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Time-domain impedance boundary conditions (TDIBCs) can be enforced using the impeda-
nce, the admittance, or the scattering operator. This article demonstrates the computational 
advantage of the last, even for nonlinear TDIBCs, with the linearized Euler equations. This 
is achieved by a systematic semi-discrete energy analysis of the weak enforcement of a 
generic nonlinear TDIBC in a discontinuous Galerkin finite element method. In particular, 
the analysis highlights that the sole definition of a discrete model is not enough to 
fully define a TDIBC. To support the analysis, an elementary physical nonlinear scattering 
operator is derived and its computational properties are investigated in an impedance 
tube. Then, the derivation of time-delayed broadband TDIBCs from physical reflection 
coefficient models is carried out for single degree of freedom acoustical liners. A high-order 
discretization of the derived time-local formulation, which consists in composing a set of 
ordinary differential equations with a transport equation, is applied to two flow ducts.

1. Introduction

Across various industries, stringent regulations on sound pollution have led to a growing usage of sound absorbing ma-
terials, the design of which requires suitable computational tools. An accurate computation of the acoustic field inside an 
industrial sound absorbing material is costly by contemporary computing standard, and is thus the realm of specific stud-
ies that focus on the material in isolation. Practical computations of sound absorption are typically done by abstracting 
the geometrical features of the material using a so-called impedance boundary condition (IBC). The computation of sound 
absorption using an IBC is one aspect of computational aeroacoustics (CAA) [1]. Broadly, this paper deals with the discretiza-
tion of IBCs in the time domain for the linearized Euler equations. This introduction is split into two parts: Sec. 1.1 covers 
impedance modeling and its applications, while Sec. 1.2 focuses on the time-domain discretization of IBCs and presents the 
article objectives and outline.

1.1. Modeling and applications of impedance boundary conditions

Many sound absorbing materials are variations of the acoustical (Helmholtz) resonator. Assumed locally reacting, they 
can be modeled using a (continuous) single-input single-output time-invariant operator known as the impedance operator
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[2, § 6.3] [3, Chap. 10]. At low incident sound pressure level (SPL), the impedance is linear and thus reduces to a time-
domain convolution [4, § III.3]; it is a hereditary (i.e. non time-local) operator whose kernel exhibits a long memory behavior 
linked to viscous and thermal effects within both the neck and the cavity. (See [5, § III] and references therein for common 
linear models.) Above a SPL threshold, a turbulent dissipation mechanism that occurs at the resonator neck, known as vor-
tex shedding, results in the addition of a nonlinearity [6, § 4] [7, § I] [8, § 2] [9, § 5]. The influence of a subsonic grazing 
flow can be modeled through an additional parametric dependence that does not change the mathematical nature of the 
impedance operator [10, § 3] [11, § 7].

The effect of a locally reacting absorbing material on the sound field is accurately described, after a homogenization 
distance [12], by using its impedance operator as a boundary condition. The effectiveness of this modeling and the advent 
of acoustically treated jet engines has led to IBCs becoming a staple part of aeroacoustics [13, Chaps. 13 & 14]. Early 
works focused on the prediction of sound absorption in a duct with flow: Cremer [14] derived an approximation of the 
optimal impedance and Pridmore-Brown [15] established his celebrated equation, widely used to compute duct modes. The 
identification of unstable surface modes by Tester [16] lead to a wealth of investigations focused on the hydrodynamic 
stability of a base flow with an IBC [17]. Inverse methodologies have been developed to identify the IBC and provide an 
alternative to more intrusive measurement techniques [18]. In all of these studies, the IBC is linear and the Cauchy problem 
is formulated in the frequency domain. Although less popular than their time-harmonic counterparts, time-domain IBCs 
(TDIBCs) have been used in wave propagation problems including duct aeroacoustics [19–22], room acoustics [23], as well 
as outdoor sound propagation [24]. Richter et al. [25,26] and Troian et al. [27] identified an IBC in the time domain. Gabard 
& Brambley [28] used a time-domain formulation to investigate the (in)stability of the Ingard–Myers boundary condition.

The use of a time-domain IBC may merely be more convenient than a time-harmonic one, for instance when a broadband 
source is considered. However, it is indispensable when the harmonic problem cannot be formulated, such as in the pres-
ence of time-dependent domains, moving sources, or nonlinearities. Typically, the nonlinearity comes from the impedance 
operator, as mentioned above, or from the considered partial differential equation (PDE). Nonlinear PDEs are of particular 
interest when hydrodynamic phenomena cannot be neglected, such as close to a supersonic fan tip where shocks occur [29, 
§ 5.3], or for flow control. Scalo et al. [30] and Olivetti et al. [31] performed a Navier–Stokes simulation (large eddy simu-
lation and direct numerical simulation, respectively) with a linear TDIBC to investigate the interaction between a turbulent 
boundary layer and an impedance wall.

It is worth noting that IBCs have other uses and denominations. In simulations of combustion chambers, IBCs are used to 
truncate a part of the chamber [32,33] or model injectors [32,34] for instance. In mathematical control, TDIBCs (also known 
as Dirichlet to Neumann maps) are commonly used to stabilize the wave equation since they modify the underlying semi-
group generator and can yield asymptotic or even exponential stability. Both finite-dimensional [35] and infinite-dimensional 
TDIBCs, involving for example fractional derivative [36] and time delay [37], have been studied. Surface or generalized IBCs 
[38] are employed in electromagnetism to model non-perfect electric conductors. The first and most widely used model 
is that of Leontovich, which is a fractional operator identical to that encountered in the acoustic impedance of perforated 
plates [5]. See [39,40] for two applications in the time domain.

1.2. Time-domain discretization of impedance boundary conditions

A discrete TDIBC consists of three components. First, the discrete impedance model, i.e. the finite-dimensional operator 
(in the sense of systems theory [41,42]) that one wishes to apply at the boundary. Second, the numerical algorithm used 
to evaluate the said operator; in the case of linear continuous time-invariant operators (i.e. of linear TDIBCs) this amounts 
to computing a time-domain convolution. Practically these first two elements go hand in hand since the expression of 
the convolution kernel dictates how the convolution can be efficiently computed. The third and last component is the 
(semi-)discrete formulation, i.e. how the TDIBC is enforced at the (semi-)discrete level.

The first two components are well-documented for linear TDIBCs. First, broadband discrete impedance models can be 
built from the so-called oscillatory-diffusive representation of physical models [5]. Second, a convenient way to compute a 
causal convolution is to recast it into a set of ordinary differential equations (ODEs) (or, in the sense of systems theory, to 
realize the corresponding LTI operator [41, § 17] [42, § 1.2]), a method sometimes named “auxiliary differential equations” 
[20,43], “canonical form implementation” [21,22], or “state-space model” [32] in the acoustics or fluid dynamics literature. 
In this way, the computation of a (in)finite-dimensional hereditary operator is reduced to the integration of a (in)finite set of 
time-local differential equations, which can be done with arbitrary accuracy. If the impedance operator models a reflection 
phenomenon (e.g. a wave reflection in the cavity of a Helmholtz resonator), its realization involves not only ODEs but also 
time-delayed ODEs [5]. Alternatively, when a realization of the impedance operator is beyond reach, more general algorithms 
can be used, such as convolution quadrature or multistep methods [44,40,45]. The key feature of these methods is that they 
only require the knowledge of the Laplace transform of the convolution kernel, which is always known in the case of linear 
impedance models (impedance modeling, be it theoretical or empirical, is often carried out in the frequency domain).

The third component of a TDIBC is seldom discussed. For instance, there does not seem to be a consensus on whether 
a TDIBC should be based on the impedance z [19,46,20,28,31], the admittance y [21,22], or the reflection coefficient β
[47,30,32]. This topic has been mentioned by Gabard & Brambley [28] who warned that some instabilities reported in the 
literature may be due to an unsuitable implementation and showed the benefit of a characteristic-based implementation in 
their study, which is echoed in works that focus on large eddy simulations and direct numerical simulations [30,32,34,33].



Another scarcely mentioned aspect is the impact of the TDIBC on the maximum admissible time step. Although this 
aspect is of secondary concern for stability studies, it is of crucial importance for large-scale applications like those that 
involve hydrodynamics or for inverse methods that need to explore the impedance parameter space. To the best of the au-
thors’ knowledge, the only known result is that for a proportional impedance (i.e. z(t) ∝ δ(t)), using the reflection coefficient 
yields a CFL stability condition independent of the impedance coefficient [48, § 3.3] [49, 2.3].

The objective of this paper is to contribute to addressing these gaps by establishing the computational advantage of 
the reflection coefficient, even for nonlinear TDIBCs, with the linearized Euler equations. This is achieved by a systematic 
investigation of the weak enforcement of a generic nonlinear TDIBC in a discontinuous Galerkin finite element method. 
To support the analysis, an elementary physical nonlinear scattering operator is derived and its computational properties 
are investigated in an impedance tube. Then, for application to two flow ducts, the derivation of broadband TDIBCs from
physical reflection coefficient models is carried out for single degree of freedom acoustical liners. The derived formulation 
is purely time-local and consists in composing a set of ODEs with a transport equation.

This paper is organized as follows. Sec. 2 gathers preliminaries including a rigorous statement of impedance admissibility 
conditions. Two of three components of a TDIBC, namely the discrete model and the time discretization algorithm, are 
covered in Sec. 3, which derives both linear and nonlinear discrete models from the analysis of physical impedance models. 
The third component, namely the (semi-)discrete formulation, is addressed independently in Sec. 4 with an investigation of 
the weak enforcement of a generic nonlinear impedance boundary condition within a discontinuous Galerkin finite element 
method. The last two sections gather numerical validations and applications of the presented analysis. Sec. 5 validates 
the proposed linear and nonlinear TDIBCs by comparison with the impedance tube analytical solution. Sec. 6 presents an 
application to two flow ducts.

2. Preliminaries on the continuous formulation

The purpose of this section is to introduce the physical problem considered in this paper, as well as to gather definitions 
and notations for later use (such as the analysis of Sec. 4). The linearized Euler equations are briefly recalled in Sec. 2.1. 
Sec. 2.2 gives the three equivalent formulations of an IBC and rigorously states the admissibility conditions. Lastly, Sec. 2.3
presents the assumption made on the base flow and discusses its mathematical and physical implications.

2.1. Linearized Euler equations

In this work the hydrodynamic field is split between a steady base flow and an unsteady perturbation. The perturbations 
of pressure p, velocity u, and density ρ are governed by the homentropic linearized Euler equations (LEEs), defined on 
(0, ∞) × � with � ⊂ R

n a bounded open subset,⎧⎪⎨
⎪⎩

∂t u + (u0 · ∇)u + z−1
0 c0∇p + (u · ∇)u0 + z−1

0 c−1
0 p(u0 · ∇)u0 = 0

∂t p + (u0 · ∇)p + z0c0∇ · u + γ p∇ · u0 = 0

p = c2
0ρ.

(1)

The specific heat ratio is denoted γ > 1. Quantities related to the base flow are designated by the subscript “0”: u0 is 
the base flow velocity, ρ0 the base flow density, c0 the speed of sound, and z0 := ρ0c0 the characteristic impedance of the 
propagation medium. All quantities are dimensional. Column vectors are denoted in bold and the symbol (u ·∇) denotes the 
convective derivative defined as (u · ∇) f :=∑

i ui∂i f and (u · ∇) f := ∇ f · u = (
∑

j u j∂ j f i)i when applied to scalar-valued 
and vector-valued functions, respectively. The symbol “:=” is used to denote a definition. The LEEs (1) entail hypotheses on 
both the base flow and the perturbations. The base flow is a perfect gas, so that c2

0 = γ rT0 = γ p0/ρ0, and can solve either 
the steady Euler or Navier–Stokes equations. The perturbations are “small”, inviscid, and homentropic. The rather strong 
homentropicity assumption enables to replace the energy equation by the algebraic relation p = c2

0ρ and implies that c0
must be constant in �. As a result, the LEEs (1) do not include an entropy mode, but only hydrodynamic and acoustic ones. 
In spite of its simplicity, this model is commonly used in duct aeroacoustics, see Sec. 6. For the detailed derivation of the 
LEEs and additional physical insights, the reader is referred to [25, Chap. 2] and references therein.

2.2. Formulations and admissibility conditions of impedance boundary conditions

On a subset �z of the boundary � := ∂�, an IBC is applied, defined as

p(t, x) = Z[u(·, x) · n(x)](t) (t ∈ (0,∞), x ∈ �z), (2)

where n is the outward unit normal and Z is the (single-input single-output) impedance operator. If the impedance operator 
is linear continuous time-invariant (LTI), the IBC (2) reduces to

p(t, x) = [z 	 u(·, x) · n(x)] (t), (3)



where z is the impedance kernel and “	” denotes the time-domain convolution of distributions [4, Chap. III]. Since the LEEs 
(1) are linear, the LTI IBC (3) can also be formulated in the Laplace domain, provided that z is causal, as

p̂(s, x) = ẑ(s)û(s, x) · n(x) (�(s) > c), (4)

where the Laplace transform is defined as f̂ (s) = ∫∞
0 f (t)e−st dt for a locally integrable function with finite exponential 

growth, i.e. f ∈ L1
loc([0, ∞)) with | f (t)| ≤ Mect . If f is a causal distribution, as encountered with physical impedance models, 

the distributional extension f̂ (s) = 〈 f , e−st〉 is employed [4, Chap. 6] [50, Chap. 2]. As long as the problem is linear, (3)
and (4) are equivalent. The Laplace formulation is particularly useful for stability studies (using a Briggs–Bers analysis for 
instance) or when deriving representations of physical impedance models, as is done in Sec. 3.2. Formally s = jω (with 
j2 = −1) yields the Fourier transform but such a mere formal substitution is error-prone, especially when dealing with 
admissibility conditions, which justifies the present use of the Laplace transform; a discussion on this topic is provided 
in Appendix A. In the remainder of this paper, “impedance” can designate the single-input single-output operator Z , the 
convolution kernel z, or its Laplace transform ẑ. The impedance can have a spatial dependency (i.e. Z(x, ·), z(x, t), or 
ẑ(x, s)), although it is not explicitly written for the sake of clarity. In this study, the IBC (2) is meant to model a passive 
sound absorbing material so that it obeys the admissibility conditions given below.

Definition 1 (Admissibility conditions). Let Z be a single-input single-output operator. It is said to be an admissible impedance 
operator if it enjoys the following properties: causality; reality (real-valued inputs are mapped to real-valued outputs); 
passivity, i.e. for every smooth and compactly supported input u ∈ C∞

0 (R) and for every time instant t > 0,

�
⎛
⎝ t∫

−∞
Z(u)(τ )u(τ )dτ

⎞
⎠≥ 0, (5)

where the overline denotes the complex conjugate.

Physically, the left-hand side of (5) is the energy supplied to the system over (−∞, t). The passivity condition (5), which 
applies to every passive system encountered in physics, means that the system does not produce energy [51, p. 301] [52, 
p. 12]. If Z is LTI, then it is interesting to note that this definition could be restricted to reality and passivity. Indeed, for real 
LTI systems, passivity implies causality [51, Lemma 10.3] [50, Note 8]. A consequence of this result is that a real anticausal LTI 
system cannot be passive: intuitively, for such a system the supplied energy over (−∞, t) can be made arbitrarily negative 
by modifying the input u in the future. A key fact in practice is that the admissibility of an LTI impedance can be readily 
read on its Laplace transform ẑ, as summarized in Proposition 3 below, which could be interpreted as a rigorous statement 
of [46, Thm. 1].

Definition 2 (Positive-real function). Let C+
0 := {s ∈ C | �(s) > 0} be the open right half-plane. A function f : C+

0 → C is 
positive-real if f is analytic in C+

0 , f (s) ∈R for s ∈ (0, ∞), and �[ f (s)] ≥ 0 for �(s) > 0.

Proposition 3. An LTI operator Z is an admissible impedance operator if and only if its Laplace transform ẑ(s) is a positive-real 
function.

Proof. This is a standard fact of Systems Theory. See [52, § 2.11] for the case where the kernel z ∈ L1(R) is a function and 
[50, § 3.5] for the general case where z ∈D′+(R) is a causal distribution. �
Remark 4. The growth at infinity of positive-real functions is at most polynomial. More specifically, from the integral repre-
sentation of positive-real functions [50, Eq. (3.21)], it follows that for �(s) ≥ a > 0, |ẑ(s)| ≤ C(a)P (|s|) where P is a second 
degree polynomial.

Example 5. Let us give some practical examples of admissible impedance models, encountered in Sec. 3: the multiplication 
z = δ (ẑ(s) = 1) with δ denoting the Dirac distribution; the derivative z = δ′ (ẑ(s) = s); the half-order fractional integration 
z(t) = H(t)/

√
πt where H(t) is the Heaviside function (ẑ(s) = 1/

√
s); the fractional derivative z(t) = H(t)/

√
πt 	 δ′(t) (ẑ(s) = √

s); 
the time-delay system z(t) = aδ(t) + bδ(t − τ ) with a ≥ b ≥ 0 and τ ≥ 0 (ẑ(s) = a + be−sτ ). The following impedance kernels 
are not admissible: ẑ(s) = √

s/j, which fails the reality condition ẑ(s) ∈ R for s ∈ (0, ∞); ẑ(s) = a + be−sτ with a < b and 
τ ≥ 0, which is not passive; z(t) = δ(t + τ ) with τ ≥ 0 (ẑ(s) = esτ ), which is not causal; z(t) = et H(t) (ẑ(s) = (s − 1)−1), 
which is not passive (ẑ(s) is not analytic in C+

0 since it admits 1 as a pole).

