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MASSIVE MIMO CHANNEL ESTIMATION TAKING INTO ACCOUNT SPHERICAL WAVES

Antoine Le Calvez, Luc Le Magoarou, Stéphane Paquelet

b<>com, Rennes, France

ABSTRACT
Together with millimiter waves (mmWaves), massive multiple-input
multiple-output (MIMO) systems are key technological components
of fifth generation (5G) wireless communication systems. In such
a context, geometric considerations show that the largely adopted
plane wave model (PWM) of the channel potentially loses its validity.
An alternative is to consider the more accurate but more complex
spherical wave model (SWM). This paper introduces an intermediate
parabolic wave model (ParWM), more accurate than the PWM while
less complex than the SWM. The validity domains of those three
physical models are assessed in a novel way. Finally, estimation al-
gorithms for the SWM and ParWM are proposed and compared with
classical algorithms, showing a promising performance complexity
trade-off.

Index Terms— MIMO, physical models, channel estimation.

1. INTRODUCTION

Massive multiple-input multiple-output (massive MIMO) is an essen-
tial technology for future fifth generation (5G) wireless communica-
tion systems [1, 2, 3, 4, 5, 6]. Using several antennas allows to exploit
the spatial dimension to achieve high capacity, reliability, and energy
efficiency. Several Wi-Fi and 4G standards already involve classical
MIMO systems typically using few antennas but the term “massive”
refers to systems with up to hundreds of antennas with much better
performance. A typical application is in cellular networks with a
base station composed of many antennas and user terminals with few
antennas, commonly referred to as multi-user MIMO (MU-MIMO).
Massive MIMO antenna arrays are large with respect to the wave-
length, so that the compactness of the system becomes a challenge.
Millimiter wave (mmWave) [7, 8] operating bands mitigate this issue
by reducing the wavelength.

The MIMO channel, assumed static and considered at a single
subcarrier with Nt transmit antennas and Nr receive antennas, is
usually represented in the frequency domain by the channel matrix
H ∈ CNr×Nt containing the complex gains linking all the trans-
mit/receive antenna couples. Knowledge of this matrix is required
both at the transmitter and receiver to achieve the tremendous MIMO
capacity [9].Estimating the entries of H amounts to determineNrNt
complex coefficients, which is not suitable in massive MIMO sys-
tems for which this number may be very high. It is thus convenient to
consider a parametric channel estimation [10]: injecting a priori in-
formation about the channel (combining antenna array geometry and
propagation properties) allows to reduce the estimation complexity.

Traditionally the transmitter and receiver are assumed to be sep-
arated by a large distance with respect to their antenna array size
(greater than the Fraunhofer distance [11]), so that the spherical
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wavefronts are well approximated by planes. This simplifying hy-
pothesis is known as the plane wave assumption, the corresponding
physical model being referred to as the plane wave model (PWM).
For massive MIMO systems involving up to several hundreds of an-
tennas, i.e. much larger arrays, this model is not always valid and the
curvature of the wavefronts cannot be neglected. In such situations,
more complex but more accurate models such as the spherical wave
model (SWM) might be required.
Contributions. In this paper, three physical parametric channel
models applicable to any type of antenna array are presented. The
well-known PWM and SWM are first recalled and an intermediate
parabolic wave model (ParWM) is introduced, that is more accurate
than the PWM while less complex than the SWM. The second contri-
bution consists in studying the validity domains of the three models
using a relative squared error metric more relevant to channel estima-
tion than the classically used phase-shift metric.The final contribution
is to propose computationally efficient channel estimation algorithms
taking into account ParWM and SWM and compare them to classical
algorithms assuming the PWM.
Related work. The PWM validity issue as well as the need for the
SWM to describe massive MIMO channels have already been studied
in the literature [12, 13, 14, 15, 16, 17, 18]. So far, the studies are
particularized either to linear and/or planar arrays, which yields less
general and more complex analytical expressions and interpretations.
In this paper the PWM and SWM analytical expressions are given
adopting the generalization to any antenna array [10], and a new phys-
ical model is proposed: the ParWM. Different metrics are studied in
the state of the art highlighting the PWM limits and the SWM benefits:
in [12, 16] the authors investigate the correlation in single-user MIMO
(SU-MIMO) and in MU-MIMO scenarios; in [12, 13, 14, 17, 18] the
channel capacity issue is tackled; in [11, 15] the phase-shift difference
induced by the SWM is used to define the near/far field boundary of
large antenna arrays. Here the models validity domains are character-
ized through a relative squared error metric quantifying the overall er-
ror on the channel matrix: it is discussed and compared to phase-shift
considerations as presented in [11, 15]. Finally, channel estimation
algorithms taking into account the curvature of the wavefronts are
proposed here for the first time, to the best of the authors’ knowledge.

