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Summary

Due to the simple properties of plane waves, non lossy straight pipes and their concatenation have been ex-
tensively used to derive digital waveguide synthesis and to compute acoustic immittances (input impedance,
transmittance, etc) of wind instruments. This paper focuses on some possible refinements of such 1D wave prop-
agation models, especially in the case of smooth horns. Four key points are examined: a refined curvilinear 1D
horn equation, the smooth connection of constant-flared acoustic pipes, a radiation model consistent with spher-
ical wavefronts, the effect of visco-thermal losses at the wall. They allow the definition of a complete model,
from which a standard matrix formalism is recovered, as for plane or spherical waves. The comparison with mea-
surements shows that each of these refinements is relevant, making one-dimensional models useful and efficient
even for the quite sensitive case of brass instruments. Moreover, compared to the standard descriptions based on

straight or conical pipes, the model proposed here gives accurate descriptions with only a few segments.

PACS no. 43.20.Mv,43.75.Ef,43.75.Fg

1. Introduction

For many wind instruments, one-dimensional (1D) models
of acoustic bores are accurate enough for sound synthesis
issues and for computing immittances (input impedance,
transmittance, etc). Thus, descriptions based on planar or
spherical waves propagating in piecewise straight or con-
ical pipes have been extensively used [1, 2, 3, 4, 5, 6],
including for the vocal tract [7, 8]. They allow the deriva-
tion of closed-form formulae from the bore profile, using
a transfer matrix method and a radiation impedance load
(see e.g. [9] for standard models and [10] for some com-
parison with measurements). However, discontinuous ap-
proximations of profiles involve impulse responses com-
posed of pulse trains of Dirac measures, which are un-
realistic for smooth bores. Similarly, continuous but non
smooth approximations based on conical segments involve
discontinuous pulse trains of damped exponentials. In the
case of smooth flared horns, many segments are needed to
weaken such artifacts.

This paper addresses the issue of improving accuracy,
while preserving such 1D models and piecewise decom-
positions. For refinement, four points are examined:

(1) a horn equation based on an isobar map rectification;
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(2) the smooth connection of constant-flared pipes;

(3) aradiation model which is consistent with (1);

(4) the effect of visco-thermal losses at the wall.

This allows the recovery of a transfer matrix method which
is adapted to the computation of immittances of bores with
a smooth profile. The complete model yields accurate re-
sults with only a few segments. Each of the four “ingre-
dients” proves relevant. Moreover, as for plane waves in
straight pipes, it still makes definitions of travelling waves
and of digital waveguide-like structures possible.

The paper is organized as follows. Sections 2 to 5 are
dedicated to the study of each ingredient, that is, the in-
fluence of: the choice of the wave-shape assumption in
the horn equation (§ 2), the geometric regularity at junc-
tions in piecewise segment modelling (§3), the radia-
tion impedance (§ 4) and visco-thermal losses (§ 5). These
studies are illustrated on the academic horn profile detailed
in the Appendix. Section 6 presents results on a trombone
bell, the profile and the input impedance of which have
been measured.

2. Ingredient 1: horn equation with curvi-
linear abscissa
2.1. Brief history summary and context

The first 1D model of the lossless acoustic propagation in
axisymmetric pipes is due to [11, 12]. It is usually called
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“horn equation” or “Webster equation” [13] and has been
extensively investigated, witnessed in e.g. [14]. Its first
version is based on planar waves but this assumption has
been periodically revised. So, to preserve the orthogonal-
ity of the rigid motionless wall and wavefronts, Lambert
[15] and Weibel [16] contest derivations based on planar
waves and postulate spherical ones. The quasi-sphericity
was experimentally confirmed for a horn profile in the low
frequency range by Benade and Janson [17]. Later, Put-
land [18] pointed out that every one-parameter acoustic
field obeys a Webster equation for particular coordinates.
He also found that only planar, cylindrical and spherical
waves could correspond to exact models. A similar result
proved in [19, 20] states that the only static axisymmetric
isobar maps on which waves can propagate correspond to
these waves and to some modal maps. In spite of this lim-
itation, some refined 1D models have still been looked for
because of their simplicity (see e.g. {21, 22]): they make
the computation of impedances easy and the frequency
range that is not perturbed by transverse modes [23] is usu-
ally sufficiently large to study many wind musical instru-
ments.

2.2. Remarks on the consistency between the geome-
try of isobars and the 1D horn equations

In this paper, we consider the model proposed in [19, 20].
This choice is motivated by its ability to regenerate sev-
eral exact models and its consistency with the following
statement. On the one hand, the geometric resuits and the
observations compiled below are standard.

Property 1 (Isobars in axisymmetric waveguides)
For conservative propagation in axisymmetric pipes, some
basic geometric properties of isobars are that:
(i) plane waves propagate in straight pipes (they are gov-
erned by (92 — (1/c?)d?)p = 0 where the space variable
z denotes the axial abscissa);
(ii) spherical waves propagate in conical pipes
(they are governed by (8% + (2/r)d, — (1/c2)0,2)p =0
where r denotes the spherical abscissa);
(iii) isobars are orthogonal to the wall (except for null gra-
dient of pressure, see {19, p.33] for a discussion);
(iv) according to [17], quasi-spherical isobars can be ex-
perimentally observed in the low frequency range;
(v) except for plane waves (i), spherical waves (ii) and
a few other isolated cases, isobar profiles are generally
time-varying (see [20, § IL.C.]).

On the other hand, following [18], every 1D conserva-
tive propagation obeys a Webster horn equation, that is,

(71%5 05(A(s) 05) — 21503> p(s. 1) =0, (L
where s and s — A(s) denotes a space variable and a
cross-section area, respectively.

However, the first models mentioned in § 2.1 are not
consistent with all the properties 1 (i-v). More precisely,
the original model [11, 12, 13] corresponds to s = z and

{z = f(s,u, 3)
r=g(s,u,t)
s

(@

)

Figure 1. Isobar map rectification and local-in-space approxi-
mation near the wall. (a) isobar map rectification, (b) quasi-
spherical approximation.

A = nR? where z — R(z) denotes the local radius of the
bore profile. The model is often written w.r.t. R as

2R'(z), 1
RII( ) 1
or (aﬁ— R ZZ) - C—za?> [R(x) p(z.1)] = 0. 3)

It corresponds to assuming plane waves and only re-
stores property 1(i). Models based on spherical wave-
fronts [15, 16] (s is a spherical abscissa and A describes
the area of portions of spheres) or on ellipsoidal coordi-
nates {21} restore properties 1 (i-iv) but are not consistent
with (v).