As mentioned in the introduction and covered further below, it can be beneficial to consider other forms of the IBC (2). 
When possible, it may be written using the admittance operator Y as



u(t, x) · n(x) = Y[p(·, x)](t). (6)

If the impedance operator Z is LTI and admissible, then the admittance operator Y exists, is unique, and is also LTI and 
admissible so that (6) reduces to

u(t, x) · n(x) = [y 	 p(·, x)](t), (7)

where the admittance kernel y is the convolution inverse of z, i.e. y 	 z = δ or ŷ(s)ẑ(s) = 1. The admissibility conditions on 
Y are strictly identical to that of Z , so that Proposition 3 with “admittance” substituted for “impedance” holds true.

The third and last considered formulation of the IBC (2) is the so-called scattering formulation

p̃(t, x) − u(t, x) · n(x) = B[p̃(·, x) + u(·, x) · n(x)](t), (8)

where p̃ := z−1
0 p and B is known as the scattering operator. The expression (8) has an elementary physical interpretation 

based on the characteristics of the LEEs (1): the incident wave p̃ + u ·n is reflected back as p̃ − u ·n. Admissibility conditions 
can also be formulated on the scattering operator, see the definition below.

Definition 6 (Admissibility conditions). Let B be a single-input single-output operator. It is said to be an admissible scattering 
operator if it enjoys the following properties: causality; reality (real-valued inputs are mapped to real-valued outputs); 
passivity, i.e. for every smooth and compactly supported input v ∈ C∞

0 (R) and for every time instant t > 0,

t∫
−∞

|B(v)(τ )|2 dτ ≤
t∫

−∞
|v(τ )|2 dτ . (9)

The equivalence between the passivity properties (5) and (9) follows from the identity 4p̃u = (p̃ + u)2 − (p̃ − u)2. The 
potential computational benefit of B over Z and Y can be guessed by comparing (5) and (9) and is demonstrated on an 
elementary example in Sec. 5. When possible, the scattering operator B can be deduced from the (nonlinear) impedance 
operator Z through

B := (z−1
0 Z − I) ◦ (z−1

0 Z + I)−1 = I − 2(z−1
0 Z + I)−1, (10)

where I denotes the identity operator. An example of physical nonlinear scattering operator derived using this expression 
is given in Sec. 3.1. If Z is LTI and admissible, then B can be uniquely defined and is an admissible LTI scattering operator 
with kernel β , whose Laplace transform β̂(s), known as the reflection coefficient in acoustics, is given by

β̂(s) = z−1
0 ẑ(s) − 1

z−1
0 ẑ(s) + 1

= 1 − 2

z−1
0 ẑ(s) + 1

(�(s) > 0). (11)

Intuitively, z = ∞, y = 0, and B = I (kernel β = δ) yield a hard wall while z = 0, y = ∞, and B = −I (kernel β =
−δ) yield a pressure-release wall. Similarly to the impedance case, the admissibility of an LTI scattering operator can be 
conveniently characterized using its Laplace transform. The result, given in Proposition 8, is identical to that of Proposition 3
with “bounded-real” substituted for “positive-real”.

Definition 7 (Bounded-real function). A function f : C+
0 → C is bounded-real if f is analytic in C+

0 , f (s) ∈ R for s ∈ (0, ∞), 
and | f (s)| ≤ 1 for �(s) > 0.

Proposition 8. An LTI operator B is an admissible scattering operator if and only if its Laplace transform β̂(s) is a bounded-real 
function.

Proof. See the references quoted in the proof of Proposition 3. Note that the conformal map from {s ∈ C | �(s) > 0} onto 
{s ∈C | |s| < 1} defined by s �→ (s−1)/(s+1) transforms a positive-real function into a bounded-real one. �
Remark 9 (IBC for wave equation). Without base flow, i.e. u0 = 0, both p and u obey the wave equation, and the IBC (2)
reduces to ∂t p = Z(−c0z−1

0 ∂n p). Hence, a hard (resp. pressure-release) wall corresponds to a Neumann (resp. Dirichlet) 
boundary condition on p, while a proportional impedance Z ∝ I yields a Robin boundary condition. Studies focused on the 
wave equation typically use the linear admittance formulation ∂n p = −c−1

0 z0 y 	 ∂t p [37, Eq. 1.1] [36, Eqs. 5, 6] [35, Eq. 2]
[45, Eq. 1].



2.3. Assumption on the base flow and well-posedness

In preparation for the analysis of Sec. 4, it is convenient to rewrite the LEEs (1) as a Friedrichs-symmetric system

∂t v(t, x) +Av(t, x) = 0 (t ∈ (0,∞), x ∈ �), (12)

where v := (uᵀ, p̃)ᵀ ∈ R
n+1 is the perturbation vector, homogeneous to a velocity, and the spatial operator A is defined as 

Av := A(∇)v + B v with (In denotes the n × n identity matrix)

A(n) =
(

(u0 · n)In c0n
c0nᵀ u0 · n

)
, B =

( ∇u0
1
c0

∇u0 · u0

0ᵀ
n γ ∇ · u0

)
.

The boundary matrix A(n) is symmetric, with eigenvalues u0 · n of multiplicity (n − 1) and u0 · n ± c0|n| of multiplicity 2. 
(Due to the homentropicity assumption, the entropy mode is absent.) The absolute value |A(n)|, the positive part A(n)⊕ , 
and the negative part A(n)� are defined using the diagonal form of A(n) through

|A(n)| := P (n) |
(n)| P (n)−1, 2A(n)⊕ := |A(n)| + A(n), 2A(n)� := |A(n)| − A(n),

where |
(n)| := diag([|
i |]i∈�1,n+1�). The symmetry of A(n) implies, by definition, that the operator ∂t + A(∇) is a 
Friedrichs-symmetric operator; equivalently, (12) is a symmetric hyperbolic system [53, Def. 1.2]. Using an integration by 
parts, this symmetry property yields

(Av, v)L2(�) = 1

2
(C(u0)v, v)L2(�) + 1

2
(A(n)v, v)L2(∂�), (13)

where the symmetric amplification matrix C(u0) and the L2 scalar products are given by

C(u0) =
(

∇u0 + ∇ᵀu0 − (∇ · u0)In
1
c0

∇u0 · u0
1
c0

u0 · ∇ᵀu0 (2γ − 1)∇ · u0

)

and

(v, w)L2(�) :=
∫
�

(v, w)Rn+1 dx, (v, w)L2(∂�) :=
∫
∂�

(v, w)Rn+1 dx.

In this paper, the energy analysis is carried out with the standard acoustic energy defined as [2, § 6.2] [3, § 5.6]

‖v(t)‖2
L2(�)

:= (v, v)L2(�) =
∫
�

|p̃(t, x)|2 dx +
∫
�

|u(t, x)|2 dx, (14)

so that the continuous energy balance, which expresses the evolution of acoustic energy in the domain �, reads

1

2

d

dt
‖v(t)‖2

L2(�)
= −(Av, v)L2(�) = −1

2
(C(u0)v, v)L2(�) − 1

2
(A(n)v, v)L2(∂�), (15)

where the right-hand side is given by

(C(u0)v, v)Rn+1 = (∇ · u0)
[
(2γ − 1)p̃2 − |u|2

]
+ 2u · ∇u0 · (u + 1

c0
p̃ u0

)
(A(n)v, v)Rn+1 = (u0 · n)

[
p̃2 + |u|2

]
+ 2c0 p̃(u · n). (16)

The expression of (A(n)v, v)Rn+1 suggests the following assumption.

Assumption 10. The base flow u0 obeys (at least) a slip condition u0 · n = 0 at the impedance boundary �z .

Thanks to this assumption, an admissible impedance yields 
∫ t

0 (A(n)v, v)L2(�z)
dτ ≥ 0 and there is energy dissipation at 

the impedance boundary �z . Therefore, in the absence of other boundary sources, the presence of an instability is linked to 
the spectrum of the amplification matrix C(u0). Intuitively, this a priori energy estimate yields uniqueness of the solution, 
and is the stepping stone to obtain well-posedness in e−κtC((0, ∞); H1(�)n+1) with κ finite [53]. It also follows from the 
energy estimate that κ ≥ minx∈� λmin(u0), where λmin(u0) is the minimum eigenvalue of C(u0). A sufficient condition for 
stability is that minx∈� λmin(u0) ≥ 0, which is a stringent condition on the base flow u0(x). This assumption is typically not 
verified in applications: it holds for a constant flow but fails for a Poiseuille flow for instance.



Remark 11. Although Assumption 10 is mathematically sufficient for (1), (3) to be well-posed, it is interesting to note 
that, physically, a no-slip condition u0 = 0 is required at the impedance wall. Indeed, if u0 �= 0 the effect of the hydrody-
namic boundary layer (refraction of sound waves [15]) must be explicitly modeled, which leads to a non-locally reacting 
impedance, out of the scope of this paper. For example, the standard Ingard–Myers boundary condition reads un = Y (p, ∇p), 
and has been shown by Brambley using a Briggs–Bers analysis to prevent well-posedness, in the sense that there is no finite 
value for κ [54]. A corrected impedance that accounts for both the acoustic and hydrodynamic boundary layers has been 
derived by Khamis & Brambley [17]. The computational interest of such non-local boundary conditions is that the boundary 
layer need not be discretized, see [28] for a use in the time domain.

Remark 12. If u0 is uniform, the acoustical energy (14) satisfies a conservation law, namely (15). A wider class of base flows 
can be covered using the aeroacoustical energy introduced by Cantrell and Hart, which reads [55, Eq. (16)]

‖v‖2
CH := ‖p̃‖2

L2(�)
+ ‖u‖2

L2(�)
+ 2(p̃, M0 · u)L2(�) =

∫
�

∣∣u + p̃M0
∣∣2 dx +

∫
�

(
1 − |M0|2

)
|p̃|2 dx,

and defines a norm if and only if ‖M0‖L∞(�) < 1 where M0 :=u0/c0. Under Assumption 10, using ‖ ·‖CH instead of ‖ ·‖L2(�) in 
(15) yields the boundary term (ACH(n)v, v)Rn+1 := 2c0

[
p̃ + M0,‖ · u‖

]
(u · n), where the subscript “‖” denotes the tangential 

component. The boundary term (16) is recovered if u0 obeys a no-slip condition.

3. Physical reflection coefficient models in the time domain

As mentioned in the introduction, a discrete TDIBC consists of three components: a discrete time-domain impedance 
model, an algorithm to compute said discrete model, and a coupling method with the considered PDE. This section tackles 
the first two components, while the last one is covered independently in Sec. 4, so that Secs. 3 and 4 can be read indepen-
dently. This section is purely focused on the impedance models and does not rely on (u, p̃) satisfying a particular equation 
in �. The broad purpose of this section is to derive time-local discrete models from the analysis of physical models, for 
later use in Secs. 5 and 6. The presented analysis focuses on models suitable for acoustical liners, recalled in Sec. 3.1, which 
include an example of nonlinear scattering operator. The last two sections focus on the two linear models. Sec. 3.2 gives the 
oscillatory-diffusive representation of their reflection coefficients, which yield a formulation with an infinite number of de-
layed ODEs. Its practical discretization is then tackled in Sec. 3.3, where the time delay is recast using a transport equation, 
thus yielding a purely time-local formulation.

3.1. Physical models for acoustical liners

The numerical application presented in Sec. 6 involves two so-called single degree of freedom acoustical liners: a ceramic 
tubular (CT) liner made from a ceramic tubular core (channel of length lc , diameter dc , and porosity σc ∈ (0, 1]) and a 
rigid backplate; a micro-perforated (MP) liner made from a honeycomb core (cell of length lc , diameter dc , and porosity 
σc ∈ (0, 1]) sandwiched between a perforated facesheet (thickness lp , hole diameter dp , and porosity σp ∈ (0, 1]) and a rigid 
backplate. CT liners are mostly used in academic and benchmark experiments, while MP liners are widely used in industrial 
applications. The standard linear impedance model for these liners reads

ẑphys(s) = σ−1
p ẑp(s) + σ−1

c ẑc(s) (17)

where ẑp (resp. ẑc) is the impedance of a perforation (resp. cavity). The CT liner model ẑCT is obtained with ẑp = 0, while 
σc = 1 yields the MP liner model ẑMP. (See [5] and references therein for a wider panel of linear impedance models.) 
The expression (17) separates the contribution of the perforated plate from that of the cavity, a feature that assumes the 
conservation of u · n across the perforation, which is verified as long as the perforation thickness lp is much shorter than 
the considered wavelengths.

The chosen perforation model is given by a fractional polynomial

ẑp

z0
(s) = a0 + a1/2

√
s + a1s, (18)

where each of the non-negative coefficients has a physical interpretation: a0 models frequency-independent losses, a1/2

frequency-dependent losses coming from visco-thermal effects, and a1 is known as the mass reactance and does not incur 
any loss. Note that if a1/2 �= 0, ẑp is multivalued: in this work the cut is always defined as (−∞, 0] and 

√· denotes the 
branch that coincides with the real-valued square root on (0, ∞) [56, § I.4]. Values for the three coefficients can be obtained 
through various theoretical or empirical models; the high-frequency approximation of a model derived by Crandall, based 
on the axisymmetric Stokes equations, yields [5, Eq. 7]

a0 = 3lpν

d 2
, a1/2 = 2lp

√
ν

c dp/2
, a1 = lp

c
, (19)
c0 ( p/2) 0 0



where ν denotes the kinematic viscosity. For the cavity, the adopted model is a monodimensional wave equation with a 
fractional wavenumber kc(s)

ẑc

z0
(s) = coth(jkc(s)lc), jkc(s)lc = b0 + b1/2

√
s + b1s. (20)

The non-negative coefficients b have a physical interpretation similar to those of (18): b0 models frequency-independent 
losses, b1/2 frequency-dependent losses, and b1 is half the back-and-forth traveling time in the cavity. The high-frequency 
approximation of a wavenumber derived by Bruneau gives [5, Eq. 26]

b0 = 0, b1/2 =
√

ν

c0dc/2

(
γ − 1√

Pr
+ 1

)
lc, b1 = lc

c0
, (21)

where Pr is the Prandtl number. From Proposition 3, to check the admissibility of these linear models it is sufficient to 
check that ẑ(s) is a positive-real function, which is straightforward.

By contrast with the CT liner, the MP liner is sensitive to the incident sound pressure level: above a given threshold, 
nonlinear effects occur in the perforation. The prevailing nonlinear term for a perforated plate with porosity σp is based on 
the incompressible Bernoulli equation, and has been derived by Cummings [7, Eq. 1]

Znl

z0
(u · n) = Cnl

c0
|u · n|u · n, Cnl = 1 − C2

c

2σ 2
p C2

c
, (22)

where the nondimensional coefficient Cc ∈ (0, 1] is known as the contraction coefficient. Evidence for the relevance of this 
model has been provided by Singh & Rienstra [57]. Since the model is nonlinear, it is naturally expressed in the time 
domain. It is straightforward to check that this single-input single-output operator is real-valued, causal and passive (since 
(|u|u)u ≥ 0, the passivity condition (5) is verified): therefore, it defines an admissible impedance model. By contrast with 
linear models, expressing the admittance and scattering operators of a nonlinear impedance model is more intricate. Let us 
give an elementary algebraic example by studying the impedance model

Z
z0

(u · n) = a0u · n + Cnl

c0
|u · n|u · n. (23)

A somewhat tedious but straightforward computation shows that the admittance and scattering operators are given by

Y(p) = 2p̃

a0 +
√

a2
0 + 4 Cnl

c0
|p̃|

(24)

B(p̃ + u · n) = β0
2(p̃ + u · n)

1 +
√

1 + 4Cnl
(1+a0)2

|p̃+u·n|
c0

+ 1

c0

Cnl

(1 + a0)2

4|p̃ + u · n|(p̃ + u · n)(
1 +

√
1 + 4Cnl

(1+a0)2
|p̃+u·n|

c0

)2
, (25)

where β0 = (a0 − 1)/(a0 + 1) is the reflection coefficient associated with a0. To the best of the authors’ knowledge, the 
nonlinear admittance and scattering operators (24), (25) have never been considered. The expression (25) is used in Sec. 5
to illustrate the computational interest of nonlinear scattering operators.

Remark 13. In [34], a nonlinear model is used to model injectors of a combustion chamber in a LES simulation. The corre-
sponding scattering operator is B(v)(t) = χa(v)(t − τ ) where τ > 0 is a time delay and χa is an algebraic function of the 
incoming characteristic [34, Eq. (2.15)].

