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Supervisory Control of Multirotor Vehicles in

Challenging Conditions using Inertial Measurements

Moses Bangura1, Xiaolei Hou2, Guillaume Allibert3, Robert Mahony4 and Nathan Michael1

Abstract—We consider the problem where a supervisor or
remote pilot provides a real-time linear velocity reference to
a multirotor aerial robot; either through a traditional remote
control handset, a modern haptic interface, or semi-autonomous
guidance control system. In all such cases, the goal is to servo-
control the vehicle’s velocity to the set point as quickly and as
efficiently as possible. The challenge is to achieve this robustly
in the presence of unknown wind disturbances and in situations
where the vehicle moves into GPS denied environments (indoors,
urban canyons, forests) where estimation of the vehicle’s velocity
is challenging. These situations include unclutterred environ-
ments, poor visibility environments caused by poor lighting and
poorly textured visual environments where laser and vision based
sensors become unreliable. The approach taken is to develop a
coupled non-linear complementary velocity aided attitude filter
that provides estimates of both the inertial and body-fixed frame
linear velocities, as well as the attitude of a multirotor aerial
vehicle, that functions effectively even when only the inertial
measurement unit (IMU) and barometric sensor measurements
are available. When full inertial velocity measurements are avail-
able (from GPS, Vicon or a vision system), the filter additionally
estimates the external wind speed. In this paper we formally
present the proposed filter along with experimental results and
a comparison of the filter to recent results in the literature
and in situations where inertial reference frame velocities are
available intermittently. The proposed filter is computationally
simple to implement and easy to calibrate, tune and provides
an excellent base level functionality for modern multirotor aerial
robotic systems that will be required to function robustly in a
variety of environments.

I. INTRODUCTION

Multirotors are aerial vehicles with multiple pairs of motor-

rotor systems for the generation of thrust and vehicle dynamic

control [1]. Due to their light weight, simple dynamics, cost

and availability, they have become the standard platform for

both aerial robotics research and the hobby drone communi-

ties. Multirotor robots have numerous potential military and

civilian applications including construction of structures [2],

search and rescue [3], surveillance of earthquake buildings [4]

and many more. Some of these environments are indoor or

occluded from global position systems (GPS) and require a

secondary sensor modality to estimate linear velocity. Vision
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systems are a natural solution to this challenge and are

presently a hot topic in the robotics and computer vision

community. Vision based approaches have led to visual iner-

tial navigation system (VINS) based state estimation gaining

increasing popularity in the community [5], [6], [7]. These

approaches generally use an unscented Kalman filter (UKF)

[5], extended Kalman filter (EKF), Gaussian particle filter [8]

or a sliding window observer [9] based on a combination of

lasers, lidars, RGB and RGB-D cameras, and stereovision.

An example of these algorithms that has been used to do

indoor teleoperation is direct visual odometry [10] using an

RGB-D sensor. Table I provides a summary of some of the

current vision, laser and LiDAR based techniques being used

for localisation in GPS denied environments. These techniques

however, are computationally challenging and aerial robots

with these sensing modalities often carry secondary CPU

boards such as Intel Atom board [11], Odroid XU4 or a

dedicated Intel Core i7 ground station [6]. Even the most

computationally tractable vision based algorithm, optical flow,

which estimates the ego-motion of the vehicle as scaled

linear and angular velocities require significant computational

resources [12], [13], [14], [15]. It is expected then that most

aerial robotic systems will not carry multiple vision systems,

and should their single vision system fail or be obscured

by fog, rain, dust or low visibility due to low light or poor

texture, or should the environment they are observing be highly

dynamic, invalidating the static environment assumption that

is fundamental in most VINS, then the functionality of the

system would be significantly compromised. This is partic-

ularly important in the case of supervisory control activities

where a human is integral in task and such situations may

well be encountered. For supervisory control linear velocity

reference, derived from user inputs are provided in real-time

to the vehicle [16], [17], [18]. Although some supervisory

systems are based on trajectories [19] and position mapping

[20], in all cases a good onboard estimate of the vehicle

velocity is critical to implementation of a robust and reliable

supervisory control. Thus, it is critical that an aerial robot has

robust estimates of its linear velocity available at all times,

including when GPS is unavailable or vision systems fail.

Direct airspeed measurements using pitot tubes [24], [25]

has been considered for quadrotor vehicles. This method

suffers from accuracy and slow dynamic response of pitot tube

technology; typically around 100ms rise time. Arain et. al. [25]

noted that pitot tube velocity measurements for quadrotors is

unreliable for velocities under 1m/s and they observed errors

of up to 2m/s for ground truth forward velocity of 6m/s.

Yeo et. al. [24] used four pitot tubes mounted underneath
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TABLE I
INERTIAL REFERENCE FRAME ESTIMATION ALGORITHMS FOR GPS DENIED ENVIRONMENTS ALONG WITH THEIR LIMITATIONS. THOUGH THESE

SENSORS USUALLY MEASURE IN THE CAMERA FRAME, THEY ACTUALLY DO SO WITH ZERO WIND, HENCE, CAN BE CONSIDERED INERTIAL FRAME

SENSORS.

Class of Algorithm Measurements Comments

Optical Flow/Visual

Odometry

∆x̄,∆ȳ, z̄ These algorithms require a camera and can be used along with an IMU to obtain de-rotated optical
flow measurements. These measurements can be scaled by range sensors to obtain twists (position
change between successive measurements) ∆ζ in x and y. Example algorithms are the PX4FLOW
[12].

