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INTRODUCTION

Solving a multi-objective optimization problem (MOP) requires to compute a set of solutions representing the possible compromises with respect to the underlying objectives. Identifying such a set, referred to as the Pareto optimal set, is a dicult task. The goal is many-often to nd a high-quality Pareto set approximation, which provides a good balance among conicting objectives. Evolutionary algorithms and other search heuristics have been proved to be extremely eective. Despite their skillful design, existing multiobjective algorithms can imply computing intensive operations. For instance, it is well known that for large scale MOPs, maintaining a relatively large solution set can be mandatory. The computational time required to run a multi-objective algorithm can also constitute a bottleneck in order to reach a good approximation set. Therefore, incorporating parallelism and distributed computations have attracted much attention from the community, not only to speed-up the search, but also to design novel high-level parallel approaches, providing improved approximations. In this context, the work presented in this paper is at the crossroad of three aspects dealing with the design of eective and ecient multi-objective algorithms, namely Pareto local search, decomposition and parallel computing, as discussed in the following paragraphs.

Pareto Local Search. On the one hand, we are interested in tackling combinatorial MOPs for which Local Search (LS) is a key building-block in many combinatorial optimization algorithms. In a single-objective setting, LS is a single solution-based walk in the solution space X , that iteratively improves the current solution by Update A with non-dominated neighbors;

6 return A means of local improving transformations. Those transformations are usually based on a neighborhood relation N : X ! 2 X , which assigns a set of neighboring solutions N(x) ⇢ X to any solution

x 2 X . When moving to a multi-objective setting, LS can be extended to deal with a whole set of solutions instead of just a single one. This simple idea is the cornerstone of the well-established Pareto Local Search (PLS) algorithm [START_REF] Paquete | On local optima in multiobjective combinatorial optimization problems[END_REF], for which a basic variant is depicted in Algorithm 1 for the clarity of the discussion.

Starting with an initial set of non-dominated solutions, PLS maintains an archive of non-dominated solutions. At each iteration, a non-visited solution from the archive is selected, its neighborhood is explored and the archive is updated. PLS can then be viewed as a local search operating at a set level and stopping naturally after reaching a Pareto local optimum set [START_REF] Paquete | On local optima in multiobjective combinatorial optimization problems[END_REF]. Although the basic PLS illustrated in Algorithm 1 enables to obtain high-quality approximation sets, it is well known that its convergence speed is low and several strategies have been proposed in order to overcome this issue [START_REF] Mădălina | Stochastic Pareto local search: Pareto neighbourhood exploration and perturbation strategies[END_REF][START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF][START_REF] Martin | Decision support for multi-objective ow shop scheduling by the Pareto iterated local search methodology[END_REF][START_REF] Liefooghe | On dominance-based multiobjective local search: Design, implementation and experimental analysis on scheduling and traveling salesman problems[END_REF]. Actually, the three key components of PLS, namely selection, neighborhood exploration and acceptance criteria, and the way they are instantiated when tackling a given problem, were shown to be crucially-important for the anytime performance of PLS [START_REF] Dubois-Lacoste | Anytime Pareto local search[END_REF][START_REF] Liefooghe | On dominance-based multiobjective local search: Design, implementation and experimental analysis on scheduling and traveling salesman problems[END_REF]. Besides, it is well-understood that the size of the set maintained by PLS can be required to have a relatively big size, which implies further computational issues.

