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Abstract

Consider a plane curve B defined as the projection of the intersection
of two surfaces in R3 or as the apparent contour of a surface. In general,
B has node or cusp singular points and thus is a singular curve. Our
main contribution is the computation of a data structure answering point
location queries with respect to the subdivision of the plane induced by B.
This data structure is composed of an approximation of the space curve
together with a topological representation of its projection B. Since B is a
singular curve, it is challenging to design a method based only on reliable
numerical algorithms.

In recent work, the authors show how to describe the set of singularities
of B as regular solutions of a so-called ball system suitable for a numerical
subdivision solver. Here, the space curve is first enclosed in a set of boxes
with a certified path-tracker to restrict the domain where the ball system
is solved. Boxes around singular points are then computed such that the
correct topology of the curve inside these boxes can be deduced from the
intersections of the curve with their boundaries. The tracking of the space
curve is then used to connect the smooth branches to the singular points.
The subdivision of the plane induced by B is encoded as an extended
planar combinatorial map allowing point location. We experimented with
our method, and we show that our reliable numerical approach can handle
classes of examples that symbolic methods cannot.

Keywords: Singular curve topology, point location algorithm, geometric approxi-
mation
AMS subject classifications: 65D99

∗Submitted: November 9, 2017; Accepted: January 15, 2018.
§This research was supported by the ANR JCJC SingCAST (ANR-13-JS02-0006).

13

firstname.name@inria.fr


14 Imbach et al, Reliable Location for the Projection of a Space Curve

1 Introduction

Let C be a smooth space curve defined as the intersection of two surfaces P = Q = 0,
with P , Q real smooth functions in x, y, z. We aim at computing, in a compact domain
B0 ⊂ R2, the geometry and the topology of B = π(x,y)(C) where π(x,y) : R3 → R2

denotes projection into the (x, y)-plane. In general, B is not smooth and has singular
points, i.e. points where B has no well defined tangent direction. Generically, the only
singular points of a projected curve are transversal crossings of two branches of the
curve, called nodes. A special occurrence of our problem is the case where Q = Pz, the
derivative of P with respect to z. B is then called the apparent contour of the surface
P = 0, and generic singular points of B are nodes and cusps, i.e. projections of points
where C has a vertical tangent. Figure 1 shows, for a torus P = 0, its intersection with
the surface Pz = 0 in bold, and its apparent contour with cusp and node singularities.

By computing the geometry of B in B0, we mean being able to draw B ∩B0 with
an arbitrary precision. To reach this goal, we use a certified interval path tracker to
compute a sequence of boxes (i.e. multi-dimensional extensions of intervals) of width
as small as desired, such that each box intersects C, and their union encloses C. The
projection of these boxes is thus a geometric approximation of the plane curve B.

We want our topological encoding to be able to answer location queries. The
curve B decomposes the box B0 into connected components of dimension two that
we call faces. For a point p in B0 but not on B, one wants to find the face to which
p belongs. Such queries can be answered by considering a combinatorial encoding
of the embedding of the projected curve, i.e. the subdivision of B0 induced by the
curve B. We use Combinatorial Maps (CMaps defined in Definition 1.2) and their
extensions to the non-connected case, the eXtended Planar Maps (XPMaps defined
in Definition 1.3), to encode embeddings of plane curves. In a first step, we focus on
singularities and isolate the singular points of B in boxes of width as small as desired.
In the second step we compute the topology in these isolating boxes. Finally, we
use the tracking of the space curve to connect the singular points and construct the
representation of the embedding.

The work presented here is a first step toward the computation of the topology
with reliable approximated geometry of the apparent contour of a smooth manifold of
Rn. Such a manifold arises naturally in the design of parallel or cable mechanisms, and
its apparent contour represents the boundary of the workspace of such a mechanism
[22]. The encoding of the topology and the geometry we propose can thus be seen as
a reliable tool to validate a robot configuration, to check if the clearance with respect
to special configurations is large enough, or to check whether or not the robot passes
through a singularity during a motion.

The paper is organized as follows. Section 2 describes how the curve C is enclosed
by tracking. Section 3 reviews the encoding of singularities of B by the ball system and
shows how the enclosure of C is used to restrict its solution domain. For an apparent
contour, an algorithm is presented to determine the type, node or cusp, of a singu-
larity isolated with the ball system. Section 4 is dedicated to the computation of the
local topology at special points, i.e. singular points and x-extreme points. Section 5
explains the construction of the XPMap representing the embedding of the curve B.
Section 6 reports experiments on the implementation of our numerical approach. The
remainder of Section 6 presents previous work, details our contributions, formally de-
fines our geometric and topological representations, and reviews some basics of reliable
numerical interval solvers.
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Figure 1: Left: a torus P = 0, the curve P = Pz = 0 in bold, its apparent contour,
and a zoom zone. The vertical dashed lines show fibers over three singularities. Right:
a zoom, with preimages near the projection of cusp and node singularities.

1.1 Previous work

State-of-the-art symbolic methods that compute the topology of plane real curves
defined by polynomials are based on the Cylindrical Algebraic Decomposition, and use
resultant and sub-resultant theory to isolate critical points [10, 24]. One advantage
of these methods is that they can handle any type of singularity of the curve. The
drawbacks are their high complexity as a function of the degree of the curve and the
global aspect of the approach: computing the topology in the whole plane or in a small
box have almost the same cost.

Numerical methods based on interval arithmetic are able to compute and certify
the topology of a non-singular curve [15, 21, 27]. One advantage is the local aspect
of the approach: the topology can be computed in a small box, and the smaller the
box the faster the computation. However, they fail near any singular point of the
curve. Isolating singularities of a planar curve f(x, y) = 0 with a numerical method
is a challenge, since the set of singular points is described by the non-square system
f = ∂f

∂x
= ∂f

∂y
= 0, and singularities are not necessarily regular solutions of this system.

The latter system can be translated into a square system using combinations of its
equations with first derivatives [6], and non-regular solutions can be handled through
deflation systems [19, 26], but the resulting systems are usually still overdetermined.

We are not aware of a numerical algorithm that can certify in practice the com-
putation of the topology of any singular curve, but several promising approaches have
been presented. The subdivision approach presented in [3] is an extension of the
singular case of the one in [27], relying on global non-adaptive separation bounds for
algebraic systems. This approach can theoretically certify the topology of any singular
curve, but due to the worst-case bounds, this algorithm cannot be practical. A numer-
ical algebraic geometric approach is presented by [20] using irreducible decomposition,
generic projection and plane sweep, deflation and homotopy to compute the topology
of a singular curve in any codimension. Even though this work has been implemented
in [2]1, certification of all the algorithm steps appears to be challenge. The numerical
approach in [5], based on Bezoutian and eigenvalue computation, can handle singular
curves, but even if multiprecision gives accurate results, no certification is provided.

1See also http://www.bertinireal.com/.

http://www.bertinireal.com/


16 Imbach et al, Reliable Location for the Projection of a Space Curve

Instead of designing a general numerical method able to handle any singular curve,
an alternative is to focus on restricted classes of singular curves. A natural example
is when the plane curve to be studied is the projection of a smooth space curve living
in a higher dimension. According to the classification of singularities of mappings
(see [1, 8, 29] for example), it appears that the generic singularities of such a projected
curve are only transversal intersections of two branches, and in the case of the apparent
contour of a surface, ordinary cusps also occur. From an algorithmic point of view,
the authors of [7] use these elements to derive an algorithm isolating the singularities
arising in generic mappings from R2 to R2. Our problem of isolating the singularities
of the projection of a generic algebraic space curve was investigated in [13]. The
authors use resultant and sub-resultant theory to represent the singularities as the
solutions of a regular bivariate system suited to a branch and bound solving approach.
To overcome the drawbacks of resultant and sub-resultant, [12] contains studies of the
geometric configurations of the space curve that induce singularities on the projected
curve, and descriptions of them as the regular solutions of a four dimensional system.

1.2 Detailed overview

Our main contribution is the computation of a data structure allowing location of a
point with respect to the projection of a smooth space curve. Our data structure is the
union of a geometric approximation of the space curve and a topological representation
of its projection.

For the geometric approximation of the space curve C and thus its projection
B, we compute a sequence of 3-dimensional boxes (Ci)

m
i=1 enclosing all the connected

components of C, that is C ⊂
⋃m
i=1 Ci. We use a reliable numerical solver (Algorithm 1)

to find intersections of the curve with the boundary of the input box and at least one
point on each connected component of C using a critical point method. We then use
these points as starting points for a tracking algorithm (Specified in Algorithm 2 and
detailed in Appendix A) which is an adapted version of the one in [21]. Since we
want to only use numerical algorithms, we must avoid some degenerate configurations
for the systems of critical points and boundary points. Such assumptions, stated in
Section 2.1, are satisfied for generic curves and projections.

For the topological representation, the basic numerical tools are the reliable nu-
merical solver and tracker already used for the geometric approximation. It is worth
noting that while the topology of the space curve C is directly given by the connected
components of boxes enclosing it, the topology of the plane curve B has little to do
with its enclosure by the projection of the box enclosure of C. The general idea is first
to isolate the singularities and critical points of the plane curve B, then to refine the
boxes around those special points until the topology inside these boxes is trivial. Fi-
nally, we use smooth path tracking to connect the singularities and the critical points.
Since we use numerical algorithms, we require assumptions in Sections 3.1 and 4.2,
that are generically satisfied.

The first step is to isolate the singularities of the plane curve B. In previous work
[12], we have shown how the singularities can be described as the regular solutions of
a so-called ball system involving 4 equations in 4 unknowns. The ball system could be
solved in R4 with a reliable numerical solver; however, in four dimensions, this global
subdivision approach becomes costly. To overcome this issue, we use the box enclosure
of the space curve to restrict the solution domain of the ball system.

The second step is to compute witness boxes for the singularities and critical points
of B, that is isolating boxes such that the topology of the curve inside these boxes can
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be deduced from the intersections of the curve with their boundaries. Special care is
devoted to the refinement of boxes such that the intersections of the curve with their
boundaries do not eventually occur at the corners.

The last step uses the tracking of the space curve to connect its smooth branches to
the witness boxes of the singular and critical points and thus compute a combinatorial
map for each connected component. The construction of the extended planar map
encoding the embedding of B is incremental on the connected components. The point
location algorithm is based on a vertical ray shooting principle but eventually needs
to compute intersections of the space curve C with planes.

We implemented the presented algorithms and tested them to compute the topol-
ogy of apparent contours of algebraic surfaces of degrees up to 15. Our experiments
show that our method can handle classes of examples symbolic methods cannot han-
dle, and that multi-precision arithmetic is needed for such difficult examples. More
specifically, for isolation of the singularities, the efficiency of our approach to restrict
the solving domain of the ball system is demonstrated.

1.3 Notation and definitions

In this paper, real intervals are connected sets [a, b] with a, b ∈ R ∪ {±∞} and a ≤ b.
Lowercase boldface letters denote real intervals and uppercase boldface letters denote
boxes, that is, vectors of intervals. Let x be a real interval, let l(x) denote its lower
bound, u(x) its upper bound and w (x) its width, defined as u(x)−l(x) if x is bounded
and ∞ otherwise. If x is bounded, m(x) denotes its midpoint. If ε ∈ R+, εx holds

for [m(x) − εw (x)
2
,m(x) + εw (x)

2
]. Let X = (x1, . . . ,xn) be a box, ∂X denotes the

boundary of X and i(X) = X \∂X its interior, where A \B is the set of elements of A
not in B. The width w (X) is defined as max1≤i≤n w (xi) and the midpoint m(x) as
(m(x1), . . . ,m(xn)) if X is bounded. If ε ∈ R+, εX is defined to mean (εx1, . . . , εxn).

Uppercase letters denote sets of boxes. A domain of Rn is a set defined as X \
(
⋃

Y∈Y i(Y)) where X is a box in Rn and Y a possibly empty set of boxes, of Rn. If
X is a domain of Rn, ∂X denotes its boundary.

For a differentiable real function P of the variables x1, . . . , xn, Pxi denotes its
partial derivative with respect to xi, and Pxixj its derivative with respect to xi and
xj . Let P1, . . . , Pn be n real functions of x1, . . . , xn, a solution x of P1 = . . . = Pn = 0
is regular if the Jacobian matrix A = [(Pi)xj ] evaluated at x has full rank; otherwise
x is singular.

Cursive letters denote sets of points. We mostly work with points, boxes and
curves in R2, R3 or R4. We use the following naming scheme: objects in R2 are named
with the letter B, in R3 with the letter C and in R4 with the letter D.

A graph is a triplet G = (V,E, I) where V,E are two finite sets whose elements
are called vertices and edges, respectively, and I : E → V × V is called the incidence
relation of G. G is directed (resp. non-directed) if images of edges by I are seen as
ordered sets (respectively non-ordered pairs).

1.4 Geometrical and topological representations

Our first goal is to compute a geometrical approximation of the projected curve B in
a box B0. Let us formalize this notion as follows.
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Figure 2: Left: a δ-approximation of C in B0 × R, and a δ-approximation of B in B0.
Right: an embedding of the graph G for the apparent contour of a torus. Black circles
represent the points associated with the vertices of G, and thick curves the curves
associated with its edges. Thin lines represent the boundary of B0.
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Figure 3: An XPMap encoding the topology of the apparent contour of the torus in B0.
Each edge is represented by a pair of half-edges, which is a cycle of the permutation
α. Curved arrows around vertices represent cycles of the permutation ϕ.
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Definition 1.1 (δ-approximation) Let X be a subset of Rn. A sequence of boxes
(Xi)

m
i=1 is a δ-approximation of X if X ⊂

⋃m
i=1 Xi, and for all 1 ≤ i ≤ m, w (Xi) ≤ δ

and X ∩Xi 6= ∅.

We will consider in particular δ-approximations of C in C0 = B0 × R or in a domain
C0. Obviously the projection of a δ-approximation of C in C0 is a δ-approximation of
B in B0, in particular it yields a drawing of B with the guarantee that any point of
the drawing is at most at distance δ from the original curve. The left part of Figure 2
represents a δ-approximation of the curve C in C0 and its projection, for the torus
example.

We also want to encode the topology of the curve B ∩ B0 as an embedding of
a graph G, to be able to answer location queries for points of B0. This is achieved
by computing a set V of vertices representing points on the curve with at least one
vertex per connected component, and such that (B∩B0) \V is a set of smooth curves
identified as the set E of edges. The right part of Figure 2 shows an embedding of
such a graph G when B ∩ B0 is the apparent contour of the torus. The embedding
of G defined by B ∩B0 is encoded by an extended planar map. More precisely, each
connected component of (B ∩B0) ∪ ∂B0 is encoded by a combinatorial map, and the
inclusion of a component in a face of another is encoded by the extended map. We
thus recall the definition of these combinatorial structures.