Laser odometry ∆x̄,∆ȳ, z̄ LiDARs can be used to estimate the twist in the axis of measurement. Example algorithm is the RF2O
laser odometry algorithm [21].

Laser SLAM x̄, ȳ, z̄ Uses laser scan matching of LiDAR measurements. The algorithms are usually accurate to generally
not require loop closures. Example algorithm is Hector mapping [22].

Monocular Visual

SLAM

x̄, ȳ, z̄ Uses a camera to determine the scaled position and exact rotation of a camera using SIFT/SURF
features. In addition, these algorithms require an IMU and additional estimation mechanism to estimate
the absolute scale in order to estimate the absolute pose from a camera image [9]. Examples include
SVO, ORB-SLAM, LSD.

RGBD Odome-

try/SLAM

x̄, ȳ, z̄ It uses depth information (x, y, z) of observed points in an RGB image to estimate the position and
attitude of the sensor. The range and accuracy of the algorithm depend on the sensor range and noise
characteristics [23].

Stereo SLAM x̄, ȳ, z̄ This is the most computationally intensive SLAM algorithm and uses stereo images to do 6DoF SLAM
[23].

each rotor to measure the axial velocities through the rotors.

They also noted slow rise time and obtained errors of up

to 0.4m/s for air speed of 1.5m/s. Tomić et. al. [26] used

aerodynamic power [27] to estimate induced flow through

the rotor, however, there is insufficient information with this

approach to discriminate between motions in ~e1, ~e2 and ~e3
directions [28]. Davis and Pounds [29] used a force torque

sensor to estimate total velocities of up to 1m/s with an

accuracy of about 0.1m/s. A more promising approach is based

on exploiting the linear induced drag effects of rotor motion

[30] to estimate translational linear velocities. This drag model

along with a barometer was used in an extended Kalman filter

to estimate all three linear velocities [31]. Furthermore, Sikkel

et. al. [32] used this model along with GPS to develop a non-

linear extended Kalman filter for predicting wind speed.

State-estimators for quadrotors can be grouped into atti-

tude, velocity and position and the more recent combined

estimation for attitude and linear velocity, velocity aided

attitude observers. The most common of these is the attitude

observer which include the left-invariant extended Kalman

filter (LIEKF) [33], [34], and non-linear complementary filters

[35]. The major disadvantage of attitude only estimation is

the requirement for a second velocity and/or position filter.

Velocity aided attitude estimation combines these two state

estimation problems into a single observation problem. The

vehicle’s linear velocity measurements can be posed in either

the inertial frame [36], [37], [38] or in the body fixed frame

[39], [40], [41]. Bonnabel [42] proposed an invariant extended

Kalman filter (EKF) for velocity and attitude estimation in

quaternions. Abeywardena et. al. [43] and Leishman et. al.

[44] used an Euler angle based combined roll and pitch and

translational velocities with an extended Kalman filter (EKF)

formulation. Hua et. al. developed nonlinear observers based

on Lyapunov analysis and approximation arguments [36], [45].

The authors prior work [39], [40] also considers the problem

from a nonlinear observer design perspective in the body-fixed

frame.

In this paper we make the following contributions:

1) We propose a non-linear state-estimation and control

algorithm for supervisory control of aerial vehicles that

uses all available sensors systems (GPS, vision, IMU,

etc) but is robust to loss of all sensors except the

proprioceptive IMU and barometer sensor systems.

2) We provide experimental verification of the proposed

closed-loop performance and comparison to state-of-the-

art algorithms.

3) We demonstrate the robustness of the closed-loop system

to loss of exteroceptive sensors systems (GPS/Vision/etc).

This work builds on our previous work in state estimation and

control of aerial vehicles [46], [39], [40]. A key innovation of

the approach is to run a coupled pair of non-linear velocity

aided attitude filters, one that estimates the body-fixed frame

velocity, and one that estimates the inertial velocity of the

vehicle. The body-fixed frame filter uses the inertial measure-

ment unit (IMU), magnetometer and barometer along with a

drag model to estimate attitude and linear velocity expressed in

the body-fixed frame. This filter requires only proprioceptive

sensor systems on board the vehicle and is robust to GPS

drop-out, loss of visual texture or failure of vision systems

due to loss of visual texture or presence of dust or other visual

impediments. However, the filter depends on velocity estimates

derived from a dynamic model of rotor drag and based on

noisy accelerometer measurements, as well as the barometer

sensor that is subject to variable bias. As a consequence, the

body-fixed velocity aided attitude filter does not have the

same performance as filters that use more precise sensors

such as GPS or vision INS. The inertial frame filter uses

the IMU in the angular velocity estimation along with inertial

reference velocity measurements derived from GPS, vision, or

other exteroceptive sensors. This filter has a high performance,

providing precise state-estimates, however, it fails should the

exteroceptive sensor systems fail. The proposed coupled filter

architecture synchronises the two filter state estimates and

ensures that the high performance aspects of the inertial-

frame velocity aided attitude filter are exploited when they

are available, and that in the event that the exteroceptive
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sensor systems fail, the body-frame velocity aided attitude

filter will continue to function and keep the inertial frame filter

synchronised so it is available to come on line the moment the

GPS or vision INS signal is available. An added advantage of

the approach is that we obtain an estimate of the average wind

conditions in which the vehicle is flying from the constant

offset estimate between linear velocity estimates (transformed

into the same frame of reference). A teleoperation scheme

with a human operator is used to demonstrate the proposed

supervisory control algorithm, although the approach is appli-

cable to any real-time velocity reference signal. The proposed

control ensures locally exponentially stable velocity tracking.