Decomposition and Parallelism. On the other hand, in some recent papers [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF][START_REF] Shi | PPLS/D: Parallel Pareto local search based on decomposition[END_REF], it is shown how to incorporate decomposition into PLS with the aim of bringing parallelism into the scene to enhance search performance. Inspired by the MOEA/D algorithm [START_REF] Zhang | MOEA/D: A multiobjective evolutionary algorithm based on decomposition[END_REF], Shi et al. [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF][START_REF] Shi | PPLS/D: Parallel Pareto local search based on decomposition[END_REF] proposed to use dierent scalar functions to guide a number of independent PLS processes in parallel towards dierent regions of the objective space. The archives obtained by dierent processes are merged together into one output archive at the end of the run. In order to guarantee that the sub-archives at every PLS process do not overlap, while avoiding any distributed communications, the objective space is further partitioned into dierent search regions by dening boundaries. These regions are mapped to the parallel PLS processes, and the corresponding weight vectors are used to guide selection. It is, in particular, shown that this high-level parallelizing approach allows one to speedup very substantially the computational ow, while maintaining seemingly the same approximation quality than the original PLS. To the best of our knowledge, the so-obtained Parallel Pareto Local Search (PPLS) [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF][START_REF] Shi | PPLS/D: Parallel Pareto local search based on decomposition[END_REF] can in fact be considered as a state-of-the-art high-level parallel design of basic PLS. However, we argue that the mechanism of PPLS still requires further improvement. This is precisely one of the main motivations of this paper.

Contributions.

In this paper, we identify two major issues in the initial design of PPLS [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF] for which we propose two simple, yet eective, solutions. Firstly, the objective space partition used in PPLS is found to introduce some load-imbalance with respect to the computational eorts underlying every parallel PLS process. This is basically because the mapping of the Pareto set into the objective space, i.e., the Pareto front (PF), may span a region of variable and unknown width. Accordingly, we propose to estimate the extreme points of the PF prior to running the independent PLS processes. This allows us to better adjust the boundary of the objective space to be decomposed over the PLS processes. More importantly, when increasing the number of available computing nodes, PPLS is found to suer from a scalability issue, both in terms of running time and approximation quality. This is because constraining the search to multiple narrow regions in the objective space makes it more likely for a single independent PLS to be trapped into local optima. Considering that scalability is one of the most desirable properties of parallel algorithms, dealing with such an issue is critically important when it comes to deploy PPLS in a massively parallel environment. Accordingly, and instead of a stringent partition of the objective space, we manage to use overlapping search regions when running the independent parallel PLS processes. This is handled by simply opening the initial boundary vectors used for decomposition by a pre-dened angle in the objective space.

Our experimental study on a number of standard instances of the well-established bi-objective Unconstrained Binary Quadratic Programming (bUBQP) problem provides evidence on the accuracy the proposed PPLS variant to deal with the before-mentioned issues. In this respect, our investigations are to be considered as an attempt to push a step forward the design of scalable and ecient parallel multi-objective optimization algorithms in large-scale distributed environments and for large-scale instances.

Outline. The rest of this paper is organized as follow. For the paper to be self-contained, we recall in Section 2 the initial design of PPLS as described in [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF][START_REF] Shi | PPLS/D: Parallel Pareto local search based on decomposition[END_REF]. In Section 3, we discuss the rst issue of PPLS related to load-imbalance when dealing with an unknown Pareto front shape. In Section 4, we discuss the the second issue of PPLS related to the scalability of PPLS. In Section 5, we conclude the paper and highlight some perspectives.

PARALLEL PARETO LOCAL SEARCH

In this section we review the design of PPLS [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF][START_REF] Shi | PPLS/D: Parallel Pareto local search based on decomposition[END_REF].

Denitions

A multi-objective optimization problem can be dened by a set of M objective functions f = (f 1 , f 2 , . . . , f M ), and a set X of feasible solutions in the decision space. In the following , X is a discrete set since our focus is on combinatorial optimization problems. Let Z = f (X ) ✓ I R M be the set of feasible outcome vectors in the objective space. To each solution x 2 X is assigned an objective vector z 2 Z , on the basis of the vector function f : X ! Z . In a maximization context, an objective vector z 2 Z is dominated by an objective vector z 0 2 Z (i.e., z z 0 ) i 8m 2 {1, 2, . . . , M }, z m 6 z 0 m and 9m 2 {1, 2, . . . , M } such that z m < z 0 m . A solution x 2 X is dominated by a solution x 0 2 X (i.e., x x 0 ), i f (x) f (x 0 ). Given a set A ⇢ X and a solution x 2 X , x is dominated with respect to A (i.e., x A), if x is dominated by at least one solution in A. A solution x ? 2 X is termed Pareto optimal, i there does not exist any other solution x 2 X such that x ?