2. PROBLEM FORMULATION

Notations. Matrices and vectors are denoted by bold upper-case
and lower-case letters: A and a (except 3D "spatial" vectors that are
denoted −→a ); its entry at the ith line and jth column by: aij . AT

and A∗ denote a matrix transpose and conjugate, respectively. The
vectorization operator and the identity matrix are denoted by vec(·)
and Id respectively. 〈·〉, ‖ · ‖2 and ‖ · ‖F denote the Hermitian inner
product, the L2-norm and the Frobenius norm.
Geometric channel model. Let us use the channel model of [10],
in which the transmit (receive) antenna array is described by the po-
sitions of its antennas denoted −→at,j ,j = 1,...,Nt (−→ar,i,i= 1,...,Nr)
with respect to its centroidOt (Or). Note that the coordinate systems
used at the transmitter and receiver are in general different. This



description is very general: it is applicable to any type of antenna
array, not only to ULA and UPA as mostly found in the literature.

Each propagation path is described in the frequency domain by a
complex gain ρejφ expressing the channel between the centroids Ot
and Or , a direction of departure (DoD) −→ut (expressed in the trans-
mitter coordinate system) and a direction of arrival −→ur (expressed in
the receiver coordinate system). Denoting D the distance between
the two centroidsOt andOr andDij is the distance between the j-th
transmit antenna and the i-th receive antenna, the channel for this
antenna couple is classically expressed [12, 13, 14, 15, 16, 17, 18] as

hij =ρejφe−j 2π
λ

(Dij−D), (1)

where λ is the wavelength and the quantity 2π
λ

(Dij−D) is the phase
shift with respect to the reference points located at Ot and Or . It
has an important impact since it involves a division of the lengths
difference Dij − D by the wavelength λ which can be very small
(1cm at 30GHz). Note that an amplitude fluctuation term also exists
but is reasonably neglected since the ratio D

Dij
is very close to one in

practice, because the antenna arrays are in general much smaller than
the propagation distance.
Spherical Wave Model. Using the SWM consists in computing
∆SWM,ij ,Dij −D using the channel parameters. In a single path
LoS scenario, geometric considerations using the transmit coordinate
system lead to

∆SWM,ij = ‖−−→at,j+D−→ut+R(δ)−→ar,i‖2−D

= D
(√

1+
2(−−→ar,i.−→ur−−−→at,j .−→ut)

D +
‖R(δ)−−→ar,i−−−→at,j‖2

2

D2 −1
)
,

(2)
where−−→at,j is the vector from the j-th transmit antenna to Ot, D−→ut
is the vector from Ot to Or and R(δ)−→ar,i is the vector from Or to
the i-th receive antenna expressed in the transmit coordinate system
(R(δ) is the rotation matrix mapping the receiver coordinate system
to the transmit one which, given −→ut and −→ur , depends only on a real
parameter δ quantifying the rotation around the axisOtOr). The DoD
and DoA being physically the same in a LoS scenario, R(δ)−→ur =−→ut ,
which allows to obtain the second line of the equation. Note that in
a single-antenna receiver case (i.e. Nr = 1 and −−→ar,1 =

−→
0 ) which is

considered hereafter, R(δ) can be omitted. Injecting (2) in (1) yields
the spherical channel coefficient

hSWM,ij =ρejφe
−j2πD

λ

(√
1+

2(−−→ar,i.
−→ur−−−→at,j .