2.3. Derivation of a 1D model consistent with prop-
erties 1(i-v)

2.3.1. Step 1: isobar wave equation

The first step consists in writing the wave equation for ax-
isymmetric problems |2 — 10, +2 - ;1753] P(z.r.f) = 0in
a rectified isobar map. Formally, this is achieved by using

a coordinate transformation z = f(s,u. 1), r = g(s,u, t)
such that P(f(s,u. 1), g(s,u, 1),t) = p(s,t) does not de-
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pend on u: the space variable s is chosen such that it in-
dexes isobars I, (cf. Figure 1a). This leads to

1 ~
[¢®+p0 4700 - 5E|Fsn=0. @

where a, B, y are functions of (s, u, t).

Remark 1 (Isobar map parameterizations) Without
loss of generality, the change of coordinates can be cho-
sen such that: (i) (s, u) are orthogonal and directly oriented
(argl(9uf +10u8)/(0s f +i058)] = = /2); (iD) f (5. ~u. 1) =
f(s,u 1), g(s,~u,t) = —g(s,ut) (symmetry w.rt. the
(Oz) axis, given by u = 0); (iii) » = 1 maps to the
(motionless) bore profile described by some known (time-
invariant) functions f(s,u = 1,1) = F(s), g(s,u=1,1) =
G(s).

According to the general formula given in [19, 20], for
the choice of remark 1(i), coefficients are

1— 2
o8 e
ol coy
sin 1- ,% <0,
p=22 26 (G ‘(”~aslnos>
go-S O-S Gll
1 éxz _f,% 1 fs
- =0 + =0,
2 ol ¢ o,

s

with 6, = V (asf)z + (asg)za Oy = (auf)z + (aug)2

(vector norms), ¢ = arg (d,f + idsg) (angle) and & =
1[0, f cos @ + digsing), & = L[-0,fsing + d,gcos ¢]
(Mach numbers).

2.3.2. Step 2: ideal motionless walls and quasi-
spherical isobars

Exact derivations based on remark 1(i,iii) show that, on

the wall (u = 1, z = F(s), r = G(s)), coefficients in (4)

are a(s, 1,1) = 1/(F'(s)* + G'(s)?), y(s. 1, 1) = 0 and

/f(s,l,t)_al G(s)
a(s, 1,y 1 F(s)

| +omn |ogGu=10].

To obtain a 1D wave equation, an approximation is as-
sumed in order to decouple the problems of the isobar
“shapes” and “values”. The simplest one that is consis-
tent with properties 1 (i-v) and that gives a closed formula
for the coupling quantity d,g(s,u = 1,¢) is the following
one.

Hypothesis 1 (Isobar quasi-sphericity at order 2)
Denote p*(s) the radius of the spherical isobar approxi-
mation (orthogonal to the wall) and p(s, u, t) the length
between the center of this sphere S; and the isobar 7, at
u (see Figure 1b). The relative deviation { = p/p* — 1
satisfies 0¢(s,u = 1,1) = 0 for k = 0 (contact) and
k = 1 (tangency of S, and Z;,). This is still assumed at
order k = 2 (deviation slower than a parabola).

This hypothesis leads to the closed-form expression
B(s, 1,0 /a(s, 1,1) = 2G'(s)/G(s). A closed formula is
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also obtained for the Euler equation [20, (53)], yielding a
complete model.

Result 1 (Horn model with curvilinear abscissa &)
Hypothesis 1 provides a 1D acoustic model which is the
same as for plane waves, except that the space variable
s = z is replaced by the curvilinear abscissa s = € that
measures the profile length (so that a(€,1,¢) = 1). The
bore descriptions z — R(z) and &€ + R(&) are linked by

0=L(z) = J V1+ [R(@)] "z,
0
R(&) = R(L7'(9)). (6)

The horn equation and the Euler equation are given by

1
(af, ~Y(@©) - C—za,z) [R(@) p(e.n] =0, )

with Y = —7%,-
pOV(@. 1)+ dgp(@,1) = 0. ®)

2.4. Remarks, properties and validity

This model restores a Webster horn equation, in accor-
dance with [18]. Its modification is concerned with the
space variable (6) rather than replacing the cross-section
area by e.g. that of Sy (Figure 1b). This is due to Hypoth-
esis 1 which is local-in-space and does not require static
spherical isobars, following property 1 (v). Moreover, (6)—
(8) regenerate exact models for straight pipes (¢ = gz,
R(z) = R(€) = Ryp) and conical pipes (¢ = z/cos 8 (= r
in property 1(i1)), R(z) = ztan 8, R(¢) = &sin ). These
cases correspond to Y, = 0.

For non-straight pipes, the z-model is not exact: its
validity is limited to the low frequency range [ <

(e/m([7 [R(@)]" dz)™" (see [24, (7.159)).

Property 2 (¢-model) Compared to the z-model, the
¢-model modifies some practical features (see Figure 2):
(i) the equivalent pipe length is increased (as any local
travel length: L(z 4+ 6) — L(z) > §if 6 > 0),
(ii) the slopes are weakened as

R'(L(z)) = R'(2)/V1 + R(2)? sothat [R'(&)] <1

and that R'(€) = 1 matches the vertical limit,

(iii) if a bore ends with a (possibly infinitesimal) cone
Yy = 0at ¢ = L), the ¢-model operates as a con-
nection with ideal spherical waves for € > L,

(iv) the value and the shape of the flaring constant Y are
modified (Y, = R"/Rin (3), Yy = R"/R in (7)),

(v) the locations of the peaks of immittances are modified
in a non trivial way, as a consequence of (i-iv).

This is emphasized by the following acoustic feature.

Remark 2 (Local-in-space cutoff frequency f*)

When the flaring parameter Y is positive, it can be mapped
to a local-in-space cutoff frequency f* = 5%\/7 below
which travelling waves are evanescent [17].
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The differences between z- and ¢-models increase with
the deviation L(z) — z. According to (6), this occurs when
the profile slope R’ moves away from 0 (see Figure 2).

The validity of a 1D horn equation is limited in.prac-
tice to frequencies for which no transverse modes can be
excited. An order of magnitude is given for the case of a
straight pipe with radius R,y = maxeep ] R(£)

& 100m/s. (9)

< f"with f* =
-max 2
Another validity condition is that {Y| be small enough to
be close to exact models (Y = 0).

Hypothesis 1 does not provide quantitative validity cri-
teria but section 6 gives a comparison between models and
measurements.

In the following, s denotes the complex Laplace variable.