x. The set of all Pareto optimal solutions is the Pareto set (PS). Its mapping in the objective space is the Pareto front (PF). We also use a scalarizing function allowing to transform the original multi-objective problem a number of scalarized single-objective subproblems based on pre-dened weight vectors. Dierent scalarizing functions have been proposed so far in the literature [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF]. In this paper, we use the weighted sum ( ws ) function, to be maximized:

ws (x, ) = M ' i=1 i • f i (x),
where = ( 1 , . . . , M ) is a weight vector among the objectives. As a benchmark, we consider the well-established multi-objective Unconstrained Binary Quadratic Programming (mUBQP) problem [START_REF] Liefooghe | A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming[END_REF]:

maximize : f k (x) = x T Q k x = n ' i=1 n ' j=1 q k i j x i x j where Q k = [q k i j
] is a n ⇥ n matrix for the k th objective function f k , and x is a vector of n binary (0 1) variables (i.e., X = {0, 1} n ). We focus on the bi-objective UBQP, i.e. M = 2, for which PLS is recognized as a state-of-the-art algorithm [START_REF] Liefooghe | Experiments on local search for bi-objective unconstrained binary quadratic programming[END_REF]. Similar to [START_REF] Liefooghe | Experiments on local search for bi-objective unconstrained binary quadratic programming[END_REF][START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF][START_REF] Shi | PPLS/D: Parallel Pareto local search based on decomposition[END_REF], the neighborhood structure N used in PLS is the 1-bit-ip.

An Overview of PPLS

PPLS was designed using dierent alternative selection, neighborhood exploration and acceptance strategies [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF]. Without loss of generality, we focus on one specic PPLS variant as depicted in the template of Algorithm 2.

First, the objective space is decomposed evenly into several small regions. In the bi-objective case, and as illustrated in Figure 1, this consists in delimiting the boundaries of contiguous regions using a reference point and a set of two consecutive lines (vectors) passing through the reference point. Then, several independent PLS processes are executed in parallel, each one operating in exactly one of the so-dened regions. This is encoded in the template of Algorithm 2 by initially providing PPLS with an input set of N constraints . Every process p i is hence running one independent PLS where a solution cannot be accepted to enter the archive set A i if it is outside the search regions dened by constraints i . More precisely, when a process p i nds a solution whose objective vector maps outside the boundaries of its region i , it simply ignores it. Nevertheless, this is with the exception of the situation where all solutions in the local archive A i are outside the search region constraints i (see Line 10 and Line 19 in Algorithm 2). This exception prevents PPLS from stopping early when PPLS starts from an initial archive A init that is outside i .

In order to guide the independent parallel processes within their pre-dened regions, basic PLS is also redesigned using a weight vector (see Figure 1), corresponding to the region where a parallel process is expected to operate. A weighted sum is then used to rank the explored solutions and to update every local archive Algorithm 2: Parallel Pareto Local Search (PPLS) [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF][START_REF] Shi | PPLS/D: Parallel Pareto local search based on decomposition[END_REF] Input: P := p 1 , . . . , p N : N parallel processes; := 1 , . . . , N : N target weight vectors; := 1 , . . . , N : N constrained search regions; ( • , ): a scalarizing function to be maximized ; 1 A init initial set of non-dominated solutions;

