volume of fluid has undergone a similar history. The second level

depicts fluctuating values of about (4.97 m/s,4.7%) and corresponds to the fluid that has crossed the grids. The comparison

of these values with the ones obtained for Conf1 just before the passage of the reshock reveals that the presence of the grids

is responsible for a 1.1% increase of the turbulent intensity.
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Fig. 5. Evolution of (a) the mean X−velocity U and (b) the r.m.s. fluctuating X−velocity

√

u′2 (blue symbols, left vertical axis) - Conf1

(left) and Conf2 (right). Number of samples used for the calculation of the statistics on each time step of the discretized velocity signal (black

dashed line, right vertical axis). The red horizontal line corresponds to the number of samples necessary to get convergence. The origin of

time on the figure corresponds to the instant of passage t0 of the incident shock wave on the LDV probe volume at X = 43 mm.
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Fig. 6. (a) PPT3 static pressure signals (X=43 mm above the interface) for Conf1 (green) and Conf2 (red) over the whole phenomenon

history ; (b) Concurrent evolutions of the mean X−velocity (blue symbols) and PPT3 static pressure (red dashed line), zoomed around the

velocity plateau between the incident and reflected shock waves for Conf2. The origin of time on the figure corresponds to the instant of

passage t0 of the incident shock wave on the LDV probe volume at X = 43 mm.

t = t0 −74.1 µs t = t0 t = t0 +74.1 µs

Fig. 7. Schlieren images of the perturbations generated by the shock wave in pure air (Conf1). The black cross on the images indicates the

location of the LDV probe volume at X = 43 mm. The origin of time on the figure corresponds to the instant of passage t0 of the incident

shock wave on the LDV probe volume.

4 Influence of the membrane fragments in pure air configurations

Here the intermediate situation between an homogeneous flow, with and without the presence of the grids (Conf1 and

Conf2), and air/SF6 mixing configurations is investigated. We consider a flow configuration similar to Conf2 (presence of

the two grids) to which the nitrocellulosic membrane is added. The objective is to estimate the influence of the membrane

fragments generated by the passage of the incident shock wave across the membrane on the turbulent levels experienced

in the test section. This will serve the discrimination of the turbulence level produced by the mixing of the two gases in

the TMZ, through baroclinic effects, from the background turbulence of the experimental setup. The corresponding set of

experiments will be hereafter denoted Conf3.



4.1 Analysis of the measurements

As in the preceding configurations, 40 experiments are phase-averaged in order to get velocity statistics. The corre-

sponding results are shown in Fig. 8. The statistics are converged between the incident and reflected shock waves except

when large membrane fragments temporarily cross the LDV probe volume, partially cutting the Doppler signals between

t = t0 +260 µs and t = t0 +560 µs (‘blackout’ phenomenon inducing the strong decrease of the number of samples available

for LDV measurements). These fragments are clearly visible on the Schlieren images of Fig. 9. This result demonstrates

the impact of the membrane fragments on the convergence of the phase-averaged statistics. Considering the low number of

LDV samples obtained in the time steps affected by the presence of the fragments (a minimum of 20 samples is measured at

t ≈ t0 +380 µs, at mid-time of the blackout), the required number of experiments necessary to attain the convergence thresh-

old can be estimated to no less than 280 in this region. However, despite this observation and the low number of samples

between t = t0 + 260 µs and t = t0 +560 µs, the evolutions of U and
√

u′2 still appear consistent with the two surrounding

statistically converged regions. This is finally quite logical, given the typical convergence histories illustrated in Fig. 4, where

the converged values are expected to be reasonably approached with a limited number of samples, beyond 30.

Figure 8(a) shows that the phase-averaged mean velocity is not affected by the presence of the membrane (and by the

resulting fragments). It depicts perfectly similar time evolution in comparison with Conf1 and Conf2. The phase-averaged

history of the r.m.s. fluctuating X−velocity
√

u′2 measured for Conf3 is depicted in Fig. 8(b). As for Conf2, two consecutive

turbulence levels are observed between the incident and the reflected shock waves. The first one is similar to Conf1 and Conf2

(3.2 m/s,3.2%), whereas the second one is close to (7.5 m/s,7%), which corresponds to a further increase of 2.3% induced

by the membrane fragments (in comparison with the 4.7% second turbulence level measured for Conf2). This increase is

concomitant with the passage of the fragments inside the LDV probe volume depicted on the time-resolved images (Fig. 9).