Definition 1.2 ([18, 16]) A Combinatorial Map (CMap) is a triplet (H,σ, α) where
H is a set of half-edges, σ is a permutation on H and α an involution on H.

An edge of G is associated with a cycle of α, and a vertex with a cycle of σ. Cycles
of σ encode counter-clockwise orderings of outgoing half-edges around vertices. The
cycles of the permutation ϕ = σ−1 ◦ α describe the faces of the combinatorial map.
All such face cycles are in counter-clockwise order, except for one which is called the
exterior face of the combinatorial map.

When (B∩B0)∪ ∂B0 has several connected components, it remains to encode the
containment relationship between the exterior face of each CMap within a non-exterior
face of another CMap. In [16] a combinatorial structure, called eXtended Planar Map
(XPMap) is proposed to represent such a relationship. Let σ|Hi (resp. α|Hi) denote
the restriction of the permutation σ (resp. α) defined on H to elements of a subset
Hi ⊆ H.

Definition 1.3 ([16]) An eXtended Planar Map (XPMap) is a tuple (H,H0, σ, α,

ext, cont) where H = H1 ∪ . . . ∪ Hn′ is the union of pairwise disjoint non empty
sets of half-edges, H0 is an empty set of half-edges representing the infinite face,
(Hi, σ|Hi , α|Hi) are CMaps for all 1 ≤ i ≤ n′, ext is a relation that labels one face
of each CMap (Hi, σ|Hi , α|Hi) as the exterior face, and cont is a relation that assigns
each exterior face to one non-exterior face of a CMap (Hi, σ|Hi , α|Hi) or to the infinite
face.

In our case, the infinite face is R2, Figure 3 shows an XPMap characterizing (B ∩
B0) ∪ ∂B0 as an embedding of the apparent contour of the torus. The cycle f1 =
(h+

13, h
+
14) is the exterior face of the connected component of (B∩B0)∪∂B0 containing

∂B0. This exterior face f1 is contained in the infinite face f0 creating a hole in it.
More gererally, any non-infinite face of an XPMap can be described by exactly one
clockwise cycle of half-edges and possibly several inner counter-clockwise cycles of
half-edges corresponding to the exterior face of the CMaps it contains.
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1.5 Interval arithmetic tools

The certification of our algorithms is based on interval arithmetic (see [14, 23, 25, 28]),
that is a way of computing with intervals (whose endpoints are floating numbers) in-
stead of computing with floating numbers, while carefully handling rounding to over-
come numerical approximations that naturally occur with floating number arithmetic.

1.5.1 Convergent interval functions

If F be a function, an inclusion function for F is a function defined on boxes such that
the image of a box X is a box Y ⊇ {F (x)|x ∈ X}. As a consequence, if 0 /∈ Y, one
can certify that F does not vanish in X. An inclusion function for F is convergent
if for any decreasing sequence of boxes converging to a point {p}, the image of the
sequence converges to {F (p)}.

In this article, we consider Ck-smooth functions, that is functions that are k ≥ 1
times differentiable and with continuous partial differentials. In addition, we also
assume that we are given convergent inclusion functions for such functions and all
their differentials up to order k.

1.5.2 Criteria for existence and uniqueness of solutions

Let P1, . . . , Pn be n functions C1 in n unknowns and S = {P1 = 0, . . . , Pn = 0} the
associated system of equations. A box X ⊂ Rn isolates a solution of S if there exists
a unique x ∈ X such that P1(x) = . . . = Pn(x) = 0.

Several criteria can be found in the interval arithmetic literature that certify ex-
istence and uniqueness of a solution of S in a box, see for instance [14, 23, 25, 28].
Most of them are based on the Brouwer fixed point theorem, and use interval Newton
operators that contract a box around a solution.

Letting F be the multivariate function with components P1, . . . , Pn and X an
interval of Rn, interval Newton operators are of the form N(X) = y − V , where
y ∈ X, and V is a box containing the set {v | ∃x ∈ X such that J(x)v = F (y)}, where
J is the Jacobian of F . Among other interval Newton operators is the Krawczyk
operator [17, 23], that takes y as the midpoint of X and an approximate inverse of
the Jacobian of F in y to determine the box V . Let us denote by KS the Krawczyk
operator for the system S, and recall that i(X) is the interior of X. Namely,

KS(X) = y −YF (y) + {I −YJ(X)}(X− y),

where Y is a nonsingular real matrix approximating the inverse of the Jacobian matrix
of F at m(X). The Krawczyk operator satisfies:

• KS(X) ⊂ i(X)⇒ X contains a unique solution of S and the sequence X(0) = X,
X(i+1) = KS(X(i)) converges asymptotically quadratically to this solution.

• KS(X) ∩X = ∅ ⇒ there is no solution of S in X.

1.5.3 Reliable numerical isolation

Interval evaluation, the Krawczyk operator and bisection of boxes can be used together
to design a simple reliable numerical method to isolate all solutions of S in a given
initial box X0. Such methods are described for instance in [14, 23, 25, 28], and
called interval branch and bound algorithms or subdivision methods. These algorithms
successfully isolate all the solutions of S in a bounded domain, provided they are
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Algorithm 1 IsolateSols(S,X0,δ)

Input: A bounded box X0 of Rn, a system S of n functions C1 in n unknowns with
only regular solutions in X0, the Krawczyk operator KS , and a non-negative real
number δ.

Output: Two sets Xsol,Xind of boxes such that:

• boxes of Xsol ∪Xind are pairwise disjoint,

• x ∈ X0 is a solution of S ⇒ ∃X ∈ Xsol ∪Xind s.t. x ∈ X,

• X ∈ Xsol ⇒ X ⊂ i(X0) and KS(X) ⊂ i(X),

• X ∈ Xind ⇒ X ∩ ∂X0 6= ∅ and KS(X) ⊂ i(X) and w (X) < δ.

regular and in the interior of the domain. Note that in the case of a polynomial
system it is possible to extend such branch and bound methods to unbounded initial
domains; see [25, Section 5.6] or [28, Section 5.10].

In the following, we consider the procedure IsolateSols with the specifications
given in Algorithm 1. We briefly explain the output of this algorithm, and refer to [11]
for details. The algorithm does not identify solutions that are exactly on the boundary
of the input domain X0, and uses δ-inflation. A consequence is that a solution on ∂X0

can only be isolated in a box containing a part of the boundary in its interior; the
refinement of such a box is stopped due to the threshold on the width δ, and the box is
output in Xind. Similarly, for a regular solution not on, but near the boundary (even
outside X0), that is at distance less than δ from ∂X0, the algorithm may return a box
in Xind. On the other hand, with the additional assumption that there is no solution
on the boundary, setting δ = 0 certifies the isolation of all solutions in the domain X0,
that is, that Xind is empty.

2 Enclosing the Space Curve C
In this section, we introduce Algorithm 3, computing a δ-approximation of C. This
goal is achieved by first finding at least one point on each connected component of
C, then using these points as initial points for a certified path tracker. Let us first
introduce the notions of x- or y-critical points and boundary points.

Definition 2.1 A point p ∈ C is x-critical if the x component of the tangent of C at
p vanishes. The x-critical points of C are the solutions of the system P = Q = R = 0,
where R = PyQz − PzQy. Similarly, p ∈ C is y-critical if it is the solution of the
system P = Q = R′ = 0 where R′ = PxQz − PzQx.

Definition 2.2 If C is a box or a domain in R3, a point of C∩∂C is called a boundary
point.

Isolating boxes for boundary points and x-critical points of C are computed with
the procedure IsolateSols defined in Algorithm 1. We introduce the notion of
implicit points to manipulate a point known as the unique solution of a system S in a
box C = x× y × z.
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Definition 2.3 Let P,Q define the curve C, let E ∈ R[x, y, z], and let S be the system
P = Q = E = 0. The ordered pair (C, S) is an implicit point of C if KS(C) ⊂ i(C).
If p is the unique solution of S in C, we say that p is implicitly defined by (C, S).

In the special case where E = x−x0 with x0 ∈ R, we say that (x0×y×z, S) is an
implicit point of C if KS0(y×z) ⊂ i(y×z), where S0 = {P (x0, y, z) = Q(x0, y, z) = 0}.
Similarly, in the special case where E = y−y0 with y0 ∈ R, we say that (x×y0×z, S) is
an implicit point of C if KS0(x×z) ⊂ i(x×z), where S0 = {P (x, y0, z) = Q(x, y0, z) =
0}.

In Sec. 2.2, we characterize a connected component of C ∩C0: it is diffeomorphic
either to a circle and contains at least two x-critical points, or to [0, 1] and its ex-
tremities are boundary points. We also show how to obtain these points as implicit
points. In Sec. 2.3, we specify Algorithm 2, our certified path tracker, and in Sec. 2.4,
we specify Algorithm 3 for computing a δ-approximation of C. In Sec. 2.1, we state
the assumptions allowing our approach to be correct and terminating.

2.1 Assumptions

Recall that B0 = (x0,y0) and C0 = B0 × R. We assume the functions P and Q are
C3 functions2 and that convergent inclusion functions are given for P,Q and all their
derivatives up to order 3. We make the following assumptions on P,Q and C:

(A1) The curve C is smooth above the box B0.

(A2) C is compact over B0 and z0 is a bounded interval such that C ⊂ B0 × z0.

(A3) P (x∗, y, z) = Q(x∗, y, z) = 0 has finitely many regular solutions when x∗ = l(x0)
or u(x0), y ∈ y0 and z ∈ R.

P (x, y∗, z) = Q(x, y∗, z) = 0 has finitely many regular solutions when y∗ = l(y0)
or u(y0), x ∈ x0 and z ∈ R.

(A4) P = Q = R = 0 has finitely many regular solutions in C0, and no solution in
∂C0.

(A5) Over a point of ∂B0, P = Q = 0 has only one solution and no solutions above
its corners.

2.2 Connected components of C ∩C0 and initial boxes

The following proposition characterizes the topology of the connected components of
C ∩C0.

Proposition 2.1 Assuming (A1), the connected components of C ∩ C0 are smooth
one dimensional manifolds possibly with boundary. In addition, assuming (A2) and
(A3), any connected component Ck of C ∩ C0 satisfies at least one of the following
statements:

(a) Ck has exactly two boundary points,

(b) Ck has at least two x-critical points.

2 In Algorithm 4, we need to isolate the solutions of {P = Pz = Pzz = 0}, the Jacobian of
which involves derivatives of P of order 3.
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Proof: The first part of the proposition is straightforward. One dimensional man-
ifolds are diffeomorphic either to ]0, 1[, or to ]0, 1], or to [0, 1], or to a circle. Let Ck
be a connected component of C. From assumption (A2), it is compact, hence it is
diffeomorphic either to [0, 1], or to a circle. Suppose first Ck has an intersection with
∂C0. From (A3), this intersection is a point, hence Ck is diffeomorphic to [0, 1] and has
a second intersection with ∂C0. Suppose now that Ck does not intersect ∂C0. Hence
it is diffeomorphic to a circle and, since it is compact, it has minimum and maximum
x-coordinates. Assertion (b) follows.

As a direct consequence of Prop. 2.1, the following corollary gives a constructive
characterization of a set containing at least one point on each connected component
of C ∩C0.

Corollary 2.1 Consider the following systems of equations:

(S1) P (l(x0), y, z) = Q(l(x0), y, z) = 0, for y ∈ y0 and z ∈ R.

(S2) P (u(x0), y, z) = Q(u(x0), y, z) = 0, for y ∈ y0 and z ∈ R.

(S3) P (x, l(y0), z) = Q(x, l(y0), z) = 0, for x ∈ x0 and z ∈ R.

(S4) P (x, u(y0), z) = Q(x, u(y0), z) = 0, for x ∈ x0 and z ∈ R.

(S5) P (x, y, z) = Q(x, y, z) = R(x, y, z) = 0, for (x, y, z) ∈ C0.

Assuming (A3), (A4), the set of solutions of S1, . . . , S4 is finite and is the set of bound-
ary points of C ∩ C0, the set of solutions of S5 is finite and is the set of x-critical
points of C ∩C0. Then assuming (A2), the set of solutions of S1, . . . , S5 is a finite set
of points in B0 × z0 containing at least one point on each connected component of C.

The solutions of S5 are obtained by calling IsolateSols(S5,B0 × z0,0); from
assumption (A4) this process terminates and the outputs Csol,Cind are such that
Cind = ∅ (since S5 has no solution on ∂C0) and Csol contains boxes isolating the
solutions of S5. For each solution C ∈ Csol, the implicit point (C, S5) defines an
x-critical point of C.

The solutions of S1 are obtained by calling IsolateSols(S1,y0 × z0,0). From
assumptions (A3) and (A5), S1 has a finite number of solutions on y0 × R that are
regular and has no solutions on ∂y0 × R. Hence the procedure terminates, and the
two obtained sets Bsol,Bind are such that Bind = ∅ and Bsol contains two dimensional
boxes isolating the solutions of S1. A solution B = (y,z) in Bsol defines an implicit
point (C, {P,Q,E}) where C = l(x0) × y × z and E is the polynomial x − l(x0), as
described in Definition 2.3. When needed, C is contracted with l(x0)×KS1(π(y,z)(C)).
The solutions of S2, S3 and S4 are obtained similarly.

2.3 Certified numerical path-tracking

Our path-tracking procedure Track is specified in Algorithm 2, while its description
is given in Appendix A. The tracker is used in Algorithm 3 to compute the connected
components of C ∩C0, and later in Section 5.1.2 to deduce the topology of B.

2.4 Computing a δ-approximation of C
In the following, we assume that P,Q satisfy assumptions (A1) and (A2) of Section 2.1:
C is smooth and compact in C0. Based on the procedure Track, Algorithm 3 computes
a δ-approximation of C ∩C0.
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Algorithm 2 Track(< P,Q >,C0,(C
0, S0),{(Cj , Sj)}j,δ)

Input: A system P = Q = 0 defining a smooth compact curve C in the domain C0,
an implicit point (C0, S0) of C, a finite set {(Cj , Sj)}j of implicit points of C
containing (but not restricted to) the boundary points of C in C0 and (C0, S0),
δ > 0.

Output: A δ-approximation of the connected component of C∩C0 containing (C0, S0)
and the set Con of implicit points of {(Cj , Sj)}j that are on the same connected
component as (C0, S0).

