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ABSTRACT
Pareto Local Search (PLS) is a simple, yet e�ective optimization
approach dedicated to multi-objective combinatorial optimization.
It can however su�er from a high computational cost, especially
when the size of the Pareto optimal set is relatively large. Recently,
incorporating decomposition in PLS had revealed a high potential,
not only in providing high-quality approximation sets, but also
in speeding-up the search process. Using the bi-objective Uncon-
strained Binary Quadratic Programming (bUBQP) problem as an
illustrative benchmark, we demonstrate some shortcomings in the
resulting decomposition-guided Parallel Pareto Local Search (PPLS),
and we propose to revisit the PPLS design accordingly. For instances
with a priori unknown Pareto front shape, we show that a simple
pre-processing technique to estimate the scale of the Pareto front
can help PPLS to better balance the workload. Furthermore, we
propose a simple technique to deal with the critically-important
scalability issue raised by PPLS when deployed over a large number
of computing nodes. Our investigations show that the revisited
version of PPLS provides a consistent performance, suggesting that
decomposition-guided PPLS can be further generalized in order to
improve both parallel e�ciency and approximation quality.
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• Theory of computation → Evolutionary algorithms; Ran-
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1 INTRODUCTION
Solving a multi-objective optimization problem (MOP) requires to
compute a set of solutions representing the possible compromises
with respect to the underlying objectives. Identifying such a set,
referred to as the Pareto optimal set, is a di�cult task. The goal is
many-often to �nd a high-quality Pareto set approximation, which
provides a good balance among con�icting objectives. Evolutionary
algorithms and other search heuristics have been proved to be
extremely e�ective. Despite their skillful design, existing multi-
objective algorithms can imply computing intensive operations. For
instance, it is well known that for large scale MOPs, maintaining
a relatively large solution set can be mandatory. The computa-
tional time required to run a multi-objective algorithm can also
constitute a bottleneck in order to reach a good approximation set.
Therefore, incorporating parallelism and distributed computations
have attracted much attention from the community, not only to
speed-up the search, but also to design novel high-level parallel
approaches, providing improved approximations. In this context,
the work presented in this paper is at the crossroad of three aspects
dealing with the design of e�ective and e�cient multi-objective
algorithms, namely Pareto local search, decomposition and parallel
computing, as discussed in the following paragraphs.

Pareto Local Search. On the one hand, we are interested in
tackling combinatorial MOPs for which Local Search (LS) is a key
building-block in many combinatorial optimization algorithms. In
a single-objective setting, LS is a single solution-based walk in the
solution space X , that iteratively improves the current solution by
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Algorithm 1: A basic Pareto Local Search (PLS).
1 A initial set of non-dominated solutions;
2 while not all solutions in A are visited do

/* Selection */

3 Select a non-visited solution x 2 A;
/* Solution neighborhood exploration */

4 Explore N(x ) and mark x as visited;
/* Acceptance criteria for archiving */

5 Update A with non-dominated neighbors;

6 return A

means of local improving transformations. Those transformations
are usually based on a neighborhood relation N : X ! 2X , which
assigns a set of neighboring solutions N(x) ⇢ X to any solution
x 2 X . When moving to a multi-objective setting, LS can be
extended to deal with a whole set of solutions instead of just a single
one. This simple idea is the cornerstone of the well-established
Pareto Local Search (PLS) algorithm [8], for which a basic variant
is depicted in Algorithm 1 for the clarity of the discussion.

Starting with an initial set of non-dominated solutions, PLS
maintains an archive of non-dominated solutions. At each iteration,
a non-visited solution from the archive is selected, its neighborhood
is explored and the archive is updated. PLS can then be viewed
as a local search operating at a set level and stopping naturally
after reaching a Pareto local optimum set [8]. Although the basic
PLS illustrated in Algorithm 1 enables to obtain high-quality
approximation sets, it is well known that its convergence speed is
low and several strategies have been proposed in order to overcome
this issue [1–4]. Actually, the three key components of PLS, namely
selection, neighborhood exploration and acceptance criteria, and the
way they are instantiated when tackling a given problem, were
shown to be crucially-important for the anytime performance of
PLS [2, 4]. Besides, it is well-understood that the size of the set
maintained by PLS can be required to have a relatively big size,
which implies further computational issues.

