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ABSTRACT

This article describes a general framework to generate linearized models of satellites with large flexible ap-

pendages. The obtained model is parametrized according to the tilt of flexible appendages and can be used to

validate an attitude control system over a complete revolution of the appendage. Uncertainties on the character-

istic parameters of each substructure can be easily considered by the proposed generic and systematic multibody

modeling technique, leading to a minimal LFT model. The uncertainty block has a direct link with the physical

parameters avoiding non-physical parametric configurations. This approach is illustrated to analyze the attitude

control system of a spacecraft fitted with a tiltable flexible solar panel. A very simple root locus allows the stability

of the closed-loop system to be characterized for a complete revolution of the solar panel.

Nomenclature

As shown in Fig.1, this paper considers a satellite composed of a main rigid body B and only one appendage A . Apart

from the inertial frame Ro = (O,xo,yo,zo) two other frames must be defined:

Rb = (B,xb,yb,zb) : main body reference frame also called ”rotating body frame”, where B is the center of mass of the

main body

Ra = (P,xa,ya,za) : appendage reference frame, where P denotes the anchorage point between the appendage and the main

body

Tba : transformation matrix from Ra to Rb defining the nominal configuration

Following notations will be used (vectors in a three-dimensional Euclidean space are indicated with an arrow, bold

typeface is used for other vectors):

Gtotal : center of mass of the overall spacecraft

Concerning the main body B :

−→a B : absolute linear acceleration vector of B at B
−→a P : absolute linear acceleration vector of B at P
−→ω : absolute angular velocity vector of Rb w.r.t Ro
−→
F ext : external forces vector applied to B
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−→
T ext,B : external torques vector applied to B at B

mB : mass of the main body B

I
B
B : 3×3 moment of inertia tensor of the main body B at B

τPB : kinematic model between the point P and the point B

Concerning the appendage A :

G : center of mass of A
−→
F B/A : force vector applied by B to A
−→
T B/A ,P : torque vector applied by B to A at P
−→
T B/A ,B : torque vector applied by B to A at B

mA : mass of the appendage A

I
A
G : 3×3 moment of inertia tensor of the apenndage A at G

In case of a flexible appendage, some additional data must be defined:

N : number of flexible modes

ηηη : modal coordinates vector of flexible modes

ωi : angular frequency of the ith cantilevered flexible mode

ξi : damping factor of the ith flexible mode

llli,P : 6×1 vector of participation factors of the ith flexible mode computed at P

LP : modal participation factor matrix computed at P

And finally, more general notations will be used:

s : LAPLACE variable

In : n×n identity matrix

0n×m : n×m zero matrix

AT : A transposed

diag(ωi) : diagonal N ×N matrix from ωi, i = 1, · · · ,N

P(s)(i : j, l : m) : subsystem of P(s) between inputs l to m and outputs i to j

Acronyms

dof : degree of freedom

LFR : Linear Fractional Representation

LFT : Linear Fractional Transformation

1 Introduction

Future space missions have increasingly stringent requirements on pointing accuracy. Larger and more flexible satellite

structures introduce flexible modes and challenge the limits of achievable pointing accuracy based on traditional AOCS (At-

titude Orbit Control System) designs. The model of a flexible appendage (solar panel, antenna, . . . ), as derived by structural

dynamics experts, assumes that the appendage is cantilevered at the anchorage point P and is given in terms of frequencies,

dampings, and modal participation factors. The control design engineer has to gather the various appendage models on the

main body model while taking the spacecraft geometry into account, in order to design and to validate the attitude control

law. As he is involved very early in the project, the exact definition of the satellite is not yet fixed: that is the reason why

many parameter values are supposed to be submitted to large uncertainties. Robust control design strategies are then pre-

ferred, requiring prior modeling of the feasible whole spacecraft set.

