
HAL Id: hal-01920397
https://hal.science/hal-01920397v1

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding Maximum Cliques on the D-Wave Quantum
Annealer

Guillaume Chapuis, Hristo Djidjev, Georg Hahn, Guillaume Rizk

To cite this version:
Guillaume Chapuis, Hristo Djidjev, Georg Hahn, Guillaume Rizk. Finding Maximum Cliques on the
D-Wave Quantum Annealer. Journal of Signal Processing Systems, 2018, �10.1007/s11265-018-1357-8�.
�hal-01920397�

https://hal.science/hal-01920397v1
https://hal.archives-ouvertes.fr

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-018-1357-8

Finding Maximum Cliques on the D-Wave Quantum Annealer

Guillaume Chapuis1 ·Hristo Djidjev1 ·Georg Hahn2 ·Guillaume Rizk3

Received: 21 August 2017 / Revised: 9 January 2018 / Accepted: 19 March 2018
© The Author(s) 2018

Abstract
This paper assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph,
one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly
solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and
analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a
quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising
model) acceptable by the machine, and compare several quantum implementations to current classical algorithms such as
simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum
phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by
DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical
algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we
observe substantial speed-ups in computing time over classical approaches.

Keywords Maximum clique · Quantum annealing · D-Wave 2X · Optimization · Gurobi

1 Introduction

The emergence of the first commercially available quantum
computers by D-Wave Systems, Inc. [10] has provided

This article is an extended version of the paper [7] that appeared
in the proceedings of the 2017 ACM International Conference on
Computing Frontiers (CF’17). The extended version additionally
contains a detailed review of related work in Section 2, details
on the algorithms of Section 3.3, proofs of the propositions of
Sections 3.3.2 and 3.3.3, and further experiments in Section 4.4.

� Georg Hahn
g.hahn@lancaster.ac.uk

Guillaume Chapuis
gchapuis@lanl.gov

Hristo Djidjev
djidjev@lanl.gov

Guillaume Rizk
guillaume.rizk@inria.fr

1 Los Alamos National Laboratory, CCS-3, P.O. Box 1663, MS
B256, Los Alamos, NM 87545, USA

2 Department of Mathematics and Statistics Fylde College,
Lancaster University, Lancaster LA1 4YF, UK

3 INRIA/Irisa, Campus de Beaulieu, 35042
Rennes Cedex, France

researchers with a new tool to tackle NP-hard problems for
which presently, no classical polynomial-time algorithms
are known to exist and which can hence only be solved
approximately (with the exception of very small instances
which can be solved exactly).

One such computer is D-Wave 2X, which we denote
here as DW. It has roughly 1000 units storing quantum
information, called qubits, which are implemented via a
series of superconducting loops on the DW chip. Each loop
encodes both a 0 and 1 (or, alternatively, −1 and +1) value
at the same time through two superimposed currents in
both clockwise and counter-clockwise directions until the
annealing process has been completed and the system turns
classical [5, 18].

The device is designed to minimize an unconstrained
objective function consisting of a sum of linear and
quadratic binary contributions, weighted by given constants.
Specifically, it aims at minimizing the Hamiltonian

H = H(x1, . . . , xN) =
∑

i∈V

aixi +
∑

(i,j)∈E

aij xixj (1)

with variables xi ∈ {0, 1} and coefficients ai , aij ∈ R,
where V = {1, . . . , N} and E = V × V [20]. This type
of problem is known as a quadratic unconstrained binary

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1357-8&domain=pdf
mailto:g.hahn@lancaster.ac.uk
mailto:gchapuis@lanl.gov
mailto:djidjev@lanl.gov
mailto:guillaume.rizk@inria.fr

J Sign Process Syst

optimization (QUBO) problem. When the coefficients ai

and aij are encoded as capacities of the couplers (links)
connecting the qubits, H describes the quantum energy
of the system: During annealing, the quantum system
consisting of the qubits and couplers tries to settle in its
stable state, which is one of a minimum energy, i.e., of a
minimum value of H . In order to solve a given optimization
problem, one has to encode it as a minimization problem of
a Hamiltonian of type (1).

Similarly to the random moves considered in a simulated
annealing classical algorithm, a quantum annealer uses
quantum tunneling to escape local minima and to find a low-
energy configuration of a physical system (e.g., constructed
from an optimization problem). Its use of quantum
superposition of 0 and 1 qubit values enables a quantum
computer to consider and manipulate all combinations of
variable values simultaneously, while its use of quantum
tunneling allows it to avoid hill climbing, thus giving it
a potential advantage over a classical computer. However,
it is unclear if this potential is realized by the current
quantum computing technology, and by the DW computer
in particular, and whether DW provides any quantum
advantage over the best available classical algorithms
[11, 28].

This article tries to answer these questions for the
problem of finding a maximum clique (MC) in a
graph, an important NP-hard problem with multiple
applications including network analysis, bioinformatics,
and computational chemistry. Given an undirected graph
G = (V , E), a clique is a subset S of the vertices forming a
complete subgraph, meaning that any two vertices of S are
connected by an edge in G. The clique size is the number of
vertices in S, and the maximum clique problem is to find a
clique with a maximum number of vertices in G [1].

We will consider formulations of MC as a QUBO prob-
lem and study its implementations on DW using different
tools and strategies. We will compare these implementa-
tions to several classical algorithms on different graphs
and try to determine whether DW offers any quantum
advantage, observed as a speedup over classical approaches.

The article is organized as follows. Section 2 starts with
an overview of related work that aims to solve graph and
combinatorial problems with DW, in particular previous
work on the maximum clique problem. Section 3 proceeds
by introducing the qubit architecture on the DW chip as
well as available software tools. We also describe a QUBO
formulation of MC together with its implementations on
DW and present methods for dealing with graphs of sizes
too large to fit onto the DW chip. Section 4 presents an
experimental analysis of the quantum software tools and
a comparison with several classical algorithms, both for
graphs small enough to fit DW directly as well as for larger

graphs for which decomposition approaches are needed. We
conclude with a discussion of our results in Section 5.

In the rest of the paper, we denote a graph asG = (V , E),
where V = {1, . . . , N} is a set of N ∈ N vertices and E is a
set of undirected edges.

2 Related work

Several publications available in the literature aim at
searching for a quantum advantage within a variety
of problem classes. Existing publications often target
a particular (NP-complete) problem and compare the
performance of a quantum annealer (by D-Wave Systems,
Inc. [10]) to state-of-the-art classical or heuristic solvers.
Early examples include multiple query optimization in
databases, analyzed by [32], who investigate scaling
behavior and show a speed-up of several orders of
magnitude over classical optimization algorithms, and [6],
who in contrast do not detect any quantum speedup
for the set cover with pairs problem, one of Karp’s
21 NP-complete problems. Other work include graph
partitioning via quantum annealing on DW in the context of
QMD (quantum molecular dynamics) applications [22, 33],
in which graph partitioning is shown to reduce the
computational complexity of QMD. Test sets for integer
optimization are investigated in [8], who observe an
advantage of DW over Gurobi [15] both in terms of speed
and quality of solution.

In [30], a general introduction to the DW architecture
and the representation of problem instances in Ising and
QUBO format is given as well as a QUBO formulation
for the maximum clique problem. However, the authors
do not actually report any computation results for finding
maximum cliques on DW, nor do they compare DW
to state-of-the-art heuristic solvers. In contrast to [30],
we solve the maximum clique problem on DW for a
variety of test graphs and compare its solutions to the
ones of state-of-the-art classical solvers. Moreover, we
present a graph splitting algorithm allowing to solve
problem sizes larger than those embeddable on DW,
analyze its scaling behavior, and investigate the influence
of alternative QUBO formulations on the solution
quality.

