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Massive MIMO Channel Estimation taking into
account spherical waves

Luc Le Magoarou, Antoine Le Calvez, Stéphane Paquelet
b<>com, Rennes, France

Abstract—Massive multiple-input multiple-output (MIMO)
systems are key technological components of fifth generation
(5G) wireless communication systems. In such a context,
geometric considerations show that the largely adopted plane
wave model (PWM) of the channel potentially loses its validity.
An alternative is to consider the more accurate but more
complex spherical wave model (SWM). This paper introduces
an intermediate parabolic wave model (ParWM), more accurate
than the PWM while less complex than the SWM. The validity
domains of those three physical models are assessed and
estimation algorithms for the SWM and ParWM are proposed,
showing a promising performance complexity trade-off.

Index Terms—MIMO, physical models, channel estimation.

I. INTRODUCTION

Massive multiple-input multiple-output (massive MIMO)
is an essential technology for future fifth generation (5G)
wireless communication systems [1]–[4]. Using several
antennas allows to exploit the spatial dimension to achieve
high capacity, reliability, and energy efficiency. The term
“massive” refers to systems with up to hundreds of antennas
with much better performance. A typical application is
in cellular networks with a base station composed of
many antennas and user terminals with few antennas,
commonly referred to as multi-user MIMO (MU-MIMO).
Massive MIMO antenna arrays are large with respect to the
wavelength, so that the compactness of the system becomes
a challenge. Millimiter wave (mmWave) [5], [6] operating
bands mitigate this issue by reducing the wavelength.

The MIMO channel, assumed static and considered at a
single subcarrier with Nt transmit antennas and Nr receive
antennas, is usually represented in the frequency domain by
the channel matrix H∈CNr×Nt containing the complex gains
linking all the transmit/receive antenna couples. Knowledge
of this matrix is required both at the transmitter and receiver
to achieve the tremendous MIMO capacity [7]. Estimating
the entries of H amounts to determine NrNt complex
coefficients, which is not suitable in massive MIMO systems
for which this number may be very high. It is thus convenient
to consider a parametric channel estimation [8]: injecting
a priori information about the channel (combining antenna
array geometry and propagation properties) allows to reduce
the estimation complexity.

Traditionally the transmitter and receiver are assumed to
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be separated by a large distance with respect to their antenna
array size (greater than the Fraunhofer distance [9]), so that
the spherical wavefronts are well approximated by planes.
This simplifying hypothesis is known as the plane wave
assumption, the corresponding physical model being referred
to as the plane wave model (PWM). For massive MIMO
systems involving up to several hundreds of antennas, i.e.
much larger arrays, this model is not always valid and the
curvature of the wavefronts cannot be neglected. In such
situations, more complex but more accurate models such as
the spherical wave model (SWM) might be required.

Contributions. In this paper, three physical parametric
channel models applicable to any type of antenna array
are presented. The well-known PWM and SWM are first
recalled and an intermediate parabolic wave model (ParWM)
is introduced, that is more accurate than the PWM while less
complex than the SWM. The second contribution consists
in studying the validity domains of the three models using
a relative squared error metric more relevant to channel
estimation than the classically used phase-shift metric. The
final contribution is to propose computationally efficient
channel estimation algorithms taking into account ParWM
and SWM and compare them to classical algorithms assuming
the PWM in a multi-user MIMO scenario.
Related work. The PWM validity issue as well as the need for
the SWM to describe massive MIMO channels have already
been studied in the literature [10]–[16]. So far, the studies
are particularized either to linear and/or planar arrays, which
yields less general and more complex analytical expressions
and interpretations. In this paper the PWM and SWM
analytical expressions are given adopting the generalization
to any antenna array [8], and a new physical model is
proposed: the ParWM. Different metrics are studied in the
state of the art highlighting the PWM limits and the SWM
benefits: in [10], [14] the authors investigate the correlation in
single-user MIMO (SU-MIMO) and in MU-MIMO scenarios;
in [10]–[12], [15], [16] the channel capacity issue is tackled;
in [9], [13] the phase-shift difference induced by the SWM
is used to define the near/far field boundary of large antenna
arrays. Here the models validity domains are characterized
through a relative squared error metric quantifying the overall
error on the channel matrix: it is discussed and compared
to phase-shift considerations as presented in [9], [13].
Finally, channel estimation algorithms taking into account the
curvature of the wavefronts are proposed here for the first
time, to the best of the authors’ knowledge.