3. Ingredient 2: smooth connection of Y-
constant segments

3.1. History summary and problem statement

Piecewise approximations have been first based on straight
pipe segments (Figure 3a). This yields simple transfer ma-
trices from which a Kelly-Lochbaum structure is obtained,
that is, a digital waveguide structure involving propa-
gators (delays) and a single reflection function at each
junction [1, 25]. The deduced auto-regressive filters have
been extensively used for real-time sound synthesis, es-
pecially for the vocal tract {7, 8]. But, this first model
introduces several approximations: (1) profile discontinu-
ities, (2) frequency-independent radiation, (3) no visco-
thermal losses. The first one involves instantaneous re-
flections. It makes the impulse response (IR) of immit-
tances composed of Dirac pulses rather than the expected
smooth ones. This artifact is concealed (regularized IRs)
if approximations (2) or (3) are dropped. It is also why the
space discretization is usually chosen such that the pulses
are synchronized with the sampling period. As an alter-
native, conical segments have been used to increase the
regularity (Figure 3b). These segments significantly im-
prove the acoustic results, if the radius deviation and their
slope variation are small enough [26, 4, 6, 10]. It yields
a Kelly-Lochbaum structure for C%-junctions [3]. Some
smooth profiles have also been studied (e.g. Bessel horns
[17], exponential horns [27], see also [28]).

Here, the C!-regular junction of Y-constant segments is
proposed (same regularity as cubic splines, but segments
are not polynomial because of the acoustic model). One
issue addressed here is: which degree of regularity can be
reached on the acoustic impulse responses?

3.2. Transfer matrix method for piecewise Y-
constant profiles

Consider a segment on € € (a, b) governed by (7-8) with
constant parameter Y < 0 (convex bore), Y = O (straight,
conical) or Y > 0 (flared).

Esc;ssa ..... SR L Pt
— — abscissa : : : S

Figure 2. Comparison of the z-models R, Y, = R"/R, f} =
/Y /(2x), (=) to the &-models R, Y, = R"/R, f; =
¢V Ye/(27), - -) for the toy-profile (A1) in appendix Al.

(a) (b)

Figure 3. Standard piecewise approximations.

This causal problem is solved in the Laplace domain
= {5 € C|Re(s) > 0} (see [19, p.63] and [29]).

Result 2 (Transfer matrix T, of one segment)

Denote Xo(s) = [P(@, s), U@, s)]T the acoustic state
inside the Y-constant segment, where P and U are the
Laplace transforms of 7 - p(&,1) and t = zR(€)>v(9, 1)
(assumed to be zero for ¢ < 0), respectively. Then,

X4() = Tp,a(s) Xals), (10)
where

T5,4(8) = Ap(5)Mp a(5)Ags ()"
has determinant one, A(s) = diag( k. 22 ) and
My.a(9)],, = (Vi(9)" @((b ~ )T(s)) with

Viu=1[1, 0@, Vi=[0, -0b-al,
6(b)—o(a") o(at)o(b™) — (b—a) T2, r
Vor = [ b , ]
—-a b—a
Voo =1, —a(d7)I,

®(z) = [coshz, sinhz/z]T and ¢ = R /(R /(b — a)) (di-
mensionless ratio of slopes). Function I' is the principal
value of the square-root of

T(s)? = (—5—)2+Y. (11)
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Matrix T, , defines a stable causal operator for positive

profiles, that is, if R(a) > 0, R(b) > 0 and (b — @)%Y >
2

-7,

Remark 3 (Wavenumber) The wavenumber & is such
that ik = I'(iw) where w is the angular frequency. For
straight and conical pipes (Y = 0), it becomes k = w/c.

The acoustic connection of N segments (located by
&y < &) < --- < €y) is achieved by imposing the con-
tinuity of X, at junctions. This yields the transfer matrix
method

Xoy(s) = Toy,0,(s) Xg(s), (12)

TQN.% = TéN,eN—l TéN—IrgN*Z Té]ﬁo’ (13)

which exactly restores the standard results for straight and
conical pipes (see Figure 3 and e.g. [8], [24, p.293]).

Remark 4 (Continuous profiles)
For C%-junctions, (12) takes the simpler form

-1
Toy.0 = NoyMey 0.y,

with MéN,e() = MgN‘gN_] M0N~lr€N~2 e Mél.@()'

3.3. Kelly-Lochbaum structure for flared horns

Piecewise cylindrical @, conical ® and Y-constant © seg-
ments can be described by digital waveguides (Figure 4):
they are composed of pairs of travelling operators (called
propagators) with transfer function W, (s) = exp [ — (4,
- ,,_I)F,,(s)] which are interconnected through two-port
operators C, at junctions, and connected to load transfer
functions at boundaries [1, 2, 3, 5, 30, 31, 32, 33].

In cases @-® (Y, = 0), propagators are simple de-
lays D,(s) = exp(—t,s) with 7, = (&, — &y-1)/c. In
case ©, the dispersion function G,(s) = W,(s)/D,(s) =
exp(t,(s — cI',(s))) corresponds to a (non-delayed) causal
stable operator, only if Y > 0 [30].

Computing its IR yields [34, p.498], forall Y > 0,

\/Y_,,Jl (eVYu/t(t +21,)) s
Vit +21,)

where J; is the Bessel function of the first kind of order 1.
Moreover, for sufficiently regular profiles, the following
property of C, comes out (see [2, 3, 31] and [33, §4]).

gn(t) = 6(1) — Liso(t) ety

Property 3 (Kelly-Lochbaum factorization)

When the geometric regularity allowed by piecewise de-
scriptions @—@© is maximal (discontinuous for @, con-
tinuous for @, C 1—regular for ©), each two-port function
C,(s) can be realized with only one reflection transfer
function K,,(s) and three sums (Figure 5).

This factorization significantly reduces the computation
load of simulations for sound synthesis purposes.

964

Figure 4. Waveguide decomposition: propagators W, control
“decoupled waves” w*(#,¢) inside the n-th segment; operators
C, process the reflected and transmitted parts at junctions.

Figure 5. Kelly-Lochbaum structure: junction C,.

3.4. Considerations on pulse trains and regularity

Consider a smooth bore with Y > 0 loaded by a frequency-
independent radiation or an infinitely-long last segment.
Then, the following property is satisfied.

Property 4 The impulse response regularity of immit-
tances of @—@© is fixed by that of reflection functions K,,.

Proof: For cases @—-®, propagators reduce to delays
Dy, and the result is straightforward. For case ©, G, =
W, /D, contains a direct gain 1 (& in equation 14), yield-
ing the result.

Table 1 recalls reflection function formulae and illus-
trates a caricature approximation of a flared profile with
two segments. The analysis of these reflection functions
yields the following result.

Result 3 (Impulse response regularity) For a smooth
flared profile, C'-regular junctions of Y-constant seg-
ments define the simplest piecewise-approximation that
preserves the IR continuity, independently of the number
of segments and the load impedance.