In [3], the authors consider finding large clique minors
in the DW hardware Chimera graph C(m, n, l), defined
as the m × n grid of Kl,l complete bipartite graphs (also
called unit cells). The authors present a polynomial time
algorithm for finding clique minors in the special case of
the Chimera graph only. Such clique minors are needed to
embed problem instances of arbitrary connectivity onto the
current and future Chimera architectures, given the problem

J Sign Process Syst

size is not larger than the clique minor. In contrast, in
the present article we consider finding maximum cliques
in arbitrary graphs with DW by minimizing a QUBO for
the maximum clique problem (applied to the user-specified
arbitrary input graph). This step requires an embedding
of our QUBO onto DW’s Chimera graph, for which the
algorithm of [3] can be beneficial. However, the work of
[3] does not substitute for the embedding and minimization
of a QUBO when finding cliques in arbitrary graphs as
considered in our work.

Instead of attempting a full solution via DW, other
publications propose using a quantum annealer to assist
in finding a solution of certain problem classes, which
often are of a practical and thus more complex nature. For
instance, [13] consider computing the (algebraic) homology
of a data point cloud and propose to reduce this computation
to a minimum clique covering, which is then suggested to
be solved using DW. No empirical results are presented. A
real-world application (the network scheduling problem) is
considered in [34]. The authors demonstrate an advantage
of quantum over simulated annealing; moreover, they show
how to obtain more admissible solutions with DW by
introducing an additional weight into the QUBO that
incrases the gap between linear and quadratic QUBO terms.
In [24], a sparse coding model is trained using samples
obtained via DW from a Hamiltonian with Lp sparseness
penalty. A graph flow problem in real-world traffic network
analysis is considered in [23], who employ gps coordinates
of cars in Beijing as training data.

Another class of publications is concerned with the the-
ory of quantum annealing and the problem of benchmarking
quantum computations. For instance, [27] empirically ver-
ify the known phase transition in magnetization for the
2D Ising model with DW. In [31], the author proposes to
run Markov Chain Monte Carlo using samples generated
by DW from a suitable Boltzmann distribution. The ques-
tion whether random spin-glass problems are a suitable
type of problem to detect a quantum advantage over clas-
sical approaches is considered in [26], who also study the
problem of benchmarking quantum annealing vs. classical
CMOS computation.

3 SolvingMC on D-Wave

This section introduces the DW chip architecture and briefly
presents three tools provided by D-Wave Inc. to submit
quadratic programs to the quantum computer.

We also introduce the QUBO formulation of MC needed
to submit an MC instance to DW. The section concludes
with an algorithmic framework designed to solve instances
of MC which are not embeddable on DW.

3.1 DW hardware and software

3.1.1 The Qubit architecture

DW operates on roughly 1000 qubits. The precise number
of available qubits varies from machine to machine (even
of the same type) due to manufacturing errors which render
some of the qubits inoperative. The qubits are connected
using a specific type of network called Chimera graph,
C12,12,4 (see Fig. 1), comprised of a lattice of 12× 12 cells,
where each cell is a 4× 4 complete bipartite graph. DW can
naturally solve Ising and QUBO problems where non-zero
quadratic terms are represented by an edge in the Chimera
graph.

The particular architecture of the qubits implies two
important consequences: First, the chip design actually only
allows for direct pairwise interactions between two qubits
which are physically adjacent on the chip. For pairwise
interactions between qubits not physically connected, a
minor embedding of the graph describing the non-zero
structure of the Hamiltonian matrix into the Chimera type
graph is needed, which maps a logical variable into one
or several physical qubits on the chip. Minor embeddings
are hence necessary to ensure arbitrary connectivity of the
logical variables in the QUBO. The largest complete graph
that the DW can embed in theory has 1+4·12 = 49 vertices.
In practice, the largest embeddable graph is slightly smaller
(n ≈ 45) due to missing qubits arising in the manufacturing
stage.

When more than one qubit is used to represent a variable,
that set of qubits is called a chain. The existence of chains
has two vital consequences, which will play an important
role in the analyses of Section 4. On the one hand, the
need for chains uses up qubits, which would otherwise
be available to represent more variables in the quadratic
program, thereby reducing the maximum problem sizes that
can directly be solved on DW. This is the reason for the
relatively small sizes of N = 45 for QUBO problems (1)
that fit onto DW when the corresponding Hamiltonians are
dense (contain nearly all quadratic terms), despite the fact
that more than 1000 qubits are available in DW.

On the other hand, due to the imperfections of
the quantum annealing process caused by environmental
noise, limited precision, and other shortcomings, solutions
returned by D-Wave do not always correspond to the
minimum energy configuration. In the case of chains, all
qubits in a chain encode the same variable in (1) and hence
should have the same value, but for the reasons outlined
above this may not be the case. This phenomenon is called
a broken chain, and it is not clear which value should be
assigned to a variable if its chain is broken. Clearly, chains
can be ensured to not break by increasing their coupler

J Sign Process Syst

Figure 1 The Chimera C12,12,4
graph of 1152 vertices (qubits)
and 3360 edges (couplers).
LANL’s D-Wave 2X chip has
usable only 1095 qubits and
3061 couplers due to
manufacturing defects.

weights, but as we will see in the next section this may
significantly reduce the accuracy of the solver.

3.1.2 D-Wave solvers

D-Wave Inc. provides several tools that help users submit
their QUBO problems to the quantum processor, perform
the annealing, apply necessary pre- and post-processing
steps, and format the output. This section briefly describes
several such tools used in this article.

Sapi Sapi stands for Solver API and provides the highest
level of control one can have over the quantum annealer. It
allows the user to compute minor embeddings for a given
Ising or QUBO problem, to choose the number of annealing
cycles, or to specify the type of post-processing. Sapi
interfaces for the programming languages C and Python are
available.

One can also use a pre-computed embedding of a
complete 45-vertex graph, thus avoiding the need to run the
slow embedding algorithm.

QBsolv QBsolv is a tool that can solve problems in QUBO
format which are of a size that cannot natively fit onto DW.
Larger problems (with more variables or more connections
than can be mapped onto the corresponding Chimera graph)

are analyzed by a hybrid algorithm, which identifies a small
number of significant rows and columns of the Hamiltonian.
It then defines a QUBO on that subset of variables which fits
DW, solves it, and extends the found solution to a solution
of the original problem.

QSage In contrast to Sapi or QBsolv, QSage is a blackbox
hybrid solver which does not require a QUBO or Ising
formulation as input. Instead, QSage is able to minimize
any function operating on a binary input string of arbitrary
size. For this it uses a tabu search algorithm enhanced with
DW-generated low-energy samples near the current local
minimum. To ensure that also input sizes larger than the
DW architecture can be processed, QSage optimizes over
random substrings of the input bits.

3.2 QUBO formulations of MC

Recall that a QUBO problem can be written as

minimize
xi∈{0,1}

H =
∑

1≤i<j≤N

aij xixj , (2)

where the weights aij , i �= j , are the quadratic terms and
aii are the linear terms (since x2

i = xi for xi ∈ {0, 1}).
There are multiple ways to formulate the MC problem as

a QUBO. One of the simplest is based on the equivalence
between MC and the maximum independent set problem.