Currently the spacecraft dynamic model is written as a relationship between the 6 dof vector of the external forces and

torques applied to the main body and the 6 dof vector of acceleration at the composite center of mass. Under small angles

and angular rates assumption, a linearized model is commonly adopted to design attitude control laws. Some formulations

are based on generalized damped spring/masses systems: they typically involve mass, damping and stiffness matrices of

the coupled system [1–5]. In these formulations, the physical parameters of each substructure are cast in the whole model

and the propagation of uncertainties cannot be derived easily. Furthermore, the dynamic model of the coupled system must

be computed for a given angular configuration of appendages leading to high CPU-time for simulation and analysis of the

coupled system over a complete revolution of appendages (typically a solar panel). Considering that the only external forces

and torques applied on the appendage are the forces and torques applied by main body at the interface, other formulations

exploit the multibody modeling approach and use directly the rough data of each substructure. Such an approach is helpful

if substructures are designed and produced by different partners. Substructure couplings were first introduced in [6] through
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the Component Mode Synthesis. Effective mass/inertia matrix [7] or impedance matrix [8] is quite convenient to build

step-by-step the overall spacecraft model from subsystems, defined by their own physical and independent parameters [9].

If parametric uncertainties have to be taken into account in either of these two formulations, physical constraints must

still be respected. Practically, the variations on the total mass/inertia of an appendage and the variations on its modal

participation factors cannot be independent, otherwise some unrealistic parametric configurations may occur leading to

unstable mechanical models [1, 10]. Mathematically, the residual mass matrix (defined as the difference between total mass

of the appendage and effective masses of all flexible modes) of each appendage must be semi definite positive. In case of

very flexible appendages this residual mass is in fact due to the contribution of neglected flexible modes (the residual mass

tends to zero if all flexible modes are taken into account). As residual mass does not explicitly appear anywhere, it is difficult

to introduce these inequality constraints into the LFT framework. The interest of substructure from the uncertainty modeling

point of view is adressed in [11, 12] for robust control design purposes. In [11], the parametric uncertainty is focused on

the interface stiffness. The substructure uncertainty is restricted to an unstructured uncertainty to handle high frequency

truncated modes. In [12], the parametric uncertainty concerns only frequencies and damping ratios of each component

mode. Uncertainty on mode shape (or effective mass) is not directly taken into account.

The first contribution of this paper is to propose a generic modeling approach for satellites with large flexible appendages

for controller validation and simulation rather than for control design. The approach allows to take into account the substruc-

ture parametric uncertainty on mode frequencies, damping ratios and participation factors as they can be expressed by the

substructure designers. This approach ensures to obtain a minimal realization of the satellite model and a minimal LFR-type

representation of uncertainties, because it allows to come back to physical origins of the parameter variations. The second

main contribution concerns the LFR of the appendage tilt angle, which offers an adequate framework to analyze the control

law robustness for a complete revolution of each appendage.

The paper is organized as follows. Section 2 details the substructure approach used to build the linearized spacecraft

model around a nominal configuration. When uncertainties are considered, the same handlings will be applied. However

special attention is paid to the positiveness of appendage residual mass matrix, which has to be verified at each feasible

parameter value. This leads to a new LFR formulation presented in section 3.1. Section 3.2 explains how parametrization of

appendage tilt angle can be introduced into the new LFR formulation. The interest of this parametrization is then illustrated

in section 4 through the validation of a control law robustness. Finally, section 5 concludes on remarks about the role of this

new formulation and approach in flexible space structures control today.

2 Multibody modeling approach

Papers [1, 9, 10] propose various formulations to set up a linear dynamic model of a spacecraft with rigid or flexible

appendages around a nominal configuration. The most commonly used formulation called ”MDK” is based on data given by

structural experts. Figure 2 represents such a formulation, where M, K and D are respectively the generalized mass, stiffness

and damping matrices of the whole spacecraft including rigid and flexible degrees of freedom. In [13], this formulation is cast

into a left-coprime factorisation to handle uncertainty modeling for control design purpose with improved stability margins.

Despite its simplicity, this formulation has two main drawbacks. Firstly this model is not appropriate to take physical

uncertainties into account. Indeed, it is difficult to go back to the physical origin of these model parameter variations.

Secondly the model must be recalculated for each angular configuration of the appendage.