Proof: The IR discontinuity of cases @—©® is straightfor-
ward: for @, the impulse response of the reflection cor-
responds to a Dirac pulse; for ®, it corresponds to a
causal damped exponential (one-pole filter in the Laplace
domain) which is discontinuous at t = 0. Now, for ©,

©,.,  Tis)—TIals) Yi—-Y,
Ko = Ti(s) +Ta(s) — (Ii(s) + a(s))?
_ Y -Y, 1
= ~———--—4(S/C)2 +(9(S4)

as s = +oo. Hence, from the initial value theorem, k(0%)
= 1My 400 XK1 (x) = 0 and &} (0%) = limyoy 400 x* K (x) =
(Y( —Y3)/2. Since k(¢) has no jump at # = 0 and k] has
one, the IR regularity is C° but not C!, which concludes
the proof.
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Table I. Regularity of the reflection functions involved in Kelly-Lochbaum structures w.r.t. the regularity of geometry. First line: Ap-
proximation of R with two segments (& = 0.3, &, = 0.4, &, = 0.5).

— — target: R} I
@ OWE ——plefewise LT g o0
"'g""z p - e .E 0.02
el P PRI :
g o g

14

®

FS PY YR

03 035 04 045 [ 03

- - (:arggt:.’ll1 el - = target: RY /.
1e8ewise P w0 Hbewiss
PO el 2 e
: [ g 002 : ~,‘e//
PO B oo et 0T
. : :
035 04 048 as 03 035 04 045 s
4 © 14

Profile regularity | discontinuous (straight pipes)

continuous (C°) (conical pipes)

Ki(s) (A1~ 42) /(A1 + Az) a /(s —ar) I'1(s) = 2D/ (T1(s) + Ta(s))
ki () ((Ay = A2)/ (A1 + A42))8() @ exp(ent) 1sp no closed-form solution
Jumpats =0 infinite a; = (¢/2)(R'(4)) - R'(€))/R(&1) 0

IR regularity Dirac type discontinuous continuous (C%)

Smooth (C!) (Y-constant)

Remark 5 (Piecewise conical approximation)
Nearly-continuous IR can be obtained by using C’-regular
Jjunctions of cones and increasing the number of segments
so that the mesh is refined and that coefficients a, =
c(R'(€;) — R'(€}))/(2R(€,)) become small enough.

A conjecture for higher degrees of regularity is that a
C*-regular profile corresponds to a C*¥~!-regular impulse
response.

Note that, in the cases @—®, defining N segments from
a target profile R is obtained by evaluating R at chosen
piecewise Y-constant decomposition is not easy. A tool
which is specifically dedicated to optimize case © is used
in this paper: it is detailed in [35].

4. Ingredient 3: radiation impedance

4.1. History summary and context

The radiation impedance balances the energy which is
confined in the pipe (a) and the radiated part (b). In the fre-
quency range where phenomenon (a) dominates, the qual-
ity of resonances is high (making self-sustained oscilla-
tions and note emissions easier). Tuning the trade-off be-
tween these quality factors and the radiated sound power
(especially for modern instruments) makes the study of
impedances and their cutoff frequency crucial.

The first models used for wind instruments were based
on planar pistons or straight pipes with various flange con-
figurations. They can be described by

Py,

v, = Lpd = pcZ,

where the transfer function Z is dimensionless and is usu-
ally given w.r.t ka = 2z f /c)a (a is the radius of the pipe
and k is the wavenumber).

The difference between piston and pipe models is
whether or not evanescent modes are taken into account.
The most used models are (see Figure 6):

2500

0 500

Figure 6. Comparison of radiation impedances for R' at z*.

(Z,) aflanged circular piston

2J1(2ka) | 2H)(2ka)

Zi=1-
=1 2ka 2ka

where J; and H; are the first kind Bessel function and
the Struve function of order 1, respectively [34]. The
sign of the imaginary part is obtained by choosing a de-
composition into mono-chromatic signals with the con-
vention exp(2iz /) which is consistent with the Fourier
and Laplace transforms with s = 2iz f.
(Z,) aflanged circular pipe [9, (9)], [36],
(Z3) an unflanged pipe [37, (V.16)],
(see [9] for a comparison with their computations, [38] for
an unflanged planar piston, [39] for the influence of the
wall thickness and [40, 41] for other generalizations).
However, these models are not well-suited to flared
horns, especially when the angle 8 of the tangent cone
at the hom output is obtuse (see Figure 7). To ac-
count for spherical wavefronts, a corrected version of
Z5 with factor A,/A; has been proposed in [26] (4,
= 2R* = n(rosinfy)® and A, = 2zri(1 — cosfp) =
22R? /(1 + cos By) are respectively the planar and spheri-
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cal radiating areas). It yields

Zy = Br g L Hc0s0

A, 2 ¥

with 8y =~ 59.2° for the profile R at z = z* (defined in the
Appendix). This model is consistent with energy conser-
vation and mass conservation. It gives an exact result on
Re(Z4) in the low frequency limit. This impedance (see
Figure 6) has been quite often used for bell modelling (see
e.g. [4]).

To refine the effect of spherical wavefronts, the model
Zs restated and analyzed here is one of [42]. It is based
on a pulsating portion of a sphere. Following some com-
parison with measurements in [10], these refinements are
significant in the case of a bell, especially beyond the cut-
off frequency.

4.2. Model Zs and properties

Consider a sphere with radius rg, whose part Sy (8 < 6y,
see Figure 7) is animated with velocity ¥, and the other
one is motionless.

Under lossless linear acoustic assumptions and using
spherical harmonic decompositions, the transfer function
in the Fourier domain between Vy(f) (f denotes the fre-
quency) and the pressure field P, 4,(f. r, @) in the external
space (r > rg) is found to be

PI'() 0()("0' 0, f) r r()f
e T = pe H ( —. 0, — )
Va0, TN e
too h,(2év)
where HO() (é, g, V) = —i ngo MH(HO)]P)H(COS 9)’21,"(—2;)_,
P,,_ s 0y) — IP>n— 0
(o = SELERESAERE, (0 =1

and, forn > 0, P, and h, denote the Legendre polynomials
and the outgoing spherical Hankel functions, respectively.

The dimensionless impedance on Sy is then character-
ized by Hg, (£, 0, v) with & = 1.

Remark 6 (Reduced frequency v)

In Hy,, the reduced frequency v = fro/c = kro/(27) is
proportional to the sphere radius rg (in place of the pipe
radivs ain Z)23.4).

To make this impedance consistent with the 1D quasi-
spherical model, its dependency w.r.t. & must be removed.
The approximation which minimizes the mean-square er-
ror over Sy is the average on Sy. Its computation yields

o0 2
2 +Z (4n(00))” hp22v)
1 —cos 6y 2n+1 H,2nv)

n=

Zg,(v) =

Asaresult [42, see (24) and Figure 3c], the error is negligi-
ble in the very low frequency range (v <« 1). The maximal
error w.r.t. v is a decreasing function of 6y, so that Zy, is a
better approximation for large angles than for small ones.
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Figure 7. Flared horn radiation approximation.

Re(Zs) Im(Zs)

Figure 8. Impedance averaged on Sy (...) and second order
model Zs (-).