Algorithm 3 Compute a δ-approximation of C in C0

Input: A system P = Q = 0 and an initial domain C0 = B0 × R defining a smooth
curve C ∩C0, the set Cb of implicit points defining the boundary points of C ∩C0,
and the set Cx of implicit points defining the x-critical points of C ∩C0, δ > 0.

Output: A sequence of boxes (Ci)
m
i=1 that is a δ-approximation of C ∩C0.

1: Let Lb (resp. Lx) be a list containing elements of Cb (resp. Cx)
2: k ← 0, mk ← 0
3: while Lb 6= ∅ do
4: k = k + 1, (C, S) ← pop front(Lb)
5: ((Ci)

mk
i=mk−1+1,Con) ← Track(< P,Q >,C0,(C, S),Cb ∪ Cx,δ)

6: remove Con ∩ Cb from Lb and Con ∩ Cx from Lx
7: while Lx 6= ∅ do
8: k = k + 1, (C, S) ← pop front(Lx)
9: ((Ci)

mk
i=mk−1+1,Con) ← Track(< P,Q >,C0,(C, S),Cb ∪ Cx,δ)

10: remove Con ∩ Cx from Lx
11: Let m = mk

12: return (Ci)
m
i=1

Algorithm 3 first computes δ-approximations for every connected component of
C that is diffeomorphic to [0, 1]. This is addressed by calling the procedure Track

with boundary points as initial points. The boundary points are implicitly defined
by elements of Cb. Thus letting Ck be a connected component containing a boundary
point defined by (C, S) ∈ Cb, the call to the procedure Track in Step 5 terminates,
returns a δ-approximation of Ck and identifies the two extremities and the x-critical
points of Ck.

When entering the while loop in Step 3 for the first time, the list Lb contains the
two extremities of each connected component of C ∩C0 that is diffeomorphic to [0, 1].
Each time the instruction in Step 6 is performed, the two extremities of the connected
component that has been tracked are removed from Lb, and the size of Lb decreases.
When Lb is empty, each connected component that is diffeomorphic to [0, 1] has been
approximated, and the implicit points in Lx define the x-critical points that belong to
the connected components that are diffeomorphic to circles.

The connected components of C that are diffeomorphic to a circle are approximated
in the while loop beginning at Step 7 of Algorithm 3. Recall that each connected
component of C ∩C0 that is diffeomorphic to a circle contains at least two x-critical
points. Each time the loop is performed, the size of Lx decreases, and when Lx is
empty, each connected component of C has been approximated.
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3 Isolating Singularities of B
When C is defined by two analytic maps P,Q, [12] describes, under genericity condi-
tions on P,Q, the type of singularities arising in the projection B: they are only nodes
(two branches of C induce a self intersection in B), or cusps (C has a vertical tangent).
[12] also introduces a system called ball system whose solutions are in one-to-one corre-
spondence with the singularities of B, and shows that the ball system only has regular
solutions if and only if singularities of B are either nodes or ordinary cusps.

We first restate the assumptions and the main results of [12]. We then show how
an enclosure of C helps to restrict the domain where the ball system is solved while
ensuring that all cusps and nodes are obtained. Then, we present Algorithm 4, that
decides, for a given solution of the ball system, if the corresponding singularity is an
ordinary cusp or a node when B is an apparent contour. Within this section, Σ denotes
the set of singular points of B ∩B0.

3.1 Assumptions

Consider the following assumptions:

(A6) For any (α, β) in B0, the system P (α, β, z) = Q(α, β, z) = 0 has at most 2 real
roots, counting multiplicities.

(A7) There are finitely many points (α, β) in B0 such that P (α, β, z) = Q(α, β, z) = 0
has 2 real roots, counting multiplicities.

(A8) The singularities of the curve B in B0 are either nodes or ordinary cusps.

Notice that the Thom Transversality Theorem implies that (A1) . . . , (A8) hold for
generic smooth maps P,Q defining C (see [8, Theorem 3.9.7 and §4.7]).

3.2 Ball system

Following a geometric modelling, [12] defines a 4 dimensional system whose solutions
map to the singularities of B. In this modelling, two solutions (x, y, z1) and (x, y, z2) of
P = Q = 0 (or P = Pz = 0) are mapped to the point (x, y, c, r2) with c = (z1 + z2)/2
and r2 = (z1− z2)2. Figure 4 illustrates this mapping for singularities of the apparent
contour of a torus. We review the main results of [12].

Lemma 3.1 ([12, Lemma 4]) Let P,Q be two analytic functions in x, y, z satisfying
the Assumptions (A1), (A2), (A6) and (A7), and let S be the set of solutions of the so-
called ball system:

1

2
(P (x, y, c+

√
r2) + P (x, y, c−

√
r2)) = 0

1

2
√
r2

(P (x, y, c+
√
r2)− P (x, y, c−

√
r2)) = 0

1

2
(Q(x, y, c+

√
r2) +Q(x, y, c−

√
r2)) = 0

1

2
√
r2

(Q(x, y, c+
√
r2)−Q(x, y, c−

√
r2)) = 0

(1)

in B0 × R × R+. Then π′(x,y)(S) = Σ, where π′(x,y) is the projection from R4 to the
(x, y)-plane.
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Figure 4: Singularities of the apparent contour B of the torus. For node and cusp
singularities of B, their preimages on the space curve C as well as corresponding centers
c and radii r2 = r2 for the ball system are represented.

Lemma 3.2 ([12, Lemma 5]) Under the Assumptions (A1), (A2), (A6) and (A7),
all the solutions of the ball system in B0 × R × R+ are regular if and only if (A8) is
satisfied.

Remark 3.1 If P,Q are two C3 functions then Lemmas 3.1 and 3.2 still hold.

In addition, the solutions of the ball system with r2 = 0 map to cusps in 2d and
the curve in 3d has a vertical tangent (collinear to the z-axis); whereas the solutions
with r2 6= 0 map to nodes.

3.3 Solution domain

In [12], the ball system is solved within the box B0×R×R+ with a subdivision solver.
Using the δ-approximation (Ci)1≤i≤m of C computed by Algorithm 3, we propose to
reduce significantly the search domain for the singularities. Indeed, given a singular
point σ of B, there exists 1 ≤ i ≤ m such that σ ∈ Bi, where Bi = π(x,y)(Ci). Hence
it is possible to isolate all singularities by solving the ball system within Bi×R×R+,
for 1 ≤ i ≤ m. In addition, Proposition 3.1 shows how to bound the solution domain
in the c and r2 components.

Proposition 3.1 Let (Ci)1≤i≤m be a δ-approximation of C. For 1 ≤ i ≤ m, let
Ci = (xi,yi,zi), Bi = π(x,y)(Ci) = (xi,yi), and for 1 ≤ i < j ≤ m, let Bij =
(xij ,yij) = Bi ∩Bj and consider the sets:

• Di = (xi,yi,zi, [0, (
w (zi)

2
)2]),

• Dij = (xij ,yij ,
(zi+zj)

2
, (

(zi−zj)

2
)2)

Then, under the Assumptions (A1), (A2), (A6) and (A7), all solutions of the ball system
lie in (

⋃
1≤i≤mDi) ∪ (

⋃
1≤i<j≤mDij).

Proof: Let p = (xp, yp, cp, rp) ∈ B0 × R× R+ be a solution of the ball system and
σ = π′(x,y)(p) the corresponding singularity in Σ. From Assumption (A8), σ is either
an ordinary cusp or a node.
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Figure 5: Some boxes and their projections containing singularities of B. Cusps sin-
gularities are in boxes Bi, nodes in boxes Bi ∩Bj .

Suppose first it is an ordinary cusp. Then rp = 0, and σ is the projection of a
single point p′ = (xp, yp, cp) of C. Hence there exists 1 ≤ i ≤ m such that p′ ∈ Ci.
Thus, we have cp ∈ zi and p ∈Di (see Figure 5).

Suppose now σ is a node. Then rp > 0, and σ is the projection of two points
p− = (xp, yp, cp −

√
rp) and p+ = (xp, yp, cp +

√
rp) of C. Hence there exist 1 ≤ i ≤ m

and 1 ≤ j ≤ m such that p− ∈ Ci and p+ ∈ Cj . If i = j, we have cp ∈ zi and
rp ∈ [0, (w (zi)

2
)2], and finally p ∈ Di. If i 6= j (this case is illustrated in Figure 5), cp

lies in
zi+zj

2
that is the center of the two intervals zi and zj , and rp lies in (

zi−zj

2
)2,

that is the square of the corresponding radius.

3.4 Singularities of an apparent contour

For a generic 3-dimensional curve, the singularities of its projection B are only nodes.
When the curve B is the apparent contour of a surface, its singularities generically also
include cusps. We introduce Algorithm 4 to distinguish these two types of singularities.

Let D = (x,y, c, r) be a box isolating a solution p = (x, y, c, r) ∈ D of the ball
system and let σ = π′(x,y)(p) be the associated singularity of B. If 0 /∈ r then r 6= 0 and
σ is a node. Otherwise, σ can be either a cusp or a node. Recall that σ is an ordinary
cusp of B only if it is the projection of a point of CP∩Pz that has a vertical tangent
(collinear to the z-axis). In other words, if σ = (α, β) is a cusp, there exists a unique
γ ∈ R such that σ = π(x,y)(α, β, γ) and P (α, β, γ) = Pz(α, β, γ) = Pzz(α, β, γ) = 0.
According to assumption (A6), γ is a triple root of P (α, β, z), that is, Pzzz(α, β, γ) 6= 0.
The regularity of the curve CP∩Pz thus implies that (α, β, γ) is a regular solution of
the system P = Pz = Pzz = 0 (see [13, Lemma 10]). Noting that K(P,Pz ,Pzz) is the
Krawczyk operator for the latter system, the test on Line 2 of Algorithm 4 is eventually
true for a small enough box whose projection contains a cusp.

While refining the box D, Algorithm 4 thus terminates for a box

D∗ = (x∗,y∗, c∗, r∗) ⊂D,

containing p such that either 0 /∈ r∗ and π′(x,y)(p) is a node, or

K(P,Pz ,Pzz)((x∗,y∗, c∗)) ⊂ i((x∗,y∗, c∗)),
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Algorithm 4 Singularity types for an apparent contour

Input: P in Q[x, y, z], a box D = (x,y, c, r) s.t Kb(D) ⊂ i(D), where Kb is the
Krawczyk operator for the ball system.

Output: The type of the singularity contained in π′(x,y)(D) = (x,y).
1: while 0 ∈ r do
2: if K(P,Pz ,Pzz)((x,y, c)) ⊂ i((x,y, c)) then return cusp

3: D = Kb(D)

4: return node

and π′(x,y)(p) is an ordinary cusp.

4 Topology at Special Points of B
In this section, we compute witness boxes for the singularities and critical points of
B, that is, isolating boxes such that the topology of the curve inside these boxes can
be deduced from the intersections of the curve with their boundaries. Special care is
taken to refine the boxes such that the intersections of the curve with their boundaries
do not eventually occur at the corners. The case of a node is detailed; the other cases
are only sketched, since they are similar.

4.1 Boundary points

We define the boundary points of C as the set C ∩ (∂B0×R), and the boundary points
of B as the set B∩∂B0. With Assumptions (A3)− (A5), the boundary points of C and
B are in one-to-one correspondence, are neither x nor y-critical points of C nor of B,
and are not the corners of B0. The isolating boxes of boundary points of C can thus
be refined until their projections onto ∂B0 are disjoint.

4.2 Preprocessing of nodes, cusps and x-extreme points

We add the following assumptions.

(A9) The two points of C above a node of B are neither x-critical nor y-critical points
of C.

(A10) P = Q = R′ = 0 has finitely many regular solutions in C0 and none in ∂C0,
and they are the y-critical points of the curve C.

Note that a cusp of B corresponds to a point of C with a vertical tangent (collinear
to the z-axis), that is both an x and y-critical point of C. With all our assumptions,
the x or y-critical points of C are in i(C0), and

• x and y-critical points of C are in one-to-one correspondence with cusps of B.

• x-critical points of C that are not y-critical are in one-to-one correspondence
with smooth x-critical points of B.

• y-critical points of C that are not x-critical are in one-to-one correspondence
with smooth y-critical points of B.
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Figure 6: Left (resp. middle): the decomposition of B (resp. ∂B). Right: a witness
box Bn for a node.

The first step is to compute implicit points for y-critical points of C, by solving the
system P = Q = R′ = 0 with IsolateSols on B0×z0. Assumption (A10) ensures the
termination of the process with input ε = 0. Then, the 4-dimensional boxes isolating
nodes and cusps (the solutions of the ball system) and the 3-dimensional boxes isolating
x and y-critical points (the solutions of P = Q = R = 0 and P = Q = R′ = 0) are
refined until their projections in the (xy)-plane satisfy

• a box of a cusp overlaps exactly one x-critical and one y-critical point,

• a box of a node overlaps no x nor y-critical point,

• a box of an x-critical point that is not overlapping a cusp, does not overlap any
y-critical point.

An x-critical point of B that is smooth, i.e. is not also y-critical, is called x-extreme.
A point of B a points that is an x-extreme, a node or a cusp is called a special point.
Similarly, as in [13], we define a witness box for a special point of the curve B.

Definition 4.1 A witness box for a special point (x-extreme, node or cusp) of the
curve B is a box containing this point, such that the topology of the curve inside the
box is the one of the graph connecting its center to the crossings of the curve on its
boundary.

This definition implies that a witness box has 4 crossings of the curve on its bound-
ary for a node and 2 crossings for a cusp or an x-extreme point. The right part of
Figure 6 shows a witness box for a node.

4.3 Topology at a node singularity

Algorithm 6 computes a witness box for a node. The idea is that if the curve C does
not contain an x or y-critical point above an isolating box B of the node, B is a
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Algorithm 5 IsWitnessNodeBox(B)

Input: A box B containing a unique node of B, such that B × R does not contain
any x or y-critical point of C.

Output: False when the box is not witness. True when B intersects exactly twice
E(∂B), twice W (∂B) and does not intersect NW (∂B) ∪ N(∂B) ∪ NE(∂B) ∪
SW (∂B) ∪ S(∂B) ∪ SE(∂B).