J Sign Process Syst

An independent set S of a graph H is a set of vertices
with the property that for any two vertices v, w ∈ S, v

and w are not connected by an edge in H . It is easy to
see that an independent set of H = (V ,E) defines a clique
in graph G = (V , E), where E is the complement of set
E. Therefore, looking for the maximum clique in G is
equivalent to finding the maximum independent set in H .
The corresponding constraint formulation for MC is

maximize
xi∈{0,1}

N∑
i=1

xi

subject to
∑

(i,j)∈E

xixj = 0,
(3)

where G = (V , E) is the input graph and E is the
complement of E. The equivalent unconstrained (QUBO)
minimization of (3), written in the form (2), is

H = −A

N∑

i=1

xi + B
∑

(i,j)∈E

xixj , (4)

where one can determine that the coefficients/penalties A

and B can be chosen as A = 1, B = 2 (see [21]). A
disadvantage of the formulation (4) is that H contains an
order of N2 quadratic terms even for sparse graphs G,
which limits the size problems for which MC can be directly
solved on DW.

3.3 Solving larger MC instances

To solve the MC problem on an arbitrary graph, we develop
several algorithms that reduce the size of the input graph
by removing vertices and edges that do not belong to a
maximum clique and/or split the input graph into smaller
subgraphs of at most 45 vertices, the maximal size of a
complete graph embeddable on DW. Let G(V, E) be a
connected graph of n vertices.

3.3.1 Extracting the k -core

The k-core of a graph G = (V , E) is the maximal subgraph
of G whose vertices have degrees at least k. It is easy to
see that if G has a clique C of size k + 1, then C is also
a clique of the k-core of G (since all vertices in a k-clique
have degrees k−1). Therefore, finding a maximum clique of
size no more than k +1 in the original graph G is equivalent
to finding such a clique in the k-core of G (which might be
a graph of much smaller size).

One can compute the k-core iteratively by picking a
vertex v of degree less than k, removing v and its adjacent
edges, updating the degrees of the remaining vertices, and

repeating while such a vertex v exists. The algorithm can be
implemented in optimal O(|E|) time [2].

We also apply another reduction approach, which we
refer to as edge k-core, to reduce the size of an input graph g

using a known lower bound lower bound on the clique size.
This approach combining k-core and edge k-core is given in
pseudo-code notation as Algorithm 1.

Algorithm 1 Graph reducing -core based
algorithm

1 def reduce graph(Graph g, int lower bound):
2 extract k core(g, lower bound)
3 Vertex v = choose random vertex(g)
4 for each vertex n in neighbors(g, v) do
5 Set nv = neighbors(g,v)
6 Set nn = neighbors(g,n)
7 List common neighbors = intersection(nv, nn)
8 if length(common neighbors)

lower bound-2 then
9 remove edge(g, v, n)
10 end
11 end
12 extract k core(g, lower bound)

In Algorithm 1, we first aim to reduce the size of g by
simply extracting its k-core, where k is set to the currently
known lower bound. It is easily shown that for two vertices
v,w in a clique of size c, the intersection of the two
neighbor lists of v and w has size at least c − 1. We
therefore choose a random vertex v in sg and remove all
edges (v, e) satisfying |N(v) ∩ N(e)| < lower bound − 2
(here N(v) denotes the set of neighbor vertices of v), as
such edges cannot be part of a clique with size larger than
lower bound . Since this changes the graph structure, we
attempt to extract the lower bound-core at the end again
before returning the reduced graph.

3.3.2 Graph partitioning

This divide-and-conquer approach aims at dividing G into
smaller subgraphs, solves the MC problem in each of these
subgraphs, and combines the subproblem solutions into a
solution of the original problem. If one uses standard (edge-
cut) graph partitioning, which divides the vertices of the
graph into a number of roughly equal parts so that the
number of cut edges, or edges with endpoints in different
parts, is minimized, then the third step, combining the
subgraph solutions, will be computationally very expensive.
Instead, we will use CH-partitioning, recently introduced
in [12].

J Sign Process Syst

In CH-partitioning, there are two levels of dividing the
vertices of G into subsets. In the core partitioning, the set
V of vertices is divided into nonempty core sets C1, . . . , Cs

such that
⋃

i Ci = V and Ci ∩ Cj = ∅ for i �= j . There is
one halo set Hi of vertices for each core set Ci , defined as
the set of neighbor vertices ofCi that are not fromCi . Recall
that a vertex w is a neighbor of a vertex v iff there is an edge
between v and w. We define the cost of the CH-partitioning
P = ({Ci}, {Hi}) as
cost(P) = max

1≤i≤s
(|Ci | + |Hi |). (5)

The CH-partitioning problem is finding a CH-partitioning
of G of minimum cost. The next statement shows how
CH-partitions can be used for solving MC in larger graphs.

Proposition 1 Given a CH-partitioning ({Ci}, {Hi}) of a
graph G, the size of the maximum clique of G is equal to
maxi{ki}, where ki is the size of a maximum clique of the
subgraph of G induced by Ci ∪ Hi .

Proof Let K be a maximum clique of G and let v be
any vertex of K . Since, by definition of CH-partitioning,⋃

i Ci = V , where V is the set of the vertices of G, then v

belongs to some core Cj .
We will next show that for any vertex w �= v from K ,

w ∈ Cj ∪ Hj , which will imply that all vertices of K are in
Cj ∪ Hj , implying the correctness of the proposition.

If w ∈ Cj then the claim follows.
Assume that w �∈ Cj . We will show that w ∈ Hj . Since

K is a clique, there is an edge between any two vertices from
it, and hence there is an edge between v and w. Since, by
definition, Hj consists of all neighbors of vertices from Cj

that are not in Cj , v ∈ Cj , w �∈ Cj , and w is a neighbor of
v, then w ∈ Hj .

Using Proposition 1, the solutions to all subproblems of
a CH-partitioning can be combined into a solution of the
original problem at an additional cost of only O(s) = O(n),
where s is the number of the sets of the partition.

One may conjecture that increasing s in (5) will always
reduce the cost, but this is not always the case. If the
minimum cost is achieved for s = 1, or if some of the parts
of the partition are still too large, then the method in the next
subsection might be applied.

3.3.3 Vertex splitting

This method is similar to a special case of the previous one,
obtained by choosing s = 2, letting C1 contain only a single
vertex v, and letting C2 contain all other vertices V \ {v}.
Moreover, while the halo H1 of C1 is defined as above, we

Figure 2 Illustration of the vertex splitting algorithm.

set C1 = ∅ and H2 = ∅. As a result, G is divided into two
subgraphs, G1 containing all neighbors of v without v itself,
and G2 containing all vertices of G except v, see Fig. 2.
Because this partitioning is uniquely determined by a single
vertex, we call it a vertex-splitting partitioning. The cost of
such a partitioning is again given by (5).

Proposition 2 Given a vertex-splitting partitioning of G,
({C1, C2}, {H1, H2 = ∅}), the size of the maximum clique
of G is equal to max{k1 + 1, k2}, where ki , i = 1, 2, is the
size of a maximum clique of the subgraph of G induced by
Ci ∪ Hi .

Proof Let v be the vertex that defines the partition. If there
is a maximum clique of G that contains v let K be such
a clique, otherwise let K be any maximum cliques of G.
Consider the following two cases.

Case 1: v belongs to K . Then the set of the vertices
of K consists of v and a subset V1 of vertices from
G1. Moreover, since there is an edge between any two
vertices of K , there is an edge between any two vertices
of V1, which means that V1 defines a clique K1 in G1.
Assume that K1 is not a maximum clique of G1, i.e.,
there exists a clique K ′

1 in G1 with more vertices than
K . Then adding v to the vertices of K ′

1 will result in a
clique in G of size larger than K , which is a contradiction
to the choice of K . Hence K1 is a maximum clique in
G1, whose size was denoted by k1. Since K consists of v

and the vertices of K1, its size is k1 + 1. Moreover, G2

cannot have a clique larger than K since any clique in G2

is also a clique in G. Hence, k2 ≤ |K| = k1 + 1 and
|K| = max{k1 + 1, k2}.