Moreover, Zg, can be approximated by simpler models
(denoted (M1,2,3) in [42, § 4]), the parameters of which
have also been optimized for the mean-square error over
So. Model (M2) is detailed below and displayed in Fig-
ure 8: it furnishes a good trade-off between the complexity
and the accuracy for most of brass instruments.

Result 5 (Radiation impedance Z5) For small angles
0o, Zy, 1s close to model Z; (flanged piston) which in-
cludes characteristic ripples. For angles 6y larger than
about 55° (most of brass instruments), these ripples disap-
pear and Zy, is accurately approximated by the following
second order mode] where the introduced error is negligi-
ble w.r.t. to that due to the average on Sy:

, 2
_ @ 1avlc—(v—vc)

T 2z (15)

Zs:v —
1+2iEL - (¥)

with the positive parameters, for 0 < 8y < £ (in radians),
p p 2

£(6p) = 0.02076; — 0.1446] +0.2216;
+0.07996, +0.72,
a(8p) = [0.11136] - 0.6360¢; + 1.1626;

— 1.24267 + 1.0830 +0.8788] ",
ve(B0) = [ —0.1986; + 0.260765 — 0.4246;
— 0.0794662 + 4.7046 +0.022] .

This impedance has the following properties.
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Table II. Physical constants in the air and characteristic con-
stants (extracted from [24, p.212], Ty = 273.16 K is the absolute
temperature at O Celsius degree, T = 298.66K). Sound speed
¢, air density p, viscosity y, thermal conductivity? &, specific
heat capacity at constant pressure Cp, heat capacity ratio y, spe-
cific heat capacity at constant volume Cy, Viscous characteristic
length (5.133) p.210 &,, Prandtl number P., Thermal character-
istic length &,.

Formula Accuracy Value

¢ =331.5T/Tp +0.015% 346.63 m/s

p=12929T,/T +0.01% 1.18 Kg/m?

u=1708 107° 2% 1.834 - 1075 kg/m/s
(1+0.002%(T — Tp))

x =0.0241 +9% 0.0261J/m/s/K
(1 +0.0033(T - To))

Cp =024 +0.1% 0.24 Cal/g/°C

y = 1.402 +0.1% 1.402

Cy =Cply +0.1% 0.1712 Cal/g/°C

&, = uf(pc) +2% 4.4751.10%m

P =071 X 0.71

& =4,/P, X 6.303-10%m

Property 5 Model Z;s is physically relevant:

(i) it defines a causal stable passive impedance,
(i1) it has the right asymptotic acoustic behaviours,
limyo+ Z5(iv) = 0 and limy., 100 Z5(iv) = 1.

Moreover, its cutoff frequency (such that | Zs|? = 1) is

(i) f7* = (c/ro)ve\/ V1 + 2 — f where f = 1 + a® —

282,

Proof: Equation (15) is also available in the complex
Laplace domain Re(s) > O with s = 2izv.

For all angles 6y € [0,xn/2), its poles s = 2nv. (=&
+iv/1 — &2) have a negative real part, from which the sta-
bility is deduced. Computing Re(Zs) yields

X22af — 14+ X*)/[(1 = X2)? + (2EX)?] with X = v/v,.
It is negative for all X, if 2aé ~ 1 > 0.

Now, ming, (2a(60)£(60)) > 1.2, proving the passivity.
(ii) is straightforward. Finally, straightforward deriva-
tions show that | Zs|> — 1/2 is zero if X* + 28 X2 — 1. The

only positive root is X = \/—f+ \/1+ f? from which
(iii) is deduced.

For the physical constants and the (trombone) parame-
ters given in Tables II and II1, (iii) yields f7*¢ ~ 848 Hz.
Moreover, Zs is consistent with the mass and the energy
conservation principles (as Z,) since, numerically and ac-
cording to [42, § 4.4], lim,o Re(Z5(iv))/(27v)? ~ (1 -
cos bp)/2.

2 Note that the thermal conductivity & = 5.77 - 1075 (1 + 0.0033(T -
To)) Cal/cm/s/°C given in [24] has been converted into J/m/s/K using
the thermochemical calorie 1 Caly, ~ 4.184 J.

Table III. Mesh description of the horn of a trombone Courtois
155R: z,, is the axial position, €,, is the corresponding length of
the profile from 2o to z,,, R,, is the radius of the profile.

index m Zm (mm) &, (mm) R, (mm)
0 0.0 0.0000 104
1 66.5 66.5000 10.4
2 153.0 153.0113 11.8
3 198.4 198.4247 129
4 266.5 266.5570 15.0
5 315.0 315.0868 16.7
6 364.3 364.4315 18.8
7 400.0 400.1875 20.8
8 4184 418.6266 22.0
9 431.8 432.0717 23.1

10 442.5 442 8387 243
11 454.6 455.0441 25.9
12 463.7 464.2511 27.3
13 472.9 473.5892 28.9
14 480.5 481.3558 30.5
15 488.0 489.0461 322
16 492.4 493.5815 33.3
17 496.7 498.1356 34.8
18 501.3 502.9439 36.2
19 505.4 507.2451 375
20 508.4 510.4762 38.7
21 510.8 513.1163 39.8
22 514.2 516.9176 . 415
23 518.3 521.5705 437
24 5214 525.1552 45.5
25 524.0 528.3755 47.4
26 526.7 531.7355 494
27 530.8 536.9365 52.6
28 534.4 541.5593 55.5
29 537.8 546.3676 589
30 541.2 551.1759 62.3
31 543.9 555.2120 65.3
32 546.8 559.6808 68.7
33 550.4 565.6808 73.5
34 553.0 570.2851 71.3
35 555.8 575.2500 81.4
36 558.0 580.1694 85.8
37 560.8 585.3847 90.2
38 563.3 591.2448 95.5
39 565.4 597.8855 101.8
40 568.0 606.4879 110.0

5. Ingredient 4: visco-thermal losses

5.1. History summary and context

Kirchhoff, first, has introduced thermal conduction effects,
extended the Stoke’s theory and derived some basic solu-
tions in free space and in a pipe. He gave the exact general
dispersion relation for a cylinder for axisymmetric prob-
lems [43] (see [44, eq. (56)]) for non symmetric versions).
Simplified models have also been proposed: separated vis-
cous and thermal boundary layers (by Zwikker and Kosten
(24, p.210], see [45, 46] for validity conditions), and the
Cremer equivalent wall admittance for plane waves, which
depends on the incidence angle on the wall and coincides
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with the Kirchhoff result for rectangular waveguides if the
boundary layer thickness is much smaller than the rectan-
gle lengths. Propagation models based on this admittance
and plane wave approximations have been derived. They
include a damping term involving a fractional time deriva-
tive (see the Lokshin equation {47, 48] and [49]). Closed-
form solutions of the Lokshin equation have been derived
in [50, 51]. The model considered here is an extension of
result 1.