It can thus be concluded that the membrane fragments not only hinder the convergence of the velocity statistics when they

cross the LDV probe volume, but also produce a non-negligible surplus of turbulence.

At last, just after reshock (beyond t = t0 + 1.2ms), one can observe an additional increase of the r.m.s. fluctuating

X−velocity. Two contributions can be identified in order to explain this post reshock increase of
√

u′2. First the well-

documented shock-turbulence interaction process is responsible for an amplification of the pre reshock fluctuating levels

(see e.g. [18]). Second, the transient relative-to-surrounding fluid motion of the fragments is re activated during the reshock

process, which induces the transient generation of wake agitation as detailed below.

4.2 Discussion on the fragment-induced velocity fluctuations

The influence of the membrane fragments on the production of velocity fluctuations is a complex issue. It depends

on the coupling between the dynamics of the fragments and the surrounding flow. This coupling is in turn influenced,

amongst others, by the ability of the fragments to respond to the various time scales of the flow. Two critical time scales can

be identified: one corresponding to the discontinuity induced by the shock wave passage, another one associated with flow

structures whose size is of the same order as the one of the fragments and which can be assimilated to the smallest continuous

flow time scale able to affect the mean dynamics of fragments. The response time of the fragments itself depends on their
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Fig. 8. Evolution of (a) the mean X−velocity U and (b) the r.m.s. fluctuating X−velocity

√

u′2 (blue symbols, left vertical axis) - Conf3.

Number of samples used for the calculation of the statistics on each time step of the discretized velocity signal (black dashed line, right

vertical axis). The red horizontal line corresponds to the number of samples necessary to get convergence. The origin of time on the figure

corresponds to the instant of passage t0 of the incident shock wave on the LDV probe volume at X = 43 mm.

t = t0 −44 µs t = t0 +30.1 µs t = t0 +178.2 µs

Fig. 9. Schlieren images of the perturbations generated by the shock wave in pure air configuration (Conf3). The black cross on the images

indicates the location of the LDV probe volume at X = 43 mm. The origin of time on the figure corresponds to the instant of passage t0 of

the incident shock wave on the LDV probe volume. Here the dark zone corresponds to membrane fragments.

size (affected by the mesh size of the upper grid), shape (affecting the drag coefficient of the fragment), density relative to

the surrounding fluid density, and on the surrounding fluid properties (density, viscosity). The precise determination of this



response time is a priori out of reach since the abovementioned parameters are partly unknown. However the analysis of

time-resolved Schlieren images obtained for Conf3 indicates that the membrane fragments reach a similar-to-surrounding

fluid velocity (in other words that their slipping velocity tends to 0) in a time interval close to the one separating 2 consecutive

images (37µs).

5 Velocity fluctuations in mixing configurations

The final step of the analysis is conducted in this section by considering an air/SF6 mixing case, hereafter denoted

Conf4. As already mentioned in section 2, the experimental setup and procedure are the same as in pure air configurations

with identical parameters for the flow (L = 250 mm, thin nitrocellulosic membrane trapped between the two previously

described grids, incident shock wave Mach number of 1.2 travelling from the light gas towards the heavy gas, Atwood

number of 0.67). A schematic (X , t) diagram of the mixing cases is given in Fig. 10. This diagram also depicts the temporal

window of observation that will be used for the analysis. It starts at the moment of the interaction of the incident shock wave

with the initial gaseous interface, referred to as the time origin t = 0 µs, and ends at the moment of the interaction of the main

expansion waves with the TMZ. The origin of time is thus fixed regardless of the LDV measurement station. t0 still refers to

the instant of passage of the transmitted shock wave in the LDV probe volume. In this temporal window of observation, a

sequence of time-resolved Schlieren images is given in Fig. 11 as an illustration of the RMI-induced mixing process.

Fig. 10. Schematic (X − t) diagram of an Air/SF6 experiment. Except for the previously defined TMZ acronym, letters W, T and R used in

the acronyms refer to ‘wave’, ‘transmitted’ and ‘reflected’ respectively.