The effect of a grazing flow on the impedance of a sound absorbing material has been studied both experimentally [10]
and numerically [11] using direct numerical simulations. For a perforated plate backed by an air-filled cavity, a grazing 
flow is usually associated with a resistance increase that degrades the material performance. Kirby and Cummings proposed 
an experimental correlation between the impedance and the wall friction velocity, namely [10, Eqs. (12)–(13)]. This result 
suggests that the grazing flow can be empirically modeled as an additional parametric dependence, which preserves the 
locally-reacting nature of the IBC.

3.2. Oscillatory-diffusive representation of physical reflection coefficient models

In [5], it is shown that the time-domain convolution zphys 	 u can be expressed without any approximation using an in-
finite number of ODEs, some of which may be delayed. This result is obtained by deriving the so-called oscillatory-diffusive 
representation of the physical model zphys using complex calculus. However, as shown in Sec. 4, it is computationally ad-
vantageous to enforce the IBC through the scattering formulation (8) rather than the impedance or admittance formulations 



(2), (6). This section shows that, fortunately, the reflection coefficient β̂phys does also enjoy an oscillatory-diffusive repre-
sentation, given by (29). (As a matter of fact, this is also the case for the admittance ŷphys.) Since the computations are 
similar to that carried out in [5], only the key steps are provided; the reader is referred to [5,58] and references therein for 
background on oscillatory-diffusive representations.

The starting point of the analysis is the identity coth(s) = 1 + 2e−2s(1 − e−2s)−1 that enables to rewrite the reflection 
coefficient ((11), (17)) as

β̂phys(s) = 1 + ĥ1(s) + e−sτ ĥ2(s), (26)

where the time delay τ := 2b1 > 0 is the cavity back-and-forth traveling time and the functions ĥ1 and ĥ2, which induce 
deviations from the rigid wall β̂phys(s) = 1, are given by

ĥ1(s) = − 2

R(s)
, ĥ2(s) = −ĥ1(s)e−2(b0+b1/2

√
s)
, R(s) = 1 + 1

σc
+ 1

σp
ẑp(s) +

(
−1 + 1

σc
− 1

σp
ẑp(s)

)
e−2jkc(s)lc .

The interest of the apparently gratuitous expression (26) is that both ĥ1 and ĥ2 admit an oscillatory-diffusive representa-
tion ((27), (28)). The analytical expression of these two functions is used in the discretization methodology presented in 
Sec. 3.3.1. The representation of ĥi (i ∈ {1, 2}) is derived by inverting the Laplace transform using the residue theorem [56, 
Chap. VII] on a “keyhole-shaped” Bromwich contour CR,ε . Among the sufficient hypotheses needed to carry out the compu-
tations, ĥi must decay uniformly on {|s| = R} as R → ∞ and admit finite residues at every pole and branch points (the only 
possible branch point of ĥi is 0).

If a1/2 or a1 are positive (which is the case for an MP liner), the oscillatory-diffusive representation of ĥi is

ĥi(s) =
∑
n∈I

ri,n

s − sn
+

∞∫
0

μi(ξ)

s + ξ
dξ, (27)

where (sn)n with n ∈ I ⊂ Z is the sequence of poles of ĥi , each one solving R(sn) = 0, ri,n is the associated residue ri,n :=
Res(ĥi, sn), and μi is the so-called diffusive weight (or measure), linked to the jump of ĥi across its cut (−∞, 0] by μi(ξ) :=
(j2π)−1[ĥi(ξe−jπ ) − ĥi(ξe+jπ )]. These quantities can be readily computed numerically (the poles sn are not always known 
analytically), which enables to verify (27). The first (resp. second) term on the right-hand side of (27) is the oscillatory (resp. 
diffusive) part of ĥi . The oscillatory part is associated with the resonances, by contrast with the diffusive part that stems 
from visco-thermal losses. Indeed, without the multivalued fractional term 

√
s (physically, if ν = 0, see (19)) the diffusive 

part vanishes, i.e. μi = 0. The admissibility conditions given by Proposition 8 imply that μ(ξ) ∈ R and that if sn is a pole 
of ĥi with residue ri,n , then sn is a pole of ĥi with residue ri,n (hermitian symmetry). The desired representation of β̂MP is 
then obtained by combining (26) and (27).

However, for the CT liner ẑp(s) = 0 so that ĥ1 (and ĥ2 if b1/2 = 0) fails the decay condition on {|s| = R} as R → ∞. By 
considering instead ĥ1(s)/s, the following representation can be derived, assuming σc �= 1,

ĥ1(s) = C +
∑
n∈I

r1,n

s − sn
+

∞∫
0

μ1(ξ)

s + ξ
dξ, C � − 1

1 + σ−1
c

, (28)

which differs from (27) by a real constant C . The representation of β̂CT is then obtained by combining (26), (27) with i = 2, 
and (28). Overall, for both liners, the physical reflection coefficient has the causal representation

βphys(t) = β1 δ(t) +
∑
n∈I

r1,nesnt+ +
∞∫

0

μ1(ξ)e−ξt+ dξ +
∑
n∈I

r2,nesn(t−τ )+ +
∞∫

0

μ2(ξ)e−ξ(t−τ )+ dξ, (29)

where est+ := est H(t) denotes the causal exponential function and β1 ∈ R. The importance of (29) lies in the fact that it 
provides a structural information on βphys, namely that it “reduces” to an infinite number of first-order systems with delay

βphys 	 v(t) = β1 v(t)+
∑
n∈I

r1,nϕ(t, sn)+
∞∫

0

μ1(ξ)ϕ(t,−ξ)dξ +
∑
n∈I

r2,nϕ(t −τ , sn)+
∞∫

0

μ2(ξ)ϕ(t −τ ,−ξ)dξ, (30)

where ϕ(t, s) := (est+ 	 v)(t) and v is a shorthand for “ p̃ + u · n”. The computational interest of (30) stems from the ability 
to compute ϕ through the first-order ODEs ∂tϕ(t, s) = sϕ(t, s) + v(t) with null initial condition ϕ(t = 0, s) = 0. As a result, 
(30) is a time-local (but infinite-dimensional) representation of the hereditary convolution operator B(v) = βphys 	 v . Theo-
retically, this representation enjoys an energy balance, useful for stability analyses (see Sec. 4 and Appendix C). The above 
analysis informs the discrete model proposed in the next section.



3.3. Discrete reflection coefficient model

The identity (30) naturally suggests to define the discrete reflection coefficient model β̃ as

ˆ̃
β(s) = β̃∞ +

Ns∑
n=1

r̃1,n

s − s̃n
+

Nξ∑
k=1

μ̃1,k

s + ξ̃k
+ e−sτ̃

⎛
⎝ Ns∑

n=1

r̃2,n

s − s̃n
+

Nξ∑
k=1

μ̃2,k

s + ξ̃k

⎞
⎠

β̃ 	 v(t) = β̃∞v(t) +
Ns∑

n=1

r̃1,nϕ(t, s̃n) +
Nξ∑

k=1

μ̃1,kϕ(t,−ξ̃k) +
Ns∑

n=1

r̃2,nϕ(t − τ̃ , s̃n) +
Nξ∑

k=1

μ̃2,kϕ(t − τ̃ ,−ξ̃k),

(31)

where ϕ(t, ·) follows the first-order ODE defined above. It involves Nϕ := Ns + Nξ additional variables, where Nξ (resp. Ns) 

variables come from the diffusive (resp. oscillatory) part of βphys. Note that β̃∞ = ˆ̃
β(+∞) ∈ [−1, 1] from Proposition 8. In 

summary, the analysis of the physical model (17) has led to the discrete model (31), which requires the computation and 
delay of Nϕ ODEs. Without the delay τ̃ = 0, the derived model β̃ can be interpreted as a so-called multipole model, postu-
lated in [47] for instance [5, § I]. In preparation for the application of (31) presented in Secs. 5 and 6, Sec. 3.3.1 discusses 
the computation of the poles (s̃n, ̃ξk)n,k and weights (r̃i,n, μ̃i,k)n,k , while Sec. 3.3.2 covers the time delay discretization.

3.3.1. Poles and weights computation
The discrete model β̃ is fully determined by the constant β̃∞ , Nϕ poles (s̃n, ̃ξk)n,k , 2Nϕ weights (r̃i,n, μ̃i,k)n,k , and time 

delay τ̃ . These parameters should be such that β̃ is a satisfactory representation of the considered sound absorbing material, 
typically known by its physical characteristics and possibly some experimental data (β̂exp(j2π fm))m . Criteria for a satisfac-

tory approximation include: ˆ̃
β is a bounded real function (see Proposition 8); Nϕ is as low as possible; ω �→ ˆ̃

β(jω) has a 
physical behavior at frequencies not covered by the experimental data (usually low and high frequencies); the maximum 
frequency (2π)−1 maxn,k(|s̃n|, ̃ξk)n,k is consistent with the stability region of the time discretization scheme (otherwise the 
IBC could reduce the timestep of an explicit integration). In Sec. 6, the three-step methodology given below is followed. The 
principle of the approach is to use as much as possible the information obtained on the physical model in Sec. 3.2 to ease 
the optimization process.

1. (Physical model) Compute the coefficients a and b from the liner dimensions using the models (19), (21). In particular, 
this provides a value for the constant β1 and the time delay τ . These coefficients can then serve as an initial point for a 
nonlinear least squares optimization on ω �→ ‖ẑphys(jω) − ẑexp(jω)‖. This optimization can be interpreted as computing 
the various physical impedance corrections [6,7].
Inputs: material characteristics (lp , dp , σc , etc.), experimental data (ẑexp(j2π fm))m .
Outputs: coefficients (σ−1

p a0, σ−1
p a1/2, σ−1

p a1, σc, b0, b1/2, b1), time delay τ = 2b1, constant β1 = 1 − (1 + σ−1
c )−1.

2. (Discrete model – Linear least squares) Choose Nξ diffusive poles along the cut (−∞, 0] (typically, a logarithmic repar-
tition is satisfactory). Compute Ns oscillatory poles s̃n by solving R(s̃n) = 0. Compute the weights (r̃n,i)n and (μ̃k,i)k by 
minimizing ω �→ ‖ 

∑Nξ

k=1
μ̃k,i

jω+ξ̃k
+∑Ns

n=1
r̃n,i

jω−s̃n
− ĥi(jω)‖ if (27) holds (add the constant if (28) holds). This is an overde-

termined linear least squares optimization that is solved instantaneously by pseudo-inverse. See [5, § IV.D,VI.A] for 
additional details. Note that the time delay τ̃ has no role whatsoever during this step.
Inputs: ĥi (from output of step 1), number of poles Ns , diffusive poles (ξk)k∈�1,Nξ � .
Outputs: oscillatory poles (s̃n)n∈�1,Ns � , weights (r̃n,i)n∈�1,Ns � and (μ̃k,i)k∈�1,Nξ � (i ∈ {1, 2}).

3. (Discrete model – Nonlinear least squares) Compute new poles and weights with a nonlinear least squares optimization 
on ω �→ ‖ ˆ̃

β(jω) − β̂exp(jω)‖ with initial poles and weights given by step 2, β̃∞ = β1 and τ̃ = τ from step 1. The constant 
β̃∞ and delay τ̃ can also be optimized along the poles and weights.
Inputs: (s̃n, ̃ξk)n,k , (r̃n,i, μ̃k,i)n,k , τ̃ = τ , β̃∞ = β1, (β̂exp(j2π fm))m .
Outputs: (s̃n, ̃ξk)n,k , (r̃n,i, μ̃k,i)n,k , (optional) τ̃ , (optional) β̃∞ .

When the physical model is satisfactory, as is the case for the MP and CT liners considered herein, the first two steps deliver 
a discrete model β̃ that may be sufficient for some engineering applications. If step 3 is used, its role is to adjust the poles 
and weights to improve the fit against experimental data. The first two steps can then be interpreted as using a physical 
model to help finding an initial guess for the poles and weights. When faced with a mismatch between the physical model 
and experimental data, tuning the former may be required, but this is not a computationally intensive task since there are 
few parameters and they have a physical interpretation. The third stage can be performed using any nonlinear least squares 
method: in Sec. 6, we simply relied on the trust region optimization method [59] implemented in MATLAB® lsqnonlin, 
whose execution takes a few seconds on a contemporary computer, but the more tailored vector fitting algorithm [60] can 
also be used, as in [27].

However, note that step 3 comes with the following caveat. There is a trade-off between the fit quality against the ex-

perimental data, which is usually narrowband, and the broadband behavior of ˆ̃
β . This trade-off is especially acute when 



using impedance identified with base flow, as these can be associated with significant uncertainties that ideally should be 
accounted for in the optimization process. This is exemplified by the question of whether to optimize the time delay τ̃ . 
Physically, it is linked to the anti-resonant frequencies fn given by fn = n/τ̃ for (17) with a lossless cavity b0 = b1/2 = 0 (i.e. a 
canonical Helmholtz resonator). Therefore, although τ̃ �= τ may enable a better fit, it may not be worth altering the broad-
band behavior. Eventually, knowledge about both the model and experimental data is helpful to inform the optimization 
process.

3.3.2. Time delay discretization
The discretization of the time delay is done independently of the choice of weights and poles described in Sec. 3.3.1. The-

oretically, the delay can be recast into ϕ(t − τ̃ , s) = ψ(t, s, −lτ̃ ) where the additional function ψ(·, s, ·) obeys the following 
transport equation on (−lτ̃ , 0) with lτ̃ = cτ̃ τ̃ > 0

∂tψ(t, s, θ) = cτ̃ ∂θψ(t, s, θ) (t ∈ (0,∞), θ ∈ (−lτ̃ ,0))

ψ(t, s,0) = ϕ(t, s), ψ(0, s, θ) = 0.
(32)

This device is commonly used in theoretical and numerical studies of delay differential equations, see the references in [61]
and [62, § 1]. Although not needed herein, several delays τ̃i can also be tackled by defining τ̃ := maxi τ̃i . The monodimen-
sional PDE (32) is discretized using a discontinuous Galerkin method with NK elements and Np ≥ 2 nodes per element 
(order Np). The discretization accuracy is measured by the number of points per wavelength

PPWτ̃ ( fmax) := Nψ

τ̃ fmax
, (33)

where Nψ := NK Np is the total number of nodes and fmax is the maximum frequency of interest. Target values for PPWτ̃

as a function of Np can be found in [63, Tab. 1], which shows that it is advantageous to choose NK = 1 so that Np is the 
sole discretization parameter. The impact of PPWτ̃ is illustrated in Sec. 6. Herein, the main argument in favor of delaying 
through a transport equation, compared to continuous Runge–Kutta methods [64], is the meaningfulness of (33) for wave 
propagation problems, which makes the discretization straightforward to set up a priori.

In summary, the discrete impedance model (31) is computed through

β̃ 	 v(t) = β̃∞v(t) +
Ns∑

n=1

r̃1,nϕ(t, s̃n) +
Nξ∑

k=1

μ̃1,kϕ(t,−ξ̃k) +
Ns∑

n=1

r̃2,nψ(t, s̃n,−lτ̃ ) +
Nξ∑

k=1

μ̃2,kψ(t,−ξ̃k,−lτ̃ ), (34)

which implies the use of (Nψ + 1)Nϕ additional variables. The two parameters to control are maxk,n(ξk, |sn|), which is to 
be chosen in accordance with the spatial discretization scheme, and PPWτ̃ ( fmax), for which values are given in [63, Tab. 1]. 
This covers the first two components of the TDIBC. The next section deals with the third, necessary for the numerical 
applications of Secs. 5 and 6.

Remark 14. The discrete model (34) has been derived from a mathematical analysis that emphasizes the distinct compo-
nents of the model (26): an oscillatory-diffusive part that models both oscillatory and diffusion phenomena (the latter of 
parabolic nature), and a hyperbolic part associated with the time delay that models a wave reflection phenomenon. In [32, 
§ 4.1.1], a first-order finite-difference discretization of the monodimensional LEEs is used to truncate a combustion cham-
ber. An alternative discretization strategy is to perform a rational approximation of the time delay, see [61] and references 
therein. For a pure time delay, i.e. β̂(s) ∝ e−τ s , a multipole approximation method is presented in [33].

4. Numerical fluxes for nonlinear time-domain impedance boundary conditions

This section deals with the third component of a TDIBC, namely its (semi-)discrete formulation, independently of Sec. 3. 
It analyzes the weak enforcement of an admissible IBC within a discontinuous Galerkin (DG) finite element method, but the 
numerical flux formalism is employed to enable a straightforward transition to other methods popular in fluid mechanics. 
For the analysis, the IBC is only assumed admissible and need not be given by one of the models covered in Sec. 3, so that 
both sections are independent. The analysis shows the computational interest of a numerical flux based on the scattering 
operator B (10), the so-called B-flux ((39), (63)), over fluxes based on the impedance and admittance, namely the Z-flux 
((39), (59)) and the Y-flux ((39), (61)). This justifies a posteriori the interest in B displayed in Sec. 3 and prepare the numer-
ical applications of Secs. 5 and 6. The section starts with a brief introduction of the standard DG method in Sec. 4.1. Sec. 4.2
then defines admissibility conditions for an impedance numerical flux, upon which the analyses of Secs. 4.3 and 4.4 rely.