Decomposition and Parallelism. On the other hand, in some recent
papers [10, 11], it is shown how to incorporate decomposition into
PLS with the aim of bringing parallelism into the scene to enhance
search performance. Inspired by the MOEA/D algorithm [12], Shi
et al. [10, 11] proposed to use di�erent scalar functions to guide a
number of independent PLS processes in parallel towards di�erent
regions of the objective space. The archives obtained by di�erent
processes are merged together into one output archive at the
end of the run. In order to guarantee that the sub-archives at
every PLS process do not overlap, while avoiding any distributed
communications, the objective space is further partitioned into
di�erent search regions by de�ning boundaries. These regions
are mapped to the parallel PLS processes, and the corresponding
weight vectors are used to guide selection. It is, in particular, shown
that this high-level parallelizing approach allows one to speed-
up very substantially the computational �ow, while maintaining
seemingly the same approximation quality than the original PLS.
To the best of our knowledge, the so-obtained Parallel Pareto Local
Search (PPLS) [10, 11] can in fact be considered as a state-of-the-art
high-level parallel design of basic PLS. However, we argue that

the mechanism of PPLS still requires further improvement. This is
precisely one of the main motivations of this paper.

Contributions. In this paper, we identify two major issues in the
initial design of PPLS [10] for which we propose two simple, yet
e�ective, solutions. Firstly, the objective space partition used in
PPLS is found to introduce some load-imbalance with respect to the
computational e�orts underlying every parallel PLS process. This
is basically because the mapping of the Pareto set into the objective
space, i.e., the Pareto front (PF), may span a region of variable and
unknown width. Accordingly, we propose to estimate the extreme
points of the PF prior to running the independent PLS processes.
This allows us to better adjust the boundary of the objective space
to be decomposed over the PLS processes. More importantly, when
increasing the number of available computing nodes, PPLS is found
to su�er from a scalability issue, both in terms of running time
and approximation quality. This is because constraining the search
to multiple narrow regions in the objective space makes it more
likely for a single independent PLS to be trapped into local optima.
Considering that scalability is one of themost desirable properties of
parallel algorithms, dealingwith such an issue is critically important
when it comes to deploy PPLS in a massively parallel environment.
Accordingly, and instead of a stringent partition of the objective
space, we manage to use overlapping search regions when running
the independent parallel PLS processes. This is handled by simply
opening the initial boundary vectors used for decomposition by a
pre-de�ned angle in the objective space.

Our experimental study on a number of standard instances of
the well-established bi-objective Unconstrained Binary Quadratic
Programming (bUBQP) problem provides evidence on the accuracy
the proposed PPLS variant to deal with the before-mentioned issues.
In this respect, our investigations are to be considered as an attempt
to push a step forward the design of scalable and e�cient parallel
multi-objective optimization algorithms in large-scale distributed
environments and for large-scale instances.

Outline. The rest of this paper is organized as follow. For the
paper to be self-contained, we recall in Section 2 the initial design of
PPLS as described in [10, 11]. In Section 3, we discuss the �rst issue
of PPLS related to load-imbalance when dealing with an unknown
Pareto front shape. In Section 4, we discuss the the second issue of
PPLS related to the scalability of PPLS. In Section 5, we conclude
the paper and highlight some perspectives.

2 PARALLEL PARETO LOCAL SEARCH
In this section we review the design of PPLS [10, 11].

2.1 De�nitions
A multi-objective optimization problem can be de�ned by a set of
M objective functions f = (f1, f2, . . . , fM ), and a set X of feasible
solutions in the decision space. In the following , X is a discrete
set since our focus is on combinatorial optimization problems. Let
Z = f (X ) ✓ IRM be the set of feasible outcome vectors in the
objective space. To each solution x 2 X is assigned an objective
vector z 2 Z , on the basis of the vector function f : X ! Z . In
a maximization context, an objective vector z 2 Z is dominated
by an objective vector z0 2 Z (i.e., z � z

0) i� 8m 2 {1, 2, . . . ,M},
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m and 9m 2 {1, 2, . . . ,M} such that zm < z

0
m . A solution

x 2 X is dominated by a solution x
0 2 X (i.e., x � x

0), i� f (x) �
f (x 0). Given a set A ⇢ X and a solution x 2 X , x is dominated
with respect to A (i.e., x � A), if x is dominated by at least one
solution in A. A solution x