2 For every process p i , i 2 {1, . . . , N } do independently in parallel:

3 A i A init ; 4 8x 2 A i , marked as non-visited; 5 ⇤ i max{ ( , i ) | 2 A i }; 6 while 9x 2 A i s.t., x is non-visited do 7 x arg max 2A i ( , i ) | is non-visited ; 8 SuccessFlag f alse; 9 for x 0 2 N(x ) do: 10 if i (x 0 ) = true or 8 2 A i , i ( ) = f alse then 11 if (x 0 , i ) > ⇤ i then 12 ⇤ i (x 0 , i ); 13
x 0 (marked as) non-visited;

14 A i non-dominated-sol(A i [ {x 0 }); 15 SuccessFlag true; 16 break; 17 if SuccessFlag = f alse then 18 for x 0 2 N(x ) do: 19 if i (x 0 ) = true or 8 2 A i , i ( ) = f alse then 20 if x 0 ⌃ A i then 21
x 0 (marked as) non-visited; A i . This is to contrast with basic PLS (see Algorithm 1) which is solely based on the dominance relation. In fact, at the selection step, a basic PLS typically selects a non-visited solution at random from the archive in order to explore its neighborhood, while in PPLS the non-visited solution that has the highest weight-sum scalarizing function value is selected (Line 7). Moreover, PPLS stops the neighborhood exploration and marks the current solution as visited immediately when it nds a neighboring solution that has an even higher scalarized function value than the highest value from the archive (Lines 11-16). As for the acceptance criteria, the basic PLS typically accepts all the neighboring solutions that are non-dominated by any solution from the archive, while PPLS rst only accepts the neighboring solution that has an even higher scalarized function value, then if no such neighboring solution can be found, PPLS switches to accepting solutions that are nondominated (Line 17-22). Finally, after all solutions in A i have been visited (end of the while loop), all solutions are marked as nonvisited and their neighborhoods are explored again to make sure that the entire neighborhood of every solution in A i is explored.

22 A i non-dominated-sol(A i [ {x 0 });
(Lines 24-25). Notice that although a weighted-sum scalarizing function is used, which at a rst sight might seem solely appropriate to reach supported solutions, using the dominance relation still allows PPLS to eventually nd non-supported ones.

The previous steps are applied independently by each parallel process. Only after all processes have terminated, the global archive is returned by merging the local archives found by the dierent processes. Notice that this specic combination of selection, neighborhood exploration and acceptance in PPLS aims at (i) coordinating the parallel processes without requiring any communication, and (ii) reducing drastically the size of the local archive A i maintained by every parallel process all along the dierent iterations.

ADDRESSING PPLS LOAD IMBALANCE

The rst design issue in PPLS is related to the choice of the reference point, used for the denition of the decomposed regions, which can lead to unbalanced parallel eorts as discussed in the following.

Impact of the Reference Point. [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF] proposed a diagram called trajectory tree to show the search history of a PLS process. Specically, the trajectory tree shows all the solutions ever accepted by the archive during the entire PLS process. In Figure 2, we show the trajectory trees of three exemplary PPLS runs (with 6 computing nodes) corresponding to three standard bUBQP instances taken from [START_REF] Liefooghe | A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming[END_REF]. Using such instances, one can explicitly consider an important feature of multi-objective optimization problems which is the correlation between the objectives. The objective correlation of bUBQP instances described in [START_REF] Liefooghe | A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming[END_REF] is controlled by means of a realvalued parameter 2 [START_REF] Mădălina | Stochastic Pareto local search: Pareto neighbourhood exploration and perturbation strategies[END_REF][START_REF] Mădălina | Stochastic Pareto local search: Pareto neighbourhood exploration and perturbation strategies[END_REF]. When = 0, the objective values are meant to be uncorrelated. However, as is set to a negative (resp. positive) value, the objective values tend to be more conicting (resp. correlated). This has an impact on the scale of the PF, which could then span a region of variable size, i.e., ranging from very small (when ! 1) to very large (when ! 1), see Figure 3.