The idea of the papers [9, 10] is to introduce a multibody modeling approach which splits the dynamic model of each

body within the global system, before connecting them.

2.1 Main body model

The main body model is obtained thanks to EULER / NEWTON equations applied to the main body at point B (see the

nomenclature). Under the small angular rate assumption (i.e. the CORIOLIS and centrifugal accelerations are neglected)

and considering that the main body is rigid and submitted to external forces/moments
−→
F ext ,

−→
T ext,B and to forces/moments

−→
F B/A ,

−→
T B/A ,P due to the interaction with the appendage, this model reads:

[
−→
F ext −

−→
F B/A

−→
T ext,B −

−→
T B/A ,B

]

= DB
B

[−→a B
−→
ω̇

]

. (1)

where:

DB
B =

[
mB I3 03×3

03×3 I
B
B

]

. (2)
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2.2 Dynamic model of the cantilevered appendage

The dynamic model MA
P (s) of the flexible appendage A cantilevered on the main body at the interface point P is

commonly described by the so-called Cantilever Hybrid Model [1, 5, 9]. This model gives the relationship between the

6 dof acceleration vector of the point P,

[−→a P
−→
ω̇

]

, and the 6 dof forces/moments vector applied by main body to the appendage

at point P,

[
−→
F B/A
−→
T B/A ,P

]

:







[
−→
F B/A
−→
T B/A ,P

]

= DA
P

[−→a P
−→
ω̇

]

+LPη̈ηη

η̈ηη+diag(2ξiωi)η̇ηη+diag(ω2
i )ηηη =−LT

P

[−→a P
−→
ω̇

] (3)

where:

• DA
P is the 6×6 mass/inertia model matrix of the appendage at point P (see also appendix A),

• Lp = [lll1,P, · · · , llli,P, · · · , lllN,P] is the matrix of modal participation factors of the N flexible modes of the appendage at

point P,

• ωi, ξi and llli,P are the pulsation, the damping ratio and the 6 dof participation factor vector of the i-th flexible mode.

Equation (3) must be projected into the Ra frame. For equation legibility the projection frame is not mentionned.

All these data (DA
P , ωi, ξi and llli,P) are directly provided by the finite element software used to model such an appendage

according to the number N of flexible modes retained in the model and are independent of the main body characteristics.

Another well-known frequency-domain representation of MA
P (s), also called effective mass/inertia model [7], can be

easily derived from (3):

MA
P (s) = DA

P,0 +ΣN
i=1Mi,P

2ξiωis+ω2
i

s2 +2ξiωis+ω2
i

(4)

where:

• DA
P,0 = DA

P −ΣN
i=1Mi,P = DA

P −LPLT
P is the 6×6 residual mass/inertia of the appendage rigidly cantilevered to the main

body at point P,

• Mi,P = llli,PlllT
i,P is the 6×6 effective mass/inertia matrix of the i-th flexible mode. Mi,P is a rank-1, semi-definite positive

matrix for all i.

The appendage dynamic model MA
P (s) can also be represented by the block-diagram depicted in Fig. 3.

2.3 Connection of the main body and the flexible appendage

To connect the appendage model to the main body model, the Eqn. (3) must be moved from point P to point B (using the

kinematic model τBP, see appendix A) and then must be written in Rb (using Tba), before being insered into the Eqn. (1). The

block diagram representation of the inverse dynamic model [MA+B
B (s)]−1 of the coupled system, presented in Fig. 4, shows

that the direct appendage dynamic model MA
P (s) at point P interacts as a feedback on the inverse main body dynamic model

[
DB

B

]−1
. Consequently characteristic parameters of each body can be highlighted in such a block-diagram representation.

This approach has the advantages

• to fit into the block-diagram as many (rigid or flexible) appendages as possible through other feedbacks on
[
DB

B

]−1
,

• to minimize the number of occurrences of each physical parameters of each body,

• to directly access to them and finally to take easily into account their uncertainties.