Three LDV measurement X−locations are chosen above the initial position of the nitrocellulosic membrane for the



t = 0.148 ms t = 0.4 ms t = 1.37 ms

t = 1.85 ms t = 2.11 ms t = 2.19 ms

t = 3 ms t = 3.5 ms t = 4.6 ms

Fig. 11. Illustration of the TMZ evolution (Conf4). The reader can refer to Fig. 10 for the definition of acronyms.

analysis of the TMZ evolution. The first position, corresponding to X = 43 mm, allows a direct comparison of the mixing

configuration with pure air configurations. It also gives access to the early stage of development of the ascending TMZ.

Since the interaction of a developed TMZ with a reshock is of prime interest for this study, two additional LDV measurement

stations, located at X = 135 mm and X = 150 mm respectively, are also investigated. Indeed the analysis of the (X − t)

diagram (schematic illustration given in Fig. 10. See also Fig. 14 for an illustration of the actual, experimentally determined,

(X − t) diagram) shows that the TMZ boundaries remain confined in the range X ∈ [120 mm,155 mm] for instants ranging

between the interaction of the reflected shock wave (RSW) and the reflected expansion waves (RW) with the TMZ. As such

the X = 135 mm station is chosen as a median position inside the above-mentioned range. The X = 150 mm station, which

corresponds to the highest position below the cusp of the TMZ trajectory, allows to scan the entire TMZ, from its upper to

its lower boundaries (in the previously defined time interval).

For each of these LDV measurement stations, 35 experiments are phase-averaged following the same procedure as

described in section 3. The convergence threshold remains of the same order as the one observed in pure air cases, i.e. 150

samples per time step to reach full convergence.



Figure 12, left-hand column, displays instantaneous LDV measurements for the three X−locations. For an incident

Mach number of 1.2 in the air, the SF6-transmitted shock wave accelerates the flow to U ≈ 73.5 m/s until the arrival of

the reflected shock wave. In addition time-resolved Schlieren images (not depicted in Fig. 12, for the sake of consiceness)

indicate that, for the LDV measurement station X = 43 mm, the TMZ is located below the LDV probe volume at t = 555 µs

and above it at t = 592 µs. During this time interval, the mean velocity of the flow still equals U ≈ 73.5 m/s (Fig. 12).

Consequently, for X = 43 mm, the ascending TMZ is assumed to travel at U ≈ 73.5 m/s and to cross the LDV probe volume

as from t = 585 µs (i.e. 585 µs after the passage of the transmitted shock wave through the initial gaseous interface). At

that time, the thickness of the TMZ is estimated to h = 7 mm, based on Schlieren images. This value was obtained from

a specific image post-processing, based on the use of frequential filters. It consists in first, applying a 2D Fast Fourier

Transform (FFT) on the raw images, second high-pass filtering the previously transformed images in order to eliminate the

low frequency components of the image associated with the homogeneous zones, last applying the inverse FFT, revealing

the boundaries of the TMZ. This technique is detailed in [19]. Therefore, the crossing of the TMZ through the LDV probe

volume, illustrated on Fig. 12, is expected to last 95 µs. From Fig. 12(a), the duration of the ‘blackout’ (Doppler signal cut)

can be estimated to 320 µs and starts at the instant of passage of the upper boundary of the TMZ in the LDV probe volume.

We can thus conclude that membrane fragments still cross the LDV probe volume after the passage of the TMZ, partially

cutting the Doppler signals for an additional time duration of 225 µs. This conclusion is further supported by the Schlieren

image presented in Fig. 13. On both sides of the blackout, reasonable LDV data acquisition rates are obtained (180 kHz in

pure SF6 before the blackout and 320 kHz in pure air after the blackout). However, this data rate is drastically reduced as

long as membrane fragments are crossing the LDV probe volume. The same observations can be made for the instantaneous

velocities measured for the two other locations. For X = 135 mm, Fig. 12(b) displays two consecutive blackouts. The first

one lasts about 400 µs and corresponds to the ascending TMZ. The second one corresponds to the re-shocked TMZ (after the

cusp of its trajectory, see Fig. 10). Its duration, much longer than the previous one, is estimated to 4.72 ms. This indicates

that most of the membrane fragments lag inside and behind the re-shocked stagnating TMZ. For X = 150 mm, Fig. 12(c)

depicts a unique, long blackout of approximately 1.32 ms. For this specific measurement station, the LDV probe volume is

close to the cusp of the TMZ. The membrane fragments tend to stagnate around the measurement zone such that the incident

and reflected phases can not be discriminated.