5.2. Introducing visco-thermal losses in the curvilin-
ear horn model and Y-constant segments

Adapting hypothesis (H1) in § 2 to the case of walls with
a Cremer wall admittance, a perturbed curvilinear version
of (7) is obtained (see [20]). It is given by

s SRW@. 1, 20 3 _
<a€+2R(€)ag 2% - =0 >p(0,t)—0. (16)

In the last term, 6,3/ ? denotes a fractional time derivative
(see e.g. [50] and references therein) and coefficient &
is given by £(¢) = "1~ R/(€)?/R(€) where £* =
V6L +@ =1/, ~ 3.125-10"* m'/? according to the phys-
ical constants given in Table II (Kirchhoff’s formula).This
equation is sometimes called the “Webster-Lokshin” equa-
tion, because the “Webster equation” is recovered for € =
0 and the “Lokshin equation” is recovered for R’ = 0.

The complete model is (8), (16). It governs the propaga-
tion of the acoustic state out of the visco-thermal boundary
layers.

Remark 6 (planar wave approximation)

A similar model has been derived in [49], assuming plane
waves. It leads to (16), in which €, R(#) and (&) are re-
placed by z, R(z) and the loss coefficient £(z) = €* /R(z)
which only depends on the profile radius (but not on its
slope).

Consider Y-constant segments (indexed by n = 1,... N)
on which ¢ — &(#) is approximated by its mean value,
namely,

Ep _ 1 Je'x \% 1- RI(Q)Z
én 0/1—1

de
€ - R(&)

T =

(or, according to remark 3, g,/¢* = [1/(z; = 2a-1)]
I;"_l (1/R(z)) dz for the planar wave approximation). This
yields the same transfer matrix as in result 2 where (11) is

replaced by

2 3
Ty(s)? = <5> +2e,,(5)2 + Y, (17)
c ¢
Moreover, the following result has been proved, even for
constant piecewise profiles [50, 51] (Table la, Figure 9a).

Result 5 (Regularization and long-memory)
The fractional derivative in (16) regularizes the IR of im-
mittances and introduces some “long-memory effects”:
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Figure 9. Pressure transmission IR & (p(L,-) = h = p(0, -)) for a
straight pipe loaded with a constant positive impedance. (a): no
losses; € = 0[50, figure 5.5], (b) losses; € = 0.25 [50, figure
6.7b]

R, R (inm)

0 0.1 0.2 0.3 0.4 0.5 0.8
z or £ (in m)

Figure 10. Measured profile (-) and corresponding #-profile (- -).
See also Table 111.

(i) Dirac pulses are transformed into C*-pulses,
(if) these pulses decay more slowly than any decreasing
exponential (long-memory),
(iii) the modes of such fractionally-damped systems are
not reduced to standard Q-resonances.

Remark 7 (Modes in fractional systems)

In (iii), the modal dynamics is not of exponential-type
but of Mittag-Leffler type [52], with long-memory decays.
Their IR functions can be decomposed into a finite sum
(poles) and an infinite-continuous sum (integrals on cuts)
of first order models [30, 51, 53, 54].

The regularization and the long-memory effects also
appear in cases ®-© (see [30, Figure 10] and [33, Fig-
ure 171).

6. Application and results

In this section, results based on §2-5 are compared to the
measures published in [10] for a trombone bell.

6.1. Geometry

The bell of a trombone (Courtois 155R) has been iso-
lated from the whole instrument. Its bore, that is its in-
terior chamber, is described by a set of M + 1 measured
points (z,, R,) (see Table IIT). According to some instru-
ment makers’ descriptions, the discretization step used to
mesh the profile is not chosen uniform but is adjusted so
that its piecewise continuous affine interpolation provides
an accurate description. The z-profile is displayed in Fig-
ure 10. The last segment is a piece of cone with angle
6p = 72.4° and the distance from its apex to its extrem-
ity is rp = 0.1154 m.
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Figure 11. C'-regular approximation with 5 Y-constant seg-
ments (-) is estimated according to [35]. See also table IV.

Table IV. Descriptions of the horn of a trombone Courtois 155R
with C!-regular junctions of Y-constant segments for abscissa z
(top) and € (bottom).

n Zn Rn Yn En fc = : 27rY”
(m) (m) (m™')  (m"2) (Hz)
0 0 0.0104 X X X
1 0.2000 0.0129 11.7 0.0279 188.6
2 0.3998 0.0208 8.7 0.0194 163.0
3 0.4792 0.0298 63.8 0.0129 440.5
4 0.5404 0.0611 298.7 0.0079 953.5
5 0.5680 0.1082 758.0 0.0040 1518.9
n &, R, Yo En fe=* 2: -
1
(m) (m) (m™) (m~2) (Hz)
0 0 0.0104 X X X
1 0.2000 0.0130 11.8 0.0279 189.8
2 0.4000 0.0207 7.9 0.0194 155.2
3 0.4800 0.0302 72.3 0.0128 469.1
4 0.5500 0.0613 191.3 0.0069 763.1
5 0.6065 0.1100 45.8 0.0019 373.5

According to (6), the exact curvilinear version of this
profile is given by the piecewise continuous affine interpo-
lation of the mesh (€, R,,) where &, = zp = 0 and

2y =Cp 1+ V(zn = 20-1)* + (R — Rn)?, ifn> 1.

This ¢@-profile is described in Table III and displayed in
Figure 10.

Using the method described in [35], accurate C!-regular
shapes are regenerated for both the z- and the &- profiles,
using five Y-constant segments (see Table IV and Fig-
ure 11 for &).

6.2. Acoustic characteristics: measurement and
models

The input impedance of the trombone bell in [10] has
been measured using the experimental setup described in
[55]. The measured data are displayed in Figure 12 in
dashed lines, and are repeated in Figures 13-15. The cal-
ibration tests obtained in [10, § 3.1] on a reference closed
straight pipe lead to the following estimates of physical
constants: p = 1.18Kg/m3, ¢ = 346.63 m/s. This cor-
responds to the “equivalent temperature” T = 25.5°C
(which also accounts for the effect of humidity). The co-
efficient of losses is computed for this temperature, from

Table I £* = /I, + (¥ = 1)y/I; ~ 3.125 - 10~4 m!/2,

For each segment n, the visco-thermal coefficients ¢,
are computed as the average of £ over the segment w.r.t.
the considered space variable as specifed in §5.2. Their
values are given in Table I'V.

Based on these data, the normalized input impedance
Zin = (1/p¢)Piput [ Vinpu and the modulus |R“ —
R°*!| of the deviation of the input reflection function
Ry = (Z;,—1)/(Z;, + 1) are computed for the bore
loaded by a radiation impedance. The tested configura-
tions are summarized in Table V: model M, is the model
including all the ingredients; models Mz to M,—q include
all the ingredients except one; models Mpjanar and My,
correspond to “historical models”; Mppcg corresponds to
a model used in the recent paper [10].