1: Let B = (xB ,yB)
2: (Xsol

1 ,Xind
1 ) = IsolateSols(P (x = l(xB), y, z) = Q(x = l(xB), y, z) = 0,yB ×

z0,w (yB)/4)
3: (Xsol

2 ,Xind
2 ) = IsolateSols(P (x = u(xB), y, z) = Q(x = u(xB), y, z) = 0,yB ×

z0,w (yB)/4)
4: if |Xind

1 |> 0 or |Xind
2 |> 0 then

5: return False
6: (Xsol

3 ,Xind
3 ) = IsolateSols(P (x, y = l(yB), z) = Q(x, y = l(yB), z) = 0,xB ×

z0,0)
7: (Xsol

4 ,Xind
4 ) = IsolateSols(P (x, y = u(yB), z) = Q(x, y = u(yB), z) = 0,xB ×

z0,0)
8: if not |Xsol

1 |+|Xsol
2 |+|Xsol

3 |+|Xsol
4 |= 4 then

9: return False
10: return True

witness box when the curve B crosses its boundary 4 times, or equivalently the curve
C crosses ∂B× R 4 times. To avoid the problem of crossings on the corners of B, the
refinement is performed such that its x-coordinate is exponentially smaller than its
y-coordinate, so that B will eventually cross only the left and right sides of B and far
from the corners (see the right part of Figure 6).

Let B = (xB ,yB) be a 2-dimensional box in the (x, y)-plane and let a = w (xB)
and b = w (yB). Assuming a < b, we decompose B into three boxes and ∂B into eight
closed segments as illustrated in the left and middle parts of Figure 6, and we name
the boxes and segments with respect to their cardinal directions around the center of
B. In particular, M(B) is (xB ,m(yB) + [−a/2, a/2]), and E(∂B) and W (∂B) are the
respective segments (u(xB),m(yB) + [−b/4, b/4]) and (l(xB),m(yB) + [−b/4, b/4]).

Proposition 4.1 Let B be a box containing a unique node of B such that B×R does
not contain any x or y-critical point of C. Then

(i) Algorithm 5 terminates,

(ii) if Algorithm 5 returns True then B is a witness box for the node,

(iii) if B intersects exactly twice E(∂B), twice W (∂B) and does not intersect NW (∂B)
∪ N(∂B) ∪ NE(∂B) ∪ SW (∂B) ∪ S(∂B) ∪ SE(∂B), then Algorithm 5 returns
True.

Proof: Since there is no x-critical point of C in B×R, the system P (x = l(xB), y, z)
= Q(x = l(xB), y, z) = 0 (resp. P (x = u(xB), y, z) = Q(x = u(xB), y, z) = 0) has
only regular solutions on yB × R. In addition, since w (yB)/4 > 0, the procedure
IsolateSols called in Step 2 (resp. Step 3) of Algorithm 5 terminates even if solutions
lie on ∂yB × R. Suppose now the sets of undetermined boxes Xind

1 ,Xind
2 are empty.

Then P = Q = 0 has no solution above the corners of B, and in particular the systems
P (x, y = l(yB), z) = Q(x, y = l(yB), z) = 0 and P (x, y = u(yB), z) = Q(x, y =
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Algorithm 6 Witness box for a node

Input: A box D containing a unique solution of the ball system that projects into a
node σ and such that π′(x,y)(D)× R does not contain any x or y-critical point of
C.

Output: A witness box for σ.
1: Let D′ = D and B = π′(x,y)(D)
2: Let n = 0, an = w (B), bn = w (B) and Bn = B
3: repeat
4: n = n+ 1, an = an−1/4 and bn = bn−1/2
5: repeat
6: D′ = Kb(D

′), B′ = π′(x,y)(D
′)

7: Bn = m(B′) + ([−an/2, an/2], [−bn/2, bn/2])
8: until B′ ⊆M(Bn)
9: until Bn ⊆ B and IsWitnessNodeBox(Bn)

10: return Bn

u(yB), z) = 0 have no solution on ∂xB×R. Hence the procedures IsolateSols called
in Step 6 and 7 of Algorithm 5 terminate if and only if the two latter systems have
only regular solutions on xB × R, and this is the case since C has no y-critical point
over B; (i) follows.

Suppose Algorithm 5 returns True. This implies that B crosses the boundary of
B in exactly four distinct points. Since C has neither x nor y-critical point above B,
the two branches of C, those projections pass through the node, are x and y-monotone
above B. The projections of these two branches thus cross the boundary of B in
exactly four distinct points. In addition, there cannot be any other branch of C, since
it would either generate more crossings on the boundary or the existence of critical
points in the box; thus (ii) follows.

Proof of (iii). If there exists a box X ∈ Xind
1 , it should include one of the points

in l(xB) × ∂yB and its width should be less than w (yB)/4. Since the curve B does
not intersect NW (∂B) ∪ SW (∂B) such a box cannot contain any solution; thus Xind

1

is empty. Similarly, Xind
2 is empty and the 2 solutions on E(∂B) (resp. W (∂B)) are

reported in Xsol
1 (resp. Xsol

2 ). In addition, the curve B intersects neither S(∂B) nor
N(∂B), and Xsol

3 and Xsol
4 are empty. Hence the number of reported solutions is 4,

and the algorithm returns True.
Note that Algorithm 5 may return a false negative: a box that is a witness box

may not be classified as such. This can happen when the curve crosses the box near
its corners. The idea of Algorithm 6 is to refine the box of a node to avoid such a case,
that is, such that property (iii) of Proposition 4.1 eventually holds. The sequence Bn

of boxes constructed in Algorithm 6 is illustrated in the right part of Figure 6.

Proposition 4.2 Algorithm 6 correctly computes a witness box.

Proof: For n fixed, the boxes M(Bn) and B′ have the same center, and the width
of M(Bn) is an. During the repeat loop of line 5, the width of B′ is strictly decreasing,
and the condition B′ ⊆M(Bn) of Line 8 will be true after a finite number of loops.

If Bn
σ = σ + [−an, an] × [−2bn, 2bn], this is a strictly decreasing sequence with

respect to inclusion, and for m > n, Bm ⊂ Bn
σ . Note also that NW (∂Bn)∪NE(∂Bn)∪

SW (∂Bn) ∪ SE(∂Bn) ⊂ Bn
σ . The boxes Bn and B both contain the node σ in their

interior, so the condition Bn ⊆ B of Line 9 will be true for any n large enough.
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It remains to show that for n large enough Algorithm 6 will report Bn as witness.
We will show that Bn satisfies the sufficient condition (iii) of Proposition 4.1.

Since B×R does not contain any x and y-critical points of C, for n large enough,
one can assume that C ∩ (Bn

σ × R) has two connected components C1 and C2 that are
x and y-monotone. These two branches project onto two curves B1 = π(x,y)(C1) and
B2 = π(x,y)(C2) that are x-monotone, cross at σ and have bounded slopes. On the other

hand, the aspect ratio bn
an

= 2n b0
a0

of the box Bn is increasing. For n large enough,

B1 (resp. B2) thus crosses E(∂B) and W (∂B) exactly once, and there is no other
intersection on NW (∂Bn) ∪N(∂Bn) ∪NE(∂Bn) ∪ SW (∂Bn) ∪ S(∂Bn) ∪ SE(∂Bn).
Condition (iii) of Proposition 4.1 is thus satisfied, and the returned box Bn is a witness
box.

4.4 Topology at a cusp singularity

Algorithms 5 and 6 are easily adapted for a cusp. The input of Algorithm 6 should
then be a box D containing a unique solution of the ball system that projects into a
cusp σ and such that π′(x,y)(D)×R does not contain any other x or y-critical point of
C than the point projecting onto the cusp. The input of Algorithm 5 should then be
a box B containing a unique cusp of B, such that B×R does not contain any other x
or y-critical point of C other than the point projecting onto the cusp. The test for the
number of reported solutions at Line 8 should be with the value 2 instead of 4. The
output will be true when B intersects E(∂B) exactly once, W (∂B) exactly once, and
does not intersect NW (∂B) ∪N(∂B) ∪NE(∂B) ∪ SW (∂B) ∪ S(∂B) ∪ SE(∂B).

For the proof of correctness, the same arguments hold when the limit of the tangent
to B at the cusp is not collinear with the y-axis, since in this case the slope of the
branch is bounded. When this limit is the y-axis, the same algorithm with the variables
x and y swapped will behave as above. In other words, the box Bn is elongated in the
x-direction instead of the y-direction, and intersections of the curve with its boundary
will eventually appear on the north or south sides and far from the corners. The
solution is thus to run the two algorithms in parallel, and stop as soon as one has
identified a witness box.

4.5 Topology at an x-extreme point

For an x-extreme point, the method is similar to the one for a cusp with a limit of the
tangents collinear with the y-axis. Indeed, the tangent to the curve at an x-extreme
point is collinear with the y-axis, so that the curve is locally y-monotone. The box Bn

is thus elongated in the x-direction, and intersections of the curve with its boundary
will eventually appear on the north or south sides and far from the corners.

5 Global Topology of B as an Embedded Graph

In this section, the certified tracking of the curve C ∩ C0 together with the local
topology at the special points of its projection B ∩B0 are combined to compute the
global topology of B ∩ B0. We use an XPMap to encode this topology and design a
point location algorithm, that is, given p ∈ B0 \ B, find the connected component of
B0 \ B to which p belongs.

In Section 5.1, we compute a graph G such that B∩B0 is an embedding of G. The
vertices of G are the special points computed in Section 4, and the edges are computed
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by tracking between these points. In addition, to restrict the point location algorithm
to the box B0, we consider the curve B∂ = (B ∩ B0) ∪ ∂B0 as the embedding of a
graph G∂ . The graph G∂ and its embedding B∂ have in general several connected
components. Section 5.2 shows how to compute a CMap encoding the topology of one
component. The only geometric task for this is to order branches of B around node
singularities. Section 5.3 shows how to answer location queries with respect to one
connected component of B∂ . In Section 5.4, the XPMap encoding the topology of B∂
is constructed, and the point location algorithm is generalized to this structure.

5.1 Computing a graph of which B ∩B0 is an embedding

Let Bx and Bn be the sets of witness boxes for the x-extreme points or cusps, and let
the nodes of B ∩B0 be computed in Section 4. We define Vx and Vn as the cylinders
above witness boxes: Vx = {B × R |B ∈ Bx} and Vn = {B × R |B ∈ Bn}. We note
that C0 (resp. B0) is the domain in R3 (resp. R2) defined as C0 \

⋃
C∈Vx∪Vn i(C)

(resp. π(x,y)(C0)). Recall that Cb is the set of implicit points for the boundary points.
We define Vb as {C | (C, S) ∈ Cb}.

Since x-critical points of C ∩ C0 are isolated in boxes of Vx, the connected com-
ponents of C ∩ C0 are diffeomorphic to [0, 1] and x-monotone. Their endpoints are
C ∩

⋃
C∈Vx∪Vn∪Vb ∂C

3. Hence a point of the latter set is either the left-most or
the right-most point of a connected component of C ∩ C0, and we state the following
definition.

Definition 5.1 Let C be a box of Vx∪Vn or the box C0. We call a point c of C ∩∂C
a connection of C ∩ C0 in C. If c is the left-most point of a connected component of
C ∩ C0, we say that c is an out-connection. Otherwise we call c an in-connection.

Note that implicit points of Cb define connections of C ∩ C0 in C0. During the
computation of witness boxes as described in Section 4, the connections are also com-
puted. We thus assume that for a box C ∈ Vx ∪ Vn, the connections of C ∩ C0 in C
are given by the set connect(C) = {. . . , (Ci, Si), . . .} of disjoint implicit points (i.e.
Ci are pairwise disjoint). If C ∈ Vb, we let connect(C) = {(C, S)} where S is the
system defining the boundary containing C (see Corollary 2.1).

Let V be the set Vx∪Vn∪Vb. Let E be the set of connected components of C∩C0.
We define the incidence relation I : E → V × V such that for e ∈ E, I(e) = (C,C′)
if and only if the extremities of e are an out-connection of C ∩ C0 in C and an in-
connection of C∩C0 in C′. By construction, the projections of edges do not cross, and
the incidence of four edges at a node is correctly encoded. This yields the following
proposition.

Proposition 5.1 Let G be the graph (V,E, I). The curve B ∩B0 is an embedding of
G, seen as a non-directed graph.

We denote by v1, v2, . . . the vertices of G (i.e. the boxes of V = Vx ∪Vn ∪Vb) and
by e1, e2, . . . the edges of G, (i.e. the connected components of C ∩ C0). The graph G
representing the apparent contour of the torus is shown in the left part of Figure 7.

We show in Section 5.1.1 how to distinguish in and out connections of C ∩ C0

in boxes of V , and, in Section 5.1.2, how to compute the incidence relation I by

3Recall that boxes of Vb have exactly one coordinate reduced to one point; thus ∂C = C
if C ∈ Vb.
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Figure 7: Left: The directed graph G∂ for the apparent contour of the torus. Its edges
are represented by thin arrows linking out-connections to in-connections of C ∩ C0

in boxes of V . Thick lines represent the curve B in witness boxes. Dashed arrows
represent the clockwise walk on ∂B0. Right: A witness box B for a node, and, in
bold, the four boxes isolating the connections of B in B.

computing δ-approximations of the connected components of C∩C0. We consider G to
be equipped with an application approx that maps each e ∈ E to its δ-approximation.
Furthermore, approx satisfies the three following properties:

(a1) If e, e′ are two edges of G, then approx(e, δ) = (Ce
i )
me
i=1 and approx(e′, δ) =

(Ce′
i )

me′
i=1 satisfy 1.1Ce

i ∩Ce′

i′ = ∅ for all 1 ≤ i ≤ me, for all 1 ≤ i′ ≤ me′ .

(a2) If e is an edge of G, C a box of V and approx(e, δ) = (Ce
i )
me
i=1, then π(x,y)(C

e
i )∩

π(x,y)(C) 6= ∅ if and only if i = 1 or i = me and e has a connection in C.

(a3) If e is an edge of G and approx(e, δ) = (Ce
i )
me
i=1 then π(x,y)(C

e
1), π(x,y)(C

e
m)

contain no node, cusp or x-extreme point of B.

In the following, we consider the faces of B ∩ B0 in B0 that are the connected
components of B0 \B. It is thus convenient to represent the boundary of B0 explicitly
in a graph G∂ = (V∂ , E∂ , I∂) of which the curve B∂ = (B∩B0)∪∂B0 is an embedding.
G∂ is defined as follows.

If Vb is empty, then V∂ = V ∪ {B∂ × R} where B∂ is a box reduced to the left
bottom corner of B0 and E∂ = E ∪ {e∂} where e∂ is ∂B0 \B∂ . Otherwise (Vb is not
empty), V∂ = V and E∂ = E ∪ E′ where E′ is the set of connected components of
∂B0\

⋃
C∈Vb i(π(x,y)(C)). Then I∂(e) is defined as I(e) if e ∈ E. Otherwise e ∈ E∂ \E

and I∂(e) = (v, v′) if and only if the extremities of e are extremities of the segments
π(x,y)(v) and π(x,y)(v

′), and the walk from v to v′ around i(B0) is a clockwise walk.
It is clear that the curve B∂ is an embedding of G∂ . The left part of Figure 7

shows, in dashed arrows, the edges of E∂ \ E.