4.1. Discontinuous Galerkin method

Let (Th)h be a quasi-uniform sequence of meshes indexed by h := maxT ∈Th hT , where hT denotes the diameter of the 
element T ∈ Th . For simplicity, each mesh Th is assumed to be simplicial, geometrically conformal, and shape-regular. Let Pk

n



Fig. 1. Notations for an interior face F ∈ F i
h .

be the space of polynomials of n variables and total degree at most k. The approximation space is taken as Vh :=P
k
n(Th)n+1, 

where Pk
n(Th) is the broken polynomial space defined as Pk

n(Th) := {v ∈ L2(�) | ∀T ∈ Th, v |T ∈ P
k
n(T )}. The domain � is 

assumed to be a polyhedron, so that it can be exactly covered by each mesh. See [65, Chap. 1] and [66, Chap. 1] for 
definitions of the mentioned properties (more detailed citations are available in Appendix B). The semi-discrete formulation 
of (12) reads: find vh ∈ C1([0, ∞), Vh) such that

∂t vh +Ah vh = 0, (35)

where the spatial discretization is embodied by the finite-dimensional operator Ah : Vh → Vh defined by

∀wh ∈ Vh, (Ah vh, wh)L2(�) :=
∑

T ∈Th

(Avh, wh)L2(T ) + ((A(n)vh)
∗ − A(n)vh, wh)L2(∂T ),

where the quantity (A(n)vh)∗ is the so-called numerical flux function, uniquely defined at each face. Intuitively, this def-
inition can be viewed as resulting from two integration by parts. At an interior face F ∈ F i

h we use the upwind flux 
(A(nF )v)∗ := A(nF )⊕ v |T1 − A(nF )� v |T2 = A(nF ){v} + 1

2 |A(nF )|� v � where {v} := (v |T1 + v |T2)/2 is the face average and 
� v � := v |T1 − v |T2 is the face jump, see Fig. 1 for the face-specific notations. This leads to

(Ah vh, wh)L2(�) =
∑
T ∈Th

(Avh, wh)L2(T ) + ((A(n)vh)
∗ − A(n)vh, wh)L2(∂�)

−
∑

F∈F i
h

(A(nF )� vh �, {wh})L2(F ) + 1

2

∑
F∈F i

h

(|A(nF )|� vh �, � wh �)L2(F ). (36)

At a boundary face F ∈ Fb
h , the IBC is weakly enforced through a numerical flux introduced in Sec. 4.2 and analyzed in 

Secs. 4.3 and 4.4. In the applications of Secs. 5 and 6, the numerical fluxes (A(nF )v)∗s := A(nF )⊕ v |T1 − A(nF )� v s (source v s) 
and (A(nF )v)∗out := A(nF )⊕ v |T1 (approximate non-reflecting outlet) are also used. The bilinear form (36) is standard and fits 
within the framework proposed by Ern & Guermond [67] for the DG discretization of Friedrichs systems, and notations have 
been kept as close as possible to that employed in this seminal work. The reader interested in an error analysis with the 
standard boundary condition “A(n)v = M(n)v” is referred to [67] and [66, Chap. 3 & 7]. The well-posedness of the semi-
discrete formulation (35) follows from the Cauchy–Lipschitz–Picard theorem [68, Thm. 7.3] since it is a finite-dimensional 
ODE.

Using the identity (13) on each element T enables to get

(Ah vh, vh)L2(�) = 1

2
(C(u0)vh, vh)L2(�) + 1

2
|vh|2upw +

(
(A(n)vh)

∗ − 1

2
A(n)vh, vh

)
L2(∂�)

, (37)

where the upwind seminorm is defined as

|vh|2upw :=
∑

F∈F i
h

(|A(nF )|� vh �, � vh �)L2(F ).

This leads to the following semi-discrete energy balance

1

2

d

dt
‖vh‖2

L2(�)
= −(Ah vh, vh)L2(�) = −1

2
(C(u0)vh, vh)L2(�) − 1

2
|vh|2upw −

(
(A(n)vh)

∗ − 1

2
(A(n)vh), vh

)
L2(∂�)

,

(38)

which is to be contrasted with its continuous counterpart (15). The term |vh|2upw is the energy dissipation due to the use of 
an upwind flux (it would be null had a centered flux been used) while the boundary term ((A(n)vh)∗ − 1

2 A(n)vh, vh)L2(∂�)

includes the contribution of the weakly enforced IBC, studied below.



4.2. Admissibility conditions for an impedance numerical flux

On a part of the boundary � := ∂� denoted �z , the IBC is weakly enforced through a centered flux

(A(n)v)∗ := 1

2
A(n)(v + v g), (39)

where v g is the so-called ghost state that needs to be suitably defined as a function of v and Z , Y , or B. A systematic 
derivation of the possible expressions for A(n)v g is carried out in Sec. 4.4 with an energy analysis formalized through the 
so-called admissibility and continuity conditions defined below. Recall that the spatial discretization is said to be consistent 
if for v(t) ∈ V the exact solution, (Ah v, wh)L2(�) = (Av, wh)L2(�) for all wh ∈ Vh .

Remark 15. The ghost state v g is a function known in closed-form and in this paper the numerical flux (39) is enforced 
without adding computational nodes outside of �: the terminology “ghost state” is chosen for its intuitive nature, and does 
not imply that “ghost nodes” or “ghost cells” are used whatsoever.

Definition 16 (Admissibility). The impedance numerical flux (39), uniquely determined by the expression of A(n)v g , is said 
to be admissible if it is both consistent and passive.

• (Consistency) Let v(t) ∈ V be the exact solution (in particular, it does obey the IBC). The consistency condition reads 
(A(n)v)∗ = A(n)v or equivalently

A(n)v g = A(n)v. (40)

• (Passivity) Let vh(t) ∈ Vh (in particular, it does not obey the IBC). The passivity condition reads

∀t > 0,

t∫
0

(
(A(n)vh)

∗ − 1

2
A(n)vh, vh

)
L2(�z)

dτ = 1

2

t∫
0

(A(n)v g
h , vh)L2(�z)

dτ ≥ 0. (41)

The passivity condition is to be understood in light of the semi-discrete energy balance (38), see Example 24 for a nu-
merical illustration of its necessity. In addition to these two admissibility conditions, the two following continuity properties 
are also computationally desirable.

• (Hard-wall continuity) As “Z → ∞” (or “Y → 0”, or “B → I”), a hard wall (u · n = 0) is recovered without singularity, 
which can be written formally as

lim
Z→∞ A(n)v g = Mhw(n)v, Mhw(n) := c0

[
2ζn � n n

−nᵀ 0

]
(42)

and ζ is an arbitrary non-negative parameter.
• (Pressure-release continuity) As “Z → 0” (or “Y → ∞”, or “B → −I”), a pressure-release boundary ( p̃ = 0) is recovered 

without singularity, i.e.

lim
Z→0

A(n)v g = Mpr(n)v, Mpr(n) := c0

[
0n,n −n
nᵀ 2ζ

]
(43)

and ζ is an arbitrary non-negative parameter.

It is straightforward to verify that A(n)v g := Mhw/pr(n)v respects the consistency (40) and passivity (41) conditions stated 
in Definition 16. The given expressions Mhw(n) and Mpr(n), or variations thereof, are common in the literature [67, § 5.3]
[66, § 7.1.2] [69, § 7.1]. The ability to recover both the hard-wall and pressure-release cases is of particular interest when 
performing an inverse method on the IBC where the parameter space needs to be explored.

Remark 17. Note that at this stage no assumption is made regarding the time-domain discretization of the IBC: Definition 16
is purely semi-discrete.

The application of the energy analysis to generic nonlinear IBCs, which leads to the derivation of the Z , Y , and B fluxes, 
is done in Sec. 4.4. For the sake of clarity, the elementary case of a proportional impedance Z(u · n) ∝ u · n is first fully 
worked out in Sec. 4.3. In spite of its simplicity, this example provides an intuitive understanding of the computational 
advantage of the scattering operator B.



4.3. Weak enforcement of proportional impedance boundary conditions

This section focuses on the computational properties of numerical fluxes for the so-called proportional impedance 
z−1

0 z(t) = a0δ(t) with a0 > 0 ( p̃ = a0u · n). (From Proposition 3 it is admissible.) To weakly enforce the IBC (2) using the 
numerical flux (39), the ghost state v g is sought as linearly dependent upon v

v g :=
[

α3n ⊗ n α4n
α1nᵀ α2

]
v, A(n)v g = c0

[
p̃gn

ug · n

]
= M0(n)v, (44)

where

M0(n) = c0

[
α1n ⊗ n α2n
α3nᵀ α4

]
. (45)

To obtain an admissible flux from this generic expression, two of the four degrees of freedom (DoF) must be removed, as 
summarized in the proposition below.

Proposition 18. The numerical flux function given by (39), (44) is admissible if and only if α1 = (1 − α2)a0 and α4 = (1 − α3)/a0 , 
with α2 ≤ 1, α3 ≤ 1, and (α2 + α3)

2 ≤ 4(1 − α2)(1 − α3).

Proof. The proof is elementary and consists in using the admissibility conditions. (Consistency) Let v = [
uᵀ, p̃

]ᵀ
be the 

exact solution. The consistency condition (40) reads[
α1n ⊗ n (α2 − 1)n

(α3 − 1)nᵀ α4

]
v = 0.

The fact that v obeys the IBC p̃ = a0u · n readily leads to α1 = (1 − α2)a0 and α4 = (1 − α3)/a0, so that the two DoF left 
are α2 and α3. (Passivity) Let vh ∈ Vh . Since (M0(n)vh, vh)Rn+1 = (M̌0 v̌h, v̌h)R2 with v̌h = [ uh · n p̃h ]ᵀ and

M̌0 :=
[

α1
α2+α3

2
α2+α3

2 α4

]
, (46)

the condition (41) holds if and only if M̌0 is positive semidefinite. The inequalities on α2 and α3 follow from the application 
of the following elementary lemma that is frequently used in the remainder of this paper.

Lemma 19. A 2 × 2 symmetric matrix 
[

u v
v w

]
is positive semidefinite if and only if v2 ≤ uw and u + w ≥ 0.

Proof. A symmetric matrix � is positive semidefinite if and only if det � ≥ 0 and tr � ≥ 0. (Product and sum of the two 
real eigenvalues.) ��
Remark 20. In the case of a proportional impedance, the consistency (40) and passivity (41) conditions are the (DG1) and 
(DG2) properties stated in [67] and needed for the error analysis.

Therefore, after examination of the admissibility conditions there are two remaining DoF, α2 and α3, so that

v g :=
[

α3n ⊗ n 1−α3
a0

n
(1 − α2)a0nᵀ α2

]
v, M0(n) = c0

[
(1 − α2)a0n ⊗ n α2n

α3nᵀ 1−α3
a0

]
. (47)

Further constraints can be obtained by considering the continuity conditions (42) and (43):

lim
a0→0

α2 = −1, lim
a0→0

α3 = 1, lim
a0→∞α2 = 1, lim

a0→∞α3 = −1, (48)

lim
a0→0

(1 − α2)a0 = 0, lim
a0→0

(1 − α3)
1

a0
≥ 0, lim

a0→∞(1 − α2)a0 ≥ 0, lim
a0→∞(1 − α3)

1

a0
= 0. (49)

The line (48) suggests defining α := α2 with α3 = −α, which leads to the α-flux

v g :=
[ −αn ⊗ n (1+α)

a0
n

(1 − α)a0nᵀ α

]
v, M0(n) = c0

[
(1 − α)a0n ⊗ n αn

−αnᵀ 1+α
a0

]
. (50)

Any flux of this form is admissible, as long as α ∈ [−1, 1]. To respect the remaining continuity conditions (49), one can 
choose α = β0 := (a0 − 1)/(a0 + 1), which yields the β0-flux



v g :=
[ −β0n ⊗ n (1 − β0)n

(1 + β0)nᵀ β0

]
v, M0(n) = c0

[
(1 + β0)n ⊗ n β0n

−β0nᵀ 1 − β0

]
, (51)

an apparent computational interest of which is the boundedness of its components with respect to a0 . In summary, applica-
tion of the admissibility and continuity conditions leads to (51), an expression that, to the best of the authors’ knowledge, 
was first proposed by Ventribout [49, § 1.3.2] with a view on application to optimal control. Further insights into the benefit 
of choosing α = β0 can be obtained by deriving a CFL stability condition.

For simplicity, let us consider the explicit Euler scheme

vn+1
h − vn

h + �tÃh vn
h + �tA{0}

h vn
h = 0, (52)

with constant time step �t and CFL number defined as CFL :=�tc0h−1. To highlight the IBC contribution, the decomposition 
Ah vh = Ãh vh +A{0}

h vh is used, where A{0}
h : Vh → Vh is the boundary term of Ah given by, assuming that the IBC is applied 

on the whole of � (i.e. �z = ∂�),

(A{0}
h vh, wh)L2(�) = 1

2
(M0(n)vh − A(n)vh, wh)L2(∂�), (53)

so that

(Ãh vh, wh)L2(�) :=
∑
T ∈Th

(Avh, wh)L2(T ) −
∑

F∈F i
h

(A(nF )� vh �, {wh})L2(F ) + 1

2

∑
F∈F i

h

(|A(nF )|� vh �, � wh �)L2(F ). (54)

Using a discrete energy method (see Appendix C), the following sufficient stability condition can be derived.

Proposition 21. Assume ∇u0 = 0 (uniform base flow) and Vh = P
0
n(Th)n+1 (finite volume discretization). A sufficient L2 stability 

condition for (52) is CFL ≤ 2−1C−2
DG

(
1 + |u0|

c0

)−1
and

{
α1 + α4 ≥ C2

trCFL(α2
1 + (α3 − 1)2 + α2

4 + (α2 − 1)2)

(α2 + α3)
2 ≤ 4

(
α1 − C2

trCFL(α2
1 + (α3 − 1)2)

) (
α4 − C2

trCFL(α2
4 + (α2 − 1)2)

)
,

(55)

where the positive constants CDG and Ctr , defined in Lemmas 31 and 33, are non-dimensional and do not depend upon the initial data 
or the impedance.

Remark 22. Recall that, to be admissible, the matrix M0(n) given by (45) must obey Proposition 18. In particular, the 
passivity condition (41) requires the conditions α1 + α4 ≥ 0 and (α2 + α3)

2 ≤ 4α1α4 that are less stringent than (55).

The interest of Proposition 21 lies in the condition (55) that gives the influence of the numerical flux on the CFL number. 
Let us highlight three particular cases of practical interest by considering the α-flux ((39), (50)) with α ∈ [−1, 1], which has 
been derived above.

• (1-flux) If α = 1 (α1 = 0), then p̃g = p̃ and the flux does not control uh · n at the impedance boundary since 
(M0(n)vh, vh)Rn+1 = 2c0a−1

0 p̃2
h . A stability condition, namely CFL ≤ C−2

tr α4/(1 + α2
4), can be obtained from (55) if and 

only if α2 = −1 and α3 = 1. But since α2 = α = 1, the scheme is not provably stable with the proposed energy analysis.
• (−1-flux) If α = −1 (α4 = 0), then ug = (u · n)n and the numerical flux does not control p̃h since (M0(n)vh, vh)Rn+1 =

2c0a0(uh · n)2. Similarly, a stability condition cannot be obtained from Proposition 21 since that would require α2 = 1
and α3 = −1, values at odds with the definition of the α-flux with α = −1.

• (β0-flux) The α-flux satisfies (M0(n)vh, vh)Rn+1 = c0a0(1 −α)(uh ·n)2 + c0a−1
0 (1 +α)p̃2

h and thus control both uh ·n and 
p̃h if α ∈ (−1, 1). Under this assumption, the stability condition is given by (55) with α1 = (1 − α)a0, α4 = (1 + α)a−1

0 , 
and α2 = α = −α3. The β0-flux ((39), (51)) yields

CFL ≤ 1

C2
tr

min

[
1

1 + β2
0

,
1

2(1 + β0)
,

1

2(1 − β0)

]
, (56)

which shows that the CFL number has a positive upper bound with respect to a0, namely CFL ≤ 4−1C−2
tr . By contrast, 

consider the 0-flux (α2 = α3 = 0) which yields

CFL ≤ 1

C2
tr

a0

1 + a2
0

,

so that the CFL number decreases to 0 as a0 → ∞ or a0 → 0. This recovers a result of Ventribout [49, § 2.3].



Fig. 2. Eigenvalues λh ∈ σ(−Ah) for the acoustical cavity � = (0, 1)2 with c0 = 1, z0 = 1, and impedance Z(u · n) = a0u · n + aQ u̇ · n on ∂�. DG6 (NK = 8

triangles, 504 DoF). ( ): Z-flux ((39), (59)). ( ): flux ((39), (60)) with α = β0. ( ): λ = jω = ±jc0

√
k2

1 + k2
2 with two monodimensional dispersion relations 

�1D(ki , ̂z(jω), ω) = 0 (only covers eigenfunctions with separated variables).

In conclusion, among the admissible α-fluxes ((39), (50)) with α ∈ [−1, 1], the β0-flux ((39), (51)) is the optimal choice 
since its components are bounded with respect to a0 ∈ [0, ∞], it controls both p̃h and uh · n, and delivers the CFL stability 
condition (56). Extension of this result to nonlinear scattering operators B is done next in Sec. 4.4.