The corresponding mean X−velocity temporal evolutions obtained by averaging over the 35 experiments are displayed

in Fig. 12, right-hand column. The gases are first accelerated to U ≈ 73.5 m/s after the interaction of the incident shock

wave with the initial interface, then slow down to U ≈−18 m/s after TMZ/reflected shock wave (RSW) interaction, and are

finally accelerated once again to U ≈ 5 m/s after the arrival of the reflected expansion waves RW (see. Fig. 10). At late times

of the temporal window of observation, after t = 5 ms, the main expansion waves coming from the bottom of the shock tube

reach the test section and decelerate the flow to U ≈ −20 m/s. Similarly to pure air configurations, the convergence rate of

the statistics falls below the required threshold when membrane fragments cross the LDV probe volume. For X = 43 mm,

the number of samples available in the different time steps is very similar to what has been reported for Conf3 (pure air +

membrane), whereas a worst situation is observed for X = 135 mm where the number of samples remains close to zero for
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Conf4

Fig. 12. Conf4: LDV measurements of the instantaneous (left-hand column) and mean (right-hand column) X−velocity U and U for the 3

locations (a) X = 43 mm, (b) X = 135 mm, (c) X = 150 mm. t0 corresponds to the instant of passage of the incident shock wave on the

LDV probe volume. (Left-hand column): Green dashed lines correspond to the temporal location of the TMZ. Red dashed lines depict the

temporal location of the blackout. (Right-hand column): number of samples used for the calculation of the statistics on each time step of the

resampled velocity signal (black dashed line, right vertical axis). The red horizontal line corresponds to the number of samples necessary to

get convergence.

all the instants consecutive to the passage of the ascending TMZ. This measurement station, located close to the center of

the stagnating TMZ, thus appears particularly inappropriate for LDV measurements in RMI-induced mixing configurations

since the membrane fragments remain confined inside the TMZ in this region of evolution. The analysis seems however

more promising for X = 150 mm since the number of samples recovers non-negligible values after reshock, between 3.2

and 4 ms, even if the convergence threshold is still not reached. This effect can be attributed to the distance separating the



Fig. 13. Visualization of the ascending TMZ in its early stage of development and of the following membrane fragments (Conf4)

LDV probe volume from the initial gaseous interface. For large enough LDV probe location-to-inital interface distances, the

inertia of the membrane fragments allows to partly separate them from the core of the TMZ. This leads to a lower fragment

concentration in the region of interest, and thus to improved data rates for the LDV measurements. Consequently this tends to

improve the convergence. For the remaining time steps affected by the blackout, where the number of samples is particularly

low, a proper convergence can not be expected, even for a repetition of a very large number of identical experiments.

In light of the previous considerations about the actual convergence rate of the LDV measurements in mixing config-

uration, r.m.s. fluctuating X−velocities should only be quantitatively analysed in the temporal regions located between the

incident and reflected shock waves, where the convergence threshold is globally reached (except during the passage of the

TMZ where the data rate drastically falls). The values of the corresponding turbulent fluctuations and intensities are gathered

in Fig. 14 which provides a complete time-space picture of the measured turbulent properties of the RMI-induced mixing

history.

Between the passage of the incident shock wave and the crossing of the TMZ in the LDV probe volume, in pure SF6,

the fluctuating values (
√

u′2,
√

u′2/U) equal (3.1 m/s,4.2%), (2.25 m/s,3.1%) and (2 m/s,2.7%) for LDV measurement

stations X = 43 mm, X = 135 mm and X = 150 mm respectively. One can notice that the background turbulence initiated in

the SF6 by the transmitted shock wave and the refracted compression waves (visible in Fig. 11 at t = 0.148 ms) gradually

decrease with the measurement location. Interestingly enough, considering r.m.s. fluctuating X−velocities at X = 43 mm

(unique common measurement station between pure air and mixing configurations), one can notice similar values for both

Conf3 and Conf4, close to 3.2 m/s in pure air and 3.1 m/s in pure SF6 respectively, before the arrival of the TMZ. This

tends to indicate that the incident shock wave and consecutive refracted waves induce similar turbulent agitation in both pure

air and pure SF6. However the transcript of this agitation in terms of turbulent intensity is different for Conf3 and Conf4:

they are estimated to 4.2% in pure SF6 (Conf4) and 3.2% in pure air (conf3) at X = 43 mm. This reflects the lower mean

X−velocity in SF6 in comparison with air – 73.5 m/s in SF6 instead of 106 m/s in pure air – see sections 3 and 4.