II. PROBLEM FORMULATION

Notations. Matrices and vectors are denoted by bold upper-
case and lower-case letters: A and a (except 3D "spatial"
vectors that are denoted −→a ); its entry at the ith line and jth
column by: aij . AT and A∗ denote a matrix transpose and
conjugate, respectively. The vectorization operator and the
identity matrix are denoted by vec(·) and Id respectively.
〈·〉, ‖ · ‖2 and ‖ · ‖F denote the Hermitian inner product, the
L2-norm and the Frobenius norm.
Geometric channel model. Let us use the channel model of
[8], in which the transmit (receive) antenna array is described
by the positions of its antennas denoted −→at,j , j = 1, ... ,Nt
(−→ar,i, i = 1, ... , Nr) with respect to its centroid Ot (Or).
Note that the coordinate systems used at the transmitter and
receiver are in general different. This description is very
general: it is applicable to any type of antenna array, not only
to ULA and UPA as mostly found in the literature.

Each propagation path is described in the frequency
domain by a complex gain ρejφ expressing the channel
between the centroids Ot and Or, a direction of departure
(DoD) −→ut (expressed in the transmitter coordinate system) and
a direction of arrival −→ur (expressed in the receiver coordinate
system). Denoting D the distance between the two centroids
Ot and Or and Dij is the distance between the j-th transmit
antenna and the i-th receive antenna, the channel for this
antenna couple is classically expressed [10]–[16] as

hij=ρejφe−j 2πλ (Dij−D), (1)

where λ is the wavelength and the quantity 2π
λ (Dij −D) is

the phase shift with respect to the reference points located
at Ot and Or. It has an important impact since it involves a
division of the lengths difference Dij−D by the wavelength
λ which can be very small (1cm at 30GHz). Note that
an amplitude fluctuation term also exists but is reasonably
neglected since the ratio D

Dij
is very close to one in practice,

because the antenna arrays are in general much smaller than
the propagation distance.
Spherical Wave Model. Using the SWM consists in
computing ∆SWM,ij ,Dij−D using the channel parameters.
In a single path LoS scenario, geometric considerations using
the transmit coordinate system lead to

∆SWM,ij = ‖−−→at,j+D−→ut+R(δ)−→ar,i‖2−D

= D
(√

1+
2(−−→ar,i.−→ur−−−→at,j .−→ut)

D
+
‖R(δ)−−→ar,i−−−→at,j‖2

2

D2 −1
)
,

(2)
where −−→at,j is the vector from the j-th transmit antenna to Ot,
D−→ut is the vector from Ot to Or and R(δ)−→ar,i is the vector
from Or to the i-th receive antenna expressed in the transmit
coordinate system (R(δ) is the rotation matrix mapping the
receiver coordinate system to the transmit one which, given
−→ut and −→ur, depends only on a real parameter δ quantifying
the rotation around the axis OtOr). The DoD and DoA being
physically the same in a LoS scenario, R(δ)−→ur =−→ut , which
allows to obtain the second line of the equation. Note that
in a single-antenna receiver case (i.e. Nr = 1 and −−→ar,1 =

−→
0 )

which is considered hereafter, R(δ) can be omitted. Injecting
(2) in (1) yields the spherical channel coefficient

hSWM,ij=ρejφe
−j2πDλ

(√
1+

2(−−→ar,i.
−→ur−−−→at,j .

−→ut)
D +

‖R(δ)−−→ar,i−
−−→at,j‖2

D2 −1
)
.