Case 2: v does not belong to K . Then, K is entirely
contained in G2 and hence |K| ≤ k2. On the other
hand, G2 cannot have a larger clique than |K| since any

J Sign Process Syst

clique in G2 is also a clique in G, hence |K| = k2.
Moreover, by the choice of K , any clique containing v

is of size less than K , so |K| > k1 + 1, and therefore
|K| = max{k1 + 1, k2}.

Since H2 = ∅, vertex splitting can be used in cases
where CH-partitioning fails. Moreover, if there is a vertex
of degree less than n − 1, this method will always create
subproblems of size smaller than the original one. However,
the total number of subproblems resulting from the repeated
use of this method can be too large. A more efficient
algorithm can be obtained if all the above methods are
combined.

3.3.4 Combining the three methods

We use the following algorithm to decompose a given input
graph G into smaller MC instances fitting the DW size
limit. We assume that the size k + 1 of the maximum clique
is known. (Otherwise, use the procedure of this section
in a binary-tree search fashion to determine the size of
the maximum clique. This increases the running time by
a factor O(log k) = O(log n) only.) We also have an
implementation that, instead of “guessing” the exact value
of k, uses lower bounds on k determined by the size of the
largest clique found so far.

The algorithm works in two phases. First, we apply the k-
core algorithm on the input graph and then CH-partitioning
on the resulting k-core.

Consequently, we keep a list L of subgraphs (ordered by
their number of vertices), which is initialized with the output
of the CH-partitioning step. In each iteration and until all
produced subgraphs fit the (DW) size limit, we choose a
vertex v from the largest subgraph sg, extract the subgraph
ssg induced by v and its neighbors and remove v from sg.
The k-cores of the two subgraphs produced at this iteration
are then inserted into L. Second, we compute the maximum
clique on DW for any subgraph in L of size small enough.

Algorithm 2 gives the pseudo-code of this approach. It
returns a list of subgraphs of an input graph g sorted in
increasing order of their number of vertices as well as an
updated lower bound on the maximum clique size. The
parameters of Algorithm 2 are the input graph g, a maximal
number of vertices vertex limit for which the maximum
clique problem is solved directly on a subgraph, and a lower
bound on the clique size found so far (lower bound). All
returned subgraphs have the property that their size is at
most vertex limit. Since the algorithm attemps to solve MC
exactly on graphs not larger than vertex limit, the parameter
vertex limit in our case can be set to the maximal number of
vertices embeddable on DW.

Algorithm 2 Graph splitting algorithm

1 def split(Graph g, int vertex limit, int lower bound):
2 List subgraphs = [g]
3 while length(subgraphs[-1]) vertex limit do
4 Graph sg = subgraphs.pop()
5 Vertex v = choose vertex(sg)
6 Graph ssg = extract subgraph(v, sg)
7 remove vertex(v, sg)
8 reduce graph(sg, lower bound)
9 if length(sg) 0 then
10 if length(sg) = vertex limit then
11 lower bound = solve(sg)
12 end
13 else
14 sorted insert(subgraphs, sg)
15 end
16 end
17 reduce graph(ssg, lower bound)
18 if length(ssg) 0 then
19 if length(ssg) vertex limit then
20 lower bound = solve(ssg)
21 end
22 end
23 end
24 return subgraphs, lower bound

Algorithm 2 works as follows. First, a sorted list of
graphs called subgraphs (sorted in descending order of the
degree of the subgraphs) is created and initialized with g.
As long as the largest subgraph (denoted as subgraphs[−1]
in Python notation) has at least vertex limit nodes, the
current largest graph sg in the list (command pop()) is
returned, sg is removed from list subgraphs, and a vertex v

is chosen according to some rule specified in the function
choose vertex (see the end of Section 3.3 for possible
approaches). Then, the induced subgraph ssg by vertex v is
extracted and deleted from sg.

A graph reduction step via the function reduce graph
is then applied to sg which reduces the size of the graph
using the currently known best lower bound lower bound
on the clique size. The graph reduction is given separately
as Algorithm 1.

Suppose sg still contains vertices after reduction. If the
degree of sg after reduction is less than vertex limit, we
attempt to solve the MC problem exactly on sg using
some function solve() (for instance via DW) and update
lower bound. Otherwise, sg is inserted again into the list
subgraphs.

The same step is repeated for the subgraph ssg with the
exception that ssg does not have to be re-inserted into list
subgraphs at the end. This is because the subgraph induced
by a single vertex v either contains a clique or can be
removed.

J Sign Process Syst

Removing a vertex v in line 5 of Algorithm 2 decreases
the size of sg by one in each iteration, thus the algorithm
terminates in finite time once all generated subgraphs have
size at most vertex limit.

Lastly, we describe our procedure choose vertex(sg) for
choosing the next vertex to be removed from sg. A vertex
with high degree will potentially greatly reduce the size
of sg, however at the expense of also producing a large
subgraph ssg.

In order to maximize the impact of removing a vertex,
we successively try out three choices: a vertex of highest
degree, a vertex of median degree and, if necessary, a vertex
of lowest degree in sg. If the vertex of lowest degree has
degree |V | − 1, then sg is a clique: In this case, solving
MC on sg can be omitted and lower bound can be updated
immediately.

4 Experimental analysis

The aim of this section is to investigate if a quantum
advantage for the MC problem can be detected for certain
classes of input graphs. To this end, we compare the DW
solvers of Section 3.1.2 to classical ones on various graph
instances – from random small graphs that fit the DW chip
to (larger) graphs tailored to perfectly fit DW’s Chimera
architecture. We also evaluate our graph splitting routine of
Section 3.3 on large MC instances. First we briefly describe
classical solvers that will be used in the comparison.

4.1 Classical solvers

Apart from the tools provided by D-Wave Inc., we employ
classical solvers in our comparison, consisting of: A sim-
ulated annealing algorithm working on the Ising problem
(SA-Ising), a simulated annealing algorithm specifically
designed to solve the clique problem (SA-clique, see [14]),
softwares designed to find cliques in heuristic or exact
mode (the Fast Max-Clique Finder fmc, see [25]), the
software tool pmc (see [29]), and the Gurobi solver [15].

SA-Ising This is a simulated annealing algorithm working
on an Ising problem formulation. The initial solution is
a random solution, and a single move in the simulated
algorithm is the flip of one random bit.

SA-clique We implemented a simulated annealing algo-
rithm specifically designed to find cliques, as described in
[14]. As SA-clique only finds cliques of a user-given size
m, we need to apply a binary search on top of it to find
the maximum clique size. Its main parameter is a value α

controlling the geometric temperature update of the anneal-
ing in each step (that is, Tn+1 = αTn). A default choice is

α = 0.9996. A value closer to 1 will yield a better solution
but will increase the computation time.

Fast Max-Clique Finder (fmc, pmc) These two algorithms
are designed to efficiently find a maximum clique for a
large sparse graph. They provide exact and heuristic search
modes. We use version 1.1 of software fmc [25] and pmc
(github commit 751e095) [29].

Post-processing heuristics alone (PPHa) The DW pipeline
includes a post-processing step: First, if chains exist, a
majority vote is applied to fix any broken chains. Then
a local search is performed to ensure that any solution is
indeed a local minimum (the raw solutions coming from
DW might not be in a local minimum, see [9]). For a given
solution coming out of the pipeline, one might wonder what
the relative contributions of DW and of the post-processing
step are. For some small and simple problems, the post
processing step alone might be able to find a good solution.