4.4. Weak enforcement of nonlinear impedance boundary conditions

Let us now consider the generic, possibly nonlinear, IBC under the three forms defined in Sec. 2.2

p̃ = a0u · n + aQQ(u · n) (a) u · n = a0 p̃ + aQQ(p̃) (b) p̃ − u · n = B(p̃ + u · n) (c), (57)

where a0 > 0, aQ ≥ 0, Q is an admissible impedance operator (see Definition 1), and B is an admissible scattering operator 
(see Definition 6). Following the method of Sec. 4.3, Secs. 4.4.1 and 4.4.2 derive the admissible numerical flux for each 
form ((57a), (57b), (57c)), namely the Z-flux ((39), (59)), Y-flux ((39), (61)), and the B-flux ((39), (63)), and establish the 
superiority of the B-flux.

Remark 23. For the analysis presented below, the IBCs (57) are only assumed to be admissible. In particular, they need not 
be given by one of the models covered in Sec. 3, so that Secs. 3 and 4.4 are independent.

4.4.1. Numerical flux based on the impedance or the admittance
To weakly enforce the IBC (57a) (impedance operator z−1

0 Z(u · n) = a0u · n + aQQ(u · n)), the ghost state is sought as

A(n)v g = M0(n)v + mQ(n)Q(u · n), (58)

where M0(n) is given by (45) and mQ(n) = c0 [γ1nᵀ, γ2]ᵀ . Proposition 25 shows that the only admissible expression is

A(n)v g = c0

[
2a0n � n −n

nᵀ 0

]
v + c0

[
2aQn

0

]
Q(u · n), (59)

where there are no remaining DoF. The Z-flux ((39), (59)) fulfills the pressure-release continuity condition (43) but not the 
hard-wall one (42) since there is a singularity as ai → ∞. Moreover, note that (M0(n)vh, vh)Rn+1 = 2c0a0(uh · n)2 so that 
there is no control of p̃2

h at the impedance boundary, a phenomenon already encountered in Sec. 4.3.

Example 24. One may think that the result of Proposition 25 is unnecessarily stringent, i.e. that the admissibility conditions 
proposed in Definition 16 are too constraining, but it can be verified numerically that it is not so. Let us consider the 
acoustical cavity � = (0, 1)2 with c0 = 1, z0 = 1, and impedance Z(u · n) = a0u · n + aQu̇ · n applied to the whole of ∂�. 
Two dispersion relations �1D(ki, ̂z(jω), ω) can be derived for eigenfunctions with separated variables p̃(x) = p̃1(x1)p̃2(x2)

with p̃i(xi) = (Aiejki xi + Bie−jki xi ) (note that it does not provide all the eigenvalues if ẑ(s) �= +∞). Fig. 2 plots the eigenvalues 
computed with a sixth-order DG method (see Appendix D) and flux

A(n)v g = c0

[
(1 − α)a0n ⊗ n αn

−αnᵀ 1+α
a0

]
v + c0

[
(1 − α)aQn
−(1 + α)

aQ
a0

]
Q(u · n), (60)

with reduces to the α-flux ((39), (50)) if aQ = 0. The value α = −1 yields stable eigenvalues that match the exact ones until 
a cut-off frequency. However, for α = β0, eigenfunctions have a less pronounced decay and can even be unstable. Hence the 
impedance model Z is passive, but passivity is lost at the semi-discrete level. This conforms with the fact that the flux ((39), (60)) 
is consistent for any α but passive if and only if α = −1 from Proposition 25.

Proposition 25. The numerical flux function ((39), (58)) is admissible if and only if the ghost state is given by (59).



Proof. Consistency and passivity conditions are checked. (Consistency) The condition (40) yields α1 = (1 − α2)a0, α4 =
(1 − α3)/a0, γ1 = (1 − α2)a1, and γ2 = −(1 − α3)

aQ
a0

. (Passivity) Let vh ∈ Vh . We have

(A(n)v g
h , vh)Rn+1 = (M0(n)vh, vh)Rn+1 + c0(1 − α2)aQQ(uh · n)uh · n − c0(1 − α3)

aQ
a0

Q(uh · n)p̃h.

The passivity condition (41) holds true for any vh and Q if and only if (M0(n)vh, vh)Rn+1 ≥ 0, (1 − α2)aQ ≥ 0, and α3 = 1. 
Lemma 19 gives α2 = −1 and enables to conclude. �

The admittance case (57b) is identical, as an application of the admissibility conditions shows that the only admissible 
ghost state of the form A(n)v g = M0(n)v + mQ(n)Q(p̃) is given by

A(n)v g = c0

[
0n,n n
−nᵀ 2a0

]
v + c0

[
0n

2aQ

]
Q(p̃), (61)

which obeys the hard-wall continuity condition (42) but not the pressure-release one (43). Note that (M0(n)vh, vh)Rn+1 =
2c0a0 p̃2

h so that there is no control of (uh · n)2 at the impedance boundary. In view of the expressions (59) and (61), the 
fluxes based on impedance and admittance have symmetrical continuity properties such that the Z (resp. Y)-flux should 
be preferred to the Y (resp. Z)-flux when the impedance is close to a pressure-release wall (resp. hard wall). However, the 
next section shows these two fluxes are trumped by a flux based on the scattering operator B.

4.4.2. Numerical flux based on the scattering operator
To weakly enforce the IBC under its scattering formulation (57c), the ghost state is sought as

A(n)v g = M0(n)v + mB(n)B(p̃ + u · n), (62)

where M0(n) is given by (45) and mB(n) = c0 [γ1nᵀ, γ2]ᵀ . Proposition 27 below shows that the only admissible ghost state 
is given by

A(n)v g = c0

[
n � n 0n

0ᵀ
n 1

]
v + c0

[
n

−1

]
B(p̃ + u · n). (63)

Note that with this flux there is control of both uh · n and p̃h at the boundary, and the boundary dissipation term is

1

2

t∫
0

(A(n)v g
h , vh)L2(�z)

dτ = c0

4

t∫
0

(‖p̃h + uh · n‖2
L2(�z)

− ‖B(p̃h + uh · n)‖2
L2(�z)

)
dτ

+ c0

4

t∫
0

‖p̃h − uh · n − B(p̃h + uh · n)‖2
L2(�z)

dτ , (64)

where the two terms on the right-hand side have a clear interpretation. The first one is the dissipation associated with the 
scattering operator B, see the passivity condition (9), and the second one can be interpreted as a penalization term for the 
non-respect of the IBC.

Remark 26. The B-flux ((39), (63)) derived from the energy analysis carried out in the proof of Proposition 27 reads

(A(n)v)∗ = c0

2

[
n
1

]
(p̃ + u · n) + c0

2

[
n

−1

]
B(p̃ + u · n).

It is interesting to note that this flux is exactly that derived using flux vector splitting [70, Chap. 8], which for a linear hy-
perbolic PDE with constant coefficients amounts to exactly solving the monodimensional Riemann problem at the boundary. 
Indeed, given Assumption 10 we have at the impedance boundary �z

A(n)v = A(n)⊕v − A(n)�v = c0

2

[
n � n n

nᵀ 1

]
v + c0

2

[−n � n n
nᵀ −1

]
v

= c0

2

[
n
1

]
(p̃ + u · n) + c0

2

[
n

−1

]
(p̃ − u · n).

Therefore, this flux has a direct interpretation based on characteristics, making it natural to use with a hyperbolic law.

Proposition 27. The numerical flux ((39), (62)) is admissible if and only if the ghost state is given by (63).



Proof. (Consistency) Condition (40) leads to α1 = γ1 = 1 − α2 and α4 = −γ2 = 1 − α3 so that there are only two DoF left, 
α2 and α3. (Passivity) Let vh ∈ Vh . Recall that the passivity property of the scattering operator B reads (9), which makes 
the study of passivity more intricate than in the previous sections. The generic expressions of M0(n) and mB(n) give

1

c0
(A(n)v g

h , vh)Rn+1 = 1

c0
(M0(n)vh, vh)Rn+1 + 1

c0
(mB(n)B(p̃h + uh · n), vh)Rn+1

= (1 − α2)(uh · n)2 + (1 − α3)p̃2
h + (α2 + α3)p̃huh · n

− B(p̃h + uh · n)
(
(1 − α3)p̃h − (1 − α2)uh · n

)
.

Using the identity ab = 1
2 a2 + 1

2 b2 − 1
2 (a − b)2 on B(p̃h + uh · n)

(
(1 −α3)p̃h − (1 −α2)uh · n

)
and collecting the terms yields

1

c0
(A(n)v g

h , vh)Rn+1 = 1

2
(p̃h + uh · n)2 − 1

2
B(p̃h + uh · n)2

+ 1

2

(
(1 − α3)p̃h − (1 − α2)uh · n − B(p̃h + uh · n)

)2 − 1

2
(α2uh · n − α3 p̃h)

2.

Since this quantity must be non-negative for every admissible scattering operator B and every vh ∈ Vh , the passivity condi-
tion (41) is achieved if and only if α2 = α3 = 0. �

In summary, even for a generic nonlinear scattering operator B, the B-flux ((39), (63)) keeps the properties mentioned 
when studying the proportional case, such as the control of both uh · n and p̃h at the boundary. Note that this conclusion 
has been reached without considering how B is computed, i.e. the analysis is so far independent of Sec. 3. However, to 
conclude this section, it is insightful to derive a CFL stability condition, as in Sec. 4.3. For this, let us consider the following 
reflection coefficient, inspired by the representation of physical models derived in Sec. 3.2,

β̂(s) =
ξmax∫

ξmin

1

s + ξ
dμ(ξ), (65)

where μ is a measure on (ξmin, ξmax) with 0 ≤ ξmin < ξmax < ∞. A sufficient condition for β̂ to be bounded-real is 
‖μ‖L1‖ μ

ξ2 ‖L1 ≤ 1, see Appendix C. The corresponding semi-discrete formulation results from a coupling between the ad-

ditional variables ϕh and the acoustic field v (space and time variables are explicitly stated to avoid ambiguity)

{
∂tϕh(t, x,−ξ) = −ξϕh(t, x,−ξ) + p̃h(t, x) + uh(t, x) · n(x) (x ∈ ∂�, ξ ∈ [ξmin, ξmax])
∂t vh(t) = −Ãh vh(t) −A{0}

h vh(t) −A{β}
h β 	 (p̃h + uh · n)(t).

(66)

The spatial discretization is given by (53), (54) with an additional boundary contribution A{β}
h in the decomposition of Ah

compared to that of Sec. 4.3 given by, assuming that �z = ∂�,

(A{β}
h vh, wh)L2(�) := 1

2
(mB(n)vh, wh)L2(∂�) = − c0

2
(vh, (w p

h − wu
h · n))L2(∂�). (67)

The result, stated in Proposition 28, is a natural extension of Proposition 21 and more specifically of (56). It shows that, with 
an explicit time integration, the maximum frequency (2π)−1ξmax of the scattering operator stiffens the system; in practice, 
ξmax must be chosen consistently with the dissipation and dispersion properties of the spatial discretization, as advocated 
in Sec. 3.3.1. Numerical applications based on the scattering operator are considered in Secs. 5 and 6.

Proposition 28. Assume ∇u0 = 0 (uniform base flow), Vh = P
0
n(Th)n+1 (finite volume discretization), and β̂ bounded-real such that 

‖μ‖L1‖ μ
ξ2 ‖L1 ≤ 1. A sufficient L2 stability condition for (66) is

CFL ≤ min

(
1

2C2
DG

(
1 + |u0|

c0

)−1

,
1

2C2
tr

,
c0

h ξmax

)
, (68)

where the positive constants CDG and Ctr , defined in Lemmas 32 and 33, are non-dimensional and do not depend upon the initial data 
or the impedance.



Fig. 3. Impedance tube used in Sec. 5: Lx = 1 m, L y = Lx/100, and mesh with 240 triangles.

Fig. 4. Acoustic pressure p̃ at x = 0 (see Fig. 3). Gaussian-modulated sinusoidal source centered at 2 kHz of amplitude As = √
2 pref

z0
10

SPL
20 (Lx = 1 m, L y =

Lx/100, c0 = 344.32 m.s−1, z0 = 405.26 kg.m−2.s−1, pref = 2 × 10−5 Pa, and SPL = 192.15 dB). ( ) Exact solution (69). ( ) DG4-RKF84-B-flux ((39), 
(63)) and CFL = 0.85. [Top left] Hard wall B = I . [Bottom left] Non-passive wall B = 3I . [Bottom right] Nonlinear model (23) with (a0, Cnl) = (0, 1). 
( ) DG4-RKF84-Z-flux ((39), (59)). [Top right] Linear TDIBC β̃A , see Fig. 7 and Table 2. ( ) DG4-RKF84-B-flux, Nψ = 4, and PPWτ̃ (2 kHz) = 9.64. 
( ) DG4-RKF84-B-flux, Nψ = 2, and PPWτ̃ (2 kHz) = 4.82.

5. Numerical validation with nonlinear impedance tube

This section validates the proposed Z-flux ((39), (59)) and B-flux ((39), (63)), and illustrates the computational advantage 
of the latter. It is enough to consider the so-called impedance tube since the IBC (2) is monodimensional (i.e. only the 
normal component u · n is needed at the boundary, which stems from the locally reacting hypothesis). Let us briefly recall 
the impedance tube exact solution, expressed in the notations of Fig. 3. At x = 0 the incoming characteristic is given by 
(p̃ + u)(t, 0) = φs(t) where φs is causal (i.e. φs(t) = 0 for t < 0). The nonlinear IBC (8) is enforced at x = Lx . Assuming null 
initial conditions p̃(0, x) = u(0, x) = 0, the exact solution is

p̃(t, x) = 1

2
φs

(
t − x

c0

)
+ 1

2
B(φs)

(
t − 2Lx − x

c0

)
, u(t, x) = 1

2
φs

(
t − x

c0

)
− 1

2
B(φs)

(
t − 2Lx − x

c0

)
. (69)

Note that the solution, derived with an elementary application of the method of characteristics, is naturally expressed with 
the nonlinear scattering operator B. If the IBC is linear, then B(v) = β 	 v and the analytical solution can also be derived 
using the Laplace transform. As detailed in Sec. 3, the computation of B(φs) may involve delayed ODEs.

The LEEs (1) are discretized using a fourth-order DG method (see Appendix D) and the RKF84 eight-stage fourth-order 
2N-storage Runge–Kutta method [71, Tab. A.9]. The mesh of 240 triangles (2400 nodes) is shown in Fig. 3. The source is 
imposed using the numerical flux (A(nF )v)∗s (see Sec. 4.1) and the IBC is weakly enforced with the Z-flux ((39), (59)) or 
the B-flux ((39), (63)). Fig. 4 shows the exact and computed solutions at the inlet x = 0 for four impedance models and a 
Gaussian source centered at 2 kHz. For the sake of clarity, the impedance tube is chosen long enough to avoid overlapping 
between the incident and reflected waves. For each of the four models the exact solution matches the computed one, which 
validates the proposed numerical flux functions.

The top right graph covers the linear TDIBC β̃A given in Table 2 and plotted in Fig. 4 that models the MP liner studied in 
Sec. 6. The computation of β̃A 	 v through (34) involves a transport equation whose Nψ -point discretization is characterized 
by its number of points per wavelength (33): here, Nψ = 4 is sufficient. The bottom left graph covers the non-passive
scattering operator B = 3I , outside of the scope of the analysis presented in this paper. However, the B-flux does enable 
to compute this case, by contrast to the Z-flux with which no stable computations could be obtained, even with a reduced 



Fig. 5. Maximum CFL number against SPL for the impedance tube of Fig. 4. ( ) Hard wall B = I and DG4-RKF84-B-flux. ( ) Nonlinear model (23)
with (a0, Cnl) = (0, 1) and DG4-RKF84-Z-flux. ( ) Same nonlinear model with DG4-RKF84-B-flux.

Fig. 6. Flow duct considered in Sec. 6 (aspect ratio of the GIT). Mesh of 106 triangles used in Fig. 14. Pressure measurements are taken on the lower wall 
y = 0. See Table 1 for geometrical dimensions corresponding to the GIT and GFIT.

Table 1
Geometrical dimensions of the GIT and GFIT. The acoustical cut-off frequency is computed through fcut-off = c0(2L y)−1, with c0 = √

γ rT � 344.32 m.s−1

(T = 295 K, γ = 1.4, and r = 287.058 J.kg−1.K−1).

Lx1 (mm) Lx2 (mm) Lx (mm) L y (mm) fcut-off (kHz)

GIT [18] 203 609 812.8 51 3.38
GFIT [72] 203.2 812.8 1016 63.5 2.71

CFL number and different meshes. Finally, the bottom right shows the harmonic distortion, a genuinely nonlinear feature, 
yielded by the algebraic nonlinear model (23) with Cnl = 1. As expected, both the Z and B fluxes lead to the same solution.