6.3. Comparison

The input impedances of models of Table V are compared
below. As mentioned in section 4, the contribution of the
propagation models is of main importance below the cut-
off frequency of the radiation impedance. For the proposed
model (Zs), based on a pulsating portion of a sphere,
the dimensionless parameter v, corresponds to 600 Hz and
the standard cutoff frequency is given by f7* = 848 Hz
(see property 5(iii)).

The critical frequency limit (9) for the validity of the
propagation model which depends on the maximal radius
of the bell is f* = (1.84 -346.63)/(2x - 0.11) ~ 923 Hz
(> fred). Moreover, the local-in-space cutoff frequency of
each Y-constant segment (see remark 2) is given in Ta-
ble IV.

6.3.1. Model including the four ingredients

Model M, is based on 5 segments and gathers the 4 in-
gredients proposed in sections 2 to 5. The corresponding
results are displayed in Figure 12.

The shapes obtained for the model and the measurement
fit well, both below and above the cutoff frequency of the
bell. Quantitative details are given in § 6.3.5.

6.3.2. All ingredients except one

Models Mz to M._q are based-on 5 segments and gather
the same 4 ingredients as in M., except one. The corre-
sponding results are displayed in Figure 13.

The comparison between M, and these models shows
that all of the 4 ingredients are relevant, but in different
ways. The worst deviation is due to considering the z-
abscissa in the Webster-Lokshin equation (Mz). Hence,
it can be noticed that the inverse potential scattering meth-
ods based on the Webster equation (see e.g. [56]) could
also benefit from considering the curvilinear abscissa ¢
rather than z. Using 5 cones also degrades the quality of
the results, especially, beyond 1200 Hz. Significant devia-
tions beyond f7%¢ ~ 848 Hz are also induced by radiation
models Z;, Z3, Z4. Finally, neglecting the visco-thermal
losses leads to a significant deviation of the first peaks (res-
onance and anti-resonance).
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Table V. Tested models and configurations.
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Model label Figure abscissa  segments and junction regularity radiation model  visco-thermal losses
M, 12 (14-15) @ 5 Y-constant, C! Zs yes (M,o)
Mz 130 z 5 Y-constant, C' Zs yes
MS5c 13Q 2(=r) 5 cones, C° Zs yes
MR, 130 2 5 Y-constant, C! VA yes
MR, 133 2 5 Y-constant, C! Z; yes
MR, 133 2 5 Y-constant, C! Z, yes
M. 13@ 2 5 Y-constant, C'! Zs no
Mpianar 14 z 40 straight pipes, discontinuous Zs yes
Mecxr, 14 2(=r) 40 cones, C° Zy yes
Mmeo 15 (=) 40 cones, C° Zs yes
“ L Miasurement . & o C S S C © e = Measurement
.................................. T Model M- < Koo Moded M r -
o R Model Mo -
i 3
F S R S SR A é_zo ..............................................

L [ X L 1 1 £ 1 y
0 200 400 600 800 1000 1200 1406 1600 1800 2000

[ (in Hz)

Phase {in )

L L L 1 1 { . L L 5
0 200 400 600 800 1000 1200 1400 1600 1800 2000

S (in Hz)

Reflexion deviation
o
b

L L L 1 f : L L :
0 200 400 600 800 1000 1200 1400 1600 1800 2000

J (in Hz)

Figure 12. Normalized input impedance of the bell (modulus in
dB (20log,,) and phase in degrees) and reflection function de-
viation (modulus, dimensionless, linear scale): measurement ()
and model M, (see Table V).

6.3.3. Historical models

A second list of configurations, described in table V, cor-
responds to “historical models”, which are based on “con-
sistent arrangements of ingredients”.

Model M¢g is composed of the 40 cones derived from
the original profile description and the corrected version
Zy4 of the Levine and Schwinger’s radiation impedance,
as proposed in [26]. Model M jqq is built with 40 lossy
straight pipes and the Levine and Schwinger’s radiation
impedance Z3. As displayed in Figure 14 the latter model
is clearly quite poor beyond the first resonance. Model
Mcky is quite comparable to M, in the low frequency
range but, over f7%¢ ~ 848 Hz, it has misplaced reso-
nances and anti-resonances.
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Figure 14. Comparison similar to Figure 12: measurement (—)
and models M,, Mcky and M])lmmr-

6.3.4. Model used in the recent paper [10]

Model M gpc corresponds to a model that has been stud-
ied in [10]. It is composed of 40 cones (linking all the
points measured on the trombone profile), of the radia-
tion model Z5 described in section 4 and includes visco-
thermal losses.

As displayed in Figure 15, this model is very close to
M, . In this case, the main differences are the number of
segments (40 versus 5) and the associated parameters.

6.3.5. Global results and quantitative deviations

Qualitatively, the best models appear to be M, and M gpce
(as well as Mcg below fc””’ =~ 848 Hz). In these one-
dimensional models, the deviations that remain visible are
located in the vicinity of the cutoff frequency where both
the radiation model and the 1D wave model are not accu-
rate enough.
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Figure 13. Comparison similar to Figure 12: measurement (~) and models including all the ingredients except one. The missing in-
gredient in subfigure ® is ingredient number k& (models Mz to M., are detailed in Table V). (a) Model M Z, (b) Model M5C, (c)

Models M R,, M R3; and M Ry, (d) Model M,_,.

Out of this area, the frequencies corresponding to res-
onances and anti-resonances have been computed, in or-
der to quantify the accuracy of the models. To derive ac-
curate values, these frequencies have been chosen as the
zero-crossing points of the impedance phase rather than
the peaks of the impedance modulus.

The detailed values of the resonance frequencies (re-
spectively, anti-resonance frequencies) computed for each
model are given in Table VI (respectively, Table VII), as
well as their deviations w.r.t. the measure.

The frequency deviations of the first resonance and anti-
resonance are less than 1.2%, 1.6% and 1.8% for M,,
MEgpce and Mk, respectively. For the resonances and
anti-resonances located over 1200Hz, deviations are less
than 2.6 %, 2.6% and 7.8 %. More generally, the quantita-
tive results on frequencies corroborate the more global and
qualitative comparison made above.

It can be noticed that a frequency deviation of 1.2% is
still perceptible and corresponds to about one fifth of a
semi-tone (in the sense that (21/12)1/5 ~ 1.012). Such a
small discrepancy can be due to the model approximations
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Table VI. Resonance frequencies f; of the input impedance for all the models and deviation § ;7 from the measure (the frequencies
are computed as those for which the phase is zero and decreasing).