We try to answer this issue by solely applying the
post-processing step, and by comparing the result with
the one obtained by quantum annealing. However, post-
processing by DW runs on the DW server and is not
available separately.

To enable us to still use the DW post-processing alone,
we employ the following procedure. We set a very high
absolute chain strength (e.g., 1000 times greater than the
largest weight in our Ising problem), and turn on the
auto-scale feature mapping QUBO weights to the interval
[−1, 1]. Because of the limited precision of the DW
hardware (DW maps all QUBO weigths to 16 discrete
values within [−1, 1]), chain weights will be set to the
minimum value −1 while all other weights will be scaled
down to 0. In this way, the quantum annealer will only
satisfy the chains rather than the actual QUBO we are
interested in. As chains will not be connected to other
chains, and as all linear terms will be zero, each chain
will be assigned a random value −1 or +1. Applying the
DW post-processing step to such a QUBO with large chain
weights will therefore result in the post-processing step
being called with a random initial solution. We hence expect
to obtain results stemming from the post-processing step
only (with random starting point). This method will be
referred to as PPHa, post-processing heuristic alone.

Gurobi Gurobi [15] is a mathematical programming solver
for linear programs, mixed-integer linear and quadratic
programs, as well as certain quadratic programs. We employ
Gurobi to solve given QUBO problems (Ising problems
can be solved as well, nevertheless Gurobi explicitly allows
to restrict the range of variables to binary inputs, making
it particularly suitable for QUBO instances). Instead of
solving MC directly with Gurobi, we solve the dual

J Sign Process Syst

Table 1 Running time on 45
vertex random graphs. Graph Max. clique size Runtime [s]

Sapi PPHa QBsolv fmc pmc SA Gurobi

p=0.3 5 0.15 0.15 0.05 8 · 10−6 3 · 10−5 0.15 102

p=0.5 8 0.15 0.15 0.06 3 · 10−4 5 · 10−5 0.37 38

p=0.7 13 0.15 0.15 0.04 0.002 8 · 10−5 0.19 33

p=0.9 20 0.15 0.15 0.04 0.135 8 · 10−5 0.28 2

The edge probability used to generate those graphs is given in the first column. Since for such small graphs,
every software returned the correct solution, we only report the running times. Gurobi solves the dual
problem, leading to reversed graph densities and timings

problem, that is we computed a maximum independent set
on the complement graph.

4.2 Small graphs with no special structure

We generate four random graphs with increasing edge den-
sities for our experiments. We considered edge probabilities
ranging from 0.3 to 0.9 in steps of 0.05. We compare the
execution times of DW using the Sapi interface and the dif-
ferent solvers listed in Section 3.1.2 to the classical solvers
of Section 4.1.

Results are shown in Table 1. For small graphs, every
solver returns a maximum clique, therefore the table shows
execution times only. We can see that (a) software solvers
are much faster than DW, with pmc being the fastest by
several order of magnitudes; (b) DW and PPHa exhibit
equal results and execution times. This shows that for these
small graphs, even the simple software heuristic included in
the DW pipeline is capable of solving the MC problem. The
similar performance of DW and PPHa therefore makes it
impossible to distinguish between the contributions from the
post-processing heuristic and the actual quantum annealer;
(c) Gurobi finds the best solution as well (for the dual of
MC, the maximum independent set problem, thus timings
decrease in the last column of Table 1), but since Gurobi is
an exact solver, its running time is higher than the one of
the other methods. We note that the timings for Gurobi are
for finding the best solution – letting Gurobi run further to
subsequently prove that a found solution is optimal requires
a far longer runtime. Moreover, we have observed in
Eq. 4 in Section 3.2 that the QUBO for MC leads to an
order of N2 quadratic terms even for sparse graphs. This in
turn typically causes the QUBO matrix to be very dense,
making it difficult to embed the QUBO onto the Chimera
graph. If embedding the QUBO is indeed possible, then
usually at the cost of incurring long chains. This is due to
the fact that a dense QUBO necessarily contains a large
number of couplers between qubits not adjacent on the
DW chip, thus requiring re-routing through chain qubits.
In our experiments we observe that this is a delicate case

for the quantum annealer: Using high coupler strengths
for the chains results in consistent chains after annealing,
but comes at the cost of downscaling the actual QUBO
weights, thus leading to meaningless solutions. Lower chain
strengths often cause many of the chains to be broken, i.e.
the physical qubits constituting the chains have different
values. Therefore some processing needs to be applied to
obtain valid solutions. The most simple one is a majority
vote, however all postprocessing rules offered by DW are
merely heuristic ways of assigning final values to the qubits.
It is not guaranteed that a weighting scheme exists which
preserves the QUBO and prevents chains from breaking at
the same time.

As an example, Fig. 3 shows the first four broken chains
in a typical DW execution of the MC problem on a 45
vertex graph. The chain for x2 has more zeros and less
ones than the one for x7, yet after the DW postprocessing
algorithm was applied, the variables got correct values x2 =
1, x7 = 0 (with apparently PPHa overwriting the inferior
DW solution). Our experiments with randomly assigned
values to broken chains (see the discussion for PPHa in
Section 4.1) similarly show that accurate solutions obtained
for small graphs are often mostly due to the post-processing
algorithm rather than the quantum annealing by DW.

4.3 Graphs of sizes that fit DW

In Section 4.2, we performed experiments with random
graphs that can be embedded onto DW. We observed that

Figure 3 The first four broken chains (out of 16) produced by DW on
a test 45-vertex graph. The first column shows the name of the variable
the chain corresponds to and the third column gives the correct value
for that variable.

J Sign Process Syst

highly optimized software solvers outperformed DW in
terms of speed. This is due to the fact that the largest random
graphs we are sure to embed on DW (around 45 vertices) are
still comparably small and can hence be solved efficiently
with an optimized heuristic. In order to detect a difference
between DW and classical solvers, we need to consider
larger graphs. In this section we will analyze the behavior of
the quantum annealer on subgraphs of DW’s chimera graph,
i.e. the largest graph we can embed on the DW architecture.

4.3.1 Chimera-like graphs

Since on small graphs we did not observe any speedup of
DW compared to the classical algorithms, we now consider
graphs that fit nicely the DW architecture. The largest graph
that fits DW is the Chimera graph C, and since formulation
(4) uses the complement edges, the largest graph that we
can solve MC on is the complement of C. Let G denote the
complement of any graph G. Note that the graphs C and C
are not interesting for the MC problem since C is bipartite
and hence C consists of two disconnected cliques, which
makes MC trivial on this graph.

Consider now the graph C1 obtained by contracting one
random edge from C. An edge contraction consists of
deleting an edge (v1, v2) and merging its endpoints v1
and v2 into a new vertex v∗. With N1 and N2 the set of
neighboring vertices of v1 and v2, the neighbors of v∗ are
N1 ∪N2 \ {v1, v2}. Solving the MC problem on C1 requires
the embedding of the complement of C1 onto DW, which
is C1. The natural embedding of C1 onto C maps v∗ onto
a chain of two vertices and all other vertices of C1 onto
single vertices of C. Moreover, if we add any edge to C1,
the resulting graph will not be embeddable onto C any more
since C1 already uses all available qubits and edges of C.
We can thus say that C1 is one of the densest graphs of size
|V | − 1 than can be embedded onto C.