? 2 X is termed Pareto optimal, i�
there does not exist any other solution x 2 X such that x? �
x . The set of all Pareto optimal solutions is the Pareto set (PS).
Its mapping in the objective space is the Pareto front (PF). We
also use a scalarizing function allowing to transform the original
multi-objective problem a number of scalarized single-objective sub-
problems based on pre-de�ned weight vectors. Di�erent scalarizing
functions have been proposed so far in the literature [7]. In this
paper, we use the weighted sum (�ws ) function, to be maximized:

�
ws (x , �) =

M’
i=1

�i · fi (x),

where � = (�1, . . . , �M ) is a weight vector among the objectives. As
a benchmark, we consider the well-established multi-objective Un-
constrained Binary Quadratic Programming (mUBQP) problem [5]:

maximize : fk (x) = x
T
Qk x =

n’
i=1

n’
j=1

q
k
i j xi x j

where Qk = [qki j ] is a n ⇥ n matrix for the kth objective function
fk , and x is a vector of n binary (0 � 1) variables (i.e., X = {0, 1}n ).
We focus on the bi-objective UBQP, i.e. M = 2, for which PLS is
recognized as a state-of-the-art algorithm [6]. Similar to [6, 10, 11],
the neighborhood structure N used in PLS is the 1-bit-�ip.

2.2 An Overview of PPLS
PPLS was designed using di�erent alternative selection, neighbor-
hood exploration and acceptance strategies [10]. Without loss of
generality, we focus on one speci�c PPLS variant as depicted in the
template of Algorithm 2.

First, the objective space is decomposed evenly into several small
regions. In the bi-objective case, and as illustrated in Figure 1,
this consists in delimiting the boundaries of contiguous regions
using a reference point and a set of two consecutive lines (vectors)
passing through the reference point. Then, several independent PLS
processes are executed in parallel, each one operating in exactly
one of the so-de�ned regions. This is encoded in the template of
Algorithm 2 by initially providing PPLS with an input set of N
constraints �. Every process pi is hence running one independent
PLS where a solution cannot be accepted to enter the archive set
Ai if it is outside the search regions de�ned by constraints �i .
More precisely, when a process pi �nds a solution whose objective
vector maps outside the boundaries of its region �i , it simply
ignores it. Nevertheless, this is with the exception of the situation
where all solutions in the local archive Ai are outside the search
region constraints �i (see Line 10 and Line 19 in Algorithm 2). This
exception prevents PPLS from stopping early when PPLS starts
from an initial archive Ainit that is outside �i .

In order to guide the independent parallel processes within their
pre-de�ned regions, basic PLS is also redesigned using a weight
vector (see Figure 1), corresponding to the region where a parallel
process is expected to operate. A weighted sum is then used to
rank the explored solutions and to update every local archive

Algorithm 2: Parallel Pareto Local Search (PPLS) [10, 11]
Input: P :=

�
p1, . . . , pN

 
: N parallel processes;

� :=
�
�1, . . . , �N

 
: N target weight vectors;

� :=
�
�1, . . . , �N  

: N constrained search regions;
�( · , �): a scalarizing function to be maximized ;

1 Ainit  initial set of non-dominated solutions;
2 For every process pi , i 2 {1, . . . , N }

do independently in parallel:
3 Ai  Ainit;
4 8x 2 Ai , marked as non-visited;
5 �⇤i  max{�(�, �i ) | � 2 Ai };
6 while 9x 2 Ai s.t., x is non-visited do
7 x  arg max

�2Ai

�
�(�, �i ) | � is non-visited

 
;

8 SuccessFlag f alse ;
9 for x 0 2 N(x ) do:

10 if �i (x 0) = true or 8� 2 Ai , �i (�) = f alse then
11 if �(x 0, �i ) > �⇤i then
12 �⇤i  �(x 0, �i );
13 x 0  (marked as) non-visited;
14 Ai  non-dominated-sol(Ai [ {x 0 });
15 SuccessFlag true ;
16 break;

17 if SuccessFlag = f alse then
18 for x 0 2 N(x ) do:
19 if �i (x 0) = true or 8� 2 Ai , �i (�) = f alse then
20 if x 0 ⌃ Ai then
21 x 0  (marked as) non-visited;
22 Ai  non-dominated-sol(Ai [ {x 0 });

23 x  (marked as) visited;

24 for x 2 Ai do: x  (marked as) non-visited;
// Re-check the entire neighborhood of every solution in Ai

25 Redo the while loop in Line 6, but skip Line 16;

26 A non-dominated-sol([Ni=1Ai );
27 return A

boundary vector

PLS2
PLS3

PLS4

PLS5

PLS6

weight vector

z? = (0, 0)

f2

f1

�1

�2

�3
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�5

�6

�1
�2

�3
�4

�5

�6

PLS1

Figure 1: Illustration of search region (i.e.�i ) decomposition
in PPLS. Six PLS are executed independently in parallel,
each one using one weight vector �i .