Finally, the model of the satellite can be translated to the global center of mass:

MA+B
Gtotal

(s) = τT
BGtotal

MA+B
B (s)τBGtotal

. (5)

Regarding the design and the validatation of the attitude control system, the inverse dynamics model of the spacecraft is

then restricted to the 3 angular dof and is completed by the double integrators between the angular acceleration
−→
ω̇ and the

3 pointing error vector
−→
θ = [θx,θy,θz]

T of the main body (in the frame Rb). This model is depicted in Fig. 5 and will be

denoted H(s) in the sequel.
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3 Model with uncertain and varying parameters

The following two subsections consider respectively:

• the uncertainties on the main dynamic parameters of the main body and appendages: some recommendations for ex-

tracting the LFR of the uncertain model which is required to validate the attitude control system are given,

• the variation of the tilt angle of the appendage. Indeed, considering that the appendage is a sun-oriented solar pannel,

the tilt angle describes a complete revolution over one orbital period. This motion is very slow and one can consider that

the solar pannel is cantilevered on the main body with a varying tilt angle. This tilt angle has a direct influence on the

dynamic behavior of the coupled system and the attitude control system must be robust to such a variation.

3.1 Parametric uncertainties modeling

The general LFT framework consists in isolating the uncertainty matrix ∆ from the nominal system H(s) and in connect-

ing them through a feedback as represented in Fig. 6. It is commonly used as input for µ-analysis tools to perform robustness

analysis [5,14]. For numerical reasons, a minimal LFR realization (in sense of a minimal size of ∆) is often searched [15,16].

Indeed the complexity of µ-analysis directly depends on this uncertainties block size. Appendix B illustrates with a simpler

model the difficulty in obtaining numerically a minimal LFR. This academic example highlights why the minimal LFR of

an uncertain model is not so obvious and must be tackled very soon in the modeling phase. Note that the block diagram

description of the model presented in Fig. 3 and 4 is key to extract the global LFR. Each block (each parameter) can be

viewed as an elementary LFR object and the minimal LFR of the overall spacecraft can be easily obtained using the LFRT

toolbox [17]. The number of occurences of flexible mode parameters ωi (2 times), ξi (1 times) and coefficients of matrix LP

(2 times each) is thus minimized.

Lastly, it is worth expressing appendage uncertainties on the parameters DA
P,0 and LP rather than on the parameters DA

P

and LP. The constraint on the positiveness of the residual mass:

DA
P,0 = DA

P −LPLT
P ≥ 0 (6)

must be satisfied for any parametric configurations [1]. Indeed, as DA
P,0 acts in feedback on the inverse dynamics of the cou-

pled system, a non-positive matrix could lead to unstable free flexible modes which is obviously physically impossible. The

physical constraint (6) can be transgressed, when parametric uncertainties on both LP and DA
P are considered independently

in equation (3).

3.2 LFR of the appendage with a varying tilt angle

This section considers the tilt of the cantilevered appendage around the ya-axis according to Fig. 7. First of all, the

appendage dynamic model MA
P (s) must be replaced by RMA

P (s)R
T in Fig. 4 where:

R =

[
Rα 03×3

03×3 Rα

]

and Rα =





cosα 0 −sinα
0 1 0

sinα 0 cosα



 . (7)

Therefore the varying parameter α affects all terms of the satellite dynamic model. To avoid computing models for each

α value, the trick consists in isolating, through a feedback, a parameter that allows to generate all models during an appendage

revolution, so does the LFR building step. But the cos and sin functions do not lend themselves to a LFR, since they are not

rational expressions in α. Moreover these two functions are not independent: for all α values, the basic relationship

cos2 α+ sin2 α = 1 (8)

must be verified.

The choice of the parameter must be reviewed. Indeed rational expressions of the cosα and sinα functions can be

derived in terms of a new varying parameter τ1 = tan(
α

2
) [1]:

sinα =
2τ1

1+ τ2
1

cosα =
1− τ2

1

1+ τ2
1

(9)
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But for a full revolution of the appendage (α ∈ [−π;π]), τ1 must vary from −∞ to +∞. This can be constraining, e.g. when

a worst-case configuration is searched for with µ-analysis tools.