We can generalize the aforementioned construction to m

random edge contractions; the resulting graph Cm will have
|V | − m vertices, will be one of the densest graphs of size
|V |−m that fits onto C, and the chains of such an embedding
will be the paths of contracted edges. This family of graphs
Cm with 0 < m < 1100 is therefore a good candidate for the
best-case scenario for the MC problem: The Cm family are
large graphs whose QUBOs can be embedded onto C and
whose solutions of MC are not trivial.

4.3.2 Experiments

We solve the MC problem on the Cm family of graphs using
DW’s Sapi, PPHa and the SA-Ising software, SA-clique,
and fmc.

Figure 4 shows the result. We observe that for graph
sizes up to 400, PPHa finds the same result as DW. For

200 400 600 800 1000

−
5

0
−

4
0

−
3

0
−

2
0

−
1

0
0

Graph size

b
e
s
t
c
li
q
u
e
 s

iz
e
 f
o
u
n
d
,
r
e
la

ti
v
e
 t
o
 D

w
a
v
e
 2

X

Dwave 2X

PPHa

SA−clique fast

SA−clique slow

SA−ising

fmc

Figure 4 Best clique size found by the different solvers, relatively to
the DW result, on the Cm family of graphs.

these small graphs the problem is likely simple enough to
be solved by the post-processing step alone. As expected,
the simulated annealing algorithms designed specifically for
MC (fmc, pmc) are behaving better than the general SA-
Ising algorithm. The fmc software is run in its heuristic
mode. The comparatively lower quality results we obtain
with fmc could be due to the fact that fmc is designed for
large sparse graphs but run here on very dense graphs.

For large graphs (≥ 800 vertices), DW gives the best
solution. (Note we do not know if that solution is optimal.)

4.3.3 Speedup

Since SA-clique seems to be the best candidate to compete
against DW, and moreover since it is considered the classical
analogue of quantum annealing, we choose to compute the
DW speedup relatively to SA-clique on the Cm graph family.

We employ the following procedure: For each graph size,
we run DW with 500 anneals and report the best solution.
The DW runtime is the total qpu runtime for 500 anneals
(approximately 0.15s). For SA-clique, we start with a low
α parameter (i.e., a fast cooling schedule), and gradually
increase α until SA-clique finds the same solution as DW.
The value of α for which SA-clique finds the same solution
as DW gives us the best execution time for SA-clique given
the required accuracy. The SA-clique algorithm is run on
one CPU core of an Intel E8400 @ 3.00GHz.

Figure 5 shows the speedup for different graph sizes of
the Cm family. We observe that DW is slower than SA-
clique for graphs with less than 200 vertices. For larger
graphs, DW gets exponentially faster, reaching a speedup of
the order of a million for graphs with 1000 vertices. This

J Sign Process Syst

0 200 400 600 800 1000

1
e
−

0
2

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1
e
+

0
6

Graph size

ra
tio

 S
A

/Q
A

 ti
m

es

Quantum annealing

Simulated annealing

Figure 5 Speedup on artificial graphs designed to fit the Chimera
topology.

behavior is not unexpected: For small graphs, optimized
software solvers can terminate with runtimes far less than
the constant anneal time of DW (see Table 1). The larger
the graphs, the more pronounced the advantage of DW is
due to the fact that the Cm graph instances investigated in
this experiment are similar to the topology of DW’s native
Chimera graph. Further detail is given in the following
section.

Overall, our experiments show that for large graphs
whose QUBOs can be embedded onto C, DW is able to find
very quickly a solution that is very difficult to obtain with
classical solvers.

4.3.4 Topology

In summary, the results of Sections 4.2 and 4.3 demonstrate
that the closer the topology of a problem is to the
native Chimera graph (Fig. 1) of the DW chip, the more
pronounced the advantage of DW over classical solvers.
Moreover, with an increasing problem size, the problem
becomes exponentially more difficult for classic solvers,
while it takes the same time to run on DW (as long as it
can be embedded onto the hardware). Note however, that
the larger problem we can fit on DW (with a fixed number
of qubits), the smaller average chain length we get. This
means that these experiments benefit DW in the comparison
with classical solvers twice: on the one hand, the problem
becomes much more difficult for the classical solvers due
to larger graphs involved; on the other hand, it becomes
somewhat easier for DW because the shorter chains improve
the accuracy, thereby biasing the results in favor of DW.

edge presence probability

nu
m

be
r o

f s
ol

ve
r c

al
ls

Figure 6 Number of solver calls against edge probability. Log scale
on the y-axis.

4.4 Using decomposition for large graphs

We investigate some properties of the graph splitting routine
of Section 3.3 which enables us to solveMC instances larger
than the size that fits onto the DW chip. In this section, we
always use our graph splitting routine to divide up the input
graphs into subgraphs of 45 vertices, the largest (complete)
graphs that can be embedded on the DW chip. First, we
test our graph splitting routine on random graphs with 500
vertices and an edge probability (edge density) ranging from
0.1 to 0.4 in steps of 0.05. Figure 6 shows the number of
generated subgraphs (or equivalently, the number of solver
calls) against the edge probability. Each data point is the
median value of ten runs, the standard deviation is given as

5000 10000 15000 20000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

graph size |V|

c
o
m

p
u
ti
n
g
 t
im

e
 [
s
]

av. degree = 50

av. degree = 100

av. degree = 200

Figure 7 Time of the graph splitting routine as a function of the graph
size.

J Sign Process Syst

error bars. The number of solver calls seems to follow an
exponential trend with respect to the edge probability.

Second, we investigate the scaling of our graph splitting
routine with an increasing graph size |V |. Since, with a
fixed edge probability, graphs become denser (their vertex
degrees increase) as their size goes to infinity, we take an
alternative approach and fix the average degree d of each
vertex: We then generate graphs of size 3000 to 20,000 (in
steps of 500) using edge probability p = d/(|V | − 1). This
ensures that the average vertex degree stays constant as |V |
goes to infinity.

We measure both the time t (in seconds) of the
graph splitting alone as well as the number n of
problems/subgraphs being solved by DW. According to
Table 1 (column for DW’s interface Sapi), the time to solve
each subgraph on the DW chip is 0.15 seconds, thus leading
to an overall time for computing MC of t +0.15 ·n seconds.

Figure 7 shows average timings from 100 runs for
three fixed average degrees d ∈ {50, 100, 200}. We
observe that if d is relatively large in comparison to
|V | (which, in particular, appears to hold for |V | ≈
5000 and d = 200), the k-core and CH-partitioning
algorithms are less effective, while the vertex-splitting

routine alone produces too many subgraphs, causing
the computing time to get disproportionately high. With
increasing the number of vertices, we observe a roughly
linear increase of the runtime. As expected, higher
average degrees d result in denser graphs and thus higher
runtimes.

To demonstrate the applicability of our graph splitting
routine outside of random graphs, we apply the graph
splitting to families of graphs from the 1993 DIMACS
Challenge on Cliques, Coloring and Satisfiabilty [17], also
used in [4]. These are Hamming and c-fat graphs. Both
graph families depend on two parameters: the number
of vertices n and an additional internal parameter, the
Hamming distance d for Hamming graphs and the partition
parameter c for c-fat graphs. We use the generation
algorithms of [16] for both graph families. We also
employed g and U graphs, defined in [19] (including their
generation mechanism), which have previously been used
for graph assessments in [4, 19].

Table 2 shows results for all four graph families. We see
that for the graph parameters used in the aforementioned
studies, our graph splitting algorithm finds a maximum
clique (mostly) within a fraction of a second. The number

Table 2 Graph splitting
algorithm applied to a variety
of graph families (first column)
including their graph
parameters (number of vertices
in second column, internal
parameter in third column).