−→ut)
D

+
‖R(δ)−−→ar,i−

−−→at,j‖2
D2 −1

)
.

Therefore the channel matrix HSWM is a deterministic function of a
set of eight parameters denoted θ ,

{(
ρ,φ,−→ut ,−→ur,D,δ

)}
(two real

parameters are necessary to describe each direction). With a large D,
it is possible to perform a Taylor expansion on (2), yielding

∆SWM,ij = −→ar,i.−→ur−−→at,j .−→ut

+ 1
2D

[
‖R(δ)−→ar,i−−→at,j‖2−(−→ar,i.−→ur−−→at,j .−→ut)2

]
+ o

( (Rt+Rr)2

2D

)
,

(3)
whereRx=max

i
‖−−→ax,i‖with x= t,r. What if only the first few orders

of the expansion are considered ?
Plane Wave Model. Approximating ∆SWM,ij by its first order Taylor
expansion yields

∆PWM,ij =−→ar,i.−→ur−−→at,j .−→ut ,

and leads to the well-known PWM where spherical wavefronts are
approximated by planes. The PWM channel coefficient is then

hPWM,ij =ρejφe−j 2π
λ

(−−→ar,i.−→ur−−−→at,j .−→ut),

and the PWM channel matrix can be expressed as

HPWM =
√
NtNrρejφer(

−→ur)et(−→ut)H ,

where contributions to the phase shift of the transmitter and receiver
are gathered in the well-known steering vectors

ex(−→u ), 1√
Nx


e−j 2π

λ
−−→ax,1.−→u

...
e−j 2π

λ
−−−−→ax,Nx .

−→u

,withx= t,r.

Steering vectors depend only on the direction of propagation and are
insensitive to the transmission distanceD. The PWM is thus by con-
struction unable to take into account the curvature of the wavefronts.
The PWM channel matrix HPWM is a deterministic function of a set
of six parameters denoted θ ,

{(
ρ,φ,−→ut ,−→ur

)}
, which makes it less

complex than the SWM but also less accurate especially when D is
small, as will be shown in section 3.
Parabolic Wave Model. The two models presented so far are ex-
treme: the SWM considers spherical wavefronts and the PWM
approximates the spheres by planes. An intermediate solution is to
approximate spheres by paraboloids by considering the second order
of the Taylor expansion derived in (3), yielding

∆ParWM,ij =−→ar,i.−→ur−−→at,j .−→ut+ 1
2D

[
‖R(δ)−→ar,i−−→at,j‖2−(−→ar,i.−→ur−−→at,j .−→ut)2

]
.

This expression comprises the PWM term and a correction whose
amplitude is inversely proportional to the distance D. The ParWM
channel coefficient is then

hParWM,ij =ρejφe
−j 2π

λ

(
−−→ar,i.−→ur−−−→at,j .−→ut+ 1

2D

[
‖R(δ)−−→ar,i−−−→at,j‖2−(−−→ar,i.−→ur−−−→at,j .−→ut)2

])
.

HParWM is a deterministic function of a set of eight parameters denoted
θ,

{(
ρ,φ,−→ut ,−→ur,D,δ

)}
. Intuitively it is obvious that the ParWM is

more accurate than the PWM but less than the SWM: it will be charac-
terized quantitatively in section 3. However having more parameters
to estimate makes it more complex than the PWM highlighting an
accuracy/complexity trade-off. It has the same number of parameters
as the SWM but is more tractable: its simpler expressions ease the
interpretations and getting rid of the square root might have an interest
for hardware implementation of estimation algorithms.
Single-antenna receiver and multipath channel. As mentioned
previously, the three physical models are valid for any Nt, Nr in a
single path LoS scenario. However, further assuming a single an-
tenna receiver (Nr = 1 which implies −−→ar,1 =