Following the initial design of PPLS as described originally in [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF], the sub-regions given as input to our PPLS exemplary runs are obtained by: (i) setting a pre-xed reference point, and (ii) using a uniform distribution of boundary lines passing through this point and decomposing the dominated region of the objective space into N = 6 parts (as depicted previously in Figure 1). The critical issue comes precisely from the setting of the reference point value. The chosen value, namely (0, 0), might be a good choice when the objectives are independent and when the PF lies around the boundaries of the two extreme regions (see Figure 2(b) and Figure 3(b)). However, since one cannot have such a strong guarantee in general, this choice of the reference point is problematic. In fact, as can be seen in Figure 2(a) and Figure 3(a), when the objective correlation ! 1, the parallel processes mapping the edges of the objective space will have relatively large PF fragments to approximate, e.g., the processes PLS 1 and PLS 6 in Figure 2(a). This also happens to process PLS 2 in Figure 2(a), because when it reaches the PF, it is far from its pre-dened search region 2 . Hence, it has to approximate a large part of the PF until it arrives to its own search region. In fact, remember that when the solutions in the local archive are outside the boundaries, then a PLS process is allowed to search outside its region boundaries. When the objective correlation ! 1, it should also be clear that processes in the center will have relatively large PF fragments to approximate, as can be seen in Figure 2(c) and Figure 3(c). In Figure 2(c), the search regions of PLS 1 , PLS 2 , PLS 5 and PLS 6 do not contain (or only contain a small part of) the nal
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Figure 4: Illustration of the dierence between decomposed sub-regions using dierent reference points.

PF. Hence, if at the beginning the processes do not nd solutions in their own search regions, their search will not stop until they have approximated the entire PF. This is exactly what happens for PLS 1 and PLS 2 in Figure 2(c). On the other side, if at the beginning the processes do nd solutions inside their regions, they stop very early, e.g. PLS 5 and PLS 6 in Figure 2(c).

Estimating the PF Boundaries. The aforementioned issues can obviously cause a signicant dierence of the workload among dierent parallel processes. In the following, we propose a simple technique in order to estimate the boundaries of the PF which then should allow to better dene the decomposed sub-regions. We proceed as follows. First, we conduct two single-objective LS processes starting with a randomly-generated solution. The rst LS optimizes the rst objective f 1 while the second LS deals with the second objective f 2 . Let us assume that the two LS processes end with respectively two solutions x LS,1 and x LS,2 . We then use the point z ⇤ = (f 1 (x LS,2 ), f 2 (x LS,1 )) as a reference point to perform objective space decomposition. In other words, we dene the boundary lines as traversing the so-obtained point. In Figure 4, we show an illustration on the ideal expected shape of the so-dened sub-regions compared to an ad-hoc setting of the reference point.

Experimental Validation. Compared to the original PPLS [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF], two extra LS processes must be executed before the main PPLS could start. This can hence introduce extra-computing time. However, one should keep in mind that the penalty one can pay when missing the true boundaries of the PF in original PPLS could even be more severe. To validate such a claim, we experiment PPLS with and without the so-dened reference point. We consider a range of bi-objective UBQP instances taken from [START_REF] Liefooghe | A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming[END_REF], by varying the objective correlation 2 {0.75, 0.5, 0.25, 0, 0.25, 0.5, 0.75} and the problem size n 2 {200, 300, 500}. A more diverse set of instances possibly coming from other domains is left for future investigations. A PPLS using 6 CPU cores is considered. Notice that a more ne-grained setting raises further issues that we shall consider separately later in the paper. PPLS is then run until its natural stopping condition, i.e., all solutions in the local archives are visited. On each instance/conguration, 20 runs are executed. We evaluate the performance of PPLS as follows. First, we measure the Hypervolume [START_REF] Zitzler | Performance assessment of multiobjective optimizers: An analysis and review[END_REF] of the output archive to appreciate the approximation set quality. The reference point needed to compute the Hypervolume is set as follow. Let f max and f min respectively the objective vectors formed by the maximum and minimum objective values we ever found during all algorithm executions. Then, the reference point used for the Hypervolume computation is set to f min 0.1 • (f max f min ). Second, we measure the overall runtime (including pre-processing the boundaries) required by PPLS to terminate. All algorithms are implemented in GNU C++ and executed on a parallel environment using 2.00GHz 6-core Intel Xeon CPUs. Our experimental results are summarized in Table 1, where we additionally report the ratios of the hypervolume-values and CPU times of the two experimented PPLS versions. The quality ratio is dened as the hypervolume of the PPLS conguration described in this paper over the one used originally in [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF]. The acceleration ratio is dened as the CPU time of the original PPLS conguration [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF] over our modication.