Graph family Vertices Parameter Largest clique No. subgraphs Runtime [s]

Hamming 128 1 64 0 0.09

2 32 196 6.4

4 4 20 0.1

6 2 1 0.09

c-fat 200 1 12 3 0.02

5 58 1 0.53

500 1 14 3 0.08

5 64 2 2.1

10 126 0 25.6

g graph 100 10 1 1 0.01

200 10 1 1 0.01

500 10 1 1 0.07

1000 10 1 1 0.26

2000 10 1 1 1.1

5000 10 1 1 6.8

10000 10 1 1 28.3

U graph 1000 5 7 6 0.49

10 10 9 0.49

20 14 11 0.57

2000 5 7 7 1.9

10 11 10 2.0

20 17 14 2.2

Largest clique found, number of generated subgraphs and overall runtime in seconds for the splitting is
reported

J Sign Process Syst

nu
m

be
r o

f s
ol

ve
r c

al
ls

number of qubits

si
ze

 li
m

it

Figure 8 Number of solver calls (left y-axis) and size limit (maximal
arbitrary graph embeddable on DW; right y-axis) as a function of the
number of qubits.

of generated subgraphs along the way varies widely, from
none or one subgraph for g graphs to almost two hundred
for Hamming graphs.

Lastly, we aim to assess the performance of future
generations of DW systems on our clique finding approach
for arbitrary large graphs. Essentially, we turn the previous
question around: Instead of assessing the graph splitting for
a variety of graphs and a fixed DW system, we now look
at the evolution of possible future DW machines with an
increasing number of qubits and investigate the number of
solver calls needed by the graph splitting algorithm (applied
to a fixed realization of a random graph with 500 vertices
and edge presence probability 0.3).

First, assuming a similar Chimera topology for future
generations of DW systems, doubling the number of
available qubits will increase the size of the maximal
complete subgraph that can be embedded by a factor of

√
2.

The maximal size of an arbitrary graph embeddable on DW
is shown in Fig. 8 in red (right y-axis). If we assume that the
number of qubits doubles with each new generation, seven
generations of DWmachines are required in order to be able
to directly embed and solve an arbitrary 500 vertex graph.

Second, Fig. 8 (blue data line; left y-axis) shows
the evolution of the number of solver calls for future
DW systems with an increasing number of qubits.
We use the envisaged size of the maximal complete
subgraph embeddable on future DW machines to set the
lower bound parameter of the graph splitting algorithm. In
this experiment we applied the graph splitting algorithm
to the fixed graph generated with 500 vertices and edge
presence probability of 0.3. Each data point is the median of
ten runs. The standard deviation of those ten runs is given
with error bars. The number of required solver calls of our
graph splitting algorithm rapidly decreases in what seems
like an exponential trend.

5 Conclusion

This article evaluates the performance of the DW quantum
annealer on maximum clique, an important NP-hard graph
problem. We compared DW’s solvers to common classical
solvers with the aim of determining if current technology
already allows us to observe a quantum advantage for
our particular problem. We summarize our findings as
follows.

1. The present DW chip capacity of around 1000 qubits
poses a significant limitation on the MC problem
instances of general form that can be solved directly
with DW. For random graphs with no special structure
that are small enough to fit onto DW, the returned
solution is of comparable quality to the one obtained
by classical methods. Nevertheless the highly optimized
classical solvers available are usually faster for such
small instances.

2. Special instances of large graphs designed to fit DW’s
chimera architecture can be solved orders of magnitude
faster with DW than with any classical solvers.

3. For MC instances that do not fit DW, the proposed
decomposition methods offer a way to divide the MC
problem into subproblems that fit DW. The solutions
of all subproblems can be combined afterwards into an
optimal solution of the original problem (assuming DW
solves the subproblems optimally, which is usually true,
but cannot be guaranteed). Our decomposition methods
are highly effective for relatively sparse graphs;
however the number of subproblems generated grows
exponentially with increasing density. We demonstrate
that this issue can be alleviated when/if larger D-Wave
machines become available (Fig. 8).

Overall, we conclude that general problem instances that
allow to be mapped onto the DW architecture are typically
still too small to show a quantum advantage. But quantum
annealing may offer a significant speedup for solving the
MC problem, if the problem size is at least several hundred,
roughly an order of magnitude larger than what it typically
is for general problems that fit D-Wave 2X.

Acknowledgments The authors acknowledge and appreciate the
support provided for this work by the Los Alamos National Laboratory
Directed Research and Development Program (LDRD). They would
also like to thank Dr Denny Dahl for his help while working on the
D-Wave 2X machine.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J Sign Process Syst

References

1. Balas, E., & Yu, C. (1986). Finding a maximum clique in an
arbitrary graph. SIAM Journal of Comparative, 15, 1054–1068.

2. Batagelj, V., & Zaversnik, M. (2011). An o(m) algorithm for cores
decomposition of networks. Adv Dat An Class, 5(2), 129–145.

3. Boothby, T., King, A., Roy, A. (2016). Fast clique minor
generation in Chimera qubit connectivity graphs. Quantum
Information Processing, 15(1), 495–508.

4. Boros, E., Hammer, P., Tavares, G. (2006). Preprocessing of
Unconstrained Quadratic Binary Optimization. Rutcor Research
Report RRR, 10-2006, 1–58.

5. Bunyk, P., Hoskinson, E., Johnson, M., Tolkacheva, E., Altomare,
F., Berkley, A., Harris, R., Hilton, J., Lanting, T., Przybysz, A.,
Whittaker, J. (2014). Architectural considerations in the design of
a superconducting quantum annealing processor. IEEE Trans on
Appl Superconductivity, 24(4), 1–10.

6. Cao, Y., Jiang, S., Perouli, D., Kais, S. (2016). Solving Set Cover
with Pairs Problem using Quantum Annealing. Nature Scientific
Reports, 6(33957), 1–15. https://doi.org/10.1038/srep33957.

7. Chapuis, G., Djidjev, H., Hahn, G., Rizk, G. (2017). Finding
maximum cliques on the d-wave quantum annealer. Proceedings
of the 2017 ACM International Conference on Computing
Frontiers (CF’17), 1–8.

8. Coffrin, C., Nagarajan, H., Bent, R. (2017). Challenges and
successes of solving binary quadratic programming benchmarks
on the dw2x qpu. Los Alamos ANSI debrief, 1–84.

9. D-Wave (2016). D-Wave post-processing guide.
10. D-Wave (2016). Introduction to the D-Wave quantum hardware.
11. Denchev, V., Boixo, S., Isakov, S., Ding, N., Babbush, R.,

Smelyanskiy, V., Martinis, J., Neven, H. (2016). What is the
computational value of finite-range tunneling? Physical Review X,
6(031), 015.

12. Djidjev, H., Hahn, G., Mniszewski, S., Negre, C., Niklasson,
A., Sardeshmukh, V. (2016). Graph partitioning methods for fast
parallel quantum molecular dynamics. CSC 2016, 1(1), 1–17.

13. Dridi, R., & Alghassi, H. (2016). Homology computation of large
point clouds using quantum annealing. arXiv:1512.09328, 1–17.

14. Geng, X., Xu, J., Xiao, J., Pan, L. (2007). A simple simulated
annealing algorithm for the maximum clique problem. Informa-
tion Science, 177(22), 5064–5071.

15. Gurobi Optimization, Inc. (2015). Gurobi optimizer reference
manual. http://www.gurobi.com.

16. Hasselberg, J., Pardalos, P., Vairaktarakis, G. (1993). Test Case
Generators and Computational Results for the Maximum Clique
Problem. Journal of Global Optimization, 3, 463–482.