−→
0 ) allows to simplify

the derivations. In that particular case, the above expressions are also
valid for paths that originate from reflections on perfect planes [16].
The single-antenna receiver case is of interest since it corresponds
to a cellular network scenario with a multi-antenna base station and
multiple single-antenna user terminals [12, 13, 16]: from now on the
paper assumes a single-antenna receiver. It allows to derive a general
expression of the channel valid for the three models in a multipath
scenario (p paths) as a linear combination of characteristic vectors:

hM=
√
Nt
∑p

k=1
ρkejφkeM(−−→ut,k,Dk) (4)

where −−→ut,k and Dk are the DoD and distance of the k-th path, M
denotes the considered model (PWM, ParWM or SWM), and the
characteristic vector eM(−−→ut,k,Dk) takes the general form



eM(−−→ut,k,Dk)= 1√
Nt


e−j 2π

λ
∆M,1k

...
e−j 2π

λ
∆M,Ntk

,
with

• ∆PWM,jk=−−→at,j .−−→ut,k,

• ∆ParWM,jk=−−→at,j .−−→ut,k+ 1
2Dk

[
‖−→at,j‖2−(−→at,j .−−→ut,k)2

]
,

• ∆SWM,jk=
√
D2
k+2Dk(−→at,j .−−→ut,k)+‖−→at,j‖22−Dk.

These expression are obtained simply by considering Nr = 1 and
−−→ar,1 =

−→
0 in the expressions of ∆PWM,ij , ∆ParWM,ij and ∆SWM,ij .

Note that the PWM characteristic vectors depend only upon−→ut , they
are simply steering vectors. On the other hand, the distance D has
an influence on the ParWM and SWM characteristic vectors, since it
determines the curvature of the wavefronts.

3. VALIDITY DOMAINS

In this section, the goal is to characterize the distance ranges where
the different models are describing correctly the channel in the simple
LoS case. The channel is assumed to follow the SWM and the aim is
to assess the PWM and ParWM accuracies.
Approaches. In the literature [11, 15] a phase shift difference of at
most π

8
with respect to the SWM phase shift 2π

λ
∆SWM,jk is used to

define the PWM validity. Bounding 2π
λ
|∆SWM,jk −∆PWM,jk| and

2π
λ
|∆SWM,jk − ∆ParWM,jk| using the fact that |−→at,j .−→ut | ≤ Rt, this

yields

• D ≥ 8R2
t
λ

for the PWM, this boundary is often called the
Fraunhofer distance [11].

• D≥
√

8R3
t
λ

for the ParWM, this boundary is sometimes called
the Fresnel distance [11].

This method has several drawbacks: it considers an arbitrary phase-
shift difference of π

8
, does not apply to the overall channel matrix (it

is based on individual channel coefficients) and is independent from
the relative position of the receiver from the emitter. To overcome
these drawbacks another metric is introduced called relative model
approximation error (rMAE):

rMAE=

∥∥h−projM(h)
∥∥2

2

‖h‖22
,

where projM(u) , argminx∈M ‖u−x‖2 and h refers to the true
channel (the SWM being taken as the reference, h = hSWM). The
rMAE assesses the best approximation of the channel that can be
obtained with the considered model.
Setting. The objective is to study this new metric in a single path LoS
scenario varying the array shape (ULA, square UPA), the number of
antennas (64, 256), the emitter-receiver distance (from λ to 105λ)
and the considered model. A λ

2
antenna spacing and a single-antenna

receiver located in front of the transmit array (yielding a DoD orthog-
onal to the array) are considered. It is to be stressed that the obtained
curves are parameterized by the wavelength and thus valid irrespec-
tive of the band, even though massive MIMO antenna arrays are more
likely to be used at small wavelength (e.g. millimeter waves).
Results. The figure 1 provides rMAE plots as a function of the
normalized distance, expressed on a logarithmic scale, for different
configurations. Several comments are in order:

Fig. 1: rMAE for the PWM and ParWM varyingD,Nt and the array
shape.

• As expected, at very high distances the rMAE converges to 0 mean-
ing all the models are equivalent and describe the channel correctly.
Nevertheless, the convergence occurs at distances much smaller
for the ParWM than for the PWM: for instance, with a ULA of 256
antennas, obtaining rMAE< 5% at 30GHz requires D> 2.5m for
the ParWM and D > 170m for the PWM. In such a setting, the
PWM is not suitable, whereas the ParWM is sufficiently accurate.
Obviously considering a ULA with less antennas (here 64) reduces
the critical distances.