Model label ff (Hz) (6[,*, %) £ (Hz) (61, %)
Measure 241.4 517.2
M, 244.3 (+1.2) 520.2 (+0.6)
Mz 246.5 (+2.1) 531.6 (+2.8)
M5c 244.1 (+1.1) 521.6 (+0.8)
MR, 243.9 (+1.0) 518.8 (+0.3)
MR, 244.3 (+1.2) 518.4 (+0.2)
MR, 2447 (+1.4) 521.8 (+0.9)
M, 246.3 (+2.0) 522.6 (+1.0)
Myianar 2443 (+1.2) 528.0 (+2.1)
Mexr 245.7 (+1.8) 522.4 (+1.0)
Mmcg 245.3 (+1.6) 520.8 (4+0.7)

13 (Hz) (15, %) I3 (Hz) (61, %) fe (Hz) (6f5. %)
793.0 1484.2 1779.6
818.3 (+3.2) 1487.6 (+0.2) 1800.1 (+1.2)
843.1 (+6.3) 1454.0 (-2.0) 1762.9 (-0.9)
860.9 (+8.6) 1551.4 (+4.5) 1922.2 (+8.0)
846.3 (+6.7) 1433.0 (-3.4) 1716.5 (-3.5)
827.7 (+4.4) 1450.6 (-2.3) 1748.3 (-1.8)
806.7 (+1.7) 1599.8 (+7.8) 1875.4 (+5.4)
820.9 (+3.5) 1490.2 (+0.4) 1804.1 (+1.4)
829.7 (+4.6) 1491.2 (+0.5) 1748.7 (-1.7)
804.1 (+1.4) 1586.6 (+6.9) 1876.0 (+5.4)
814.7 (+2.7) 1477.4 (-0.5) 1794.3 (4+0.8)

Table VII. Anti-resonance frequencies f, of the input impedance for all the models and deviation 6 f,” from the measure (the frequencies
are computed as those for which the phase is zero and increasing).

Model label f,* (Hz) (6f,+, %) f; (Hz) (6f2+, %)
Measure 241.4 517.2
M, 371.3 (+0.8) 668.9 (+0.2)
Mz 377.6 (+2.6) 688.3 (+3.1)
M5c 373.5 (+1.4) 666.7 (-0.1)
MR, 370.1 (+0.5) 674.9 (+1.1)
MR, 371.1 (+0.8) 663.3 (-0.6)
MRy 3727 (+1.2) 667.5 (+0.0)
M, 373.3(+1.4) 671.9 (+0.7)
Mpianar 384.6 (+4.5) 693.1 (+3.9)
Mcx1 371.7 (+0.9) 668.3 (+0.1)
Mmcg 370.3 (+0.6) 669.9 (+0.4)

[ He) BfF. %) | [ M) (6fF, %) f H2) 8/, %)
793.0 1484.2 1779.6
1329.9 (-1.3) 1641.5 (+1.6) 1956.0 (4+2.6)
1300.5 (-3.4) 1607.8 (-0.5) 1915.6 (+0.5)
1379.6 (+2.4) 1690.3 (+4.6) 1690.3 (-11.4)
1292.7 (-4.0) 1573.6 (-2.6) 1843.9 (-3.3)
1308.1 (-2.9) 1595.6 (-1.3) 1595.6 (-16.3)
1472.4 (+9.3) 1732.1 (+7.2) 1732.1 (-9.2)
1335.5 (-0.8) 1646.7 (+1.9) 1961.2 (+2.8)
1290.5 (-4.2) 1629.3 (4+0.8) 1629.3 (-14.6)
1241.1 (-7.8) 1740.5 (+7.7) 1740.5 (-8.7)
1362.9 (+1.2) 1658.1 (+2.6) 1951.2 (+2.3)

but also to the lack of accuracy of measurements (physical
constants, geometric measurements). Additional tests on
other measured bells and wind instrument resonators, as
well as a sensitivity analysis could help to quantify the
quality of the model.

7. Conclusions

The use of Cl-regular junctions of Y-constant segments
governed by the curvilinear Webster-Lokshin model con-
nected to the radiation impedance of a pulsating portion
of a sphere proves to be relevant for the computation of
the input impedance of brass instruments. This is the re-
sult of the 4 refinements proposed in sections 2 to 5 (in
the sense that removing one of them yields worse results).
More precisely, considering the curvilinear abscissa rather
than the standard axial abscissa in the Webster horn equa-
tion is shown to be most important for the significantly
flared parts of the bell. From the acoustical point of view,
this increases the "travel length" of waves and decreases
the local-in-space cutoff frequency below which travelling
waves become evanescent. Moreover, combined with (C!-
regular) Y-constant piecewise approximations of the pro-
file, this model allows preservation of the accuracy of the
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non approximated geometry, using only a few segments
and the corresponding products of transfer matrices. The
proposed radiation model improves the result in the high
frequency range, corroborating the results of [10]. Finally,
including visco-thermal losses in the Webster equation
(Webster-Lokshin equation), which involve long-memory
responses in the time-domain, improves the accuracy of
the peaks of the input impedance modulus.

In summary, for flared horn, the propagation model re-
finements are crucial below the cutoff frequency, while the
radiation model refinements are crucial beyond this cut-
off frequency. However, this relevance and the validity do-
main have still to be characterized with measures for the
case of convex pipes (Y < 0): the relevance of the local-in-
space quasi-spherical approximation could lapse for sig-
nificant bendings.

Moreover, while reducing the number of parametrized
segments is not necessarily a critical point for the compu-
tation of the input impedance from profile data, it becomes
one for e.g. impedance optimization tools or sound syn-
thesis purposes. Hence, perspectives are twofolds. First,
the models proposed in this paper could be used to build
a toolbox dedicated to predict, estimate and optimize
(w.r.t. to some computable criteria) immittances of acous-
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Figure 15. Comparison similar to Figure 12: measurement (—)
and models M, Mzpcg.

tic bores with a smooth profile and help to design horn
profiles. Second, it will be used to build digital waveguides
(with Kelly-Lochbaum versions) based on decompositions
into decoupled waves in Y-constant segments, for realistic
real-time sound synthesis purposes.

Appendix

Al. Test profile and physical constants used in this
paper

The academic flared profile R used in sections 2-5 is cho-
sen such that boundaries coordinates (z, R) matches with
those of the trombone bell (zg = 0, Ry = 10.4 - 1073 m,
7 =568-10"3m, R* = 110 - 10~3m), with a null slope
at z = 0. A simple polynomial model which satisfies these
properties is given by

10
R':z€[0,2]+ Ry+ (R ~ Ro) (f—) . (A
Moreover, physical constants are summarized in Table II.
The air mass density and the sound celerity have been de-
duced from the calibration of the impedance sensor [55]
for the measured trombone bell. They correspond to the
temperature T = 25.5°C. Other quantities are then ex-
tracted from [24].

A2. Bell profile of a Trombone Courtois 155R
The horn profile that is measured in this paper is described

in Table III. The computed corresponding parameters of
the segments are given in Table IV.
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