Ai . This is to contrast with basic PLS (see Algorithm 1) which
is solely based on the dominance relation. In fact, at the selection
step, a basic PLS typically selects a non-visited solution at random
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(a) � = �0.5 (b) � = 0 (c) � = 0.5

Figure 2: Visualization of PPLS trajectory on the bUBQP instances with n = 500 and di�erent objective correlation �.

z* = (0,0)

(a) � ! �1

z* = (0,0)

(b) � ⇡ 0

z* = (0,0)

(c) � ! 1

Figure 3: Di�erent � values lead to di�erent scale of the PF

from the archive in order to explore its neighborhood, while in
PPLS the non-visited solution that has the highest weight-sum
scalarizing function value is selected (Line 7). Moreover, PPLS stops
the neighborhood exploration and marks the current solution as
visited immediately when it �nds a neighboring solution that has
an even higher scalarized function value than the highest value
from the archive (Lines 11–16). As for the acceptance criteria, the
basic PLS typically accepts all the neighboring solutions that are
non-dominated by any solution from the archive, while PPLS �rst
only accepts the neighboring solution that has an even higher
scalarized function value, then if no such neighboring solution
can be found, PPLS switches to accepting solutions that are non-
dominated (Line 17–22). Finally, after all solutions in Ai have been
visited (end of the while loop), all solutions are marked as non-
visited and their neighborhoods are explored again to make sure
that the entire neighborhood of every solution in Ai is explored.
(Lines 24–25). Notice that although a weighted-sum scalarizing
function is used, which at a �rst sight might seem solely appropriate
to reach supported solutions, using the dominance relation still
allows PPLS to eventually �nd non-supported ones.

The previous steps are applied independently by each parallel
process. Only after all processes have terminated, the global archive
is returned by merging the local archives found by the di�erent
processes. Notice that this speci�c combination of selection, neigh-
borhood exploration and acceptance in PPLS aims at (i) coordinating
the parallel processes without requiring any communication, and
(ii) reducing drastically the size of the local archive Ai maintained
by every parallel process all along the di�erent iterations.

3 ADDRESSING PPLS LOAD IMBALANCE
The �rst design issue in PPLS is related to the choice of the reference
point, used for the de�nition of the decomposed regions, which can
lead to unbalanced parallel e�orts as discussed in the following.

Impact of the Reference Point. [10] proposed a diagram called
trajectory tree to show the search history of a PLS process. Speci�-
cally, the trajectory tree shows all the solutions ever accepted by
the archive during the entire PLS process. In Figure 2, we show the
trajectory trees of three exemplary PPLS runs (with 6 computing
nodes) corresponding to three standard bUBQP instances taken
from [5]. Using such instances, one can explicitly consider an
important feature of multi-objective optimization problems which
is the correlation between the objectives. The objective correlation
of bUBQP instances described in [5] is controlled by means of a real-
valued parameter � 2 [�1, 1]. When � = 0, the objective values are
meant to be uncorrelated. However, as � is set to a negative (resp.
positive) value, the objective values tend to be more con�icting
(resp. correlated). This has an impact on the scale of the PF, which
could then span a region of variable size, i.e., ranging from very
small (when � ! 1) to very large (when � ! �1), see Figure 3.