• Another important observation is that even with many antennas,
UPAs do not incur large errors: a rMAE of 5% is reached at 1m
with 256 antennas. This is simply because for a given number
of antennas, UPAs are much smaller than ULAs. Actually, Rt is
proportional toNt for an ULA and to

√
Nt for an UPA.

• Finally, the yellow (red) vertical line gives the distance boundary
for the ParWM (PWM) computed using phase shifts with a ULA
of 256 antennas. Beyond this line which corresponds to D =15m
(D=320m) at 30GHz, the error is as expected negligible.

This study highlights the limits of the PWM at short distances in
a novel way, considering the channel matrix globally. On the other
hand, the ParWM is shown to be accurate at such short distances,
under which users are likely to be present in practical situations.
Additionally, it clearly shows that ULAs are more challenging for the
PWM than UPAs for which the PWM is accurate from short distances,
which is in line with theory.

4. ESTIMATION ALGORITHMS

In the previous section, the intrinsic accuracy of models was assessed.
Let us now study how to estimate the channel using these models,
based on noisy observations. Indeed, channel state information (CSI)
is essential to optimize the capacity of mMIMO systems. Consider a
training based estimation strategy in whichNs noisy linear measure-
ments of the channel are taken:

y=Xh+n,

wherey∈CNs is the observation,X∈CNs×Nt is the obervation ma-
trix (pilot symbols) and n∈CNs is the noise vector. Under the addi-
tive white Gaussian noise (AWGN) assumption (n∼CN (0,σ2Id)),
a classical estimation technique is the maximum likelihood (ML),
which according to the considered models (4) can be written as

minimize
E,α

∥∥y−XEα
∥∥2

2
, ĥ←Eα

where E , (eM(−−→ut,1,D1),...,eM(−−→ut,p,Dp)), α ,
√
Nt(ρ1ejφ1 ,

... ,ρpe
jφp)T and ĥ is the channel estimate. Note that given E, the



optimal vector α can be obtained as the solution of a least squares
problem as αopt = (EHXHXE)−1EHXHy, so that in the end
channel estimation amounts to find an optimal E, i.e. an optimal set
of p characteristic vectors {eM(−−→ut,1,D1),...,eM(−−→ut,p,Dp)}.
Greedy strategy for the PWM. Looking for the p vectors jointly
yields a very complex optimization problem. Instead, greedy strate-
gies have been proposed in the PWM case which consist in building
a dictionary of characteristic (steering) vectors corresponding to
N−→ut DoDs and applying a sparse recovery algorithm such as or-
thogonal matching pursuit (OMP) [19, 20, 21]. This amounts to
estimate the paths one by one, i.e. building the matrix E column
by column. Denoting E(k) , (ePWM(−−→ut,1,D1),...,ePWM(−−→ut,k,Dk))
the state of the matrix E at the k-th iteration, the optimal vector
α(k) ← (E(k)HXHXE(k))−1E(k)HXHy is computed so that a
residual r(k+1)← y−XE(k)α(k) is used at the next iteration. The
actual choice of the k-th column of E is done by finding

−−→ut,k←argmax
−→ut

∣∣r(k)HXePWM(−→ut)
∣∣∥∥XePWM(−→ut)

∥∥
2

, (SPWM)

among the N−→ut test directions. The complexity of this strategy is
dominated by the computation ofN−→ut inner products in CNt .
Adaptation to SWM and ParWM. One possible, although naive
way to handle the SWM and ParWM is to adopt the same strategy
except that the choice of the k-th column of E is done by finding

−−→ut,k,Dk←argmax
−→ut,D

∣∣r(k)HXeM(−→ut ,D)
∣∣∥∥XeM(−→ut ,D)

∥∥
2

, (Sjoint)

whereM stands for ParWM or SWM. Testing jointlyN−→ut directions
andND distances, solving this optimization problem amounts to test
N−→utND vectors eM(−→ut ,D). This yields a complexity dominated by
the computation ofN−→utND inner products in CNt .