In Fig. 4, the CFL number has been kept at 0.85, its maximum value with a hard wall, for all cases. However, the analysis 
of Sec. 4 has shown that the B-flux is to be favored over the Z-flux. Fig. 5 illustrates this point with the nonlinear model 
used in Fig. 4. With the Z-flux, the maximum CFL number that leads to a stable computation decreases as the incident 
SPL increases, since the resistance increases. By contrast, the B-flux enables to keep the same CFL number, which can 
be understood from the passivity condition (9) that implies that B is a contraction. The value Cnl = 1 has been chosen 
arbitrarily, to highlight the nonlinear effect; as the nonlinear coefficient Cnl (resp. contraction coefficient Cc) goes to infinity 
(resp. zero), the SPL value above which the CFL drops with the Z-flux goes to zero. Although this example is elementary, 
it illustrates the advantage of the nonlinear scattering formulation. A more advanced but linear application is presented in 
the next section.

6. Numerical application in linear duct aeroacoustics

In this section, numerical simulations of two flow ducts are compared with experimental data, a summary of which is 
given in Sec. 6.1. Sec. 6.2 describes the employed numerical methodology. Comparison with experimental data is done in 
the last two sections, Secs. 6.3 and 6.4.

6.1. Experimental methodology and data

The study focuses on two ducts designed by the National Aeronautics and Space Administration (NASA), namely the 
Grazing Incidence Tube (GIT) and Grazing Flow Impedance Tube (GFIT). A short summary of the experiments reported in 
[18] and [72] is provided below.

Experimental setup. The GIT and GFIT share a similar geometry, described in Fig. 6 and Table 1. The acoustical source is 
placed upstream of the entry plane x = 0, where a reference microphone is positioned on the lower wall. The source is 
monochromatic, with a frequency chosen below the lowest cut-off frequency so that only plane waves propagate in the 
duct. A near-anechoic termination is placed at the exit plane x = L. The sound absorbing material sample is mounted on the 
top wall between Lx1 and Lx2 , while microphones are located on the lower wall. A Pitot probe system enables to measure 
the base flow u0 at given cross-sections. See [18, Fig. 2] and [72, Fig. 5] for visualizations of the ducts.

Impedance identification methodology. At each source frequency f s , pressure measurements are taken on the lower wall y = 0
and used to identify the impedance value ẑid(j2π f s). The inverse problem relies on the 2D convected Helmholtz equa-
tion (∂t + u0∂x)

2 p − c2
0�p = 0 derived from the LEEs (1) by taking a uniform base flow u0 = c0Mavgex , where Mavg is 

the measured average Mach number. Since the base flow is assumed uniform, the IBC used for the identification is not
(3), as considered in this paper, but the standard Ingard–Myers boundary condition with uniform impedance and straight 
boundary: [18, Eq. 2]



−ẑid(s)∂n p̂ = s

c0
p̂ + 2Mavg∂x p̂ + c0M2

avg

s
∂2

x p̂.

Although in principle more accurate results could be obtained by using corrected versions of the Ingard–Myers bound-
ary condition (see Remark 11), the identified impedance ẑid has proven satisfactory. Note that in addition to ẑid another 
impedance is identified, namely the exit impedance enforced at the outlet x = L: this impedance is close to 1 since the exit 
is nearly anechoic in the experiments.

Experimental data. The material considered in the GFIT experiment is a single degree of freedom micro-perforated liner 
(MP) made from a honeycomb core (thickness lc = 38.1 mm, cell diameter dc = 9.5 mm) sandwiched between a perforated 
facesheet (thickness lp = 0.8 mm, hole diameter dp = 0.3 mm, and porosity σp = 5 %) and a rigid backplate. Impedance 
identifications have been done at an incident SPL of 120 dB (chosen to minimize nonlinear effects), average Mach numbers 
in {0,0.180,0.271}, and frequencies ranging from 0.4 kHz to 2.6 kHz by steps of 0.2 kHz. The GIT experiment focused on a 
ceramic tubular liner (CT57) made from a ceramic tubular core (lc = 85.6 mm, dc = 0.6 mm, σc = 57 %) and a rigid backplate. 
The experimental data, partially reported in [18, Tabs. 1–9], covers an incident SPL of 130 dB, average Mach numbers in 
{0,0.079,0.172,0.255,0.335,0.400}, and frequencies ranging from 0.5 kHz to 3 kHz by steps of 0.1 kHz. The 0.5 kHz data is 
excluded since it is less reliable [18].

6.2. Numerical methodology

Discretization. The discretization of the LEEs (1) is identical to that of Sec. 5. In all of the computations, the CFL number is 
kept at 0.85, its maximum value with a hard wall (i.e. the TDIBC does not reduce the time step). At the entry plane x = 0, 
a plane wave source is imposed using the flux (A(nF )v)∗s , while a non-reflecting boundary condition, exact only for plane 
waves, is imposed at x = Lx using (A(nF )v)∗out (see Sec. 4.1). Note that no exit impedance is considered, by contrast with the 
impedance identification methodology used in [18,72]. The TDIBC is given by (34) and is weakly enforced with the B-flux 
((39), (63)) derived in Sec. 4.4.

Base flow. The chosen base flow u0 = c0M0(y)ex is the hyperbolic velocity profile [17, Eq. 2.4a]

M0(r) = Mc tanh(δ−1(1 − |r|)) + Mc
[
1 − tanh(δ−1)

][
δ−1(1 + tanh(δ−1)) + 1 + |r|](1 − |r|)

Mc = Mavg
[
δ ln(cosh(δ−1)) + [1 − tanh(δ−1)][(6δ)−1(1 + tanh(δ−1)) + 2/3]]−1

,
(70)

where r ∈ [−1, 1]. This velocity profile has two parameters: the average Mach number Mavg and the nondimensional bound-
ary layer thickness δ ∈ (0, 1]. For δ = 1, the velocity profile is almost identical to the Poiseuille profile M0(r) = 3

2 Mavg(1 −r2). 
More accurate alternatives to this velocity profile include using a turbulent eddy viscosity model where M ′

0 is known ana-
lytically [73, Eq. 3–4], or, when possible, an interpolation of the experimental flow. Using these other velocity profiles does 
not significantly alter the presented results, but imply the use of a more refined mesh, hence why (70) is chosen herein.

In both experiments, the identified impedance values exhibit a dependency on the grazing base flow. In Secs. 6.3 and 
6.4, to account for this dependency, we follow a simple approach inspired by the experimental study [10], whose result has 
been recalled in Sec. 3.1. The grazing flow is considered as an additional parameter, so that the physical quantities found in 
the acoustical model (17), such as lp or lc for instance, are tweaked when a base flow is present. This empirical approach 
has been found to be sufficient to match the experimental results.

Post-processing. A polychromatic source ps(t) =∑
fs∈I sin(2π f st) is used, and each frequency is then separated at the post-

processing stage using a sixth-order recursive band-pass filter designed and applied using the MATLAB® Signal Processing 
Toolbox™ (functions designfilt and filter). The filtered pressure signals are then used to compute root-mean-square 
(RMS) values pRMS at each frequency and microphone locations along the bottom wall. The decibel (dB) values are computed 
with pdB = 20 log10(pRMS) + C , where the constant C is chosen so that pdB(x = 0) matches the experimental value at the 
reference microphone. (Since the numerical scheme is linear, decibel values are indeed defined up to an additive constant.) 
The simulation is performed over 80 periods of the lowest frequency and convergence of the RMS value is checked.

6.3. Grazing Flow Impedance Tube (GFIT)

Following the three-step methodology described in Sec. 3.3.1 discrete models β̃ are built to match the values identified 
in the GFIT at Mavg = 0 and Mavg = 0.271, see Table 2.

Mavg = 0 case. The physical model (17) with coefficients given by (19), (21) provides a fair initial point for the nonlinear 
least-squares optimization of step 1, the output of which is plotted in Fig. 7. The optimized model accounts for the resistance 
increase at 0.4 kHz and exhibits a high frequency behavior close to that of the non-optimized model (not plotted), with 
anti-resonances located around the approximate values fn = nc0/2lc . The output of step 2, i.e. the discrete oscillatory-diffusive 
representation of the physical model obtained using a linear least-squares optimization, is therefore satisfactory. In step 3, 
it is used as an initial guess to build the final discrete model β̃A (the time delay τ̃ is not optimized) shown in Fig. 7. 
A large number of poles, namely three pairs of oscillatory poles sn and two high frequency diffusive poles ξk , have been 



Table 2
TDIBCs (31) obtained in Sec. 6. Only poles in the upper half-plane {s | �(s) ≥ 0} are given (the full set is obtained by complex conjugation).

(s̃n,−ξ̃k)n,k (rad.s−1) r̃1,n, μ̃1,k r̃2,n, μ̃2,k

β̃A β̃∞ = 1 τ̃ = 2.074709e−04 s
−9.425004e+04 4.399745e+05 −3.301477e+05
−1.005288e+05 −4.844596e+05 3.648366e+05
−6.590198e+03+8.091231e+03i −3.316669e+03+1.245272e+03i 3.034471e+03−1.360501e+03i
−3.313575e+03+3.441899e+04i −2.597563e+03+2.012662e+03i 2.246072e+03−1.972699e+03i
−2.074806e+03+6.332235e+04i −2.161554e+03+1.610479e+03i 1.750988e+03−1.684290e+03i

β̃B β̃∞ = 1 τ̃ = 1.698885e−04 s
−4.397915e+04 −3.896423e+04 9.305033e+03
−9.339632e+03+8.499373e+03i −2.058287e+03−2.722431e+03i −1.203382e+03−2.923788e+03i
−1.645826e+04+3.974646e+04i −7.781838e+03−3.535171e+03i −8.796038e+02+3.204374e+02i
−2.106499e+04+7.256816e+04i −1.507929e+04−1.588215e+04i −1.536644e+03+7.662377e+02i

β̃C β̃∞ = 1 τ̃ = 3.100751e−06 s
−5.748740e+03+4.228554e+03i −1.010084e+05+2.101821e+05i 1.005155e+05−2.103401e+05i

β̃D β̃∞ = 0.5 τ̃ = 4.799390e−04 s
−3.816516e+03+4.734560e+03i −7.194232e+02−5.447907e+02i 1.625807e+03+9.996580e+01i
−2.765741e+04+2.000290e+04i −7.179701e+03−7.336684e+03i 1.614688e+04+1.930627e+04i

β̃E β̃∞ = 0.7 τ̃ = 5.099183e−04 s
−9.424902e+04+3.641784e+04i −7.932877e+04−1.495889e+05i 5.737738e+04+8.853810e+04i

β̃F β̃∞ = 5.888134e−01 τ̃ = 5.217335e−04 s
−6.414157e 9.506538e+04 −1.096633e+04
−2.051627e+04 −1.320127e+05 1.486746e+04
−4.849574e+03+6.072352e+03i −1.457643e+03+3.397179e+04i 5.526842e+02+7.586494e+02i
−6.618336e+03+1.885015e+04i 3.599154e+03+3.495625e+03i −4.862369e+02+5.032293e+02i

Fig. 7. Impedance ẑ and reflection coefficient β̂ . ( ) ẑid/z0 identified with the methodology described in Sec. 6.1. MP liner in the GFIT at Mavg = 0 and 120 dB
[72, Fig. 12]. ( ) ẑMP/z0 (17) with optimized coefficients σ−1

p a0 = 2.221 × 10−14, σ−1
p a1/2 = 2.518 × 10−3 s1/2 , σ−1

p a1 = 3.408 × 10−5 s, σ−1
c = 1.107, 

b0 = 1.750 ×10−2, b1/2 = 2.321 ×10−4 s1/2 , and b1 = 1.037 ×10−4 s; time delay τ = 2b1 = 2.075 ×10−4 s. ( ) TDIBC ˆ̃
βA : Nϕ = 8 poles (Nξ = 2, Ns = 6), 

(2π)−1 max(ξk, |sn|) = 1.008 × 101 kHz, and τ̃ = 2.075 × 10−4 s. (This curve assumes that the time delay term e−2π j f τ̃ is perfectly approximated.)

chosen to build a broadband approximation. The corresponding SPLs along the lower wall are given in Fig. 8 for two 
choices of Nψ to illustrate the impact of the delay discretization: a value of Nψ = 4 is sufficient here. The agreement with 
experimental pressure measurements is satisfactory, the largest error occurring at 1.4 kHz. However, based on the plot of 
|β̂id| given at the bottom left of Fig. 7, this point appears to be an outlier. To confirm this, the SPLs obtained with the 
identified impedance values are also given. They are computed using six proportional-integral-derivative (PID) impedance 
models ẑPID,i(s) = d0,i s−1 + d1,i + d2,i s, implemented as (34) with τ̃ = 0, each chosen so that ẑPID,i(j2π f i) = ẑid(j2π f i). The 
plot shows that at 1.4 kHz the tuned PID model also exhibits a significant error.

Mavg = 0.271 case. The identified values exhibit a strong resistance increase compared to the no flow case. Here, step 1 
requires some care: the optimization of the physical model coefficients (17) is strongly dependent on the initial point, 
in stark contrast to the other three cases considered in this paper. A contributing factor to this sensitivity is the lack 
of anti-resonance in the experimental data, which stops at 2.6 kHz. Fig. 9 plots an optimized model that exhibits two 
anti-resonances, obtained by doubling lc in the initial guess ((17), (19), (21)). Additional experimental data would be needed 



Fig. 8. RMS values of acoustic pressure pRMS on the lower wall y = 0 (see Fig. 6). DG4-RKF84-B-flux on 110 triangles (1100 nodes), CFL = 0.85. ( ) 
TDIBC β̃A with Nψ = 4 so that PPWτ̃ (2.6 kHz) = 7.42. ( ) TDIBC β̃A with Nψ = 2 so that PPWτ̃ (2.6 kHz) = 3.71. ( ) Six proportional-integral-
derivative TDIBCs β̃PID, each matching the identified impedance at one frequency only. ( ) MP liner in the GFIT at Mavg = 0 and 120 dB [72].

Fig. 9. Impedance ẑ and reflection coefficient β̂ . ( ) ẑid/z0. MP liner in the GFIT at Mavg = 0.271 and 120 dB [72]. ( ) ẑMP/z0 (17) with optimized 
coefficients σ−1

p a0 = 2.220 × 10−14, σ−1
p a1/2 = 2.220 × 10−14 s1/2 , σ−1

p a1 = 2.220 × 10−14 s, σ−1
c = 2.116, b0 = 2.220 × 10−14, b1/2 = 7.67 × 10−3 s1/2 , and 

b1 = 8.494 × 10−5 s; τ = 1.699 × 10−4 s. ( ) TDIBC ˆ̃
βB : Nϕ = 7 poles (Nξ = 1, Ns = 6), (2π)−1 max(ξk, |sn|) = 1.203 × 101 kHz, and τ̃ = 1.699 × 10−4 s. 

( ) TDIBC ˆ̃
βC : Nϕ = 2 poles (Nξ = 0, Ns = 2), (2π)−1 max(ξk, |sn|) = 1.136 kHz, and τ̃ = 3.101 × 10−6 s. (The last two curves assume that the time 

delay term e−2π j f τ̃ is perfectly approximated.)

to validate this model above 2.6 kHz. This sensitivity is also exhibited by step 3. If the time delay τ̃ is optimized, it is greatly 
reduced (i.e. τ̃ � τ ) thus modifying the high frequency behavior. To illustrate this point, Fig. 9 shows two discrete models. 
The model β̃C is obtained by keeping lc to its physical value in the initial guess of step 1, choosing only one pair of 
oscillatory poles sn in step 2, and optimizing on τ̃ in step 3. It provides an adequate approximation of the experimental 
data but a poor high frequency behavior, linked to its negligible delay τ̃ � τ/54. The model β̃B is obtained by using the 
physical model shown in Fig. 9 during step 1, choosing three pairs of oscillatory poles sn and one high frequency diffusive 
pole ξk in step 2, and keeping τ̃ constant in step 3.

Fig. 10 plots the computed SPL distributions. The dotted curves enable to check the relevance of the identified impedance 
values. The strongest disparities are obtained below 1 kHz where the measurements suggest the presence of a longitudinal 
resonance not modeled with our non-reflecting outlet, also noticeable in the no flow case, see Fig. 8. At these low frequen-



Fig. 10. RMS values of acoustic pressure pRMS on the lower wall y = 0. DG4-RKF84-B-flux on 326 triangles (3260 nodes), CFL = 0.85. Base flow (70) with 
Mavg = 0.271 and δ = 0.2. ( ) TDIBC β̃B with Nψ = 3 so that PPWτ̃ (2.6 kHz) = 6.79. ( ) TDIBC β̃C with Nψ = 2 so that PPWτ̃ (2.6 kHz) = 248. 
( ) Six TDIBCs β̃PID with δ = 0.25. ( ) MP liner in the GFIT at Mavg = 0.271 and 120 dB [72].

cies, the fidelity of the SPLs obtained with β̃B and β̃C is therefore bound to be limited. Although the TDIBC B is significantly 
more expensive than C , both lead to similar SPLs with no significant discrepancies. The time delay of β̃C is negligible on 
the considered frequency range so that the minimal value Nψ = 2 is already too large, as shown by the value of PPWτ̃ .