Therefore the channel matrix HSWM is a deterministic function
of a set of eight parameters denoted θ,

{(
ρ,φ,−→ut ,−→ur,D,δ

)}
(two real parameters are necessary to describe each direction).
With a large D, it is possible to perform a Taylor expansion
on (2), yielding

∆SWM,ij = −→ar,i.−→ur−−→at,j .−→ut

+ 1
2D

[
‖R(δ)−→ar,i−−→at,j‖

2−(−→ar,i.−→ur−−→at,j .−→ut)2
]

+ o
( (Rt+Rr)2

2D

)
,

(3)
where Rx = max

i
‖−→ax,i‖ with x = t,r. What if only the first

few orders of the expansion are considered ?
Plane Wave Model. Approximating ∆SWM,ij by its first
order Taylor expansion yields

∆PWM,ij=−→ar,i.−→ur−−→at,j .−→ut ,
and leads to the well-known PWM where spherical wavefronts
are approximated by planes. The PWM channel coefficient is
then

hPWM,ij=ρejφe−j 2πλ (−−→ar,i.−→ur−−−→at,j .−→ut),

and the PWM channel matrix can be expressed as

HPWM =
√
NtNrρejφer(

−→ur)et(−→ut)H ,
where contributions to the phase shift of the transmitter and
receiver are gathered in the well-known steering vectors

ex(−→u ), 1√
Nx

 e−j 2πλ
−−→ax,1.−→u

...
e−j 2πλ

−−−→ax,Nx .
−→u

,withx= t,r.

Steering vectors depend only on the direction of propagation
and are insensitive to the transmission distance D. The PWM
is thus by construction unable to take into account the cur-
vature of the wavefronts. The PWM channel matrix HPWM
is a deterministic function of a set of six parameters denoted
θ ,

{(
ρ,φ,−→ut ,−→ur

)}
, which makes it less complex than the

SWM but also less accurate especially when D is small, as
will be shown in section III.
Parabolic Wave Model. The two models presented so far are
extreme: the SWM considers spherical wavefronts and the
PWM approximates the spheres by planes. An intermediate
solution is to approximate spheres by paraboloids by
considering the second order of the Taylor expansion derived
in (3), yielding

∆ParWM,ij=−→ar,i.−→ur−−→at,j .−→ut+ 1
2D

[
‖R(δ)−→ar,i−−→at,j‖

2−(−→ar,i.−→ur−−→at,j .−→ut)2
]
.

This expression comprises the PWM term and a correction
whose amplitude is inversely proportional to the distance D.
The ParWM channel coefficient is then

hParWM,ij=ρejφe
−j 2πλ

(
−−→ar,i.−→ur−−−→at,j .−→ut+ 1

2D

[
‖R(δ)−−→ar,i−−−→at,j‖2−(−−→ar,i.−→ur−−−→at,j .−→ut)2

])
.



HParWM is a deterministic function of a set of eight parameters
denoted θ,

{(
ρ,φ,−→ut ,−→ur,D,δ

)}
. Intuitively it is obvious that

the ParWM is more accurate than the PWM but less than the
SWM: it will be characterized quantitatively in section III.
However having more parameters to estimate makes it more
complex than the PWM highlighting an accuracy/complexity
trade-off. It has the same number of parameters as the
SWM but is more tractable: its simpler expressions ease the
interpretations and getting rid of the square root might have an
interest for hardware implementation of estimation algorithms.
Single-antenna receiver and multipath channel. As men-
tioned previously, the three physical models are valid for any
Nt, Nr in a single path LoS scenario. However, further assum-
ing a single antenna receiver (Nr=1 which implies −−→ar,1 =

−→
0 )

allows to simplify the derivations. In that particular case, the
above expressions are also valid for paths that originate from
reflections on perfect planes [14]. The single-antenna receiver
case is of interest since it corresponds to a cellular network
scenario with a multi-antenna base station and multiple single-
antenna user terminals [10], [11], [14], it is studied in the re-
maining of the paper. It allows to derive a general expression of
the channel valid for the three models in a multipath scenario
(p paths) as a linear combination of characteristic vectors:

hM=
√
Nt
∑p

k=1
ρkejφkeM(−−→ut,k,Dk) (4)