5.1.1 In and out connections

We characterize in and out connections of C ∩ C0 in a box of Vx ∪Vn or in C0 using
the direction of the tangent to the curve. For this, let E∗(∂B) (resp. W ∗(∂B)) denote
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the set (E(∂B)∪SE(∂B)∪NE(∂B))∩B (resp. (W (∂B)∪SW (∂B)∪NW (∂B))∩B).
We first consider the case where C ∈ Vx ∪Vn.

Proposition 5.2 Let c be a connection of C ∩ C0 in a box C ∈ Vx ∪ Vn, and B =
π(x,y)(C). Let t = (tx, ty, tz) be a tangent vector of C at c. Then

(i) tx 6= 0 and ty 6= 0;

(ii) c is an out-connection of C ∩ C0 in C if and only if π(x,y)(c) ∈ E∗(∂B) or
π(x,y)(c) ∈ N(∂B) and txty > 0 or π(x,y)(c) ∈ S(∂B) and txty < 0;

(iii) c is an in-connection of C ∩ C0 in C if and only if π(x,y)(c) ∈ W ∗(∂B) or
π(x,y)(c) ∈ N(∂B) and txty < 0 or π(x,y)(c) ∈ S(∂B) and txty > 0.

Proof:According to Section 4, the boxes in Vx∪Vn do not contain any x or y-critical
points on their boundary, so property (i) holds. Claim (ii) (resp. (iii)) rephrases the
conditions such that the tangent vector pointing out of the box is oriented to the left
(resp. right) thus yielding an out-connection, (resp. in-connection).

Proposition 5.2 is easily adapted for boundary points, that is, when c is a con-
nection of C ∩ C0 in C0. From assumptions (A4), (A10), ∂C0 contains neither x nor
y-critical points, and (i) follows. Then one can easily show that properties (ii′) and
(iii′), obtained from (ii) and (iii) by swapping E and W , and N and S, hold, since
in this case the tangent vector pointing inside the box is relevant.

Proposition 5.2 is used to decide if a connection c implicitly defined by the ordered
pair (Ci, Si) is an out or an in connection, as follows. Ci can be contracted with
the Krawczyk operator KSi until 0 /∈ R(Ci) and 0 /∈ R′(Ci), where R and R′ as in
Definition 2.1 are the x and y component of a tangent vector. This process terminates
from (i) of Proposition 5.2, and (ii), (iii), (ii′), (iii′) are used to finish the argument.
The right part of Figure 7 illustrates this in the case of a node singularity. The cones
containing the tangent vector (R(Ci), R

′(Ci)) are drawn with dashed lines for two of
the four boxes isolating the connections in its witness box.

5.1.2 Computing the incidence relation I and δ-approximations of
edges

Let C+ (resp. C−) be the set of implicit points defining the out (resp. in) connections
of C ∩ C0 in boxes of Vx ∪ Vn and in C0. For each out-connection (Ci, Si) ∈ C+,
the process Track(< P,Q >,C0,(Ci, Si),C−∪{(Ci, Si)},δ) defined in Algorithm 2
is performed. This process terminates and returns a δ-approximation (Ce

i )
me
1 of the

connected component e of C ∩ C0 having (Ci, Si) as left-most point and the set Con

containing exactly the implicit point (Cj , Sj) defining the right-most point of e. This
defines the edge e ∈ E with I(e) = (v, v′), where v (resp. v′) is the vertex of G
having (Ci, Si) (resp. (Cj , Sj)) as one of its out (resp. in) connections. We let
approx(e, δ) = (Ce

i )
me
i=1.

To ensure that the application approx satisfies the properties (a1), (a2) and (a3)
listed above, the tracking of edges is refined as follows. Each time a new approximation
approx(e, δ) is computed, (a2) is checked and a δ

2
-approximation of e is computed while

it does not hold. This process terminates due to the properties of witness boxes. Then
for each e′ for which approx(e′, δ) is already known, (a1) is checked for e, e′. While it
does not hold, δ

2
-approximations of e and e′ are computed. This process terminates

since e and e′ are, by construction, non-intersecting smooth curves. Finally (a3) is

checked for e, e′. Let approx(e, δ) = (Ce
i )
me
i=1 and approx(e′, δ) = (Ce′

i )
me′
i=1 . Since (a2)
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Algorithm 7 CMap construction

Input: A graph Gk = (V k, Ek, Ik)
Output: A CMap (Hk, σk, αk) encoding the embedding Bk∂ of Gk

1: Let Vk = {i | vi ∈ V k}, Ek = {i | ei ∈ Ek} and (Oi)i∈Vk be empty sets.
2: Let Hk = ∅, αk be an involution on Hk and σk be a permutation on Hk

3: for i ∈ Ek do
4: Let Hk = Hk ∪ {h+

i , h
−
i }, α

k = αk ∪ {(h+
i , h

−
i )}

5: Suppose Ik(ei) = (vj , vl) with j, l ∈ Vk and let Oj = Oj∪{h+
i }, Ol = Ol∪{h−i }

6: for i ∈ Vk do
7: Order counter-clockwise the connections of Oi around ∂(π(x,y)(vi))

8: Let σk be the permutation on Hk which orbits are Oi, for i ∈ Vk.
9: return (Hk, σk, αk)

holds, the ball system can have solutions only in the 4-dimensional boxes constructed
from Ce

1,C
e′
1 ,C

e
me
,Ce′

me′
as in Proposition 3.1. Then, δ

2
-approximations of e and e′

are computed while the ball system has a solution in one of the latter boxes. This
process terminates since each singularity of B has a strictly positive distance from any
point of the boundary of a witness box around it. To avoid x-extreme points, one
has to check that boxes Ce

1 and Ce
me

do not contain solutions of the system (S5) as
defined in Corollary 2.1, and refine the boxes if needed.

5.2 Computing the CMap of one connected component

Let B1
∂ , . . . ,Bn

′
∂ be the connected components of B∂ . Then G∂ has n′ connected com-

ponents G1 = (V 1, E1, I1), . . . , Gn
′

= (V n
′
, En

′
, In
′
) such that the vertices of Gi are

the cusps, nodes, x-extreme and boundary points of Bi∂ , and the projections of the
edges of Gi are the connected components of Bi∂ \ i(B0). We suppose that G1 is the
connected component containing the boundary points of B∂ . We aim here at com-
puting, for each 1 ≤ k ≤ n′, a CMap (Hk, σk, αk) representing the embedding Bk∂ of
Gk = (V k, Ek, Ik). As emphasized in [18][§1.3.3], or in [16], computing the faces of an
embedding reduces to ordering counter-clockwise the edges around each vertex. The
CMap (Hk, σk, αk) representing the embedding Bk∂ of Gk = (V k, Ek, Ik) encodes this
order in the permutation σk, and each face of Bk∂ is an orbit of ϕk = (σk)−1 ◦αk which
is an ordered sequence of half-edges describing a counter-clockwise walk around it. A
vertex of V k corresponds either to a node, a cusp, a boundary point or a x-extreme
point of Bk. Around a cusp or an x-extreme point p, Bk \ p has only two branches;
thus there is no need to order them.

Let p be a node of Bk and B its associated witness box. Since the connected
components of (Bk \ p) ∩B are non intersecting curves linking p to the projections of
the connections of C in B× R, a counter-clockwise ordering of the branches of Bk \ p
around p is given by the counter-clockwise order of the connections of Bk in B (see
the right part of Figure 7).

Now let p be a boundary point of Bk ∩ B0. A counter-clockwise ordering of the
branches of Bk∂ \ p around p can be directly deduced from the part of the boundary to
which p belongs. Consider the left part of Figure 7, and let p be the boundary point
of which v1 is a witness box. Since p is on E∗(∂B), a counter-clockwise ordering is
necessarily (e1, e14, e13).
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Algorithm 8 Point-face location on the boundary of a witness box

Input: The CMap (Hk, σk, αk) of Bk∂ , a box C ∈ Cx ∪Cn, and a point p ∈ ∂B where
B = π(x,y)(C).

Preconditions: p is not in B
Output: The orbit of ϕk describing the face of Bk∂ to which p belongs.
1: Let v = (. . . , h∗i , . . .) be the orbit of σk corresponding to C
2: Let {. . . , ci = (Ci, Si), . . .} be the connections of C in C associated to v
3: Contract each ci with Ci = KSi(Ci) until their projections are disjoint and p 6∈
π(x,y)(Ci)

4: Order counter-clockwise connections ci and p on ∂B and let (c1, p, c2, . . .) be such
an ordering

5: Let f be the orbit of ϕk containing h∗1
6: return f

Algorithm 7 performs the construction of the CMap of a connected component
Bk∂ of B∂ . In a first loop, pairs of half-edges are created from edges: to each edge
ei ∈ Ek are associated two half-edges h+

i and h−i , such that h+
i is oriented as ei, i.e. if

Ik(ei) = (vj , vl), h
+
i leaves vj and h−i leaves vl. In other words, h+

i represents a walk
from left to right along π(x,y)(ei). In addition, half-edges leaving a common vertex are
collected. The second loop aims at ordering the half-edges around vertices to define
faces.

5.3 Faces of a CMap

To define the relative positions of the CMaps encoding the different connected compo-
nents and thus computing an XPMap, the exterior face of each CMap is first identified.
Then, we propose a procedure to identify to which face of Bk a point p /∈ Bk belongs.

5.3.1 Exterior face

Point-face location on the boundary of a witness box. As an intermediate
step, Algorithm 8 identifies the face containing a point located on the boundary of a
witness box. In the algorithm, h∗ stands for a half-edge h+ or h−. In Step 3, the
connections of C in C are contracted with the appropriated Krawczyk operator until
their projections are pairwise disjoint and do not contain p. This step terminates,
since p /∈ B. Then, it suffices to order counter-clockwise p and the projections of the
connections of C in C on ∂(π(x,y)(C)) to conclude. The right (resp. left) part of
Figure 8 illustrates this procedure when π(x,y)(C) is the witness box of a node (resp.
cusp). The orbit of the node vertex is (h−1 , h

+
2 , h

+
3 , h

−
4 ) and (c1, p, c2, . . .) is a counter-

clockwise order on the boundary of the box. The face containing p is given by the
orbit of ϕk containing h−1 .

Exterior face and leftmost box. We now explain Algorithm 9, that computes
the orbit of ϕk describing the exterior face of Bk∂ . Note that by construction all faces
but the exterior face are described by a counter-clockwise cycle of half-edges. The case
where k = 1 is directly addressed, since B1

∂ contains ∂B0. The exterior face of B1
∂ is

exactly R2 \B0 and is described by the orbit of ϕ1 containing the half-edges associated
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Figure 8: Finding the face containing a point p on the boundary of the witness box of
a cusp (left) and of a node (right).

Algorithm 9 Exterior face

Input: The CMap (Hk, σk, αk) of Bk∂
Output: The orbit of ϕk describing the exterior face of Bk∂ and a leftmost box C

enclosing Bk∂ if k > 1, C = ∅ if k = 1.
1: if k = 1 then
2: Let e be an edge of E∂ \ E and h+ be the half-edge associated with e
3: Let f be the orbit of ϕk containing h+ and C = ∅
4: else
5: Find a leftmost box C enclosing Bk∂ and let p be any point on W ∗(∂(π(x,y)(C)))
6: Let f be the result of Algorithm 8 with input (Hk, σk, αk), C and p

7: return f , C

with edges of E∂ \ E (see Steps 1, 2 and 3 of Algorithm 9). As an illustration, the
exterior face of B1

∂ on Figure 3 is the orbit (h+
13, h

+
14).

Suppose now k > 1, and recall that Bk∂ is an embedding of Gk = (V k, Ek, Ik).
Recall also that for B = (x,y), W ∗(∂B) = (l(x),y). We state the following remark
to identify the exterior face of Bk∂ .

Remark and Definition 5.1 Let k > 1.

(i) Bk∂ has at least two cusps or x-critical points, that is V k ∩ Vx contains at least
two elements.

We call a leftmost box enclosing Bk∂ a box C = (x,y,R) of V k ∩ Vx minimizing l(x)
over all boxes of V k ∩ Vx. Let C be one of the leftmost boxes enclosing Bk∂ , and
B = π(x,y)(C). Then

(ii) any point of W ∗(∂B) lies in the exterior face of Bk∂ ,

(iii) if p ∈W ∗(∂B) then p /∈ B.

Point (i) is a direct consequence of Proposition 2.1. In order to prove point (ii),
consider a point p ∈ W ∗(∂B), and suppose it does not belong to the exterior face of
Bk∂ . Hence Bk∂ has necessarily a cusp or x-critical point lying to the left of p. As a
consequence, there is a box C′ = (x′,y′,R) in V k ∩ Vx such that l(x′) < px, where
px is the x-coordinate of p, and C is not a leftmost box enclosing Bk∂ . Consider now
a point p ∈W ∗(∂B) such that p ∈ B. Since C is the witness box, one has necessarily
p ∈ Bk∂ and a contradiction follows. Hence (iii) holds.

Algorithm 9 uses Remark 5.1 in Step 5. From point (iii), the call to the procedure
described in Algorithm 8 terminates and returns the orbit of ϕk describing the exterior
face of Bk∂ .
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Algorithm 10 Point-face location in a CMap

Input: A point p = (xp, yp) ∈ i(B0). The CMap (Hk, σk, αk) encoding the em-
bedding Bk∂ of Gk = (V k, Ek, Ik). The exterior face fext of (Hk, σk, αk). The
boundary edges E′ = E∂ \ E of G∂ .
Preconditions: (c1) p is not in Bk∂ , (c2) p is not in the projection of any box of
V k and (c3) ∀ej ∈ Ek, p is not in the projection of any box of approx(ej , δ).