6.4. Grazing Incidence Tube (GIT)

Mavg = 0 case. Step 1 delivers an adequate set of coefficients for the physical model (17), see Fig. 11. The model β̃D is 
obtained by choosing the first two pairs of oscillatory poles sn in step 2 and optimizing the time delay τ̃ in step 3 (although 
it can be kept constant as well). The slight decay of the physical model at high frequency is linked to a small but non-null 
diffusive part that can be captured by adding diffusive poles ξk to β̃D [5, § VI.B]. However, this is not needed here in view 
of the computed SPLs shown in Fig. 12. Compared to the MP liner considered in Sec. 6.3, both a higher delay and a higher 
maximum frequency lead to a sensible increase in Nψ .

Mavg = 0.4 case. The identified impedance values display a very low resistance within [0.7, 1.1]kHz and the shape of |β̂id|
suggests the presence of noise in the data, see the bottom left of Fig. 13, as one may expect due to the high value of 
Mavg. The output of step 1 is sensitive to the chosen experimental points since the physical model (17) cannot fit both 
the low and high resistance regions, namely [0.7, 1.1] kHz and [2.3, 3] kHz. However, step 1 is not sensitive to the initial 
guess provided that the chosen data points cover the anti-resonance. Additionally, the 1 kHz value is best removed since 
it leads to an instability with the LEEs as shown in the dotted curve at the top right of Fig. 14, and investigated in [74, 
§ VI.B.2]. (Including the 1 kHz point in the optimization process has been found to systematically lead to an unstable pole, 
i.e. �(sn) > 0 or ξk < 0.) Due to the shortcomings of the physical model, step 3 has a tendency to overfit the experimental 
data, so that we do not optimize on the delay τ̃ during step 3.

The discrete model β̃E , plotted in Fig. 13, is obtained by using only 2 oscillatory poles sn and excluding the data points 
in/at [0.7, 0.8], [1, 1.4], 1.8, and [2.1, 2.3] kHz. Fig. 14 shows that β̃E compares favorably to the experimental pressure 
measurements. The increased resistance at 1 kHz compared with the identified value reduces the instability, although not 
enough to fit the experiment. The discrepancy at 3 kHz, since it is also obtained with the identified value, could be explained 
by the presence of higher-order modes in the experiment, which can be assessed using the cut-off frequency of a hard 
walled duct with uniform flow, given by c0(2L y)

−1
√

1 − M2
avg = 3.01 kHz.

The discrete model β̃F is obtained by excluding the data points in/at [0.7, 1.2], 1.8, and [2.1, 2.3] kHz. Compared to β̃E , 
the addition of one pair of oscillatory poles sn and two high frequency diffusive poles ξk leads to an overfit that significantly 
alter the high frequency behavior, see Fig. 13. However, the corresponding SPLs are satisfactory, especially at 3 kHz. Since 
the delay of both models is close, they share a common value of Nψ .



Fig. 11. Impedance ẑ and reflection coefficient β̂ . ( ) ẑid/z0. CT57 liner in the GIT at Mavg = 0 and 130 dB [18]. ( ) ẑCT/z0 (17) with optimized 
coefficients σ−1

c = 1.728, b0 = 1.161 × 10−1, b1/2 = 3.413 × 10−3 s1/2 , and b1 = 2.207 × 10−4 s; τ = 4.412 × 10−4 s. ( ) TDIBC ˆ̃
βD : Nϕ = 4 poles (Nξ = 0, 

Ns = 4), (2π)−1 max(ξk, |sn|) = 5.432 kHz, and τ̃ = 4.799 × 10−4 s. (This curve assumes that the time delay term e−2π j f τ̃ is perfectly approximated.)

Fig. 12. RMS values of acoustic pressure pRMS on the lower wall y = 0. DG4-RKF84-B-flux on 52 triangles (520 nodes), CFL = 0.85. ( ) TDIBC β̃D with 
Nψ = 8 so that PPWτ̃ (3 kHz) = 5.56. ( ) TDIBC β̃D with Nψ = 6 so that PPWτ̃ (3 kHz) = 4.17. ( ) Six TDIBCs β̃PID with CFL = 0.84. ( ) CT57 liner 
in the GIT at Mavg = 0 and 130 dB [18, Tab. 3].

7. Conclusion and perspectives

The semi-discrete energy analysis presented in Sec. 4 has shown the computational advantage of using the scattering 
operator over the impedance and admittance operators when solving the linearized Euler equations. In the analysis, the IBC 
has only been assumed to be admissible in the sense of Definitions 1 and 6. The derived numerical flux, the so-called B-flux 
((39), (63)), has been interpreted in Remark 26 as that obtained from solving the monodimensional Riemann problem at 
the impedance boundary, which is standard in computational fluid dynamics. In practice, if the scattering operator cannot 
be computed efficiently or is not available, then the impedance (resp. admittance) is to be preferred a priori if the material 
is close to a pressure-release wall (resp. hard wall). A consistent but not passive numerical flux has been exhibited in 
Example 24, which justifies the need for such a careful analysis of the numerical flux and highlights the fact that the sole 
definition of the discrete model is not enough to fully define a TDIBC.



Fig. 13. Impedance ẑ and reflection coefficient β̂ . ( ) ẑid/z0. CT57 liner in the GIT at Mavg = 0.4 and 130 dB [18]. ( ) ẑCT/z0 (17) with optimized 
coefficients σ−1

c = 1.398, b0 = 1.442 × 10−1, b1/2 = 1.956 × 10−3 s1/2 , and b1 = 2.550 × 10−4 s; τ = 5.099 × 10−4 s. ( ) TDIBC ˆ̃
βE : Nϕ = 2 poles (Nξ = 0, 

Ns = 2), (2π)−1 max(ξk, |sn|) = 1.608 ×101 kHz, and τ̃ = 5.099 ×10−4 s. ( ) TDIBC ˆ̃
βF : Nϕ = 6 poles (Nξ = 2, Ns = 4), (2π)−1 max(ξk, |sn|) = 3.180 kHz, 

and τ̃ = 5.217 × 10−4 s. (The last two curves assume that the time delay term e−2π j f τ̃ is perfectly approximated.)

Fig. 14. RMS values of acoustic pressure pRMS on the lower wall y = 0. DG4-RKF84-B-flux on 106 triangles (1060 nodes), CFL = 0.85. Base flow (70) with 
Mavg = 0.4 and δ = 0.2. ( ) TDIBC β̃E with Nψ = 8 so that PPWτ̃ (3 kHz) = 5.23. ( ) TDIBC β̃F with Nψ = 8 so that PPWτ̃ (3 kHz) = 5.11. ( ) 
Six TDIBCs β̃PID with δ = 0.26. ( ) CT57 liner in the GIT at Mavg = 0.4 and 130 dB [18, Tab. 8].

An example of nonlinear scattering operator, derived from a physical perforation impedance model in Sec. 3, has been 
shown in Sec. 5 to deliver a stability CFL number independent of the incident sound pressure level, by contrast with a 
formulation based on the impedance operator. The analytical solution (69), sufficient for validating of a nonlinear TDIBC, 
has been recalled.

Within the linear realm, the oscillatory-diffusive representation of a physical reflection coefficient model, applicable to 
acoustical liners, has been given in Sec. 3 and has led to the definition of the time-delayed broadband discrete model (31)
that bears some similarities with discrete models postulated in the literature. In order to perform time integration with 
a Runge–Kutta method, a purely time-local formulation (34), based on a realization of the time delay through a transport 
equation, has been applied to two flow ducts in Sec. 6.

More marginally, Sec. 2 and Appendix A have recalled the interest of using the Laplace transform over the Fourier 
transform to deal with the admissibility conditions of impedance models.



The limitations of this work suggest ideas for future studies; five of them are listed below, the first three being numer-
ical. First, a similar energy analysis could be applied to Ingard–Myers type IBCs in order to gain theoretical insights into 
their discretizations. Second, the presented nonlinear numerical application could be extended to a differential impedance 
operator Z . In such a case, the computational challenge lies in the efficient computation of B, which must avoid comput-
ing (z−1

0 Z + I)−1 since it may involve a nonlinear stiff ODE. Third, the present study can be seen as a first step towards 
the analysis of the enforcement of a TDIBC with the Euler or Navier–Stokes equations. Challenges include the filtering of 
the perturbation as well as the treatment of the diffusion term at the impedance boundary. The last two suggestions are 
physical. Fourth, the present work shows that TDIBCs benefit from physical knowledge about the impedance. This calls for 
additional investigations into the suitability of available models in the presence of grazing flow and broadband sources, 
as well as the inclusion of uncertainties during both identification and simulation. Last, the physical relevance of using a 
nonlinear impedance model with the LEEs could be investigated, by comparison with experimental data gathered in an 
impedance tube at high SPL.
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Appendix A. Difference between Fourier and Laplace transforms for impedance models and admissibility conditions

Many works related to impedance boundary conditions use the Fourier transform, at least formally. The objective of this 
appendix is to briefly present why the Laplace transform should be preferred to the Fourier transform when dealing with 
causal functions. The Fourier transform is defined over the set of tempered distributions S ′(R) (i.e. generalized functions 
with at most polynomial growth at infinity) [4, Chap. V] [51, Chap. 7] [50, § 1.8]. This implies that the use of the Fourier 
transform is not always possible, as it does not apply to an exponentially growing function like t �→ H(t)et for instance. The 
Laplace transform is defined over the set of causal distributions D′+(R) with at most finite exponential growth at infinity 
[4, Chap. VI] [51, Chap. 8] [50, Chap. II]. A practical consequence of these definitions is that the Laplace transform is always 
a holomorphic function of an open right half-plane while the Fourier transform may only be a tempered distribution. As a 
result, using the Fourier transform is usually more cumbersome. Let us illustrate this point on two examples encountered 
in acoustics.

Fourier transform of physical impedance models

The Laplace transform ẑ of a physical impedance model is a holomorphic function of the open right half-plane {�(s) > 0}, 
see e.g. the examples of Sec. 3.1. Since it is a positive-real function, the Fourier transform F(z) exists and belongs to S ′(R)

[50, § 3.5]. However, the mere substitution of jω (ω ∈ R) for s in the expression of ẑ(s) does not yield the Fourier transform, 
i.e. F(z)(ω) �= ẑ(jω). Mathematically, this is due to the fact that the limit limσ→0 ẑ(σ + iω) may only exist in the space of 
tempered distribution S ′(R).

The impedance model ẑ(s) = 1/s, which arises in the modeling of ground layers [5, Eq. 24], is a textbook example of this 
phenomenon. The function ω �→ 1/jω exhibits a non-integrable singularity at ω = 0. As a result it is not a distribution and 
thus cannot be a Fourier transform. Taking the limit in S ′(R) yields the standard expression

F(z)(ω) = pv

(
1

jω

)
+ πδ,

where pv denotes the Cauchy principal value. It is important to note that F−1
[

pv
(

1
jω

)]
(t) = 1

2 sign(t) is not causal: the 
term “πδ” is needed for causality. Similarly, consider the impedance of a lossless cavity (see Sec. 3.1) ẑ(s) = coth(b1s)
with b1 > 0. Again, the function ω �→ coth(jb1ω) = −j cot(b1ω) has non-integrable singularities at the anti-resonant angular 
frequencies ωn = nπ/b1 and therefore cannot be a Fourier transform. The Fourier transform is given by

F(z)(ω) = pv (coth(jb1ω)) + π

b1

+∞∑
n=−∞

δ

(
ω − nπ

b1

)
,

where the infinite sum converges in S ′(R). Note that the π/b1-periodic distribution F−1 [pv (coth(jb1ω))] is not causal, as 
illustrated by its Fourier series expansion

pv (coth(jb1ω)) =
∞∑

n=−∞
cnej2nb1ω,

with c0 = 0, cn = −1, and c−n = −cn for n ≥ 1.



Admissibility conditions

In Sec. 2.2, admissibility conditions have been formulated using the Laplace transforms ẑ, ŷ, and β̂ , see Propositions 3
and 8. These conditions are straightforward to verify in practice using the expressions of physical models. However, for-
mulating the same admissibility conditions using the Fourier transform is more involved. Let us illustrate this point by 
considering the causality condition for a tempered distribution z ∈ S ′(R). The distribution z is causal if and only if its 
Fourier transform F(z) satisfies a so-called dispersion relation [50, Thm. 3.10], which links its real and imaginary parts. By 
contrast, the distribution z is causal if and only if its Laplace transform ẑ is bounded by a polynomial in |s| in the open 
right half-plane {�(s) > 0} [4, Thm. VI.5] [50, Thm. 2.5] [51, § 8.4]. As shown by the example below, a formal use of the 
Fourier transform can lead to mistakes.

Example 29. Let us consider the kernel given by z(t) = δ(t) + δ(t + τ ) with τ > 0. Since τ > 0, z is not causal. A simple 
examination shows that the Laplace transform ẑ(s) = 1 + e+sτ is not positive-real since �(1 + e+sτ ) < 0 for some s ∈ C

+
0

with a sufficiently large real part. This is consistent with the fact, recalled in Sec. 2.2, that a real (continuous) LTI system 
cannot be both anticausal and passive. Note that a formal use of the Fourier transform can lead to a mistake, since this 
kernel satisfies both ẑ(jω) = ẑ(−jω) and �(ẑ(jω)) ≥ 0 for any ω ∈R but is not passive.

Appendix B. Discontinuous Galerkin estimates

This appendix gathers the few technical results needed for the stability analysis presented in Sec. 4. The background 
material for the analysis can be found in [66], [65], and [67]. As stated in Sec. 4, (Th)h is a sequence of meshes indexed by 
h := maxT ∈Th hT , where hT denotes the diameter of the element T ∈ Th . For simplicity, each mesh Th is assumed to be sim-
plicial [65, Def. 1.53] [66, Def. 1.11], geometrically conformal [65, Def. 1.55] (also “matching” [66, Def. 1.36]), shape-regular 
[66, Def. 1.38] [65, Def. 1.107], and the mesh sequence (Th)h is assumed to be quasi-uniform [65, Def. 1.140] [66, § 3.1.2]. 
The key result needed is the standard trace inequality, which is recalled below.

Lemma 30 (Discrete trace inequality). Let (Th)h be a quasi-uniform sequence of simplicial, geometrically conformal, and shape-regular 
meshes. For any dimension n ∈N

∗ and degree k ∈N
∗ , there is a constant Ctr > 0 such that ∀h > 0, ∀T ∈ Th, for any face F T ,

∀vh ∈ P
k
n(Th)

n+1, h1/2‖vh‖L2(F T ) ≤ Ctr‖vh‖L2(T ). (B.1)

The constant Ctr only depends upon n, k, and the mesh regularity parameter ρ1 := infh infT ∈Th
rT
hT

with rT the radius of the largest ball 
inscribed in T .

Proof. Let h > 0 and T ∈ Th . Since Th is a simplicial, geometrically conformal, and shape-regular mesh, we have [66, 
Eq. (1.39)] h

1/2

T ‖vh‖L2(F T ) ≤ Ctr,s‖vh‖L2(T ) , where Ctr,s only depends upon ρ1, n, and k. By definition, the quasi-uniformity 
of Th gives a constant C > 0 such that Ch ≤ minT ∈Th hT . �

The estimation of the impedance boundary terms in Ah ((53), (67)) relies on the two following lemmas. Note that these 
lemmas imply a departure from the framework developed in [67], since the condition (DG3a) does not hold.

Lemma 31. For any vh ∈ P
k
n(Th)n+1 , ‖A{0}

h vn
h‖L2(�) ≤ Ctr2−1/2c

1/2

0 h−1/2(N(n)vh, vh)
1/2

L2(∂�)
, where

N(n) := c0

[
(α2

1 + (α3 − 1)2)n � n 0n

0ᵀ
n α2

4 + (α2 − 1)2

]
,

and Ctr > 0 is defined in Lemma 30.

Proof. Let wh := ((wu
h )ᵀ, w p̃

h )ᵀ ∈ P
k
n(Th)n+1. The definition of A{0}

h yields

(A{0}
h vn

h, wh)L2(�) := 1

2
(M0(n)vh − A(n)vh, wh)L2(∂�) = c0

2

∫
∂�

⎛
⎜⎜⎝

α1uh · n
(α2 − 1)p̃

(α3 − 1)uh · n
α4 p̃

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

wu
h · n

wu
h · n

w p̃
h

w p̃
h

⎞
⎟⎟⎟⎠ dx.

The Cauchy–Schwarz inequality then gives (A{0}
h vn

h, wh)L2(�) ≤ c
1/2
0√

2
(N(n)vh, vh)

1/2

L2(∂�)
‖wh‖L2(∂�) and the conclusion follows 

from Lemma 30. �



Lemma 32. For any vh ∈ P
k
n(Th)n+1 ,

‖A{0}
h vh +A{β}

h β(p̃h + uh · n)‖L2(�) ≤ Ctr2−1/2c0h−1/2‖p̃h − uh · n − β(p̃h + uh · n)‖L2(∂�),

where Ctr > 0 is defined in Lemma 30.

Proof. Let wh := ((wu
h )ᵀ, w p̃

h )ᵀ ∈ P
k
n(Th)n+1. The definition of A{0}

h +A{β}
h and the Cauchy–Schwarz inequality yield

(A{0}
h vh, wh)L2(�) + (A{β}

h β(p̃h + uh · n), wh)L2(�)

:= 1

2
(M0(n)vh − A(n)vh, wh)L2(∂�) + 1

2
(mB(n)β(p̃h + uh · n), wh)L2(∂�)

= c0

2
(p̃h − uh · n − β(p̃h + uh · n), w p̃

h − wu
h · n)L2(∂�)

≤ c0√
2
‖p̃h − uh · n − β(p̃h + uh · n)‖L2(∂�)‖wh‖L2(∂�),

and the conclusion follows from Lemma 30. �
The non-boundary terms of Ah , gathered in Ãh , are covered by the last lemma below.