Experimental results are presented to show performance of

the scheme both with and without linear inertial reference

frame velocity measurements. Results are also presented to

demonstrate the computational efficiency of the algorithm,

accuracy and superiority to recent results obtained in the

literature.

The remainder of the paper is organised as follows: the non-

linear quadrotor model and the means of obtaining the mea-

surements and estimates of these measurements is described

in Section II, the control of the vehicle using the estimated

velocities and attitude is described in Section III, in Section IV,

we present the hardware system and in Section V, we present

experimental results and comparisons to the state-of-the art

algorithms.

II. OBTAINING MEASUREMENTS AND STATE ESTIMATION

In this section, we present the non-linear quadrotor model

in freestream with no external forces written in both the

body-fixed and inertial reference frames. These models form

the bases of the state estimation scheme presented later in

the section (Section II-D). The model is also used in the

the development of the velocity controller in Section III-A.

The different sensors that can be used to obtain the various

measurements of the different variables are also described. The

measurements are then used in our proposed coupled non-

linear complementary velocity aided attitude filter.

In the sequel, ~e1, ~e2, ~e3 ∈ R
3 will be used to denote unit

vectors in x, y and z directions respectively.

A. Quadrotor modelling

To present the non-linear model, consider Figure 1 which

has an inertial-fixed frame denoted by {A} and a body-fixed

frame {B}. If the mass of the quadrotor is m, g, acceleration

due to gravity and T is the total thrust or heave force, v ∈ R
3

is the linear velocity of the vehicle in {A} and R ∈ SO(3)
is the rotation matrix from {B} to {A}, D ∈ R

3 is the drag

force expressed in {B}, and Ω ∈ R
3 is the angular velocity of

the vehicle in inertial frame, then the linear dynamics model

in {A} is given by [1]

v̇ = g~e3 −
T

m
R~e3 +

1

m
RD, (1a)

Ṙ = RΩ×, (1b)

where Ω× ∈ R
3×3 is the skew-symmetric matrix. It is such

that Ω×w = Ω×w for all w ∈ R
3. If V = R⊤v is the velocity

Fig. 1. Quadrotor platform: The platform used for the indoor experiments
showing the body-fixed {B} and inertial {A} frames.

of the vehicle in the body-fixed frame, then (1) expressed in

{B} is

V̇ = −Ω× V + gR⊤~e3 −
T

m
~e3 +

D

m
, (2a)

Ṙ = RΩ×. (2b)

In the sequel, if x is the true value of a quantity, then

the following notation x̄, x̂,A x,B x are used to denote its

measurement, estimated value expressed in reference frames

A and B respectively.

B. Body-fixed frame measurement of linear velocity BV̄

We take an approach based on exploiting the linear induced

drag force generated by rotors to estimate the horizontal

velocity displacement of the vehicle [30], [36], [43], [45], [39],

[44], [46], [40].

If the drag coefficient for a given direction in the lateral

plane is c̄ > 0 and assuming no coupling drag terms between

the lateral axes, then the drag force is given by [30], [47] (see

Figure 6)

D = −
√
T





c̄ 0 0
0 c̄ 0
0 0 0



V.

If the accelerometer measurement is ā, and it measures the

external forces i.e. the − T
m
~e3 + D

m
terms of (2a), then [44],

[39], [46]

ā = − 1

m

(

−D

T

)

,

where the model for the drag force in any direction is given

by D~e1 = −c̄
√
TV ⊤~e1, D~e2 = −c̄

√
TV ⊤~e2 and D⊤~e3 = 0.

Given that T = −mā⊤~e3, implies

āx = −c̄
√
−āzVx, āz < 0, (3a)

āy = −c̄
√
−āzVy, āz < 0 (3b)

where c̄ is now scaled by 1√
m

. These equations are used to

obtain the translational linear velocity measurements in {B}
[46].

To obtain the vertical measured velocity BVz , an approach

proposed in [40] which uses the aerodynamic power developed

in [27] could be used. Such an approach though very accurate
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requires measurement of electrical power and speed of all the

rotors. In general, rotor speed measurement is absent on most

generic open-source multirotor electronic speed controllers

(ESC) though in recent years, there has been an increasing

number of flight control boards that are equipped with voltage

and current sensors for measuring electrical power. How-

ever, the majority of flight control boards are equipped with

barometeric pressure sensors for measuring altitude. Using

the altitude measurements z̄ of the strapdown barometeric

pressure sensors, we propose a complementary filter to obtain

the measured vehicle velocity v̄z in ~e3 in the inertial-fixed

frame

Filter 0.

˙̂z = v̄z − k1 (ẑ − z̄) , (4a)

˙̄vz = ~e⊤3

(

R̂ā
)

+ g − βaz − k2 (ẑ − z̄) , (4b)

β̇az = k3 (ẑ − z̄) , (4c)

where ẑ(0) = 0, k1, k2, k3 are positive scalar gains, βaz ∈ R

is an estimate of the accelerometer bias in ~e3 and ẑ is the

estimated altitude.

Using the BV̄x,
B V̄y obtained from (3) and (4), then using

simple rotations based on the estimated attitude R̂, the full

body-fixed frame velocity measurements BV̄ can be obtained.

Note that we assume for Filter 0 that the estimated attitude

is correct R̂ = R, however, small errors in attitude will not

generate significant errors in vertical velocity. It should be

noted that the concept of using BV̄x,
B V̄y,

A v̄z has been used

by Hua et. al. [48] in their proposed filter along with proof of

stability of the filter.