Following the initial design of PPLS as described originally
in [10], the sub-regions given as input to our PPLS exemplary
runs are obtained by: (i) setting a pre-�xed reference point, and (ii)
using a uniform distribution of boundary lines passing through this
point and decomposing the dominated region of the objective space
into N = 6 parts (as depicted previously in Figure 1). The critical
issue comes precisely from the setting of the reference point value.
The chosen value, namely (0, 0), might be a good choice when the
objectives are independent and when the PF lies around the bound-
aries of the two extreme regions (see Figure 2(b) and Figure 3(b)).
However, since one cannot have such a strong guarantee in general,
this choice of the reference point is problematic. In fact, as can be
seen in Figure 2(a) and Figure 3(a), when the objective correlation
� ! �1, the parallel processes mapping the edges of the objective
space will have relatively large PF fragments to approximate, e.g.,
the processes PLS1 and PLS6 in Figure 2(a). This also happens to
process PLS2 in Figure 2(a), because when it reaches the PF, it is far
from its pre-de�ned search region �2. Hence, it has to approximate
a large part of the PF until it arrives to its own search region. In fact,
remember that when the solutions in the local archive are outside
the boundaries, then a PLS process is allowed to search outside its
region boundaries. When the objective correlation � ! 1, it should
also be clear that processes in the center will have relatively large
PF fragments to approximate, as can be seen in Figure 2(c) and
Figure 3(c). In Figure 2(c), the search regions of PLS1, PLS2, PLS5
and PLS6 do not contain (or only contain a small part of) the �nal
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Figure 4: Illustration of the di�erence between decomposed
sub-regions using di�erent reference points.

PF. Hence, if at the beginning the processes do not �nd solutions
in their own search regions, their search will not stop until they
have approximated the entire PF. This is exactly what happens for
PLS1 and PLS2 in Figure 2(c). On the other side, if at the beginning
the processes do �nd solutions inside their regions, they stop very
early, e.g. PLS5 and PLS6 in Figure 2(c).

Estimating the PF Boundaries. The aforementioned issues can
obviously cause a signi�cant di�erence of the workload among
di�erent parallel processes. In the following, we propose a simple
technique in order to estimate the boundaries of the PF which
then should allow to better de�ne the decomposed sub-regions.
We proceed as follows. First, we conduct two single-objective LS
processes starting with a randomly-generated solution. The �rst
LS optimizes the �rst objective f1 while the second LS deals with
the second objective f2. Let us assume that the two LS processes
end with respectively two solutions xLS,1 and xLS,2. We then
use the point z⇤ = (f1(xLS,2), f2(xLS,1)) as a reference point to
perform objective space decomposition. In other words, we de�ne
the boundary lines as traversing the so-obtained point. In Figure 4,
we show an illustration on the ideal expected shape of the so-de�ned
sub-regions compared to an ad-hoc setting of the reference point.

Experimental Validation. Compared to the original PPLS [10],
two extra LS processesmust be executed before themain PPLS could
start. This can hence introduce extra-computing time. However,
one should keep in mind that the penalty one can pay when
missing the true boundaries of the PF in original PPLS could even
be more severe. To validate such a claim, we experiment PPLS
with and without the so-de�ned reference point. We consider a
range of bi-objective UBQP instances taken from [5], by varying
the objective correlation � 2 {0.75, 0.5, 0.25, 0,�0.25,�0.5,�0.75}
and the problem size n 2 {200, 300, 500}. A more diverse set of
instances possibly coming from other domains is left for future
investigations. A PPLS using 6 CPU cores is considered. Notice
that a more �ne-grained setting raises further issues that we shall
consider separately later in the paper. PPLS is then run until its
natural stopping condition, i.e., all solutions in the local archives
are visited. On each instance/con�guration, 20 runs are executed.
We evaluate the performance of PPLS as follows. First, we measure
the Hypervolume [13] of the output archive to appreciate the
approximation set quality. The reference point needed to compute
the Hypervolume is set as follow. Let fmax and fmin respectively the
objective vectors formed by the maximum and minimum objective
values we ever found during all algorithm executions. Then, the
reference point used for the Hypervolume computation is set

to fmin � 0.1 · (fmax � fmin). Second, we measure the overall
runtime (including pre-processing the boundaries) required by
PPLS to terminate. All algorithms are implemented in GNU C++
and executed on a parallel environment using 2.00GHz 6-core Intel
Xeon CPUs. Our experimental results are summarized in Table 1,
where we additionally report the ratios of the hypervolume-values
and CPU times of the two experimented PPLS versions. The quality
ratio is de�ned as the hypervolume of the PPLS con�guration
described in this paper over the one used originally in [10]. The
acceleration ratio is de�ned as the CPU time of the original PPLS
con�guration [10] over our modi�cation.