Output: The orbit of ϕk describing the face of Bk∂ that contains p.
1: Let S = {P (xp, y, z) = Q(xp, y, z) = 0}, B∗ = (y∗,z∗) = ∅ and f∗ = ∅
2: for ej ∈ Ek \ E′ do //ej is not a boundary edge
3: Let Xsol be the result of Algorithm 11 with input ej , p and S
4: if Xsol 6= ∅ then
5: Let B∗j = (y∗j ,z

∗
j ) be the unique element in Xsol

6: if B∗ = ∅ then B∗ = B∗j
7: else
8: while y∗j ∩ y∗ 6= ∅ do let B∗j = KS(B∗j ) and B∗ = KS(B∗)

9: if l(y∗j ) < l(y∗) then Let f∗ be the orbit of ϕk containing h−j and let
B∗ = B∗j

10: for C ∈ (Vx ∪Vn) ∩ V k where C = (x,y,z) do
11: if xp ∈ i(x) and yp < l(y) < l(y∗) then // when B∗ = ∅ we set l(y∗) =∞
12: Let y∗ = y
13: Let f∗ be the result of Algorithm 8 with input (Hk, σk, αk), C and the

point (xp, l(y))

14: if f∗ = ∅ then
15: if k = 1 then
16: Let e ∈ E′ be the boundary edge above p and f∗ be the orbit of ϕk

containing h−

17: else Let f∗ be the exterior face fext of (Hk, σk, αk) given by Algorithm 9

18: return f∗

5.3.2 Point-face location in a CMap

We now describe Algorithm 10 for the point-face location in a CMap. The precondi-
tions (c1), (c2), (c3) ensure its termination. In order to show the correctness of Algo-
rithm 10, we consider the segment Bseg = xp× [yp, u(y0)] and the set Cseg = Bseg×R,
where B0 = (x0,y0). The idea of the proposed approach is to find the closest in-
tersection q of Bk∂ with Bseg. If q belongs to a smooth component π(x,y)(ej) of Bk∂
(i.e. a connected component of Bk∂ ∩ B0) the face is given by the orbit containing the
half-edge h−j . If q is in the witness box C ∈ (Vx ∪ Vn) ∩ V k, we use Algorithm 8 to
determine the face containing the intersection of Bseg with S(∂π(x,y)(C)). Let us now
give further details.

Proof:[Proof of correctness of Algorithm 10] Suppose first that Cseg does not in-
tersect any box of approx(ei, δ) where ei ∈ Ek nor any box of V k. Then Bseg does not
intersect Bk∂ \ ∂B0. If k = 1, i.e. Bk∂ is the component of B∂ containing ∂B0, we let
p′ be the point (xp, u(y0)) ∈ ∂B0. Then p′ lies on a boundary edge ei of E′ = E∂ \E
and the face of Bk∂ containing p is described by the orbit of ϕk containing h−i . If k > 1,
then p belongs to the exterior face of Bk∂ . The algorithm handles these cases in Steps
14 to 17.
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Algorithm 11 Edge intersection

Input: An edge e ∈ Ek, a point p = (xp, yp), the system S = {P (xp, y, z) =
Q(xp, y, z) = 0}.
Preconditions: (c1) p is not in Bk∂ and (c3) ∀ej ∈ Ek, p is not in the projection
of any box of approx(ej , δ).

Output: A set Xsol containing the unique intersection of e with Cseg if it exists,
Xsol = ∅ otherwise.

1: Let (Ci)
m
i=1 = approx(e, δ) and ∀1 ≤ i ≤ m, Ci = (xi,yi,zi) and Xi = (yi,zi)

2: for 1 ≤ i ≤ m s.t. xp ∈ xi and l(yi) > yp do //Ci is located above p

3: Let (Xsol,Xind) = IsolateSols(S,1.1Xi,min( 0.1w (xi)
2

, 0.1w (yi)
2

))

4: if Xsol 6= ∅ then
5: break
6: return Xsol

Consider now the case where Cseg does not intersect boxes of V k but intersects
some edges. The intersections of Cseg with the smooth and x-monotone components
ej ∈ Ek \ E′ are computed in the loop beginning in Step 2. Algorithm 11 computes,
if it exists, the unique intersection q′ = (xp, yq, zq) of ej with Cseg and returns a non-
empty set containing B∗j ⊂ Cseg with (yq, zq) ∈ i(B∗j ). B∗j is made disjoint in the
y-coordinate with the current intersection B∗ in Step 8, and B∗j is updated in Step 9
to contain the intersection of C with Cseg which projection is the closest above p. Due
to the orientation of half-edges, the face below an edge ej is described by the orbit of
ϕk containing h−j . Thus f∗ as updated in Step 9 is the face containing p.

Before describing the last case (i.e. when Cseg intersects some boxes of (Vx ∪
Vc ∪Vb) ∩ V k) we remark that Cseg can intersect only one boundary box in Vb ∩ V k
corresponding to the implicit point (B, S4) where S4 is defined as in Corollary 2.1
and B = (x,z) is such that xp ∈ x. Letting ej ∈ Ek be such that (B, S4) is a
connection of ej and approx(ej , δ) = (Ci)

mj

i=1, it follows from property (a2) of approx
that the boundary point implicitly defined by (B, S4) is either in C1 or in Cmj . If the
intersection (xp, u(y0)) is in C1 or in Cmj , the appropriated face has been determined
above. Otherwise, (B, S4) can be refined with KS4 until (xp, u(y0)) /∈ B, and this case
is handled in Steps 14 to 17 of the algorithm.

Suppose now that Cseg intersects some boxes of (Vx ∪ Vn) ∩ V k. We can assume
that there is a box C ∈ (Vx ∪ Vn) ∩ V k with l(y) < l(y∗), otherwise the output of
the algorithm is determined by the loop of Step 2 or Steps 14 to 17. Such a box does
not contain p from precondition (c2). The loop beginning in Step 10 finds the box
(x,y,z) ∈ (Vx ∪ Vn) ∩ V k intersecting Cseg that minimizes l(y), thus p lies in the
same face than the point (xp, l(y)). Note that (xp, l(y)) /∈ Bk∂ , otherwise (xp, l(y))
is the projection of a connection of C in C, and B∗ found in the loop beginning at
Step 2 necessarily satisfy l(y∗) ≤ l(y). As a consequence, the input arguments given
to Algorithm 8 in Step 13 satisfy its preconditions.

Proof:[Proof of termination of Algorithm 10] It is shown below that if its input
arguments satisfy preconditions (c1) and (c3), Algorithm 11 terminates. We have
already shown that Algorithm 8 terminates due to condition (c1). It only remains to
prove the termination of the while loop in Step 8. The points of the curve represented
by the boxes B∗ and B∗k belong to two different edges which are disjoint in projection
on the (x, y)-plane, so after a finite number of contractions the y-coordinates will be
disjoint intervals.
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Proof:[Proof of correctness and termination of Algorithm 11] Let approx(e, δ) =
(Ci)

m
i=1 and Ci = (xi,yi,zi) and Xi = (yi,zi). From properties (a2) and (a3)

of approx, e′ = C ∩
⋃m
i=1 Ci contains no x-extreme point of C and is a smooth x-

monotone curve. Hence its intersections with Cseg are regular solutions of S. From
property (a1) of approx, for any 1 ≤ i ≤ m, 1.1Ci does not intersect any box of any
other approximation. Hence for any 1 ≤ i ≤ m, 1.1Xi contains at most one solution
of S. If 1.1Xi contains a solution of S it is non-singular as a point of e′. As a first
consequence of this, the call IsolateSols(S,1.1Xi,min( 0.1w (xi)

2
, 0.1w (yi)

2
)) in Step 3

of Algorithm 11 terminates, and since any δ-approximation contains a finite number
of boxes, Algorithm 11 terminates for any input.

Recall now that e ⊂ e′. Since both e and e′ are smooth curves, a point of e′ belongs
to the same connected component of C \{c ∈ C|π(x,y)(c) is a singularity or a x-extreme
point of B∂}. Hence for any 1 ≤ i ≤ m, a solution of S in 1.1Xi is a point of the edge
represented by e. Reciprocally since e ⊂

⋃m
i=1 Ci (approx(e, δ) is a δ-approximation of

e), there exists 1 ≤ i ≤ m such that e∩Cseg is a solution of S in Xi satisfying xp ∈ xi
and l(yi) > yp from preconditions (c1) and (c3) and Xsol contains the corresponding
solution. The correctness of Algorithm 11 follows.

5.4 Embedding G∂

In this part we show how to compute an XPMap (H,H0, σ, α, ext, cont) representing
the topology of B∂ , as defined in Section 1. It is shown above how to compute a CMap
for each connected component Bk∂ of B∂ , how to identify its exterior face and how to
perform point-face location in Bk∂ . Thus computing the XPMap reduces to computing
the relation cont that assigns each exterior face to a non-exterior face of another CMap
or to the infinite face. We describe in Section 5.4.1 the construction of the relation
cont. Point-face location in an XPMap is discussed in Section 5.4.2.

5.4.1 Constructing the XPMap

The relation cont that assigns the exterior face of a CMap to a non-exterior face of
another CMap (or to the infinite face) can be computed iteratively thanks to the
following remark, that can be proved similarly to Remark 5.1.

Remark 5.1 Let Bk∂ and Bk
′
∂ with k, k′ > 1 be two components of B∂ , let C = (x,y,R)

be a leftmost box enclosing Bk∂ and let C′ = (x′,y′,R) be a leftmost box enclosing Bk
′
∂ .

If l(x) ≤ l(x′), then Bk lies in the exterior face of Bk
′
.

Suppose B1
∂ , . . . ,Bn

′
∂ are indexed with respect to increasing l(xk) where Ck =

(xk,yk,zk) is a leftmost box enclosing Bk∂ . As a consequence of Remark 5.1, given
k, k′, k′′ such that 1 ≤ k′′ < k < k′ ≤ n′, the exterior face of Bk∂ is not contained in
any non-exterior face of Bk

′
∂ and is contained in at least one non-exterior face of Bk

′′
∂

(since it is at least contained in a non-exterior face of B1
∂). As a second consequence,

if the exterior face fk of Bk∂ is contained in two non-exterior faces f ′′′, f ′′ of respective
components Bk

′′′
∂ ,Bk

′′
∂ with 1 ≤ k′′′ < k′′, then the exterior face fk′′ of Bk

′′
∂ is

contained in f ′′′ and fk is contained in the non-exterior face f
′′

of Bk
′′′
∂ ∪ Bk

′′
∂ .

Algorithm 12 uses these arguments in an iterative process to construct the XPMap
(H,H0, σ, α, ext, cont) representing the topology of B∂ . Recall that (H0, σ0, α0) is an
empty CMap representing the infinite face R2\B0. We denote by f0 the empty orbit of
ϕ0. The loop beginning in Step 2 computes CMaps (Hk, σk, αk) for Bk for 1 ≤ k ≤ n′,
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Algorithm 12 XPMap construction

Input: The graph G∂ and its connected components Gk = (V k, Ek, Ik) for 1 ≤ k ≤ n′
Output: An XPMap (H,H0, σ, α, ext, cont) representing the topology of B∂
1: Let H0 = ∅ and f0 represent the infinite face
2: for 1 ≤ k ≤ n′ do
3: Let (Hk, σk, αk) be the result of Algorithm 7 with input Gk

4: Let fk,C
k be the result of Algorithm 9 with input (Hk, σk, αk)

5: Let H = H1, σ = σ1, α = α1, ext = {(H1, f1)} and cont = {(f0, f1)}
6: Suppose Ck = (xk,yk,zk) for 1 < k ≤ n′
7: Re-index Gk, (Hk, σk, αk), fk,C

k wrt increasing l(xk) for 1 < k ≤ n′
8: for 1 < k ≤ n′ do
9: Let p be any point on W ∗(∂(π(x,y)(C

k)))
10: Let i = 0 and f = fk
11: while f = fk−i do
12: Let i = i+ 1
13: Let f be the result of Algorithm 10 with input p, (Hk−i, σk−i, αk−i) and

fk−i

14: Let H = H ∪ Hk, σ = σ ∪ σk, α = α ∪ αk, ext = ext ∪ {(Hk, fk)}, cont =
cont ∪ {f, fk}

15: return (H,H0, σ, α, ext, cont)

together with their exterior faces fk and the leftmost box enclosing Bk. Since B1
∂

is the connected component of B∂ containing ∂B0, its exterior face is necessarily
contained in the infinite face. In Step 5, an XPMap (H,H0, σ, α, ext, cont) encoding
the embedding of B1 is initialized with H = H1, σ = σ1, α = α1, ext = {(H1, f1)}
and cont = {(f0, f1)}.

In Step 7, leftmost boxes Ck are sorted with respect to increasing l(xk) and objects
are re-indexed to apply the arguments detailed above. Let k > 1, and consider the
k-th iteration of the for loop beginning in Step 8. Suppose the relation cont has been
properly constructed for B1

∂ , . . . ,Bk−1
∂ , i.e. (H,H0, σ, α, ext, cont) encodes the faces

of B<k∂ = B1
∂ ∪ . . . ∪ Bk−1

∂ . One has to find the non-exterior face of B<k∂ containing
the exterior face fk of Bk∂ . One first finds a point p in fk by taking any point on
W ∗(∂(π(x,y)(C

k))) as justified in Remark 5.1. Due to the property of a witness box, p
lies in the same face of B<k∂ as Bk∂ . The while loop in Step 11 finds this face by calling
Algorithm 10 with input p, (Hk−i, σk−i, αk−i) and fk−i for increasing i. Remark 5.2
below shows that this input meets the preconditions of Algorithm 10 for any i and
thus ensures the termination of these calls. An argument stated above shows that the
first non-exterior face f obtained is the inner face of B<k∂ containing fk, i.e. any other

non-exterior face f ′ of Bk
′
∂ containing fk contains f . As a consequence, after Step 14,

the relation cont is properly constructed for B1
∂ , . . . ,Bk∂ and (H,H0, σ, α, ext, cont)

encodes the faces of B<k+1
∂ .

Remark 5.2 Let C be a leftmost box enclosing Bk∂ , and p a point on W ∗(∂(π(x,y)(C))).
From point (iii) of Remark 5.1, p /∈ B. Since witness boxes of V are pairwise disjoint,
p is not in any box of V 1

∂ ∪ . . . ∪ V k−1
∂ . Then, ∀ei ∈ E1

∂ ∪ . . . ∪ Ek−1
∂ , p is not in any

box of approx(ei, δ), as a consequence of the property (ii) of the application approx.
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5.4.2 Point-face location in a XPMap

We finally propose here a procedure that, given any point p ∈ i(B0) and the XPMap
encoding the embedding B∂ , finds the face of B∂ to which p belongs. Such a procedure
is easily obtained by rewriting Algorithm 10 while generalizing it for XPMaps.

We restate, in this general setting, the preconditions that ensure the modified
algorithm will terminate: (c1′) p is not in B, (c2′) p is not in the projection of any box
of V∂ and (c3′) ∀ek ∈ E, p is not in the projection of any box of approx(ek, δ).