C. Inertial reference frame measurements of linear velocity
Av̄

Our definition of an inertial-fixed frame sensor is a sensor

that provides measurement such that it is independent of

the relative airflow around the vehicle. For this work, the

inertial-fixed frame linear velocity measurements are provided

by either a uBlox global positioning system (GPS) or a

Vicon motion capture system1. However, there are many other

sensors and algorithms that can be used to obtain inertial

reference frame measurements. Some of these algorithms, their

required sensors and characteristics are surveyed in Table I.

With measurements of linear velocity in both the body-

fixed and inertial frames available the challenge is to fuse

these and provide estimates of attitude and velocity to be used

by the controller proposed in Section III-A which is agnostic

to inertial velocity measurements. It should be noted that the

inertial measurement unit (IMU) on multirotors can provide

measurements of both linear acceleration ā and angular veloc-

ity Ω̄. For this work we assume that the quadrotor is equipped

with a magnetometer which measures the earth’s magnetic

field µ̊ ∈ R
3 ∈ {A}. If R is the attitude of the vehicle, then

the decoupled estimated magnetic field is

µ̂ = R̂⊤µ̊.

1https://www.vicon.com/

D. Quadrotor state estimation

The architecture of the proposed coupled non-linear com-

plementary state estimation scheme is presented in Figure 2. In

the filter formulation, please note R1 = BR = AR = R2 = R

and that BV = V1,
Av = v2. Before presenting the filter

mathematically, we first define the anti-symmetric projection

operator in square matrix space as

Pa(H) =
1

2
(H −H⊤). (5)

If we also let β ∈ R
3 to denote the bias in a measure-

ments, subscripts 1 and 2 denote internal variables used by

Filter 1 in {B} and Filter 2 in {A} respectively. If we

assume that the trajectory of the quadrotor is smooth with

Ω(t), Ω̇(t), v(t), v̇(t), V (t) and V̇ (t) and bounded with no

delays in the measurements, we propose the following coupled

non-linear velocity aided attitude filters in both the body-fixed

and inertial-fixed frames. Starting with the body-fixed frame

{B} (Filter 1).

Filter 1 in {B}. Let kvc1 , kr1, k
u
1 , k

βa
1

be positive scalar gains

with measurements Ω = Ω̄, a = ā, V = V̄ and µ = µ̄, then

consider the following observer based on (2)

˙̂
V1 = −(Ω− β̂Ω

1 )×V̂1 + gX⊤
1 ~e3 + a− β̂a

1 −∆v
1 − kvc1 ∆vc

1 ,

(6a)

Ẋ1 = u̇1R̂1 + u1

˙̂
R1, (6b)

˙̂
R1 = R̂1(Ω− β̂Ω

1 )× − kr1∆
r
1×R̂1 + R̂1∆

µ
1
−∆rc

1 R̂1, (6c)

u̇1 = −ku1 gṼ
⊤
1 R̂⊤

1 ~e3, (6d)

˙̂
βa
1 = k

βa
1

∆v
1 − k

βac
1

(β̂a
1 − β̂a

2 ), (6e)

˙̂
βΩ

1 = k
βΩ
1

∆r
1, (6f)

where Ṽ = V̂ − V , X = uR̂ is the scaled rotation with u

a positive scalar. The initial conditions are V̂1(0) = V1(0),
X1(0) = u1(0)R̂1(0), u1(0) = 1, R̂1(0) = I and I is the

identity matrix. The innovation terms ∆v
1,∆

r
1,∆

µ
1

are defined

by

∆v
1 = kv1(V̂1 − V1), (7a)

∆r
1 =

g

u1

R̂1Ṽ1 × ~e3, (7b)

∆µ
1
= k

µ
1
(((µ× µ̂)⊤X⊤

1 ~e3)X
⊤
1 ~e3)×, (7c)

and the coupling innovation terms ∆vc
1 and ∆rc

1 are defined

by

∆vc
1 = V̂1 − R̂⊤

1 (v̂2 − ŵ), (8a)

∆rc
1 = krc1 Pa(R̂1R̂

⊤
2 ), (8b)

then for almost all initial conditions, V̂1(t) = V1(t) and

R̂1(t) = R1(t).

The stability analysis of this body-fixed frame filter (Filter

1) without any of the coupling and bias terms can be found

in the authors’ previous paper [40].

For the inertial frame filter (Filter 2), the following is

proposed.
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Fig. 2. The proposed coupled non-linear complementary velocity aided attitude filter. Input to the filter are inertial reference frame velocity, IMU, magnetometer
and barometer. The coupled filters are Filter 1 in {B} and Filter 2 in {A}. The diagram also shows Filter 0 which uses barometer measurements to provide
vertical body-fixed frame velocity measurements.

Filter 2 in {A}. Consider the model (1) in the inertial-fixed

frame {A} with wind speed w and measurements a = ā, Ω =
Ω̄ and v = v̄. Let kr2, k

u
2 , k

w
2 , k

βa
2

, kv2 be positive scalar gains,

then consider the following observer

˙̂v2 = R̂2(a− β̂a
2 ) + g~e3 −∆v

2 −∆vc
2 , (9a)

Ẋ2 = u̇2R̂2 + u2

˙̂
R2, (9b)

˙̂
R2 = R̂2(Ω− β̂Ω

2 )× − kr2∆
r
2×R̂2 + R̂2∆

µ
2
−∆rc

2 R̂2, (9c)

u̇2 = −ku2 gṽ
⊤
2 ~e3, (9d)

˙̂w = −kw2

(

(ŵ − v̂2) + R̂1V̂1

)