After the passage of the TMZ up to the reflected shock wave, in pure air, the fluctuating values (
√

u′2,
√

u′2/U) are

equal to (5 m/s,6.8%) for X = 43 mm and (2.18 m/s,2.96%) for X = 135 mm. Note that for X = 150 mm, no fluctuating

values can be calculated in pure air due to the too short time interval between the consecutive passages of the ascending



and descending TMZ in the LDV probe volume (see Fig. 14). Here, considering the measurement station X = 43 mm, the

turbulent intensity is nearly the same for both Conf3 (7%) and Conf4 (6.8%). Regarding the normalized decay laws of

grid-generated turbulence [20], this result is consistent since for both Conf3 and Conf4, the volume of fluid (pure air initially

located below the gaseous interface) crossing the measurement zone has experienced analogous histories.

During the passage of the TMZ in the LDV probe volume, we remind that the convergence threshold is not strictly

reached. However and as mentioned in sections 3 and 4, given the typical convergence histories illustrated in Fig. 4, the

converged value is expected to be reasonably approached with a limited number of samples, beyond 30. In that sense we

consider as appropriate to provide the following values as an indicator of the turbulent levels inside the TMZ before its

interaction with the reflected shock wave. For LDV measurement station X = 43 mm the fluctuating values are estimated

to (3.6 m/s,4.9%) inside the TMZ. These values are slightly higher than the ones measured in pure SF6 before the passage

of the TMZ. This increase can be attributed, without pre-empting their relative proportion, to both the baroclinic RMI-

induced mixing and the velocity fluctuations produced in the wake of membrane fragments. Unfortunately it is not possible

to discriminate their relative contribution since, as previously mentioned, a large number of membrane fragments still lag

inside the greater part of the TMZ. For higher measurement locations, the fluctuating values progressively decrease with

the distance from the initial interface, under diffusive effects. These values equal (2.4 m/s,3.3%) for X = 135 mm and

(2.1 m/s,2.9%) for X = 150 mm. It is interesting to note that this trend is similar to the observations of Poggi et al. [8] for

an Atwood number of −0.67 (corresponding to an incident shock wave travelling from SF6 to air).

After the interaction of the TMZ with the reflected shock wave, the statistical convergence threshold is no more reached,

whatever the above-mentioned LDV measurement station. However, for the measurement station X = 150 mm, the number

of samples temporarily rises up to ≈ 50 when the upper part of the descending, reshocked TMZ crosses again the LDV probe

volume, between t = 3.2 ms and t = 4 ms (see Fig. 12). Here the measured value of the turbulent agitation (
√

u′2,
√

u′2/U)

equals (3.5 m/s,15.7%). These values can thus be considered as indicative of the fluctuating levels inside the reshocked

TMZ. Comparing these values with the fluctuating levels measured inside the ascending TMZ (2.1 m/s,2.9%), just before

reshock at the same location X = 150 mm, a 1.4 m/s increase of the fluctuating velocity is noticed. As for the associated

turbulence intensity, its dramatic increase also results from the strong decrease of the norm of the mean velocity. The increase

of the fluctuating levels is expected in the re-shocked TMZ since a new amount of energy is injected in the mixing zone by

the reflected shock wave, and the baroclinic vorticity source term is re-activated. Finally the observed difference in the fluc-

tuating levels in the TMZ before and after reshock is also probably due, to a lesser extent, to the additional artificial mixing

induced by the fragments in their wake. In the present experimental configuration it is not possible to strictly discriminate

the contribution of the membrane fragments from the contribution of the RMI-induced baroclinic terms to the measured fluc-

tuating levels. One can at best speculate about their relative contribution taking advantage of the characterization conducted

in pure air cases (Conf3). As mentioned in section 4.2, the fragment-induced velocity fluctuations originate from the wake

that is transiently generated downstream of the fragments, when their slipping velocity relative to the surrounding fluid is

still noticeable. Once the slipping velocity of the fragments approaches 0, the wake generation and the resulting production