Results.

From Table 1, we can see that, on 14 out of 21 instances, the proposed method is not signicantly outperformed by the original method in terms of hypervolume, whereas on 18 out of 21 instances the runtime of the new method is signicantly shorter than that of the original method. As indicated by the quality ratio, the hypervolume achieved by the revised PPLS is around 99% of the original one. In contrast, the gap in running time is relatively large as indicated by the acceleration ratio, i.e., in average over all instances, and independently of the objective correlation, the revised PPLS is 4 times faster. We also notice that the largest gaps are obtained for large-size instances with a high objective correlation. This is consistent with our previous discussion arguing that, for such instances, the PLS process at the extremes of the objective space might either (i) stop prematurely before reaching some parts of the PF, or (ii) spend a large amount of time traversing the whole PF since no solutions in their specied sub-regions can be found at the early stages of the search process. This can also explain the slight dierences observed for the hypervolume. Finally, we illustrate in Figure 5 the trajectory trees of three exemplary runs of the modied PPLS conguration using the same instances than previously in Figure 2, which provides more visual evidence on the accuracy of the modied search region decomposition.

ADDRESSING PPLS SCALABILITY

The main desirable feature of PPLS is the ability of speedingup the search through parallelism while still providing a highquality approximation. Maintaining such an ability while achieving scalability, with respect to an increasing number of computing resources, constitutes the second issue in the initial design of PPLS.

Scalability of PPLS.

Obviously, as the number of processes increases, the decomposed search sub-region of each parallel PLS process becomes narrower. On the one hand, as soon as some solutions satisfying the boundary conditions is archived by a PPLS sub-process, most solutions generated subsequently using the neighborhood structure are likely to be outside the (narrow) boundaries of the corresponding sub-region, even if they are nondominated. Consequently, this can force the local search to stop prematurely and make the independent process more easily stuck. Hence, the quality of the output approximation set can signicantly drop when scaling the number of parallel resources. On the other hand, as the search sub-regions become tighter, the probability that an independent PPLS sub-process quickly nds a solution inside its boundaries decreases. As discussed previously, this implies that more solutions from outside the (narrow) sub-region boundaries Table 1: Impact of the reference point choice and sub-region decomposition. The sign "+"(resp. " ","⇡") indicates that the revised PPLS achieves better (resp. worse, equivalent) results than the original PPLS conguration from [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF] based on the Wilcoxon test at the 0.05 signicance level.

Instance

Average hypervolume (⇥10 9 ) Average runtime (s)

z ⇤ quality ratio z ⇤ acceleration ratio n

[10]: (0,0) (f1(x LS,2 ), f2(x LS,1 ))

[10]: (0,0) (f1(x LS,2 ), f2(x LS,1 )) are likely to be accepted, even if the weighted sum-based selection is designed to guide the sub-process toward its corresponding subregion boundaries. As we scale the distributed resources, it is hence more likely that dierent parallel processes are operating longer in dierent regions than what is expected initially from the denition of the objective space decomposition. This can be interpreted as follows. The parallel PPLS sub-process are wasting time searching for their target sub-regions. It is worth noticing that, depending on the characteristics of the problem at hand, it is a real challenge to predict at which scales such a scalability issue might occur.