, (9e)

˙̂
βa
2 = k

βa
2

∆v
2 − k

βac
2

(β̂a
2 − β̂a

1 ), (9f)

˙̂
βΩ

2 = k
βΩ
2

∆r
2, (9g)

with initial conditions v̂2(0) = v2(0), u2(0) = 1, ŵ(0) =
w(0), R̂2(0) = I and ṽ(t) = v̂(t)− v(t). The innovations ∆v

2

and ∆r
2 are given by

∆r
2 =

g

u2

ṽ2 × ~e3, (10a)

∆v
2 = kv2(v̂2 − v), (10b)

∆µ
2
= k

µ
2
(((µ× µ̂)⊤X⊤

2 ~e3)X
⊤
2 ~e3)×. (10c)

The coupling innovation terms ∆vc
2 and ∆rc

2 are given by

∆vc
2 = kvc2

(

(v̂2 − ŵ)− R̂1V̂1

)

, (11a)

∆rc
2 = kc2Pa

(

R̂2R̂
⊤
1

)

, (11b)

then for almost all initial conditions, v̂2(t) → v2(t), ŵ → w

and R̂2(t) → R2(t).

The outputs of the coupled filter are the attitude estimates

R̂, linear velocities BV̂ ,A v̂ in the body-fixed and inertial

frames of the vehicle respectively and wind velocity ŵ ∈ R
3

expressed in {A} at the 200Hz sampling frequency of the

IMU. In addition, the filters also output the latent rotation

scaling u for each filter. Given that the optimal value of u

is unity, it is a measure of the performance of the filter in

terms of minimising the errors between measurements and

estimates. Though we do not provide stability proof as well as

robustness of the filter, the validation is the results obtained in

Section V. Also the positive scalar gains kvc1 , kr1, k
u
1 , k

βa
1

and

kr2, k
u
2 , k

w
2 , k

βa
2

, kv2 are tuned based on classical pole placement

technique on the linearised closed-loop system.

Remark 1. In certain situations such as indoors where the

high ferrous content affects the magnetometer readings and

thus the innovation ∆µ
1

and ∆µ
2

which use these readings can

lead to errors in R̂~e3. In such situations, it is necessary to set

k
µ
1
= k

µ
2
= 0. It should be noted that due to the decoupling

of our filter formulation through Equation 7c and 10c, these

effects do not affect e1, ~e2 and thus the overall stability of the

filter.

E. Absence of inertial reference frame linear velocity mea-

surements

In the absence of inertial reference velocity measurements

v̂2, the wind estimate ŵ is no longer observable. We propose

to continue to implement (9e), however, we remove both the

driving term v̂2 (which is not available) as well as the R̂1V̂1

term to give
˙̂w = −kw2 ŵ.

This ensures that there is no step change in the wind estimate

ŵ and allows the estimate to decay to zero at the same rate at

which the wind estimate is computed. If the wind estimate

is explicitly used in perceptual control algorithms such as

teleoperation then this approach ensures that the pilot has

the opportunity to compensate and adjust accordingly. The

proposed approach can also be justified in the sense that

the normal scenario where GPS velocity information is lost

corresponds to the case where the vehicle enters an enclosed

space and the constant wind disturbance drops to zero in the

new space.
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Fig. 3. Proposed hierarchical control structure on the vehicle.

III. SUPERVISORY CONTROL

In this section, we use the estimated velocities from Sec-

tion II to do supervisory control of the vehicle. We propose

a velocity controller in the body-fixed frame that is locally

exponentially stable. From Filter 1 and Filter 2, we showed

that estimates of the body-fixed frame linear velocities are

always available irrespective of whether inertial reference

frame velocity measurements are available or not. With this,

the vehicle can be controlled in a supervised manner in {B}
which is the frame in which humans perceive motion. We also

show that if there is a need for an inertial reference frame

control of the vehicle, the input to the proposed controller

should be computed based on the estimated velocity of the

wind.

A. Vehicle control system

The proposed (quadrotor) control system in the body-fixed

frame {B} is shown in Figure 3. It has a hierarchical control

structure with: high level velocity, middle level attitude and

low level thrust control.

Consider the quadrotor dynamics in {B} in freestream with

no external forces acting on the vehicle given by (2) where

V = BV and let the desired velocity set point in {B} be

Vd ∈ R
3 provided by the master haptic device. The resulting

error Ṽ = V − Vd has dynamics given by

˙̃
V = −Ω× V + gR⊤~e3 −

T̄

m
~e3 −

T

m
c̄V + δ − V̇d. (12)

The following velocity controller which ensures local expo-

nential stability of the resulting velocity error dynamics is

proposed.

Controller 1. Let Ki,Kv ∈ R
3×3 be positive definite gain

matrices. Consider the following condition for the desired

attitude Rd and thrust Td

mgR⊤
d ~e3 = T̄d~e3 + Tdc̄Vd +mΩ× Vd −mKvṼ −mδ̂ +mV̇d,

(13a)

˙̂
δ = KiṼ , δ̂(0) = δ̂0, (13b)

where δ̂ ∈ R
3 is bounded and is an estimate of the model

error δ and δ̂0 is some initial condition. The error dynamics

of (12) are globally asymptotically and locally exponentially

stable around the equilibrium Ṽ = 0 under the assumption

that R ≈ Rd and T ≈ Td.