Results. From Table 1, we can see that, on 14 out of 21 instances,
the proposed method is not signi�cantly outperformed by the
original method in terms of hypervolume, whereas on 18 out of 21
instances the runtime of the new method is signi�cantly shorter
than that of the original method. As indicated by the quality ratio,
the hypervolume achieved by the revised PPLS is around 99% of
the original one. In contrast, the gap in running time is relatively
large as indicated by the acceleration ratio, i.e., in average over
all instances, and independently of the objective correlation, the
revised PPLS is 4 times faster.We also notice that the largest gaps are
obtained for large-size instances with a high objective correlation.
This is consistent with our previous discussion arguing that, for
such instances, the PLS process at the extremes of the objective
space might either (i) stop prematurely before reaching some parts
of the PF, or (ii) spend a large amount of time traversing the whole
PF since no solutions in their speci�ed sub-regions can be found
at the early stages of the search process. This can also explain
the slight di�erences observed for the hypervolume. Finally, we
illustrate in Figure 5 the trajectory trees of three exemplary runs
of the modi�ed PPLS con�guration using the same instances than
previously in Figure 2, which provides more visual evidence on the
accuracy of the modi�ed search region decomposition.

4 ADDRESSING PPLS SCALABILITY
The main desirable feature of PPLS is the ability of speeding-
up the search through parallelism while still providing a high-
quality approximation. Maintaining such an ability while achieving
scalability, with respect to an increasing number of computing
resources, constitutes the second issue in the initial design of PPLS.

Scalability of PPLS. Obviously, as the number of processes
increases, the decomposed search sub-region of each parallel PLS
process becomes narrower. On the one hand, as soon as some
solutions satisfying the boundary conditions is archived by a
PPLS sub-process, most solutions generated subsequently using
the neighborhood structure are likely to be outside the (narrow)
boundaries of the corresponding sub-region, even if they are non-
dominated. Consequently, this can force the local search to stop
prematurely and make the independent process more easily stuck.
Hence, the quality of the output approximation set can signi�cantly
drop when scaling the number of parallel resources. On the other
hand, as the search sub-regions become tighter, the probability that
an independent PPLS sub-process quickly �nds a solution inside
its boundaries decreases. As discussed previously, this implies that
more solutions from outside the (narrow) sub-region boundaries
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Table 1: Impact of the reference point choice and sub-region decomposition. The sign “+”(resp. “�”,“⇡”) indicates that the
revised PPLS achieves better (resp. worse, equivalent) results than the original PPLS con�guration from [10] based on the
Wilcoxon test at the 0.05 signi�cance level.

Instance Average hypervolume (⇥109) Average runtime (s)
z
⇤

quality ratio z
⇤

acceleration ratio
� n [10]: (0,0) (f1(xLS,2), f2(xLS,1)) [10]: (0,0) (f1(xLS,2), f2(xLS,1))

0.75
200 0.4468 0.4361 0.976 (-) 0.33 0.06 5.5 (+)
300 0.8354 0.8305 0.994 (-) 0.80 0.19 4.2 (+)
500 4.8290 4.8158 0.997 (⇡) 11.98 0.92 13.02 (+)

0.5
200 1.2968 1.2902 0.995 (-) 0.70 0.09 7.78 (+)
300 3.7403 3.7216 0.995 (-) 4.43 0.63 7.03 (+)
500 15.3228 15.2888 0.998 (⇡) 48.02 3.98 12.06 (+)

0.25
200 2.8881 2.8959 1.003 (⇡) 0.36 0.22 1.63 (+)
300 7.7298 7.7533 1.003 (+) 1.49 1.02 1.46 (+)
500 38.8932 39.0615 1.004 (+) 32.64 9.73 3.35 (+)

0.0
200 3.8175 3.8166 0.999 (⇡) 0.34 0.36 0.94 (⇡)
300 14.4194 14.4146 0.999 (⇡) 2.22 2.18 1.02 (⇡)
500 59.3375 59.3323 0.999 (⇡) 25.49 27.14 0.94 (⇡)

-0.25
200 4.9220 4.9174 0.999 (-) 1.03 0.66 1.56 (+)
300 19.2335 19.2255 0.999 (⇡) 6.35 3.97 1.6 (+)
500 87.9575 87.9008 0.999 (⇡) 124.70 50.11 2.49 (+)