where −−→ut,k and Dk are the DoD and distance of the k-th
path, M denotes the considered model (PWM, ParWM or
SWM), and the characteristic vector eM(−−→ut,k,Dk) takes the
general form

eM(−−→ut,k,Dk)= 1√
Nt

 e−j 2πλ ∆M,1k

...
e−j 2πλ ∆M,Ntk

,
with
• ∆PWM,jk=−−→at,j .−−→ut,k,

• ∆ParWM,jk=−−→at,j .−−→ut,k+ 1
2Dk

[
‖−→at,j‖

2−(−→at,j .−−→ut,k)2
]
,

• ∆SWM,jk=
√
D2
k−2Dk(−→at,j .−−→ut,k)+‖−→at,j‖

2

2−Dk.

These expression are obtained simply by considering Nr = 1
and −−→ar,1 =

−→
0 in the expressions of ∆PWM,ij , ∆ParWM,ij and

∆SWM,ij . Note that the PWM characteristic vectors depend
only upon −→ut , they are simply steering vectors. On the other
hand, the distance D has an influence on the ParWM and
SWM characteristic vectors, since it determines the curvature
of the wavefronts.

III. VALIDITY DOMAINS

In this section, the goal is to characterize the distance
ranges where the different models are describing correctly
the channel in the simple LoS case. The channel is assumed
to follow the SWM and the aim is to assess the PWM and
ParWM accuracies.
Approaches. In the literature [9], [13] a phase shift
difference of at most π

8 with respect to the SWM phase shift
2π
λ ∆SWM,jk is used to define the PWM validity. Bounding

2π
λ |∆SWM,jk−∆PWM,jk| and 2π

λ |∆SWM,jk−∆ParWM,jk| using
the fact that |−→at,j .−→ut |≤Rt, this yields

• D≥ 8R2
t

λ for the PWM, this boundary is often called the
Fraunhofer distance [9].

• D≥
√

8R3
t

λ for the ParWM, this boundary is sometimes
called the Fresnel distance [9].

This method has several drawbacks: it considers an arbitrary
phase-shift difference of π

8 , does not apply to the overall
channel matrix (it is based on individual channel coefficients)
and is independent of the relative position of the emitter
and receiver. To overcome these drawbacks another metric is
introduced called relative model approximation error (rMAE):

rMAE=

∥∥h−projM(h)
∥∥2

2

‖h‖22
,

where projM(u) , argminx∈M ‖u−x‖2 and h refers to
the true channel (the SWM being taken as the reference,
h = hSWM). The rMAE assesses the best approximation of
the channel that can be obtained with the considered model.
Setting. The objective is to study this new metric in a single
path LoS scenario varying the array shape (ULA, square UPA),
the number of antennas (64, 256), the emitter-receiver distance
(from λ to 105λ) and the considered model. A λ

2 antenna
spacing and a single-antenna receiver located in front of the
transmit array (yielding a DoD orthogonal to the array) are
considered. It is to be stressed that the obtained curves are
parameterized by the wavelength and thus valid irrespective of
the band, even though massive MIMO antenna arrays are more
likely to be used at small wavelength (e.g. millimeter waves).

Fig. 1: rMAE for the PWM and ParWM varying D, Nt and
the array shape.

Results. The figure 1 provides rMAE plots as a function of
the normalized distance, expressed on a logarithmic scale, for
different configurations. Several comments are in order:
• As expected, at very high distances the rMAE converges

to 0 meaning all the models are equivalent and describe
the channel correctly. Nevertheless, the convergence occurs
at distances much smaller for the ParWM than for the
PWM: for instance, with a ULA of 256 antennas, obtaining
rMAE< 5% at 30GHz requires D> 2.5m for the ParWM
and D> 170m for the PWM. In such a setting, the PWM
is not suitable, whereas the ParWM is sufficiently accurate.



Obviously considering a ULA with less antennas (here 64)
reduces the critical distances.

• Another important observation is that even with many
antennas, UPAs do not incur large errors: a rMAE of 5%
is reached at 1m with 256 antennas. This is simply because
for a given number of antennas, UPAs are much smaller
than ULAs. Actually, Rt is proportional to Nt for an ULA
and to

√
Nt for an UPA.