The exponential stability proof of this theorem can be found

in the authors’ previous work [46]. The desired attitude Rd

and thrust Td are passed as set points to a computationally

efficient quaternion tracking controller [49] acting as a middle

level controller. As long as the gains of this controller are well

tuned (using pole placement of the closed loop dynamics), the

tracking errors are small even for aggressive motion demands

due to the low rotational inertia and high actuation levels on

the quadrotor vehicle. In practice, the acceleration V̇d is not

available and we set V̇d = 0 without observing any notable

performance changes. The limits of the controller are defined

by the 2ms PWM signal sent to each speed controller and the

rise time of the rotors.

In addition, if an outside observer in the inertial frame wants

to control the vehicle, then the control should be done in the

inertial frame. However, the vehicle should still be controlled

in {B}, with the user input Avd written in {B} i.e. BVd using

the following relationship

BVd = R̂⊤ (

Avd − ŵ
)

.

This is then the input to the velocity controller Controller 1.

This is very important since the assumptions in the models in

Equations 1 and 2 can be broken (e.g. when the freestream

assumption is broken) resulting in a wrong BV . However

choosing to control using an outside observer reference, the

wrong estimate of w and BV results in the correct Av.

Remark 2. Given that the proposed architecture is for any

generic multirotor electronic speed controller, in order to

minimise the controller dependence of III-A on δ~e3 error term,

the following PWM to battery voltage scaling is used

Tc =
VO − V̄b

VO

Td,

where VO is some nominal battery voltage that is a function

of the number of cells of the battery, V̄b is the instantaneous

measured bus voltage, Td is the computed desired thrust and

Tc is the actual commanded thrust as PWM signal sent to the

speed controller.

IV. HARDWARE SETUP

In order to do the supervisory control, we choose to

use force feedback teleoperation as it addresses situations

where high bandwidth feedback of velocity is required for

dynamically controlling vehicles that dynamically react with

the environment. Furthermore, teleoperation generally does not

take into account feedforward information of a trajectory and

is applicable to situations where position measurements may

not be available. This section describes the hardware setup

for the experimental results presented in Section V. The setup

comprises of the following components: master joystick de-

vice, ground station, communication link and multirotor robot.

In addition, a radio controller is used for switching between

manual and autonomous control as a safety precaution. The

entire hardware setup is shown in Figure 4.

A. Master haptic joystick for supervisory control

An admittance configured bilateral force/haptic feedback

teleoperation scheme is employed in this paper as the master

device. The master device is used to measure force inputs from

the pilot and exert motion feedback. Our approach was tested

with a custom built admittance joystick shown in Figure 5(a)

by the authors [50] 2 and an off-the-shelf joystick as shown

2https://www.youtube.com/watch?v= ntGvVv7eyw
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Radio

Transmitter
Multirotor

Robot

Comm.

Link
Master

Device

Fig. 4. Hardware layout showing the various components: FALCON, ground
station and slave robot.

(a) Custom built admittance joystick. (b) NOVINT Falcon

Fig. 5. Master haptic devices used in this paper. A custom made admittance
and a COTS NOVINT Falcon joystick.

in Figure 5(b). This commercial off-the-shelf joystick ensures

that we maintain generality and the results of this paper can

be replicated. The NOVINT Falcon employs a delta robot

mechanical structure that is capable of measuring the position

of the joystick’s end effector and exerting a scaled force.

A high gain PID (Proportional Integral Derivative) position

controller and force estimator are implemented to approximate

the admittance configuration [51], [52]. Given the limitations

of the joystick hardware, the translational degrees of freedom

of the joystick are mapped to the linear velocities of the slave

vehicle and the side buttons are used to change the heading

of the robot.

B. Ground station

The master haptic device controller, Vicon data routing

module, control mode module and logging modules are im-

plemented on the ground station using ROS (Robot Operating

System)3. A pair of 915MHz 3DR radio transceivers are used

for communication between the ground station and the robot

at 40Hz using MAVLINK protocol.

C. Slave robot

A custom built quadrotor shown in Figure 1 is used as the

slave robot. It uses the Pixhawk flight control board which

has an MPU6000 IMU that provides measurement of linear

acceleration ā and vehicle angular velocity Ω̄, a HMC5883

magnetometer for measuring the earth’s magnetic field µ̊ [53]

and a MEAS MS5611 barometer.

3http://www.ros.org/

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the

proposed scheme. The section starts by presenting the calibra-

tion results for the body-fixed frame velocity measurements.

These results (both attitude and linear velocities) are compared

to Vicon motion capture ground truth measurements. The

state estimation results are then presented for low and high

velocities as well as the teleoperation results for flying the

slave multirotor vehicle with and without inertial reference

frame measurements. We also present results of wind velocity

estimation.

It should be noted that for the drag force to IMU calibration,

in order to minimise notational confusion, the accelerometer

measurements used here are ā = ā − βa
1 , where βa ∈ R

3

was defined in Section II-D as the bias estimated from the

attitude observer in Filter 1. Given also the slow dynamics

of the vehicle compared to the filter, we make the following

necessary assumption β̂a
1 = βa

1 . ā − βa
1 is as close as one

can get to the true acceleration of the vehicle. This is what

distinguishes our work from previous work and gives us better

results than the state-of-the art [31], [32], [29], [26], [25], [44].