0
Enhanced Sub-region Decomposition. To deal with the aforementioned issue, we propose a simple modication in the denition of the decomposed sub-regions. Instead of using the boundary lines to dene a strict partition of the objective space, we enlarge them by a (small) factor, hence allowing two neighboring regions to overlap. More precisely, each of the initially-dened sub-region is enlarged by a prexed opening angle as shown in Figure 6. The rationale behind this modication is that a small, but non-zero, value of should allow each parallel PPLS sub-process both to progress more easily, and to reach more quickly its initial target region in the objective space. Obviously, when = 0, we obtain the exact same setting than the original PPLS sub-region decomposition [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF]. Experimental Validation. In the following, we study the behavior of PPLS using dierent (small) -values, 2 {0 , 0.2 , 0.4 , . . . , 2 } of the opening angle and dierent (relatively large) numbers of parallel computing nodes N 2 {24, 36, 48}. For this purpose, we consider the same bi-objective UBQP instances with n 2 {200, 300, 500} using an objective correlation = 0. For fairness, the reference point for sub-region decomposition is xed to (0, 0). Notice in fact that for = 0, this was found to be a reasonable choice, and hence our analysis on the impact of the opening angle on scalability is not biased by such a setting. Besides, due to space restriction, we do not consider the other values of since the only dierence are with respect to the considered scales. As previously, PPLS is then run 20 times for each conguration, and stops naturally when all solutions in the archive are explored.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Hypervolume, n =
Results. In Figure 7, we report the performance of PPLS in terms of hypervolume and CPU time. We clearly see that both performance measures are positively correlated with the value of the opening angle . For a xed scale-value N , the larger the value of , the better the hypervolume obtained by PPLS, but the larger the time spent by PPLS before terminating. In the setting where is set to 0, which corresponds to the original conguration of PPLS [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF], we can see that, when scaling the number of parallel processes N , the performance in terms of hypervolume is worst, especially for the instance with the smallest size n = 200, in which the granularity of the search is likely to be more ne-grained. In turn, the running time decreases slightly. In the setting where is xed to a value larger than 0, and the number of processes N is scaled, the dierence in the obtained hypervolume is more balanced, but the running time is improved substantially. This means that the runtime of PPLS improves with N increasing, which is interesting from a pure parallel scalability point-of-view, while maintaining approximately the same quality. Thus, we can state that our modication implies that there is a trade-o between the gain in approximation quality and the time required by PPLS to converge, which otherwise would not be possible by simply setting = 0.

However, at this stage of the analysis, it is still unclear how good is the enabled trade-o between quality and cost, and if it implies a reasonable scalability behavior of PPLS. In Figure 8, we propose to show the performance of PPLS as a function of quality and time, considered more explicitly as two performance 'objectives' to be maximized and minimized, respectively. We can then clearly see for each xed scale N , the set of attainable quality/time tradeos. The rst notable observation is that a setting where PPLS is run with a given number of parallel processes N , 'dominates' (respectively, is dominated) by a setting using less (respectively, more) parallel processes. Notice that for an instance size n = 200, implying very ne-grained computations, the set of global tradeos obtained by PPLS do not necessarily improve, but never get worse when scaling N . Looking at the largest instance size n = 500, our observation can be clearly derived.

Therefore, analyzing our results according to Figure 8 suggests the following claim. When scaling the number of processes N , there exists an optimal setting of the opening angle such that PPLS can perform at its best, depending on whether the target is to minimize time or to maximize quality. To illustrate in a more quantitative manner the gain we obtain with such a claim, let us consider the following scenario. Let T N and HV N be respectively the mean hypervolume of the approximation set computed by PPLS and its mean completion time. Assume PPLS is deployed over N = 24 parallel processes using its original conguration [START_REF] Shi | Using parallel strategies to speed up Pareto local search[END_REF], i.e., = 0. If we were given more computing resources N > 24, would it be possible for PPLS to compute an approximation set with a mean hypervolume at least as good as HV =0 N =24 but in a signicantly faster time than T =0 N =24 ? Alternatively, would it be possible to compute an approximation set having a signicantly better mean hypervolume within at most the same target mean time T =0 N =24 ? Using the original conguration of PPLS, we can verify that the answer is no for N 2 {36, 48}. However, using our modied PPLS, this can be achieved for some small values of (around 1 ) as shown in Table 2, where ? refers to the choice of the opening angle allowing the best mean hypervolume within mean time not signicantly worst than T =0 N =24 , where statistical signicance is measured using a Wilcoxon test at signicance level 0.05. Furthermore, the hypervolume values HV ? N are found to be signicantly better for a xed N 2 {36, 48} than when using = 0.