• Finally, the yellow (red) vertical line gives the distance
boundary for the ParWM (PWM) computed using phase
shifts with a ULA of 256 antennas. Beyond this line which
corresponds to D=15m (D=320m) at 30GHz, the error is
as expected negligible.
This study highlights the limits of the PWM at short

distances in a novel way, considering the channel matrix
globally. On the other hand, the ParWM is shown to be
accurate at such short distances, under which users are likely
to be present in practical situations. Additionally, it clearly
shows that ULAs are more challenging for the PWM than
UPAs for which the PWM is accurate from short distances,
which is in line with theory.

IV. ESTIMATION ALGORITHMS

In the previous section, the intrinsic accuracy of models
was assessed. Let us now study how to estimate the channel
using these models, based on noisy observations. Indeed,
channel state information (CSI) is essential to optimize the
capacity of mMIMO systems. Consider a training based
estimation strategy in which Ns noisy linear measurements
of the channel are obtained:

y=Xh+n, (5)

where y ∈ CNs is the observation, X ∈ CNs×Nt is the
obervation matrix and n ∈ CNs is the noise vector. Under
the additive white Gaussian noise (AWGN) assumption
(n ∼ CN (0, σ2Id)), a classical estimation technique is the
maximum likelihood (ML), which according to the considered
models (4) can be written as

minimize
E,α

∥∥y−XEα
∥∥2

2
, ĥ←Eα

where E, (eM(−−→ut,1,D1),...,eM(−−→ut,p,Dp)), α,
√
Nt(ρ1ejφ1 ,

... ,ρpe
jφp)T and ĥ is the channel estimate. Note that given

E, the optimal vector α can be obtained as the solution of
a least squares problem as αopt = (EHXHXE)−1EHXHy,
so that in the end channel estimation amounts to find an
optimal E, i.e. an optimal set of p characteristic vectors
{eM(−−→ut,1,D1),...,eM(−−→ut,p,Dp)}.
Greedy strategy for PWM. Looking for the p vectors
jointly yields a very complex optimization problem. Instead,
greedy strategies have been proposed in the PWM case
which consist in building a dictionary of characteristic
(steering) vectors corresponding to N−→ut DoDs and applying
a sparse recovery algorithm such as orthogonal matching
pursuit (OMP) [17], [18]. This amounts to estimate the paths
one by one, i.e. building the matrix E column by column.
Denoting E(k),(ePWM(−−→ut,1,D1),...,ePWM(−−→ut,k,Dk)) the state
of the matrix E at the k-th iteration, the optimal vector
α(k)← (E(k)HXHXE(k))−1E(k)HXHy is computed so that

a residual r(k+1)←y−XE(k)α(k) is used at the next iteration.
The actual choice of the k-th column of E is done by finding

−−→ut,k←argmax
−→ut

∣∣r(k)HXePWM(−→ut)
∣∣∥∥XePWM(−→ut)

∥∥
2

, (SPWM)

among the N−→ut test directions. The complexity of this strategy
is dominated by the computation of N−→ut inner products in CNt .
Joint strategy for SWM and ParWM. One possible,
although naive way to handle the SWM and ParWM is to
directly adapt the previous strategy except that the choice of
the k-th column of E is done by finding

−−→ut,k,Dk←argmax
−→ut,D

∣∣r(k)HXeM(−→ut ,D)
∣∣∥∥XeM(−→ut ,D)

∥∥
2

, (Sjoint)

where M stands for ParWM or SWM. Testing jointly
N−→ut directions and ND distances, solving this optimization
problem amounts to test N−→utND vectors eM(−→ut , D). This
yields a complexity dominated by the computation of N−→utND
inner products in CNt .
Sequential strategy for SWM and ParWM. In order to re-
duce the computational cost, it is possible to depart more from
the classical OMP by estimating the direction and distance
sequentially, assuming an infinite distance during the direction
determination (which amounts to consider the PWM), yielding

−−→ut,k←argmax
−→ut

∣∣r(k)HXePWM(−→ut)
∣∣∥∥XePWM(−→ut)

∥∥
2

,

Dk←argmax
D

∣∣r(k)HXeM(−−→ut,k,D)
∣∣∥∥XeM(−→ut ,D)

∥∥
2

.