A. Drag calibration for BV̄ translational velocities

The major calibration scheme required is for the drag

coefficient c̄. Generally there is an offset in the accelerometer

measurement due to mass imbalance and from each power

cycle. Hence the drag force model (3), can be written to

incorporate this offset say for the ~e1 direction as

āx − axoff
= −c̄

√

(

−āz + azoff

)

Vx,

where axoff
and azoff

are the offsets in the accelerometer

measurements. For ease of applying linear regression, this

model is simplified to

āx√−āz
= − (c̄Vx + ǭ) , āz < 0,

where ǭ is the new offset. This gives rise to two types of

calibration for the drag coefficient: offline and online. In the

offline process, both c̄ and ǭ are determined while the online

case involves recalibrating to determine the mass imbalance

and the new offset ǭ that is as a result of βa which occurs

on each power cycle. This offset ǭ is determined when inertial

reference frame linear velocity measurements are available and

at the start of every flight when inertial reference linear ve-

locity measurement is available. This is done by commanding

the vehicle to hover i.e. Vd = 0.

Furthermore using GPS in an outdoor environment, we

tested the first order drag model along the ~e1 axis to show that

the linear model for accelerometer measurement to velocity

holds even at speeds of up to 14m/s. The result is presented

in Figure 6. The figure also has a comparison between the

linear drag model and the quadratic model used to capture

parasitic drag forces. The resulting regression coefficients for

both the linear and quadratic models are

āx = −
√
−āz

(

0.0794V̄x + 0.0224
)

,

āx = −
√
−āz

(

0.00209V̄x|V̄x|+ 0.02586V̄x + 0.0162
)

,
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Fig. 6. Drag coefficient c̄ determination using linear and quadratic drag
models. The blue represent the raw GPS measurements, red line is the linear
model and black is the quadratic model.

with R2 goodness of fit 0.4272 and 0.4736 respectively. Hence

even at speeds of up to 14m/s, the linear drag force model

holds as the contribution of the parasitic drag term 0.00209V̄ 2
x

in the quadratic model is small compared to the other drag

terms described in [1]. These drag terms were lumped into

a linear model which we have defined to be a function of c̄.

Hence even at higher velocities, the dominant drag forces are

flapping and induced drag. It is important to note that the low

R2 goodness of fit values for Figure 6 are as a result of noisy

GPS inertial reference frame velocity measurements rotated

into the body-fixed frame. This linear modelled is further

verified by the high speed results obtained using GPS shown

in Figure 8.

Using the obtained regression coefficients for the drag

constant and offsets the measurement of planar velocities of

the vehicle in the body-fixed frame are obtained. With these

measurements, the estimated attitude of the vehicle, and using

barometer measurements along with Filter 0, the full body-

fixed frame measured velocities is obtained. Figure 7 shows

the resulting computed velocities (red) and ground truth Vicon

motion capture measurements (blue). From these results, one

can conclude that the computed velocities match those of the

ground truth and thus can be used as measurements for body-

fixed frame linear velocities BV̄ .

B. State estimation results

To show the effectiveness and accuracy of the estimated

attitude and velocities, we compare our estimates to Vicon

motion capture ground truth measurements. A comparison of

the attitude estimates to the ground truth attitude is shown in

Figure 9(a). From this, it is clear that there is negligible attitude

error between the ground truth and the estimated attitude. It

should be noted that the latent scaling u though its optimal

value is 1, the time variations are as a result of errors between

the measurements and estimated states. Given that the velocity

measurements in the body-fixed frame came in at 200Hz and

with significantly very high noise implies that if one is to

use the estimates in a controller, obtaining smooth velocity

estimates are more important than minimising the total error

in the velocity estimates. The resulting estimates for velocities
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/
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Fig. 7. Raw body-fixed frame velocity measurements using a strapdown IMU
and barometer measurements (red). The true velocity (blue) is computed from
Vicon position measurements.
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Fig. 8. Filter outputs compared to ground truth for high-speed outdoor flight
in almost zero wind velocity. Ground truth and estimated velocities expressed
in the body-fixed frame. Blue is true GPS inertial reference velocity rotated
into the body-fixed frame R⊤Av. Red is estimated inertial rotated into the

body-fixed frame using the filter rotation estimate R̂⊤Av̂. Green is estimated

body-fixed frame velocity B V̂ .

are shown in Figure 9(b). For the sake of clarity the body-

fixed frame velocity measurements are not shown. From the

figure, it is clear that the discrepancy between the rotated 40Hz

Vicon inertial reference measurements (blue) and the 200Hz

estimated velocities rotated into the body-fixed frame (red) and

the body-fixed frame estimated velocities (green) is minimal.

State estimation results for high speed using GPS is shown in

Figure 8. A summary of the mean error and standard deviation

of the errors is presented in Table IV. To show superiority of

our filter, Table III compares the errors of the outputs from

the proposed filter to the current state-of-the art.

To prove that our scheme can estimate wind velocity when

inertial measurements are available, a set of four fans with

streamers were placed (x ≈ 3.0) at the end opposite the

vehicle’s starting location and were turned on while the vehicle

was flown with closed loop control in ~e1 and ~e2 directions

while the ~e3 was manually controlled as shown in Figure 10.

The flow field generated by the fans is highly turbulent and
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TABLE II
COMPARISONS OF FILTERS AVAILABLE ON THE PX4 STACK.

Mode CPU computa-

tional cost (µ±
σ)

Features

SO(3) 3.1062±0.043%. Quaternion version of the non-
linear complementary SO(3) filter
in [49].

Attitude EKF 14.916±0.205%. Extended Kalman filter for atti-
tude only estimation.

Position Estima-
tor

10.846±0.21%. Extended Kalman filter for posi-
tion and velocity estimation.

Attitude and Po-
sition EKF

22.988±0.374%. Extended Kalman filter for esti-
mating position and attitude.

Proposed filter 10.711
±0.075%.

Non-linear complementary veloc-
ity aided attitude filter.