A better choice is the varying parameter τ2 = tan(
α

4
), as proposed in [18], because a complete revolution of the ap-

pendage is characterized by a τ2 variation from −1 to 1:

cosα =
(1+ τ2

2)
2 −8τ2

2

(1+ τ2
2)

2 ∀τ2 ∈ ]−1;1[

sinα =
4τ2(1− τ2

2)

(1+ τ2
2)

2 ∀τ2 ∈ ]−1;1[

(10)

Figure 8 shows that the block τ2 can be repeated only four times to represent the first line of the matrix Rα. A block

manipulation leads to a minimal LFR-type representation (see Fig. 6) where ∆ = τ2 I4. A similar result can be found for the

third line of Rα. Finally the LFR-type representation of the matrix R requires a minimal block ∆ = τ2 I16.

It leads to a LFR-type representation of the whole satellite, which allows to analyze the closed-loop stability for a

complete revolution of the appendage.

4 Illustration: closed-loop stability analysis

This section illustrates the advantages of the τ2 parametrization to build the spacecraft model at a given angular config-

uration and to validate a control law on a full revolution of the appendage.

4.1 Study case

Let us consider a satellite composed of a main body and a flexible appendage connected to the main body through a

rigid revolute joint along ya-axis (locked at an arbitrary angular configuration by the appendage driven system). Flexibility is

modelled by the four first flexible modes. Main body data and flexible appendage data are respectively summarized in Tab.

1 and 2. An appendage tilt around the ya-axis is taken into account through the added matrix Rα defined in Eqn. (7).

4.2 Open-loop frequency-domain analysis

The inverse dynamic model of the overall spacecraft
[

MB+A
Gtotal

(s)
]−1

is computed using the block-diagram approach

presented in section 2.

Figure 9 represents the BODE magnitude plots between the last 3 inputs and the last 3 outputs of
[

MB+A
Gtotal

(s)
]−1

, when

α is fixed at 0deg. This restricted (3× 3) transfer matrix is obviously symmetric. Plots are coherent with Tab. 2. Indeed

antiresonances occur at frequencies of the 4 cantilevered flexible modes. Two of them are observable on the angular ac-

celeration along xb-axis (or xa-axis, since α = 0 deg) in accordance with the LP definition, whereas only one contributes to

the angular acceleration along zb-axis (or za-axis). Moreover, as the coordinate axes of Rb are not the principal axes of the

overall system, couplings between the 3 axes appear but they are low. That is why a synthesis axis per axis can be performed.

Figure 10 represents BODE magnitude plots of the transfer between external torque on xb-axis at Gtotal and the absolute

angular acceleration of B on xb-axis, at different values of α. It illustrates how flexible modes evolve when the tilt angle of

the appendage varies. A variation of steady-state gain can also be noted.

Same BODE magnitude plots are logically obtained at two configurations: α = 0 deg and α = 180 deg. Moreover the

BODE magnitude plot obtained at α = 90 deg corresponds exactly to the BODE magnitude plot of the transfer between

external torque on zb-axis at Gtotal and the absolute angular acceleration of B on zb-axis (drawn in the lower right plot of

Fig. 9): flexible mode resonances permute from xb-axis to zb-axis when α varies from 0 deg to 90 deg.

4.3 Proportional-Derivative controller synthesis

It is assumed that the 6 outputs of the model H(s) (see Fig. 5) are measured.

Colocated rate sensors and torque actuators give rise to positive real transfer functions. It is well known that negative

feedback with a strictly positive real controller ensures closed-loop stability. Moreover, as explained before, the 3 axes are

almost decoupled. Consequently, the attitude control law is composed of 3 decoupled Proportional-Derivative controllers

tuned on the total static inertia of the spacecraft.

Considering the xb-axis, let Jx be:

Jx = MB+A
Gtotal

(0)(4,4) (11)
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then Kpx = ω2
desJx and Kvx = 2ξdesωdesJx where ωdes and ξdes are respectively the required closed-loop bandwidth and

damping ratio. The same approach is applied on the yb and zb-axes.