(Sseq)

Testing N−→ut directions and ND distances, solving this opti-
mization problem amounts to test N−→ut vectors ePWM (−→ut ,D)
and then ND vectors eM(−−→ut,k,D). This yields a complexity
dominated by the computation of only N−→ut + ND inner
products in CNt .
Preliminary experiment. Let us compare empirically the
three aforementioned strategies in a multi-user MIMO
scenario, with realistic channels generated by the QuaDRiGa
channel simulator [19]. We consider a micro-cell operating at
a frequency of 28 GHz with the 3GPP_38.901_UMi_LOS
scenario of QuaDRiGa. We use a base station (BS) equipped
with an ULA comprising 256 antennas (separated by half-
wavelengths) at a height of 5 meters and one hundred users
equipped with a single antenna at a height of 1.5 meters,
which are randomly located at an azimuth angle between
−45° and 45° with respect to the BS array broadside and at
a distance between 10 and 20 meters. The idea is to mimic a
base station on the frontage of a building communicating with
users in the adjacent street. The SNR is set to 5 dB and it is
assumed that the users send orthogonal pilots to the BS. This
fits the framework of (5) with X = Id for each user (after
correlation at the BS). N−→ut = 300 test directions uniformly
sampling [0,π], and ND = 30 test distances logarithmically
distributed between 1 and 500 meters are tested.
Results. The experiment results for a varying number of
estimated paths p are shown in figure 2, with the average
estimation time of each method . The metric used to assess
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Fig. 2: Comparison of the estimation algorithms.

the estimation strategies is the relative error ‖h−ĥ‖
2
2

‖h‖22
averaged

over the 100 users, and the classical least-squares estimator
is also shown as a reference. Several comments are in order:
• First of all, as expected, the strategies (Sjoint) and (Sseq)

are much better than (SPWM). this is because they take
into account the wavefronts curvature. They are also better
than the least-squares (this is especially true at low SNR),
because of the low number of parameters to estimate in the
physical models, compared to the number of antennas.

• Moreover, (Sseq) is almost as good as (Sjoint) (as soon as
p > 10), which shows its interesting potential. It is indeed
much more computationally efficient than (Sjoint) (around
ten times faster in the tested configuration on a laptop with
an Intel(R) Core(TM) i7-3740QM CPU @ 2.70 GHz).

• Finally, ParWM and SWM are equivalent in the considered
setting, despite ParWM being simpler (it does not involve
square roots). This is interesting for a hardware implemen-
tation in which complex operations are preferably avoided.

V. CONCLUSIONS AND PERSPECTIVES

In this paper three physical channel models applicable to
massive MIMO and any type of antenna array have been stud-
ied in an unified way: the well-known PWM, the SWM and the
novel ParWM which yields an interesting accuracy-complexity
trade-off. The models accuracies have been assessed, under-
lining the PWM limitations in particular when large ULAs are
considered, which is plausible in practical massive MIMO sce-
narios. Two estimation algorithms taking the wavefronts curva-
ture (SWM or ParWM) into account have been proposed, com-
pared to the classical PWM approach and shown to be more
accurate at short distance. In particular, a computationally
efficient strategy in which the DoD and distance are estimated
sequentially has been proposed, showing promising results.

In the future, a more extensive experimental evaluation of
the proposed algorithms should be undertaken (varying the
distance and the SNR). Moreover, generalizing the proposed
channel estimation methods to multi-antenna receivers and
considering other scenarios would be of great interest. For
example, one could envision using the SWM/ParWM in a
downlink channel estimation scenario, in order to reduce the
pilot sequences duration, thanks to the a priori information
embedded in the models. Another possibility, in the framework
of hybrid systems based on beam sweeping, is to design

optimized beams based on the SWM/ParWM characteristic
vectors instead of on steering vectors for users close to the BS.
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