Conditions (c2′) and (c3′) can be satisfied by refining boxes of Vx ∪ Vn and δ-
approximations of elements of E, provided that (c1′) holds. Checking (c1′) with a
fully numeric method is challenging since it goes back to the problem of deciding
zero. In the special case where the coordinates of p are rational numbers and P,Q
are polynomials, this can be addressed with symbolic computation, by computing
g(z) = gcd(P (xp, yp, z), Q(xp, yp, z)). If degz(g) ≥ 1 then p ∈ B, in particular if
degz(g) = 2 and g has two distinct roots, p is a node of B and if g has a double root,
p is a cusp of B. Otherwise degz(g) = 0 and p /∈ B.

6 Implementation and Results

We implemented the method presented in this paper and tested it to compute the
topology of apparent contours of algebraic surfaces of degrees up to 15. We briefly
describe this implementation, then we present the experiments we carried out and
compare our approach with state-of-the-art methods. Let us recall the main steps
that are performed to compute the topology of an apparent contour:

(1) Computing the set Cx of x-critical points by calling IsolateSols on S5.

(2) Computing the set Cb of boundary points by calling IsolateSols on S1, S2, S3,
S4.

(3) Computing a δ-approximation (Ci)
m
i=1 of C with Algorithm 3.

(4) Computing the sets Dn of nodes and Dc of cusps. This is performed by solving
the ball system Sb by calling IsolateSols(Sb,.,0) for each Di and each Dij

as defined in Proposition 3.1. We denote by m∩ the number of non-empty Dij .
Then nodes and cusps are distinguished with Algorithm 4.

(5) Computing the set Cy of y-critical points with IsolateSols({P,Q,R′},Ci,0)
for each 1 ≤ i ≤ m, then separating the special points (i.e smooth critical points,
nodes and cusps of B) in the projection, as described in Section 4.2.

(6) Computing the sets Bx and Bn of witness boxes for x-critical (possibly cusp)
points and nodes of B.

(7) Computing the graph G∂ : the projections of connections of x-critical points
and nodes of B are made disjoint, then a δ-approximation for each connected
components of C ∩ C0 is computed with calls to Track while ensuring that
conditions (a1), (a2) and (a3) described in Section 5.1 are satisfied. Let us call
m′ the sum of the number of boxes of each such δ-approximation.

(8) Embedding the graph with Algorithm 12.

Note that all these steps terminate when the assumptions (A1), . . . , (A10) are satis-
fied. Moreover, the assumptions are generically satisfied and the algorithm terminates
if and only if the assumptions are satisfied. Indeed, if (A1), (A2) is not satisfied then
the tracking steps in (3) and (7) will not terminate. If (A6) or (A9) is not satisfied then
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we have several points that project on the same point and step 6 will not terminate,
since it cannot separate them. Finally, if (A3), (A4), (A5), (A7), (A8) or (A10) is not
satisfied, then some of the steps using IsolateSols will not terminate, since they will
be applied to a system with singular solutions.

6.1 Our implementation

The two cornerstones of our implementation are the procedure IsolateSols specified
in Algorithm 1 and the procedure Track specified in Algorithm 3 and described in
Appendix A.

Our implementation of the procedure IsolateSols with subdivision, centered-
form interval evaluation and Krawczyk operator is exhaustively described in [11]. It
uses adaptive multi-precision arithmetic. It is available in the mathematical software
SageMath4 as the package subdivision solver5. Solving a system of polynomial equa-
tions in an unbounded box reduces to solving several transformed systems in bounded
boxes (see. [25, Section 5.6] or [28, Section 5.10]). In particular, we don’t need to know
in advance the bounded interval z0 for the z-component. Solving a system on a box of
the shape x×y×R reduces to solving two systems on the bounded boxes x×y×[−1, 1]
and hence requires two calls to the solver provided by subdivision solver. Notice
that a δ-approximation of C ∩C0 yields bounds for the z-coordinates of C ∩C0. Once
Step (3) is performed, we use these bounds to avoid the second call in each algorithm
involving solving a system in a box with unbounded z-component.

The procedure Track is described in detail in Appendix A. In this description, we
assume that computations are carried out with arbitrary precision. We implemented
this procedure in Python within SageMath only for machine precision; our tracker stops
when the width of the boxes of the enclosure reaches the machine precision. However,
we never encountered this case in the experiments reported below. In Steps (3) and
(7), the initial value δ = 1 is used as input for Track. In step (7), the conditions
(a2) and (a3) are enforced during the tracking process. The condition (a1) is checked
a posteriori on the δ-approximations. Each time the latter condition does not hold,
i.e. each time two boxes Ce

i and Ce′
j of δ-approximations of edges e and e′ have a

non-empty intersection, the δ-approximations of e and e′ are refined within Ce
i and

Ce′
j while enforcing (a2) and (a3) until (a1) holds.

The other algorithms used by our approach have been implemented in Python

within SageMath.

6.2 Experimental data

The surfaces are defined by random dense polynomials P in Z[x, y, z] with odd total
degrees from 5 to 15 and integer coefficients chosen uniformly in J−28, 28K. We isolate
the singularities and compute the topology of the apparent contour of the surface
defined by P with two state-of-the-art methods and the approach described here. For
each degree, five instances are considered, and we give averages of sequential times in
seconds and standard deviations for each method.

4http://www.sagemath.org/
5http://subdiv-solver.gforge.inria.fr

http://www.sagemath.org/
http://subdiv-solver.gforge.inria.fr
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Figure 9: Left: the apparent contour of an algebraic surface of degree 13. Center
(resp. Right): a detailed view of the same curve in the dashed box of the leftmost
(resp. central) part. Cusps and nodes lying outside zooming areas are marked with
squares.

6.3 State-of-the-art methods

In [13], the singularities of an apparent contour are characterized as the real solutions
of a system of two polynomials that are coefficients of the sub-resultant chain. This
system can be solved with subdivision solver that has been designed as a solver
dedicated to large dense polynomials. We use this approach to isolate the singularities
in B0 = [−1, 1]× [−1, 1].

The package Isotop6 for Maple computes the topology of a plane curve in R2,
see [4]. Here, Isotop is used to compute the topology of the resultant of P and Pz
with respect to z.

6.4 Results

We report results obtained with these three methods for isolating the singularities and
computing the topology of the apparent contour of algebraic surfaces. We first give
details for one of the surfaces of degree 13 we tested before giving synthetic data for
surfaces of degrees from 5 to 15. Running times given below are sequential running
times in seconds on an Intel(R) Core(TM) i5-3317U CPU @ 1.70GHz machine with
Linux.

Details for a surface of degree 13. We detail the computation of the topology
of the apparent contour of one of the surfaces of degree 13 we considered. Figure 9 dis-
plays its apparent contour and Table 1 details each step of the computation. Columns
t give the running times. For Step (6), the column i gives the maximum number of
times a box isolating a singularity or an x-critical point is contracted before it can be
certified as a witness box. The symbol * signifies that multi-precision was required to
address this step.

6http://vegas.loria.fr/isotop/

http://vegas.loria.fr/isotop/
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Isolating singularities
Step (1) (2) (3) (4)

d t |Cx| t |Cb| t m, m∩ t |Dn|, |Dc|
13 13.7 14 3.44 16 9.28 1012, 2478 7.87 4, 7

Computing topology
Step (5) (6) (7) (8)

d t |Cy| t i t m′ t n′

13 1.57 8 33* 5 23.4 1940 0.34 2

Table 1: Computation of the apparent contour of an algebraic surface of degree 13.

Isolating singularities Computing topology
method Sub-resultant approach Our approach Isotop Our approach
domain B0 B0 R2 B0

d t ± σ n t ± σ n t ± σ t ± σ n
5 0.06 ± 0.04 0 1.60 ± 0.46 0 4.78 ± 0.26 3.17 ± 1.01 0
7 3.03 ± 3.30 0 3.73 ± 0.40 0 251 ± 16.1 8.13 ± 1.86 0
9 304 ± 478 1 10.2 ± 5.45 0 − 24.1 ± 16.2 0

11 >3600 4 36.0 ± 8.53 0 − 75.5 ± 13.5 0
13 − 43.5 ± 18.1 0 − 90.6 ± 37.9 1
15 − 97.9 ± 47.1 0 − 169 ± 71.0 0

Table 2: Sequential running times t in seconds (averaged over five runs), standard
deviations σ, number n of runs requiring multi-precision for isolating the singularities
and computing the topology of apparent contours of algebraic surfaces of degree d. B0

is [−1, 1]× [−1, 1] and − means that the process has not been run.

Table 2. The first group of columns reports on the isolation of the singularities of
the apparent contour in B0 with the approach using the sub-resultant system [13] and
Steps (1) to (4) of our approach. The former approach suffers from the size in term of
degree, number of monomials and bit-size of the coefficients of the equations of the sub-
resultant system. For instance, the first equation of this system for the first polynomial
of degree 9 we tested has degree 57, more than 1700 monomials and its coefficient bit-
size is more than 130. Furthermore, the running times have a high standard deviation,
and machine precision was not sufficient to carry out the computations for examples
of high degree.

The group of columns “Computing topology” refers to the computation of the
topology of the apparent contour, including the isolation of singularities. The column
Isotop reports the running times of Isotop applied to the resultant of P and Pz with
respect to z. As expected, the size of the resultant polynomial excludes this approach
for surfaces of high degree. We tried Isotop for d up to 8. For d = 8, the running
time was 1924 seconds.

In contrast, our method does not consider any resultant or sub-resultant polyno-
mial; hence we deal with systems having almost the same degree and bit size as the
input. On the other hand, we have up to four variables instead of two. The machine
precision was sufficient to isolate the singularities of all examples, and only one ex-
ample, the one detailed above, required use of more precision for the computation of
the topology. Singularities are characterized here as the solutions of the ball system
that involves four equations in four unknowns. The results in [12] already showed the
advantage of our subdivision solver over the symbolic approach, but they also showed
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the limitation of our approach when solving a four dimensional system on a large do-
main instead of a two dimensional one even with higher degree and bitsize. Here, the
δ-approximation of C enables us to filter the domain where the ball system is solved,
and the results of Table 2 show the efficiency of this strategy.

Table 3. This table details how the times reported in Table 2 are distributed among
the main steps that our method performs.

Isolating singularities Computing topology total
Step (1) (2) (3) (4) (5) (6) (7) (8)

d t t t t t t t t t
5 0.14 0.36 1.03 0.06 0.02 0.31 1.22 0.00 3.17
7 0.64 0.70 2.21 0.17 0.05 1.47 2.84 0.02 8.13
9 2.85 1.41 4.66 1.27 0.24 5.78 7.91 0.02 24.1

11 8.08 2.12 16.4 9.44 0.90 10.8 27.6 0.08 75.5
13 15.6 3.36 16.3 8.14 1.22 17.6* 28.1 0.06 90.6
15 30.5 4.87 29.1 33.3 2.12 24.7 45.2 0.00 169

Table 3: Distribution of times given in Table 2 between the main steps of our approach.
(1) x-critical points; (2) boundary points; (3) δ-approximation of C; (4) solving the
ball system; (5) y-critical points; (6) witness boxes singularities; (7) connecting special
points; (8) computing the XPMap; Symbol *: for one example, multi-precision was
required.

For the computation of the singularities in Steps (1) to (4): Step (2) solves systems
in 2 dimensions and is the least time consuming; Step (1) solves systems in 3 dimensions
in the large domain B0 × R which is more time consuming; Step (4) solves systems
in 4 dimensions in m+m∩ small boxes. For the particular case of degree 13 detailed
above, m+m∩ = 3490. Comparing with the results of [12] that performed isolation on
a unique large domain, the benefit the δ-approximation to reduce the solution domain
is dramatic.

In Step (5), the y-critical points are found by solving a system in 3 dimensions in
the m boxes of the δ-approximation of C. Comparing the running times to address this
step with the ones required for Step (1) illustrates again how using the δ-approximation
of C speeds up the computation.

In Step (6), witness boxes for x-extreme points and singularities are computed. It
is adressed by combining Algorithm 6, that contracts a box containing a node, and Al-
gorithm 5, that checks if the resulting box is a witness box, as well as their equivalents
for x-extreme points and cusps. In almost all cases we tried, Algorithm 5 succeeded
with one iteration of Algorithm 6. The time for Step (6) approximately corresponds
to |Cx|+|Dn| times half the time for Step (2), except when i is high (see details given
in Appendix B). It appeared in our experiments that most of the time spent in the
procedure associated with Algorithm 5 is used to construct the systems defining the
boundary points (that requires partial substitutions in large polynomials) rather than
to solve them. For the example of degree 13 detailed above, approximately 95% of
the time required by the latter procedure is spent defining these systems. For this
example, multi-precision arithmetic was required to carry out Step (6). Determining
a witness box for an x-extreme point for this particular example required 5 iterations
in the equivalent of Algorithm 6 for x-extreme points before the equivalent of Algo-
rithm 5 for x-extreme points certifies it to witness the x-extreme point. It should be
considered as a proof of robustness of our implementation more than as a drawback
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of the approach. Similarly to Step (2), Algorithm 5 involves isolating the intersections
of C on the boundaries of a cylinder. Step (2) requires two calls to the numerical
0-dimensional solver whereas in Algorithm 5 we use the bounds for the z-component
given by the δ-approximation of C ∩C0. Hence Algorithm 5 requires roughly half the
time of Step (2) to execute.

Among Steps (1) to (8), Step (7) is the most time consuming. It consists of two
substeps. First, δ-approximations of connected components of C ∩ C0 are computed
while ensuring that conditions (a2) and (a3) hold. This results in approximations with
smaller boxes than in Step (3); see the details in Appendix B. Then, the condition
(a1) is checked for each pair of δ-approximation. In most examples we tested, (a1) was
satisfied without refining the approximations. For the example of degree 13 detailed
above, computing the approximations required 18.8s and checking (a1) required 4.6s.

Most of the apparent contours we computed have only one connected component;
this explains the running times for Step (8). See also column n′ in the table in
Appendix B.

7 Conclusion

In this article, we provided an algorithm computing the XPMap of the projection of a
space curve. The space curve is defined by the intersection of two surfaces represented
implicitly by convergent interval functions. Compared to the state of the art, our
method is the first to solve this problem reliably for functions that are not polynomial.
Moreover, in the polynomial case, our experiments show that our method handles
polynomials of degree up to 15 that are not yet reachable by sub-resultant approaches.
As future work, we plan to generalize our method to the projections of curves from
Rn to R2. In this case, we would need to change the systems modelling the node and
cusp singularities, but the tracking of the curve extends easily. We would also like to
address the problem of computing the projection of 2-manifolds from R4 to R3.
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[9] Dominique Faudot and Dominique Michelucci. A new robust algorithm to trace
curves. Reliable Computing, 13(4):309–324, 2007.