The resulting static control law is u = Ky with

K =−
[
diag([Kvx Kvy Kvz ]) diag([Kpx Kpy Kpz ])

]
(12)

Further results are obtained with ξdes and ωdes values respectively equal to 0.7 and 0.3rad s−1 for the 3 axes.

4.4 Closed-loop stability analysis

The next step consists in validating the closed-loop stability with the true flexible model H(s)

• when α varies from −180 deg to 180 deg,

• and in taking into account the transmission delays due to actuators dynamics.

The closed-loop system is depicted in Fig. 11. Time delays are approximated by second order PADE filters. Nominal values

are 0.1s for the transfers along xb and yb-axes and 0.8s for the transfer along zb-axis. Moreover such a stability analysis

requires the α parametrization of the full flexible model. The methodology, explained in Sec. 3.2, leads to an LFR-type

representation of the linear tilt-varying model, as depicted in Fig. 11. The tilt parameter τ2 is repeated 16 times, since only

rotational degrees of freedom are considered.

An EVANS root locus can be used to plot the evolution of the closed-loop poles in the complex plane when τ2 varies

from −1 to 1 (that is when α varies from −180 to 180 deg) and to analyse directly the closed-loop stability over a complete

revolution of the appendage. Such a root locus is depicted in Fig.12 for the considered study case. Only the positive

imaginary half-plane is represented. Note that due to the geometrical symmetry of the spacecraft, the root loci obtained

when α varies from −180 to 0 deg and when α varies from 0 to 180 deg are identical. Fig. 12 directly shows that some

angular configurations around α =+/−90 deg are destabilized by the static controller K. Indeed, as positivity of the open-

loop transfer is no more ensured due to transmision delays, closed-loop stability can no more be guaranteed. To counter

these unstable configurations a lead phase controller must be tuned. The re-design of the controller is out of the scope of this

paper but it can be recommended to use the worst-case angular configuration (that is α = 90 deg) to tune the new controller.

5 Conclusions

This article has two main contributions, useful for satellite advanced design phase. First, it introduces a generic modeling

approach for satellites with flexible appendages. This approach allows to take easily into account uncertainties on physical

parameters and ensures to obtain a minimal realization of the overall system. Secondly, when tilted flexible appendages are

considered, a new LFR-type representation is introduced to obtain a parametrization of the rotation angle of each appendage.

Moreover, it is straightforward to deduce if a controller stabilizes the overall system for all angular configurations. It is no

more required to compute the model of the whole satellite for each angular configuration. During verification and validation

simulation steps, such a structured model could save lots of CPU-time.
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Appendix A: Transport of a dynamic model from one point to another

This appendix summarizes the results presented in [9]. Let us consider a body S , characterized by the 6 dof model:

[
−→
F /S
−→
T U/S

]

= DS
U

[−→a U
−→
ω̇

]

(13)

where U is any point,

[
−→
F /S
−→
T U/S

]

(resp.

[−→a U
−→
ω̇

]

) is the 6 component vector of forces/torques applied to S at point U (resp. the

6 component vector of absolute linear and angular velocities of S at point U).

DS
U is called the dynamic model matrix of S at point U and its expression depends on the frame where it is written. DS

U

is either a (6×6) static matrix (if S is a rigid body) or a (6×6) transfer matrix (if S is a flexible body).

The fisrt order approximation of dynamic model matrix of S at a new point V is easily deduced from DS
U following:

DS
V = τT

UV DS
U τUV (14)

where τUV is the kinematic model associated to points U and V :

τUV =

[
I3 (∗UV )

03×3 I3

]

. (15)

(∗UV ) is the skew-symmetric matrix associated to the vector
−→
UV . If [xyz]T is the coordinate vector of

−→
UV in a frame RS, the

expression of (∗UV ) in RS is:

(∗UV ) =





0 −z y

z 0 −x

−y x 0



 . (16)

Proof:

−→
T V/S =

−→
T U/S +

∗ (VU)
−→
F /S . (17)
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−→a U =−→a V +∗ (UV )
−→
ω̇ +O(∗ω

−→
ω̇ ) . (18)