CONCLUSION AND PERSPECTIVES

In this paper, we address the load imbalance and the scalability issues caused by the denition of sub-region decomposition in original PPLS. Beside providing evidence on the accuracy of the proposed modications, our experimental analysis is intended to shed more lights into the behavior of PPLS, and hopefully to provide some hints for future possible improvements. For instance, a particularly challenging question is to better deal with ne-grained parallelism at extreme scales. In particular, one idea would be to design an automatic technique for the proper setting of the value of independently of the tackled problem instance and the considered parallel scale. Since the idea of enlarging the search subregions is motivated by helping each PLS processes to escape local optima while staying focused on dierent target parts of the PF, a particularly promising alternative could be to further introduce communication between the parallel PLS processes. We believe that the online adaptation of the opening angle with a carefully designed local cooperation between the multiple PLS processes shall lead to an extremely scalable decomposition-based parallel design of PLS. Besides, conrming and extending our ndings for other problem instances with more than two objectives and coming from other problem domains would be a nice piece of research to conduct in the future.

Algorithm 1 :

 1 A basic Pareto Local Search (PLS).

1 A 3 Select 4 Explore

 134 initial set of non-dominated solutions; 2 while not all solutions in A are visited do /* Selection */ a non-visited solution x 2 A; /* Solution neighborhood exploration */ N(x ) and mark x as visited; /* Acceptance criteria for archiving */ 5

x 2 A 1 Figure 1 :

 211 Figure 1: Illustration of search region (i.e. i ) decomposition in PPLS. Six PLS are executed independently in parallel, each one using one weight vector i .

5 Figure 2 : 1 Figure 3 :

 5213 Figure 2: Visualization of PPLS trajectory on the bUBQP instances with n = 500 and dierent objective correlation .

Figure 5 :

 5 Figure 5: Visualization of the trajectory of the modied PPLS using the same three bUBQP instances than in Figure 2.

Figure 6 :

 6 Figure 6: Illustration of the overlapping search subregions using the opening angle .

Figure 7 :

 7 Figure7: Hypervolume (rst row) and CPU runtime (second row) of PPLS using an increasing number N 2 {24, 36, 48} of parallel process as a function of opening angle and for dierent UBQP instances with = 0 and size n 2 {200, 300, 400} (respectively from left to right).

Figure 8 :

 8 Figure8: Trade-os between CPU runtime (to be minimized, x-axis) vs. approximation set quality (hypervolume indicator to be maximized, y-axis) of PPLS. For every N 2 {24, 36, 48} (see the legend in the bottom), we show a performance line using the output of the dierent -values (the point shape refer to , see the right legend). Subgures are with respect to dierent UBQP instances of size n 2 {200, 300, 400} (respectively from left to right).

Table 2 :

 2 Illustration of the gain in Hypervolume values when using the best conguration ? of the opening angle. .9570 14.9551 0.8 14.9871 14.9346 1 14.9945 500 66.6581 66.6198 0.6 66.7720 66.5745 0.8 66.8267

		N = 24		N = 36				N = 48		
	n	HV =0 N	HV =0 N	?	HV N	?	HV =0 N	?	HV N	?
	200	4.6053	4.5992	1	4.6217	4.5472 1.2 4.6230
	300 14								
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