Lemma 33. For any vh ∈ P
k
n(Th)n+1 ,

‖Ãh vh‖L2(�) ≤ CDGh−1/2‖|u0| + c0‖1/2

L∞(�)|vh|upw + ‖A(∇h)vh + B vh‖L2(�),

where CDG := (
√

2 + 1√
2
)Ctr > 0 with Ctr defined in Lemma 30.

Proof. This is a standard estimate that relies on the Cauchy–Schwarz and discrete trace inequalities, see [66, Chap. 3 & 7]
and [67]. Let wh ∈ P

k
n(Th)n+1 with k ∈ N

∗ . Each of the three terms in (54) is estimated separately. The first term readily 
yields

∑
T ∈Th

(Avh, wh)L2(T ) = (A(∇h)vh + B vh, wh)L2(�) ≤ ‖A(∇h)vh + B vh‖L2(�)‖wh‖L2(�).

For the last two terms, we use the inequality

(A(nF )vh, wh)L2(F ) ≤ (|A(nF )|vh, vh)
1/2

L2(F )
(|A(nF )|wh, wh)

1/2

L2(F )
, (B.2)

which follows from the fact that the real symmetric matrix A is diagonalizable with A = P
Pᵀ , where 
 := diag(u0 · n +
c0, u0 · n − c0, u0 · n, · · · , u0 · n) and P is an orthogonal matrix (recall that |A| := P |
|Pᵀ). (This inequality yields the (DG8) 
condition in [67].) Using (B.2), the Cauchy–Schwarz inequality, and Lemma 30 give

∑
F∈F i

h

(A(nF )� vh �, {wh})L2(F ) ≤ √
2Ctrh

−1/2
(

max
F∈F i

h

ρ(|A(nF )|)
)1/2|vh|upw‖wh‖L2(�),

where ρ(|A(nF )|) denotes the spectral radius. Similarly,

1

2

∑
F∈F i

h

(|A(nF )|� vh �, � wh �)L2(F ) ≤ 1√
2

Ctrh
−1/2

(
max
F∈F i

h

ρ(|A(nF )|)
)1/2|vh|upw‖wh‖L2(�).

The final estimate follows from maxF∈F i
h
ρ(|A(nF )|) ≤ maxF∈F i

h
(|u0| + c0) ≤ ‖|u0| + c0‖L∞(�) . �

Remark 34. Assuming a uniform base flow (∇u0 ≡ 0) and a finite volume discretization (k = 0), ‖A(∇h)vh + B vh‖L2(�) = 0, 
and the estimate of Lemma 33 is reduced to ‖Ãh vh‖L2(�) ≤ CDGh−1/2(|u0| + c0)

1/2|vh|upw, which is used in Sec. 4 to derive 
a sufficient stability condition using an energy method.



Appendix C. Proofs of stability conditions

Proof. (Proposition 21) The proof follows the energy method, in the spirit of the analysis carried out at the continuous 
and semi-discrete levels in Secs. 2.3 and 4.3. A comprehensive analysis of the energy method to derive CFL-type stability 
condition for coercive problems can be found in [75]. Note that the stability conditions derived in [75] cannot be directly 
applied herein since Ah is not coercive in the sense of [75, Eq. 3.2], see (37). See also [65, Chap. 6], [66, § 7.5.2], and [76, 
Chap. 7].

Given the expression of the continuous energy (14), we define the discrete energy as En
h := ‖vn

h‖2
L2(�)

. By taking the 
scalar product of (52) with vn

h and using the identity ab = 1
2 a2 + 1

2 b2 − 1
2 (a − b)2, one obtains the standard discrete energy 

balance [75, Eq. 3.4] 1
2E

n+1
h = 1

2En
h + 1

2 ‖vn+1
h − vn

h‖2
L2(�)

− �t(Ah vn
h, vn

h). The expression of (Ah vh, vh)L2(�) given by (37)

yields

1

2
En+1

h = 1

2
En

h + 1

2
‖vn+1

h − vn
h‖2

L2(�)
− �t

2
(C(u0)vn

h, vn
h)L2(�) − �t

2
|vn

h|2upw − �t

2
(M0(n)vn

h, vn
h)L2(∂�),

where each term has a clear interpretation: 1
2 ‖vn+1

h − vn
h‖2

L2(�)
is the anti-dissipation due to the explicit nature of the 

time-marching scheme; −(C(u0)vn
h, vn

h)L2(�) is the contribution of a non-constant base flow u0; −|vn
h|2upw is the dissipation 

due to the upwind flux (would be null with a centered flux); −(M0(n)vn
h, vn

h)L2(∂�) is the dissipation due to the IBC.

The key step of the proof is to estimate the anti-dissipation term 1
2 ‖vn+1

h − vn
h‖2

L2(�)
. The decomposition of Ah readily 

yields the estimate

1

2
‖vn+1

h − vn
h‖2

L2(�)
= �t2

2
‖Ah vn

h‖2
L2(�)

≤ �t2‖Ãh vn
h‖2

L2(�)
+ �t2‖A{0}

h vn
h‖2

L2(�)
,

where the energy production that occurs at the impedance boundary is bounded by ‖A{0}
h vn

h‖2
L2(�)

. The estimate of this term 

is provided by Lemma 31, which does not require the finite volume hypothesis. Lemma 33 provides a bound for ‖Ãh vn
h‖L2(�)

that does need the finite volume hypothesis. Using both Lemmas 31 and 33, the discrete energy balance becomes

1

2
En+1

h ≤ 1

2

(
1 − �t min

x∈�
λmin(u0)

)
En

h − �t

2

(
1 − 2C2

DG�t(c0 + |u0|)h−1)|vh|2upw − �t

2
(I(n)vh, vh)L2(∂�),

where I(n) := 1
2 (M0(n) + M0(n)ᵀ) − C2

tr
2 CFL(N(n) + N(n)ᵀ) so that (I(n)vh, vh)Rn+1 = ( Ǐ(n)v̌h, v̌h)R2 with v̌h := (uh · n, p̃h)ᵀ

and

Ǐ(n) := c0

[ (
α1 − C2

trCFL(α2
1 + (α3 − 1)2)

) α2+α3
2

α2+α3
2 α4 − C2

trCFL(α2
4 + (α2 − 1)2)

]
.

The conclusion then follows from Lemma 19. �
The proof of Proposition 28 is similar, but relies on an energy balance for the additional variables ϕh , given herein. 

(Although energy balances associated with diffusive representation of positive-real functions are available in the literature, 
this is not the case for bounded-real functions.) Let β̂ be given by (65) and denote b = β 	 a for concision. The realization 
of β is, as seen in Sec. 3.2,{

∂tϕ(t,−ξ) = −ξϕ(t,−ξ) + a(t), ϕ(0,−ξ) = 0

b(t) = ∫ ξmax

ξmin ϕ(t,−ξ)dμ(ξ),
(C.1)

The energy of this realization can be defined as

Eβ(t) := ‖μ‖L1

ξmax∫
ξmin

‖ϕh(t,−ξ)‖2
L2(∂�)

dμ

ξ
, (C.2)

leading to the energy balance

1

2
b2 + 1

2

d

dt
Eβ ≤ 1

2
‖μ‖L1‖ μ

ξ2
‖L1a2 − ‖μ‖L1

2

ξmax∫
ξmin

(−ξϕh + a)2 dμ

ξ2
, (C.3)

from which we deduce that a sufficient condition for β̂(s) to be bounded-real (i.e. for β to be an admissible scattering 
operator) is that the measure μ satisfies ‖μ‖L1‖ μ

2 ‖L1 ≤ 1. Using (C.3), we can then prove Proposition 28.

ξ



Proof. (Proposition 28) The proof relies on an energy analysis similar to that of Proposition 21 with one additional techni-
cality: the energy is not reduced to ‖vh‖2

L2(�)
but must include a contribution Eβ from the diffusive variable ϕh defined as 

(C.2). For the sake of clarity, we first write down the semi-discrete energy balance before considering its discretization.
(Semi-discrete energy balance) Using the energy balance associated with Eβ (C.3), the semi-discrete energy balances 

reads {
1
2

d
dt Eβ ≤ 1

2

(
(p̃h + uh · n)2 − β(p̃h + uh · n)2

)− ‖μ‖L1

2

∫ ξmax

ξmin (−ξϕh + p̃h + uh · n)2 dμ
ξ2

1
2

d
dt ‖vh‖2

L2(�)
= − 1

2 (C(u0)vh, vh)L2(�) − 1
2 |vh|2upw − 1

2 (M0(n)vh, vh)L2(∂�) − (A{β}
h vh, vh)L2(�).

The identity (64) enables to rewrite the second line to explicit the energy exchange between the diffusive variables ϕh and 
the acoustic field v:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

d
dt Eβ ≤ 1

2

(
(p̃h + uh · n)2 − β(p̃h + uh · n)2

)− ‖μ‖L1

2

∫ ξmax

ξmin (−ξϕh + p̃h + uh · n)2 dμ
ξ2

1
2

d
dt ‖vh‖2

L2(�)
=− 1

2 (C(u0)vh, vh)L2(�) − 1
2 |vh|2upw − c0

4

(‖p̃h + uh · n‖2
L2(∂�)

− ‖β(p̃h + uh · n)‖2
L2(∂�)

)
− c0

4 ‖p̃h − uh · n − β(p̃h + uh · n)‖2
L2(∂�)

.

The semi-discrete energy balance is obtained by integrating the first inequality over ∂�, multiplying it by c0/2 and summing 
it with the second one

1

2

d

dt
Eh ≤−1

2
(C(u0)vh, vh)L2(�) − 1

2
|vh|2upw − c0

4
‖μ‖L1

ξmax∫
ξmin

‖ − ξϕh + p̃h + uh · n‖2
L2(∂�)

dμ

ξ2

− c0

4
‖p̃h − uh · n − β(p̃h + uh · n)‖2

L2(∂�)
, (C.4)

where the extended energy is defined as Eh := ‖vh‖2
L2(�)

+ c0
2 Eβ . The third and fourth terms of the right-hand side express 

the dissipation that occurs at the impedance boundary (here, ∂�).
(Discrete energy balance) The explicit Euler discretization of (66) leads to

(vn+1
h − vn

h, vn
h)L2(�) + c0

2
‖μ‖L1

ξmax∫
ξmin

(ϕn+1
h − ϕn

h ,ϕn
h )L2(∂�)

dμ

ξ

≤−�t

2
(C(u0)vn

h, vn
h)L2(�) − �t

2
|vn

h|2upw − c0

4
�t‖μ‖L1

ξmax∫
ξmin

‖ − ξϕn
h + p̃n

h + un
h · n‖2

L2(∂�)

dμ

ξ2

− c0

4
�t‖p̃n

h − un
h · n − β(p̃n

h + un
h · n)‖2

L2(∂�)
,

and the identity (a −b)b = 1
2 a2 − 1

2 b2 − 1
2 (a −b)2 enables to rewrite this with the discrete extended energy En

h :=‖vn
h‖2

L2(�)
+

c0
2 ‖μ‖L1

∫ ξmax

ξmin ‖ϕn
h‖2

L2(∂�)

dμ
ξ

:

1

2
En+1

h ≤ 1

2
En

h − �t

2
(C(u0)vn

h, vn
h)L2(�) − �t

2
|vn

h|2upw − c0

4
�t‖μ‖L1

ξmax∫
ξmin

‖ − ξϕn
h + p̃n

h + un
h · n‖2

L2(∂�)

dμ

ξ2

− c0

4
�t‖p̃n

h − un
h · n − β(p̃n

h + un
h · n)‖2

L2(∂�)

+ 1

2
‖vn+1

h − vn
h‖2

L2(�)
+ c0

2
‖μ‖L1

ξmax∫
ξmin

1

2
‖ϕn+1

h − ϕn
h‖2

L2(∂�)

dμ

ξ
.

The task is now to estimate the two anti-dissipative terms so that they can be provably controlled by the three dissipative 
ones. Let us bound the anti-dissipation on vh with Lemmas 32 and 33:

1

2
‖vn+1

h − vn
h‖2

L2(�)
= �t2

2
‖Ãh vh +A{0}

h vh +A{β}
h β(p̃h + uh · n)‖2

L2(�)

≤ �t2‖Ãh vh‖2
2 + �t2‖A{0}vh +A{β}

β(p̃h + uh · n)‖2
2
L (�) h h L (�)



≤ C2
DG�t2(c0 + |u0|)h−1|vh|2upw + C2

tr

2
�t2c2

0h−1‖p̃h − uh · n − β(p̃h + uh · n)‖2
L2(∂�)

.

Using Lemma 32 and the identity 1
2 ‖ϕn+1

h − ϕn
h‖2

L2(∂�)
= �t2

2 ‖ − ξϕn
h + p̃h + uh · n‖2

L2(∂�)
, the energy balance becomes

1

2
En+1

h ≤ 1

2
En

h − �t

2
(C(u0)vn

h, vn
h)L2(�) − �t

2

(
1 − 2C2

DG�t(c0 + |u0|)h−1
)

|vn
h|2upw

− c0

4
�t‖μ‖L1

ξmax∫
ξmin

‖ − ξϕn
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h + un
h · n‖2

L2(∂�)

(
1

ξ
− �t

)
dμ

ξ

−
(

c0

4
�t − C2

tr

2
�t2c2

0h−1

)
‖p̃n

h − un
h · n − β(p̃n

h + un
h · n)‖2

L2(∂�)
,

which enables to conclude. �
Appendix D. Implementation details

The implemented numerical scheme is a standard DG method. It is nodal in the sense that on each of the NK triangles 
the solution vh is computed through its components in the Lagrange basis associated with the N p points described in [69, 
§ 6.1]. For a N-th order DG, Np = N(N + 1)/2. Let us now assume that the linear TDIBC is given by

B̃(w)(t) = β̃∞w(t) +Q1(w)(t) +Q2(w)(t − τ̃ ),

which corresponds to the TDIBC (31), where w is a shorthand for “ p̃h + uh · n”. The global assembly is performed in three 
steps.

(1) Spatial discretization. The global DG formulation reads

M v̇ + K v = Fs v s + FQ1Q1(C�z v) + FQ2Q2(C�z v)(t − τ̃ ), (D.1)

where v := (vh(xk
i ))i,k is the discrete acoustic field (3NK Np elements), and M , K , and F are the standard mass, stiffness, 

and flux DG matrices. The IBC manifests itself through the (rectangular) observation matrix C�z that are associated with 
the DoF that belong to the impedance boundary �z . The operators Qi are applied to each component of the vector C�z v of 
length N�z . Note that, at this stage, the actual definition of the operators Qi does not matter.

(2) State-space realization. By construction, the operators Qi have a state-space realization with state vector ϕ := (ϕi)i∈�1,Nϕ �

of length Nϕ

ϕ̇(t) = Aϕ(t) + B w(t)

Qi(w)(t) = CQi ϕ(t) + DQi w(t),
(D.2)

where A = diag(sn, −ξk)n,k is a diagonal Nϕ × Nϕ matrix, B = (1)i∈�1,Nϕ � , CQi = (r̃n,i, μ̃k,i)n,k , and DQi = 0. Then, injecting 
(D.2) into (D.1) leads to the following formulation

M v̇(t) + K v(t) = Fs v s(t) + Bτ (Cτ v)(t − τ̃ ), (D.3)

where v now denotes the extended state v := ((vh(xk
i ))i,k, (ϕk)k) of length 3NK Np + Nϕ N�z and the matrices are obtained 

by concatenation (the same notations M , K , and Fs are used for the sake of concision). For instance, Cτ v = (ϕk)k = (ϕk
j )k, j

is of length Nϕ N�z . This is a finite-dimensional delay differential equation that can be advanced in time with a variety of 
methods.

(3) Time delay computation. Following Sec. 3.3.2, each of the Nϕ N�z variables ϕk
j are delayed through a monodimensional DG 

on (−lτ̃ , 0) that reads

MDG1Dψ̇k
j + KDG1Dψk

j = FDG1Dϕk
j

ϕk
j (t − τ̃ ) = CDG1Dψk

j(t),
(D.4)

where ψk
j is vector of length Nψ . Note that (D.4) can be written as (D.2), i.e. it is a state-space realization of the time 

delay. Combining (D.3) with (D.4) leads to the final global formulation M v̇ + K v = Fs v s , where the vector v , of length 
3NK Np + (Nψ + 1)Nϕ N�z , now includes the acoustic field [vh(xk

i )]i,k as well as the additional variables (ϕk
j )k, j and (ψk

j)k, j .

The addition of a nonlinear term Qnl to the discrete model B̃ does not change the assembly process described above, 
which yields M v̇ + K v = Fs v s + FQnlQnl(CQnl v). In the case of (25), Qnl(w) can be directly computed. If it exists, Qnl(w)

can be replaced by its nonlinear state-space realization.
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