Neglecting the (non-linear) second-order term O(∗ω
−→
ω̇ ), one can write:

[
−→
F /S
−→
T V/S

]

=

[
I3 03×3

(∗VU) I3

]

︸ ︷︷ ︸

τT
UV

[
−→
F /S
−→
T U/S

]

(19)

= τT
UV DS

U

[−→a U
−→
ω̇

]

(20)

= τT
UV DS

U

[
I3 (∗UV )

03×3 I3

]

︸ ︷︷ ︸

τUV

[−→a V
−→
ω̇

]

(21)

= τT
UV DS

U τUV
︸ ︷︷ ︸

DS
V

[−→a V
−→
ω̇

]

. (22)

�

Illustration: Let us consider the mass/inertia matrix of the appendage A at its center of mass G:

DA
G =

[
mA I3 03×3

03×3 I
A
G

]

, (23)

the mass/inertia model matrix DA
P of the appendage at point P presented in section 2.2 is:

DA
P = τT

GPDA
GτGP =

[
mA I3 mA(∗GP)

−mA(∗GP) IA
G −mA(∗GP)2

]

. (24)

Appendix B: Illustration of a minimal LFT realization

Let us consider a second order transfer function:

F(s) =
ω2

s2 +2ξωs+ω2
. (25)

where the angular frequency ω is considered as uncertain: ω = ω0(1+δ) . ω0 is the nominal value and δ is a multiplicative

uncertainty.

In [19] authors consider independent uncertainties on ω and ω2. But such assumption may bring some unrealistic

parametric configurations. Figure 13 shows that the uncertainty δ appears only 2 times in a minimal LFR. According to the

general formalism depicted in Figure 6, this LFR reads:

H(s) :=









ẋ1

ẋ2

z1

z2

y









=









0 1 0 0 0

−ω2
0 −2ξω0 ω0 1 ω2

0

−ω0 0 0 0 ω0

−ω2
0 −2ξω0 ω0 0 ω2

0

1 0 0 0 0

















x1

x2

w1

w2

u









(26)

with ∆ = δI2.

Today the available numerical tools (like the Robust Control toolbox or the LFR toolbox [17]) are not able to give

directly this minimal result (both of them lead to a LFT model where the uncertainty on ω is repeated at least three times if
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the system is defined from the transfer function (25)). This very simple academic example highlights that the best way to

model an uncertain system is to build a block-diagram representation, as proposed in Fig. 3, where the uncertain dynamic

parameters can be easily isolated and repeated a minimal number of times. Then, the Simulink/LFR object interface [17] can

be used to compute directly the minimal LFR of the system.
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Fig. 7. Rotation of the appendage.

18



u1

w2 w1 w3w4 z4
z3

z2

z1

u2

 

 

 

 

 

 

 

 

 

 

 

 y1

τ2τ2

8

τ2

4

τ2

8

Fig. 8. Block-diagram representation of y1 = cosαu1 − sinαu2 with a minimal occurrence of τ2.
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Fig. 11. Validation model of the controlled satellite.
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Main Body data

mB : mass (kg) 2000

I
B
B : moment of inertia ten-

sor w.r.t. B (kg.m2) written
in Rb






2000 100 50

100 8000 80

50 80 8000






−→
OB written in Ro (m)

[

2 2 2

]T

Table 1. Definition of the main body.
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Flexible appendage data

mA : mass (kg) 100

−→
BP written in Rb (m)

[

0 2 0

]T

I
A
G : moment of inertia ten-

sor w.r.t. G written in Ra

(kg.m2)






7000 0 0

0 200 0

0 0 10000






−→
PG written in Ra (m)

[

0 8 0

]T

Tba I3

ωi: angular frequencies
of the N = 4 cantilevered
flexible modes (rad s−1)

2π∗ [ 0.04 0.111 0.13 0.27 ]

ξi: damping ratio of each
flexible mode

0.001

LP written in Ra













0 0 −3 0

0 0 0 0

5 0 0 4

90 0 0 62

0 14 0 0

0 0 119 0













Table 2. Definition of the flexible appendage.
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