[10] H. Hong. An efficient method for analyzing the topology of plane real algebraic
curves. Mathematics and Computers in Simulation, 42(4–6):571–582, 1996.
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Algorithm 13 isSolInSet((C, S),C,ε)

Input: An implicit point (C, S) defining a point p, a set C and a real number ε > 1.
Output: true if p ∈ C, false if p /∈ εC.
1: C′ = εC
2: while not ( (C ⊂ i(C′)) or (C ∩ C = ∅) ) do
3: C = KS(C)

4: if C ⊂ i(C′) then return true

5: return false

A Implementation of Algorithm 2

Several certified numerical path-tracking algorithms can be found in the literature
[9, 15, 21]. They approximate a smooth connected curve in a bounded box with a
sequence of sets (Ci)

mk
i=1. The sets Ci are in general boxes as in [9, 15]. It has recently

been proposed to use parallelotopes instead of boxes [21]; a parallelotope C is the image
by an affine transformation of a box C. Aligning parallelotopes along the tangent to
the curve yields a more efficient approximation.

For the sake of generality, we consider here approximating sets Ci that are either
boxes or parallelotopes. If C is such a set, h(C) denotes its box hull, that is the smallest
box containing C. The operators ∂, i() are directly generalized for parallelotopes. Let
C be a parallelotope and C, f be the box and the affine map such that C = f(C).
The width w (C) of C is the width of C and if ε ∈ R, the ε-inflation εC is defined as
f(εC).

Section A.1 introduces Algorithm 13 using ε-inflation to decide if an implicit point
lies in a set C. Section A.2 recalls the parallelotope path-tracking algorithm of [21],
and Section A.3 shows how it is adapted to meet the specifications of Algorithm 2.

A.1 Deciding if an implicit point lies in a set of the ap-
proximation

Let (C, S) define implicitly a point p. To check if p belongs to a set C, a naive approach
consists of contracting C on p until C ⊂ i(C) or C ∩C = ∅. If p lies on ∂C, this leads
to a non-terminating process. To tackle this pitfall, we use the ε-inflation approach
described in Algorithm 13, that takes as input C and a real number ε > 1 and returns
true if p ∈ C and false if p /∈ εC. Notice that when p ∈ εC \ C, it may return either
true or false.

Proof:[Proof of termination and correctness of Algorithm 13] Assume ε > 1 and
let C′ be εC. After applying Step 3 of Algorithm 13 a finite number of times, C is
strictly included in a ball of diameter ε−1

2
w (C). Hence C can not intersect both ∂C′

and ∂C; thus either C ⊂ i(C′) or C ∩ C = ∅, and the while loop of Algorithm 13
terminates, so does Algorithm 13.

Remark A.1 Let (C, S) be a point of C, and C and ε > 1 be such that both C ∩ C
and C ∩ εC are diffeomorphic to [0, 1]. If isSolInSet((C, S),C,ε) returns true, then
(C, S) defines a point on Ck ∩ i(εC), where Ck is such that C ∩ C = Ck ∩ C.

Proof:[Proof of Remark A.1] Suppose isSolInSet((C, S),C,ε) returns true, and

(C, S) defines a point on a connected component Ck
′
6= Ck of C in εC. Then C ∩ εC

contains two connected components of C, leading to a contradiction.
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A.2 The path-tracking algorithm of [21]

The authors of [21] propose a parameterized version of the Krawczyk operator to certify
that in a given set, in practice a parallelotope, a curve is diffeomorphic to [0, 1]. This
operator is the cornerstone of an algorithm that uses a classical adaptive step-length
control and constructs iteratively a certified approximation of a connected component
of a curve within a bounded initial domain. We state here the specifications of this
algorithm in our context of a curve of R3 defined by two polynomials P and Q.

Input: A system P = Q = 0 defining C, an initial bounded box C0, an initial point
p0 ∈ C0, two strictly positive real numbers α, β, an integer d ∈ {−1, 1}.
Output: A flag in {success, failure} and a sequence Cenc. If the flag is failure,
Cenc is empty. Otherwise, Cenc is a sequence of sets (Ci)

m
i=1 with m > 1 such that

C ∩Ci is diffeomorphic to [0, 1] for each i, Ci ⊂ i(C0) for i /∈ {1,m} and C ∩
⋃m
i=1 Ci is

diffeomorphic to a one-dimensional manifold. Furthermore, one has either C1∩Cm 6= ∅
and in this case C∩

⋃m
i=1 Ci is diffeomorphic to a circle, or C1∩∂C0 6= ∅ or Cm∩∂C0 6= ∅

and in this case C ∩
⋃m
i=1 Ci is diffeomorphic [0, 1].

The initial point p0 is used to construct an initial parallelotope C0, and this step
succeeds if p0 is close enough to C. Otherwise the flag failure is returned. Then, d
determines the direction in which C is followed. At each step, a new parallelotope Ci
with a step-length γ is constructed, with α < γ < β. Several properties are checked
on Ci that guarantee the correctness of the algorithm, and γ is decreased until either
γ ≤ α or Ci satisfies the latter properties. When γ ≤ α, the algorithm stops and
returns the flag failure. In case of success, γ is increased until it reaches β.

When α > 0, the algorithm terminates. When α = 0, it terminates with the flag
success, provided that C is smooth in C0 and p0 is sufficiently close to C.

A.3 Meeting the specifications of Algorithm 2

We now show how to modify the algorithm described above to meet the specifications
of the procedure Track described in Algorithm 2. These specifications are reproduced
here for the sake of readability.

Input: A system P = Q = 0 defining a smooth curve C, a domain C0, an implicit
point (C0, S0) of C, a finite set {(Cj , Sj)}j of implicit points containing the boundary
points of C in C0 and (C0, S0), δ > 0.
Output: A δ-approximation of the connected component of C∩C0 containing (C0, S0)
and the set Con of implicit points of {(Cj , Sj)}j that are on the same connected
component than (C0, S0).

First, the procedure Track takes as input a domain C0 instead of a box C0; this
leads in the algorithm to testing inclusion of parallelotopes within a domain rather
than within a box. Recall that in our case the domain is possibly unbounded in z. We
also fix α to 0. Provided (A2) and (A3) are satisfied (C is smooth and bounded above
B0), this modified algorithm terminates with flag success if p0 is sufficiently close to
C.

Then, the procedure Track takes as input a finite set {(Cj , Sj)}j and returns
a set Con of implicit points of {(Cj , Sj)}j that are on the approximated connected
component. To achieve this goal, we modify the algorithm so it constructs a pair
(Ci, εi) with εi > 1 such that both C ∩ Ci and C ∩ εiCi are diffeomorphic to [0, 1].
According to Remark A.1, if the procedure isSolInSet((Cj , Sj),Ci,εi) returns true,
it is a guarantee that (Cj , Sj) defines a point on C in εiCi. We also require that at
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Algorithm 14 TrackFromPoint(< P,Q >,C0,p0,{(Cj , Sj)}j,δ)
Input: A system P = Q = 0 defining C, an initial domain C0, an initial point

p0 ∈ i(C0), a finite set {(Cj , Sj)}j of implicit points containing the boundary
points of C in C0, δ > 0.

Output: A flag in {success, failure}, a sequence Cenc and a set Con. If the flag is
failure, Cenc and Con are empty. Otherwise, Cenc is the sequence of sets (Ci)

m
i=1

with m > 1 such that (h(Ci))
m
i=1 is a δ-approximation of a connected component

Ck of C ∩ C0 and Con contains implicit points of {(Cj , Sj)}j that are on Ck.

most one point of {(Cj , Sj)}j is in each Ci; this can be tested in the same way. The
latter property guarantees in particular that each Ci intersecting the boundary of the
domain contains no more than one boundary point and that the extremities of the
approximated connected component of C ∩ C0 are properly identified and reported in
Con.

Finally, the procedure Track takes as input δ > 0 and returns a δ-approximation
of a connected component. To achieve this, the condition w (h(Ci)) < δ is enforced
at each iteration, and this replaces the condition γ ≤ β. Then, when the algorithm
described in Section A.2 with d = 1 as input terminates with the flag success and if
it is detected that the tracked component is diffeomorphic to [0, 1], another call with
d = −1 allows approximation of the whole connected component.

These modifications give rise to the procedure TrackFromPoint(,,,,) specified in
Algorithm 14. When assuming (A2) and (A3), this algorithm terminates with the flag
success if p0 is sufficiently close to C.

In contrast to the latter procedure, Track takes as input an implicit point (C0, S0)
on C rather than a point p0 and guarantees that the returned δ-approximation is a
δ-approximation of the connected component containing (C0, S0). One can use p0 =
m
(
C0
)

and call the procedure TrackFromPoint(< P,Q >,C0,p0,{(Cj , Sj)}j,δ).
When the returned flag is success, the obtained δ-approximation is not necessarily the
one of the connected component containing (C0, S0), in particular when two connected
components are close to m

(
C0
)
. On the other hand, since (C0, S0) ∈ {(Cj , Sj)}j , the

returned δ-approximation is the one of the connected component containing (C0, S0)
if and only if (C0, S0) ∈ Con. If it is not the case, C0 is contracted with KS0(C0)
and TrackFromPoint(< P,Q >,C0,m

(
C0
)
,{(Cj , Sj)}j,δ) is called again. This is

performed until the returned flag is success and (C0, S0) ∈ Con. The termination of
this recursion in ensured, since m

(
C0
)

becomes arbitrarily close to C and the initial
set of the approximation will contain the implicit point (C0, S0).

Thus, after a finite number of iterations, TrackFromPoint(,,,,) returns the flag
success, and (h(Ci))

m
i=1 and Con are a suitable output for Track with arguments

(< P,Q >,C0, (C
0, S0), {(Cj , Sj)}j , δ).
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B Details for Results

Isolating singularities
Step (1) (2) (3) (4)

d t |Cx| t |Cb| t m, m∩ t |Dn|, |Dc|
5 0.13 4 0.36 4 0.59 89, 110 0.03 0, 1
5 0.14 1 0.36 4 0.99 139, 177 0.06 0, 1
5 0.09 0 0.36 8 0.67 45, 51 0.01 0, 0
5 0.21 2 0.36 8 1.57 236, 651 0.17 0, 1
5 0.15 4 0.36 8 1.31 171, 168 0.04 0, 0

7 0.51 1 0.70 8 2.63 404, 415 0.16 0, 0
7 0.76 5 0.73 4 2.40 349, 455 0.23 3, 2
7 0.49 0 0.69 2 2.63 492, 524 0.21 0, 0
7 0.65 6 0.70 6 1.71 248, 248 0.08 0, 0
7 0.75 7 0.70 4 1.66 243, 390 0.19 0, 3

9 2.63 7 1.24 4 2.61 379, 439 0.65 2, 2
9 2.28 5 1.24 6 2.84 397, 519 1.73 2, 1
9 2.05 4 1.24 4 1.48 210, 323 0.34 0, 3
9 5.11 13 1.26 10 10.9 1623, 2336 3.28 5, 5
9 2.21 2 2.05 8 5.41 453, 449 0.34 0, 0

11 10.4 11 2.21 18 18.4 2482, 3995 7.39 4, 4
11 8.50 12 2.07 8 12.5 1721, 2700 5.23 7, 7
11 6.17 8 2.08 6 17.0 2543, 11269 22.7 1, 6
11 7.12 6 2.11 10 11.1 1523, 2443 4.16 2, 4
11 8.17 5 2.11 8 22.8 3297, 3841 7.68 0, 2

13 10.3 3 3.38 6 9.91 1144, 1227 2.45 1, 1
13 13.7 14 3.44 16 9.28 1012, 2478 7.87 4, 7
13 13.7 7 3.25 12 6.40 706, 1257 2.89 1, 3
13 19.5 11 3.29 10 25.7 3159, 5570 15.3 5, 6
13 20.9 5 3.42 10 30.5 3647, 4713 12.1 3, 3

15 21.3 4 4.98 4 9.19 968, 1543 5.27 1, 3
15 28.3 8 4.89 12 41.7 4439, 7798 108 5, 3
15 39.2 10 4.80 10 18.4 1986, 3116 15.9 5, 5
15 32.7 10 4.83 10 37.0 3754, 6380 25.5 0, 3
15 30.9 10 4.82 14 39.2 4095, 8461 11.6 0, 0

Computing topology
Step (5) (6) (7) (8)

d t |Cy| t i t m′ t n′

5 0.02 3 0.57 1 0.99 197 0.00 1
5 0.02 4 0.14 1 1.28 257 0.00 1
5 0.00 2 0.00 0 0.50 109 0.00 1
5 0.02 3 0.29 1 1.99 353 0.00 1
5 0.02 2 0.58 1 1.35 255 0.00 1

7 0.04 4 0.30 1 2.52 419 0.00 1
7 0.09 6 2.53 1 4.71 712 0.06 2
7 0.03 0 0.00 0 2.46 490 0.00 1
7 0.02 3 1.84 1 1.92 315 0.00 1
7 0.06 3 2.71 3 2.59 432 0.05 2

9 0.28 6 7.89 6 5.88 839 0.00 1
9 0.15 5 3.92 1 4.55 685 0.00 1
9 0.25 6 2.23 1 2.23 358 0.10 2
9 0.38 11 13.0 6 21.8 2400 0.00 1
9 0.16 1 1.82 1 5.06 472 0.00 1

11 0.96 9 14.4 1 31.6 3041 0.00 1
11 0.82 15 18.1 1 27.8 2743 0.20 2
11 1.26 10 9.11 1 31.2 3375 0.19 2
11 0.84 8 7.71 1 17.5 2026 0.00 1
11 0.64 5 4.84 1 29.7 3392 0.00 1

13 0.42 3 6.05 1 12.1 1378 0.00 1
13 1.57 8 33.6* 5 23.4 1940 0.34 2
13 1.26 12 12.0 1 11.1 1236 0.00 1
13 1.64 9 24.2 1 47.8 3969 0.00 1
13 1.23 6 12.0 1 46.2 3945 0.00 1

15 1.06 5 11.3 1 12.2 1197 0.00 1
15 2.91 13 29.7 1 71.9 5161 0.00 1
15 2.86 8 36.2 2 35.0 2799 0.00 1
15 2.22 6 23.5 1 52.3 4019 0.00 1
15 1.55 5 22.5 1 54.5 4166 0.00 1
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