17. Johnson, D.S., & Trick, M.A. (Eds.) (1996). Clique, Coloring,
and Satisfiability: Second DIMACS Implementation Challenge,
DIMACS, Vol. 26. Providence: American Mathematical Society.
http://dimacs.rutgers.edu/Volumes/Vol26.html.

18. Johnson, M., Amin, M., Gildert, S., Lanting, T., Hamze, F.,
Dickson, N., Harris, R., Berkley, A., Johansson, J., Bunyk, P.,
Chapple, E., Enderud, C., Hilton, J., Karimi, K., Ladizinsky,
E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.,
Tolkacheva, E., Truncik, C., Uchaikin, S., Wang, J., Wilson, B.,
Rose, G. (2011). Quantum annealing with manufactured spins.
Nature, 473, 194–198.

19. Kim, S.H., Kim, Y.H., Moon, B.R. (2001). A Hybrid Genetic
Algorithm for the MAX CUT Problem. Proceeding GECCO’01
Proceedings of the 3rd Annual Conference on Genetic and
Evolutionary Computation, 416–423.

20. King, J., Yarkoni, S., Nevisi, M., Hilton, J., McGeoch, C. (2015).
Benchmarking a quantum annealing processor with the time-to-
target metric. arXiv:1508.05087, 1–29.

21. Lucas, A. (2014). Ising formulations of many np problems.
Frontiers in Physics, 2(5), 1–27.

22. Mniszewski, S., Negre, C., Ushijima-Mwesigwa, H. (2016).
Graph Partitioning using the D-Wave for Electronic Structure
Problems. LA-UR-16-27873, 1–21.

23. Neukart, F., Von Dollen, D., Compostella, G., Seidel, C., Yarkoni,
S., Parney, B. (2017). Traffic flow optimization using a quantum
annealer. arXiv:1708.01625, 1–12.

24. Nguyen, N., & Kenyon, G. (2017). Solving sparse representations
for object classification using the quantum d-wave 2x machine.
Los Alamos ISTI debrief, 1–30.

25. Pattabiraman, B., Patwary, M., Gebremedhin, A., Liao, W.K.,
Choudhary, A. (2013). Fast algorithms for the maximum clique
problem on massive sparse graphs. In International Workshop
on Algorithms and Models for the Web-Graph (pp. 156–169):
Springer.

26. Perdomo-Ortiz, A., Feldman, A., Ozaeta, A., Isakov, S., Zhu,
Z., O’Gorman, B., Katzgraber, H., Diedrich, A., Neven, H.,
de Kleer, J., Lackey, B., Biswas, R. (2017). On the readiness
of quantum optimization machines for industrial applications.
arXiv:1708.09780, 1–22.

27. Rogers, M., & Singleton, R. (2016). Ising Simulations on the
D-Wave QPU. LA-UR-16-27649, 1–14.

28. Rønnow, T., Wang, Z., Job, J., Boixo, S., Isakov, S., Wecker, D.,
Martinis, J., Lidar, D., Troyer, M. (2014). Defining and detecting
quantum speedup. Science, 345, 420–424.

29. Rossi, R., Gleich, D., Gebremedhin, A., Patwary, M. (2013). A
fast parallel maximum clique algorithm for large sparse graphs
and temporal strong components. CoRR, arXiv:1302.6256.

30. Stollenwerk, T., Lobe, E., Tröltzsch, A. (2015). Discrete optimisa-
tion problems on an adiabatic quantum computer. London: 17th
British-French-German Conference on Optimization.

31. Thulasidasan, S. (2016). Generative Modeling for Machine
Learning on the D-Wave. LA-UR-16-28813, 1–23.

32. Trummer, I., & Koch, C. (2015). Multiple Query Optimization on
the D-Wave 2X adiabatic Quantum Computer. arXiv:1510.06437,
1–12.

33. Ushijima-Mwesigwa, H., Negre, C., Mniszewski, S. (2017).
Graph Partitioning using Quantum Annealing on the D-Wave
System. arXiv:1705.03082, 1–20.

34. Wang, C., Chen, H., Jonckheere, E. (2016). Quantum versus sim-
ulated annealing in wireless interference network optimization.
Nature Scientific Reports, 6(25797), 1–9. https://doi.org/10.1038/
srep25797.

GuillaumeChapuis is a former
post-doctoral research associate
with the Information Sciences
Group (CCS3) at Los Alamos
National Laboratory, New Mex-
ico, United States of America.
He holds a Ph.D. degree in com-
puter science fromENS Cachan
(France) and a computer engi-
neering degree from INSA
Rennes (France). His research
interests include Parallel Dis-
crete Event Simulation, graph
theory, High Performance
Computing, General-Purpose
Graphics Processing Units
and bioinformatics.

https://doi.org/10.1038/srep33957
http://arXiv.org/abs/1512.09328
http://www.gurobi.com
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://arXiv.org/abs/1508.05087
http://arXiv.org/abs/1708.01625
http://arXiv.org/abs/1708.09780
http://arXiv.org/abs/1302.6256
http://arXiv.org/abs/1510.06437
http://arXiv.org/abs/1705.03082
https://doi.org/10.1038/srep25797
https://doi.org/10.1038/srep25797

J Sign Process Syst

Hristo Djidjev received his
Ph.D. from the University of
Sofia, Bulgaria. He is currently
a Scientist at Los Alamos
National Laboratory, USA.
Before Los Alamos, he has
been with the Bulgarian
Academy of Sciences, Rice
University, and University of
Warwick. His interests are in
graph algorithms, discrete
optimization, software/hard-
ware codesign, bioinformatics,
and quantum computing.

Georg Hahn received his
Ph.D. from Imperial College
London in 2015. Following
a one-year EPSRC doctoral
prize fellowship at Imperial’s
statistics department (2016-
17), he is currently a senior
research associate affiliated
with the StatScale project,
a joint EPSRC programme
grant to develop next genera-
tion statistical methods for
streaming data. Previously he
was a post-doc at the statistics
department of Columbia Uni-
versity in New York (2015-16)

and a visiting researcher at Los Alamos National Laboratory (2015,
2016, 2017). His research interests include algorithmic/computational
mathematics and statistics, mathematical optimisation, Monte Carlo
methods, multiple testing, and information theory.

Guillaume Rizk holds a Ph.D.
from the Université de Rennes 1
and a master degree from the
École Nationale Supérieure
d’Informatique et de Mathéma-
tiques Appliquées de Greno-
ble (ENSIMAG). His research
interests include DNA/RNA
sequencing, graph data struc-
tures for nextgeneration sequen-
cing (NGS), GPU accelerated
RNA folding, and global align-
ment of short DNA sequences.
He is one of the founders of
“Algorizk”which develops inter-
active physics simula tion apps
for mobile devices.

	Finding Maximum Cliques on the D-Wave Quantum Annealer
	Abstract
	Abstract
	Introduction
	Related work
	Solving MC on D-Wave
	DW hardware and software
	The Qubit architecture
	D-Wave solvers
	Sapi
	QBsolv
	QSage

	QUBO formulations of MC
	Solving larger MC instances
	Extracting the k-core
	Graph partitioning
	Vertex splitting
	Combining the three methods

	Experimental analysis
	Classical solvers
	SA-Ising
	SA-clique
	Fast Max-Clique Finder (fmc, pmc)
	Post-processing heuristics alone (PPHa)
	Gurobi

	Small graphs with no special structure
	Graphs of sizes that fit DW
	Chimera-like graphs
	Experiments
	Speedup
	Topology

	Using decomposition for large graphs

	Conclusion
	Acknowledgments
	Open Access
	References