of velocity fluctuations stop while the transiently generated wake decays. At the instant of maximum slipping velocity (such



as at the instant of passage of the shock wave), the Reynolds numbers of the fragments in pure SF6 and pure air, and as a

consequence in the intermediate TMZ case, all lie in the range of moderate Reynolds number values, for which the turbulent

wake depicts similar topology and turbulent intensity levels. Moreover, the higher density value of the SF6 in comparison

with air suggests a shorter time response of the fragments in pure SF6, and consequently in the mixing zone, of intermediate

density. One can thus infer similar, if not smaller fragment-induced fluctuation levels in the mixing zone and in pure SF6

than in pure air.

This phenomenon is illustrated if Fig. 15, for an experimental configuration involving an upper grid of mesh-spacing

equal to 12.1 mm. It should be noticed that this specific grid imposes much larger membrane fragments than the ones

generated in the configurations investigated here. It depicts the rear boundary of the TMZ after reshock, where pockets of

fluid are extracted from the mixing zone by large ‘spoon-shaped’ membrane fragments (their size is estimated to be close to

the mesh spacing of the grid, i.e. ∼ 12 mm). These mechanisms are also certainly active in Conf4 inside the TMZ, but to

a lesser extent since the membrane fragments are much smaller (∼ 1 mm), leading to a slight over-production of turbulent

agitation.
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Fig. 15. Illustration of the influence of the nitrocellulosic membrane on the flow. Zoom of the TMZ rear-boundary after reshock. In the

experiment illustrated in this figure, the upper grid was replaced by a grid of mesh-size 12.1mm, leading to the generation of large size

membrane fragments. All the other experimental parameters were kept identical to Conf4 parameters.

6 Summary

In this paper we have experimentally investigated the late development of a Richtmyer-Meshkov instability-induced

turbulent mixing zone and its subsequent evolution after the reshock phenomenon. Here the initial interface separating the

two gases of different densities is obtained thanks to a thin nitrocellulosic membrane trapped between two grids. On the

basis of coupled Laser Doppler Velocimetry measurements, wall pressure histories and time-resolved Schlieren images, 4

configurations were analysed, aiming at discriminating 1) background, 2) grid-induced, 3) membrane fragments and mixing-

produced turbulence.

To this avail three pure air configurations were first investigated. The first one has revealed the background turbulent

intensity of the shock tube, around 3.6%. Complementary investigations have highlighted the influence of the grids and the

membrane fragments on the surplus of turbulence intensity measured in the test section, of the order of 1.1% for the grids

and 2.3% for the membrane fragments. These preliminary studies have demonstrated that 150 Laser Doppler Velocimetry

samples per time step, corresponding to the repetition of 40 identical experiments, were necessary to ensure the statisti-

cal convergence of the mean and fluctuating velocities outside the membrane fragments-polluted region. Moreover it has

been shown that the satisfaction of the convergence threshold inside the polluted region would require up to 280 identical

experiments.

The mixing configuration investigated in a second phase has emphasized the difficulties in reaching fully converged

statistics for the complete history of the phenomenon. In particular it has been shown that the presence of a large number

of membrane fragments in the core and in the periphery of the turbulent mixing zone strongly hinders the achievement of

velocity measurements when these fragments cross the region of interest, causing a ‘blackout phenomenon’, even if hun-

dreds of identical experiments were to be cumulated. These convergence difficulties are however not of the same importance

depending on the measurement location above the initial gaseous interface. Thus the Laser Doppler Velocimetry measure-

ment stations located far enough from the initial interface, and in particular just below the cusp of the turbulent mixing zone

trajectory, have been identified to be less affected by membrane fragments than lower measurement stations, since the frag-

ments inertia tends to separate them from the core of the mixing zone. For these sufficiently distant measurement locations,

pertinent velocity measurements are thus obtained in the mixing zone after reshock, where the cumulated number of samples

temporarily rises up to noticeable levels. These levels, if still below the strict convergence threshold, allow to extract mean-



ingful trends for the mean and fluctuating velocity levels. In particular, the reshock induces a 50% increase of the root mean

square fluctuating velocity while the norm of the mean velocity dramatically decreases. This turbulence increase reveals the

new amount of energy injected in the mixing zone by the reflected shock wave and the action of baroclinic vorticity source

terms.
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