Another possibility is to estimate the direction and distance sequen-
tially, assuming an infinite distance during the direction determination
(which amounts to consider the PWM), yielding

−−→ut,k←argmax
−→ut

∣∣r(k)HXePWM(−→ut)
∣∣∥∥XePWM(−→ut)

∥∥
2

,

Dk←argmax
D

∣∣r(k)HXeM(−−→ut,k,D)
∣∣∥∥XeM(−→ut ,D)

∥∥
2

.

(Sseq)

Testing N−→ut directions and ND distances, solving this optimization
problem amounts to test N−→ut vectors ePWM (−→ut ,D) and then ND
vectors eM(−−→ut,k, D). This yields a complexity dominated by the
computation of onlyN−→ut+ND inner products in CNt .
Preliminary experiment. Let us compare empirically the three
aforementioned strategies. To do so, consider a base station equipped
with an ULA with 256 antennas and a single-antenna user terminal
located D = 20m away from the base station at a random angle
β ∈ [−60◦,60◦] with respect to the direction orthogonal to the array.
The channel is randomly generated and composed of a LoS path and a
random number of NLoS paths drawn uniformly at random between
0 and 5, the number of path is unknown for estimation. Reflectors
positions are randomly generated so that the length of reflected paths
is no longer than 2D: they are modeled by perfect planes inducing
uniformly distributed phase shifts between 0 and 2π and Rayleigh
distributed attenuations with σ = 0.3. The SNR is set to 10dB and
X = Id is taken (the objective here is to assess the various estima-
tion strategies, not a specific pilot configuration). N−→ut = 300 test
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Fig. 2: Comparison of the estimation algorithms.

directions uniformly sampling [0, π], and ND = 20 test distances
logarithmically distributed between 1m and 1km are tested.
Results. The experiment results for a varying number of estimated
paths p are shown in figure 2. The metric used to assess the estima-
tion strategies is the relative error ‖h−ĥ‖22

‖h‖22
, and averages over 100

realizations are shown. For all methods, taking p around five allows
to get reasonable estimates (around 10% relative error for methods
taking into account curvature and around 25% for (SPWM)). Taking p
too small leads to oversimplified channel estimates while taking p too
large requires more computations and does not improve the estimates,
due to the noise level. This is a bias-variance trade-off [22]. Let us
now compare the different methods:

• First of all, as expected, the strategies (Sjoint) and (Sseq) are much
better than (SPWM). this is because they take into account the
wavefronts curvature.

• Moreover, (Sseq) is almost as good as (Sjoint) (as soon as p > 4),
which shows its interesting potential. It is indeed much more
computationally efficient than (Sjoint) (at least fifteen times faster
in the tested configuration on a laptop with an Intel(R) Core(TM)
i7-3740QM CPU @ 2.70 GHz).

• Finally, ParWM and SWM are equivalent in the considered setting,
despite ParWM being simpler (it does not involve square roots).
This is interesting for a hardware implementation in which complex
operations are preferably avoided.

5. CONCLUSIONS AND PERSPECTIVES

In this paper three physical channel models applicable to massive
MIMO and any type of antenna array have been studied in an unified
way: the well-known PWM, the SWM and the novel ParWM which
yields an interesting accuracy-complexity trade-off. The models ac-
curacies have been assessed, underlining the PWM limitations in par-
ticular when large ULAs are considered, which is plausible in practi-
cal massive MIMO scenarios. Two estimation algorithms taking the
wavefronts curvature (SWM or ParWM) into account have been pro-
posed and compared to the classical PWM approach. In particular, a
computationally efficient strategy in which the DoD and distance are
estimated sequentially has been proposed, showing promising results.

In the future, assessing precisely the influence of the distance in
order to determine where the ParWM/SWM is necessary would be
very useful. Obviously, a more extensive experimental evaluation of
the proposed algorithms should also be undertaken. Moreover, gen-
eralizing the proposed channel estimation methods to multi-antenna
receivers in NLoS scenarios would be of interest.
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