TABLE III
COMPARISON OF MAXIMUM VELOCITIES AND ERRORS OF THE OUR

RESULTS TO RECENT RESULTS.

Mode Mean

error/Accuracy

Comments

Proposed 0.15m/s (low)
1.26m/s (high)

Max. 1.6m/s for low speed and
14.5m/s for high speed

System Dynam-
ics [31]

0.5m/s Max. speed of 2m/s with less error
in the ~e3 axis

Edwin (Direct
Measurement)[29]

0.1m/s Total velocity under 2m/s

Arain [25] 2m/s Maximum 6m/s

Leishman [44] 0.5m/s Maximum 3m/s

nonuniform. The results of the experiments for a total of 25

experimental runs are shown in Figure 11 and mean and co-

variance summarised in Table IV. Though the flow was highly

turbulent, our best attempt at obtaining the average velocity

measurements using a Mastech ms6252b digital anemometer4

in the longitudinal direction is also shown along with our

estimated results. From these results, we can conclude that

our scheme is able to estimate the wind velocity in ~e1, ~e2
directions. It should be noted that the high turbulent nature of

the flow requires a gust model which is beyond the scope of

this work.

Furthermore, the computational efficiency expressed as a

percentage of CPU usage of the proposed filter compared

to other filters implemented on the PX4 stack firmware [53]

is shown in Table IV. It is clear that the SO(3) filter is

more computationally efficient than our proposed filter as

it is implemented in quaternions. However, this filter only

outputs attitude. Running this along with the local position

filter to provide estimates of velocity and attitude, results

in a low computationally efficient filter combination than

our proposed complementary filter. Furthermore, the extended

Kalman filter (EKF) based attitude and position filter is twice

more computationally expensive than the proposed filter.

C. Teleoperation with and without Inertial Reference measure-

ments

To demonstrate the effectiveness of the scheme presented,

we teleoperated the vehicle in a Vicon motion capture arena

and turned off the Vicon motion measurements (from time

4http://www.p-mastech.com/product/detail/426
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(b) Ground truth and estimated velocities expressed in the body-fixed frame.
Blue is true inertial reference measurement rotated into the body-fixed frame
R⊤Av. Red is estimated inertial rotated into the body-fixed frame using the

filter rotation estimate R̂⊤Av̂. Green is estimated body-fixed frame velocity
B V̂ . In this experiment the wind velocity is w = 0.

Fig. 9. Comparison of attitude and velocity estimates from proposed comple-
mentary filter structure for low speeds using Vicon as the reference system.

t = 146 and t = 200) to simulate loss of inertial reference

measurements. The results of the scheme working with and

without Vicon inertial reference measurements are shown in

Figure 12 and 13. From Figure 13, the wind estimates, it

is clear that the vehicle was teleoperated with and without

(between t = 146 and t = 200) any inertial reference

velocities. From these results, it is clear that the scheme works

whether there is inertial reference velocity measurements or

not and the entire observer-controller does not go unstable

when inertial measurements become available in mid air. A

video5 of one of the flight experiments is available online.

5goo.gl/KNsuXE
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Fig. 10. Quadrotor flying in synthetic wind field for wind velocity estimation.
The red streamers show the direction and strength of the airflow.
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Fig. 11. Results for estimated wind velocities (red) compared to measured
average wind velocities (blue) obtained from the Mastech ms6252b digital
anemometer. The experiments were performed for a total of 10 times with
the average shown

VI. CONCLUSION

In this paper we have formally presented our proposed

coupled non-linear complementary velocity aided attitude filter

that ensures the availability of estimated body-fixed frame

linear velocities under all circumstances. A drag force to

accelerometer model along with strapdown barometer mea-

surements are used to provide velocity measurements in the

body-fixed frame while inertial reference frame sensors such

TABLE IV
VELOCITY ERROR STATISTICS IN M/S OF OUR PROPOSED FILTER

Variable µerror σerror

w̃x 0.1997 0.0724

w̃y 0.0320 0.0107

w̃z 0.0434 0.0021

Low ṽx 1.6m/s 0.1349 0.0210

Low ṽy 1.6m/s 0.1291 0.0281

Low ṽz 1m/s 0.1552 0.0428

High ṽx 14.8m/s 1.3713 1.1818

High ṽy 8m/s 0.7676 0.9676

High ṽz 5m/s 1.6571 1.9896
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Fig. 12. Teleoperation with and without Vicon inertial reference frame
measurements. The Vicon measurements were turned off i.e. kw

2
= ŵ = 0

between t = 146 and t = 200.
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Fig. 13. Estimated wind velocities during the flight with no synthetic
additional wind. Between t = 146 and t = 200, the Vicon measurements
were turned off.

as Vicon, GPS, vision and laser based Inertial Navigation

Systems (INS) provide linear velocity measurements in the

inertial reference frame. Results were presented to show

comparisons to ground truth Vicon and GPS measurements.

Results were also presented to demonstrate the capability

of the scheme to estimate the wind velocity when inertial

measurements are available. To test the proposed scheme,

an admittance configured bilateral teleoperation system was

used in supervisory control of the vehicle. This allowed a
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human pilot to provide velocity set points derived from force

inputs. These desired velocities were then tracked by an

onboard locally exponentially stabilising velocity controller. A

performance comparison of the proposed filter to other filters

and most recent techniques shows promising results in terms

of computational efficiency and accuracy in estimating low and

high linear velocities. As a future work, we will provide a full

proof of the coupled filter and derive the quaternion version

of the proposed filter which will result in a further increase in

the computational efficiency of the scheme.
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