-0.5
200 7.6433 7.6432 0.999 (⇡) 3.05 1.33 2.29 (+)
300 27.4432 27.4402 0.999 (⇡) 12.24 7.53 1.62 (+)
500 122.3464 122.3105 0.999 (⇡) 213.57 80.20 2.66 (+)

-0.75
200 9.3167 9.3122 0.999 (-) 17.00 3.52 4.83 (+)
300 34.6094 34.5806 0.999 (-) 104.50 29.24 3.57 (+)
500 166.4474 166.4445 0.999 (⇡) 958.59 298.48 3.21 (+)

(a) � = �0.5 (b) � = 0 (c) � = 0

Figure 5: Visualization of the trajectory of the modi�ed PPLS using the same three bUBQP instances than in Figure 2.

are likely to be accepted, even if the weighted sum-based selection
is designed to guide the sub-process toward its corresponding sub-
region boundaries. As we scale the distributed resources, it is hence
more likely that di�erent parallel processes are operating longer in
di�erent regions than what is expected initially from the de�nition
of the objective space decomposition. This can be interpreted as
follows. The parallel PPLS sub-process are wasting time searching
for their target sub-regions. It is worth noticing that, depending on
the characteristics of the problem at hand, it is a real challenge to
predict at which scales such a scalability issue might occur.

Enhanced Sub-region Decomposition. To deal with the aforemen-
tioned issue, we propose a simple modi�cation in the de�nition of
the decomposed sub-regions. Instead of using the boundary lines to
de�ne a strict partition of the objective space, we enlarge them by
a (small) factor, hence allowing two neighboring regions to overlap.
More precisely, each of the initially-de�ned sub-region is enlarged
by a pre�xed opening angle � as shown in Figure 6. The rationale
behind this modi�cation is that a small, but non-zero, value of �
should allow each parallel PPLS sub-process both to progress more

f1�4

�3

�2
�1

f2

�4

�

�

�

z⇤

�1
�2

�3

Figure 6: Illustration of the overlapping search subregions
using the opening angle � .

easily, and to reach more quickly its initial target region in the
objective space. Obviously, when � = 0, we obtain the exact same
setting than the original PPLS sub-region decomposition [10].
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Figure 7:Hypervolume (�rst row) andCPU runtime (second row) of PPLS using an increasing numberN 2 {24, 36, 48} of parallel
process as a function of opening angle � and for di�erent UBQP instances with � = 0 and size n 2 {200, 300, 400} (respectively
from left to right).

Experimental Validation. In the following, we study the behavior
of PPLS using di�erent (small) � -values, � 2 {0�, 0.2�, 0.4�, . . . , 2�}
of the opening angle and di�erent (relatively large) numbers
of parallel computing nodes N 2 {24, 36, 48}. For this purpose,
we consider the same bi-objective UBQP instances with n 2
{200, 300, 500} using an objective correlation � = 0. For fairness,
the reference point for sub-region decomposition is �xed to (0, 0).
Notice in fact that for � = 0, this was found to be a reasonable
choice, and hence our analysis on the impact of the opening angle
on scalability is not biased by such a setting. Besides, due to space
restriction, we do not consider the other values of � since the only
di�erence are with respect to the considered scales. As previously,
PPLS is then run 20 times for each con�guration, and stops naturally
when all solutions in the archive are explored.

Results. In Figure 7, we report the performance of PPLS in
terms of hypervolume and CPU time. We clearly see that both
performance measures are positively correlated with the value of
the opening angle � . For a �xed scale-valueN , the larger the value of
� , the better the hypervolume obtained by PPLS, but the larger the
time spent by PPLS before terminating. In the setting where � is set
to 0, which corresponds to the original con�guration of PPLS [10],
we can see that, when scaling the number of parallel processes N ,
the performance in terms of hypervolume is worst, especially for
the instance with the smallest size n = 200, in which the granularity
of the search is likely to be more �ne-grained. In turn, the running
time decreases slightly. In the setting where � is �xed to a value
larger than 0, and the number of processesN is scaled, the di�erence
in the obtained hypervolume is more balanced, but the running
time is improved substantially. This means that the runtime of
PPLS improves with N increasing, which is interesting from a pure
parallel scalability point-of-view, while maintaining approximately
the same quality. Thus, we can state that our modi�cation implies
that there is a trade-o� between the gain in approximation quality

and the time required by PPLS to converge, which otherwise would
not be possible by simply setting � = 0.

However, at this stage of the analysis, it is still unclear how good
is the enabled trade-o� between quality and cost, and if it implies
a reasonable scalability behavior of PPLS. In Figure 8, we propose
to show the performance of PPLS as a function of quality and
time, considered more explicitly as two performance ‘objectives’
to be maximized and minimized, respectively. We can then clearly
see for each �xed scale N , the set of attainable quality/time trade-
o�s. The �rst notable observation is that a setting where PPLS
is run with a given number of parallel processes N , ‘dominates’
(respectively, is dominated) by a setting using less (respectively,
more) parallel processes. Notice that for an instance size n = 200,
implying very �ne-grained computations, the set of global trade-
o�s obtained by PPLS do not necessarily improve, but never get
worse when scaling N . Looking at the largest instance size n = 500,
our observation can be clearly derived.

Therefore, analyzing our results according to Figure 8 suggests
the following claim. When scaling the number of processes N , there
exists an optimal setting of the opening angle � such that PPLS can
perform at its best, depending on whether the target is to minimize
time or to maximize quality. To illustrate in a more quantitative
manner the gain we obtain with such a claim, let us consider the
following scenario. Let T �N and HV

�
N be respectively the mean

hypervolume of the approximation set computed by PPLS and its
mean completion time. Assume PPLS is deployed over N = 24
parallel processes using its original con�guration [10], i.e., � = 0.
If we were given more computing resources N > 24, would it be
possible for PPLS to compute an approximation set with a mean
hypervolume at least as good asHV �=0

N=24 but in a signi�cantly faster
time thanT �=0N=24? Alternatively, would it be possible to compute an
approximation set having a signi�cantly better mean hypervolume
within at most the same target mean timeT �=0N=24? Using the original
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Figure 8: Trade-o�s between CPU runtime (to be minimized, x-axis) vs. approximation set quality (hypervolume indicator to
be maximized, y-axis) of PPLS. For every N 2 {24, 36, 48} (see the legend in the bottom), we show a performance line using the
output of the di�erent �-values (the point shape refer to � , see the right legend). Sub�gures are with respect to di�erent UBQP
instances of size n 2 {200, 300, 400} (respectively from left to right).

Table 2: Illustration of the gain in Hypervolume values
when using the best con�guration �

? of the opening angle.
N = 24 N = 36 N = 48

n HV
�=0
N HV

�=0
N �

?
HV

�?

N HV
�=0
N �

?
HV

�?

N
200 4.6053 4.5992 1 4.6217 4.5472 1.2 4.6230
300 14.9570 14.9551 0.8 14.9871 14.9346 1 14.9945
500 66.6581 66.6198 0.6 66.7720 66.5745 0.8 66.8267

con�guration of PPLS, we can verify that the answer is no for N 2
{36, 48}. However, using our modi�ed PPLS, this can be achieved
for some small values of � (around 1�) as shown in Table 2, where
�
? refers to the choice of the opening angle allowing the best mean

hypervolume within mean time not signi�cantly worst thanT �=0N=24,
where statistical signi�cance is measured using a Wilcoxon test
at signi�cance level 0.05. Furthermore, the hypervolume values
HV

�?

N are found to be signi�cantly better for a �xed N 2 {36, 48}
than when using � = 0.

5 CONCLUSION AND PERSPECTIVES
In this paper, we address the load imbalance and the scalability
issues caused by the de�nition of sub-region decomposition in
original PPLS. Beside providing evidence on the accuracy of the
proposed modi�cations, our experimental analysis is intended
to shed more lights into the behavior of PPLS, and hopefully to
provide some hints for future possible improvements. For instance, a
particularly challenging question is to better deal with �ne-grained
parallelism at extreme scales. In particular, one idea would be
to design an automatic technique for the proper setting of the
value of � independently of the tackled problem instance and the
considered parallel scale. Since the idea of enlarging the search sub-
regions is motivated by helping each PLS processes to escape local
optima while staying focused on di�erent target parts of the PF,
a particularly promising alternative could be to further introduce
communication between the parallel PLS processes. We believe
that the online adaptation of the opening angle � with a carefully
designed local cooperation between the multiple PLS processes
shall lead to an extremely scalable decomposition-based parallel
design of PLS. Besides, con�rming and extending our �ndings for
other problem instances with more than two objectives and coming
from other problem domains would be a nice piece of research to

conduct in the future.
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