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Comparing Different Supervised Approaches to Hate Speech Detection

This paper reports on the systems the InriaFBK Team submitted to the EVALITA 2018 -Shared Task on Hate Speech Detection in Italian Twitter and Facebook posts (HaSpeeDe). Our submissions were based on three separate classes of models: a model using a recurrent layer, an ngram-based neural network and a Lin-earSVC. For the Facebook task and the two cross-domain tasks we used the recurrent model and obtained promising results, especially in the cross-domain setting. For Twitter, we used an ngram-based neural network and the LinearSVC-based model.

Introduction

In this paper, we describe the submitted systems for each of the four subtasks organized within the HaSpeeDe evaluation exercise at EVALITA 2018 [START_REF] Bosco | Overview of the Evalita 2018 Hate Speech Detection Task[END_REF]: Hate speech detection on Facebook comments (Task 1: HaSpeeDe-FB), Hate speech detection on tweets (Task 2: HaSpeeDe-TW), Cross-domain task hate speech detection from Facebook to Twitter posts (Task 3.1: Cross-HaSpeeDe FB) and Cross-domain task hate speech detection from Twitter to Facebook posts (Task 3.2: Cross-HaSpeeDe TW). We build our models for these binary classification subtasks testing recurrent neural networks, ngrambased neural networks1 and a LinearSVC (Support Vector Machine) approach2 . In HaSpeeDe-TW, which has comparatively short sequences with respect to HaSpeeDe-FB, an ngram-based neural network and a LinearSVC model were used, while for HaSpeeDe-FB and the two cross-domain tasks recurrent models were used.

System Description

We adopt a supervised approach and, to select the best model for each task, we perform grid search over different machine learning classifiers such as Neural Networks (NN), Support Vector Machines (SVM) and Logistic Regression (LR). Both ngram-based (unigram and bigram) and recurrent models using embeddings were tested, but only the ones that were submitted for the tasks will be described. A LinearSVC model from scikit-learn (Pedregosa et al., 2011a) was also tested, and it showed good performance on the Twitter dataset. In order to perform a grid search over the parameters and models, the training set released by the task organisers was partitioned in three: 60% of it was used for training, 20% for validation and 20% for testing.3 

Preprocessing

Since misspellings, neologisms, acronyms and jargon are common in social media interactions, it was necessary to carefully preprocess the data, in order to normalize it without losing information. For this reason, we first replace URLs with the word "url" and "@" user mentions with "username" by using regular expressions.

Since hashtags often provide important semantic content, they are normalized by splitting them into the words composing them. To this end, we adapted to Italian the Ekphrasis tool [START_REF] Baziotis | DataStories at SemEval-2017 Task 4: Deep LSTM with Attention for Message-level and Topic-based Sentiment Analysis[END_REF], using as ngram model the Italian Google ngrams starting from year 2000. In addition to the aforementioned normalizations, for the LinearSVC model we also stemmed Italian words via the Snowball Stemmer [START_REF] Bird | Nltk: the natural language toolkit[END_REF] and we removed stopwords.

Feature Description

We used the following text-derived features:

• Word Embeddings: Italian fastText embeddings [START_REF] Bojanowski | Enriching Word Vectors with Subword Information[END_REF] 4 employed in the recurrent models (Section 2.3);

• Ngrams: unigrams and bigrams, used for the ngram-based neural network and the lin-earSVC (Sections 2.4, 2.5);

• Social-network specific features: the number of hashtags and mentions, the number of exclamation and question marks, the number of emojis, the number of words that are written in uppercase.

• Sentiment and Emotion features: the wordlevel emotion and sentiment tags for Italian words extracted from the EmoLex (Mohammad and Turney, 2013; Mohammad and Turney, 2010) resource.

Recurrent Neural Network Model

In order to classify hate speech in social media interactions, we believe that recurrent neural networks are a useful tool, given their ability to remember the sequence of inputs while considering their order, differently from the feed-forward models. In the context of our classifier, this allows the model to remember the whole sequence of words in the order they appear in. More specifically, our recurrent models, implemented using Keras (Chollet and others, 2015), combine both sequences of word embeddings and social media features. In order to achieve that, an asymmetric topology is used for the neural network: the sequences of word embeddings are fed to a recurrent layer, whose output is then concatenated with the social features. The concatenated vector is then fed to one or two feed forward fully connected layers that use the Rectified Linear Unit (ReLU) as their activation function. The output layer is a single neuron with a sigmoid activation, while binary cross-entropy is used as the loss function for the model.

Batch normalization and various kinds of dropout have been tested to reduce the variance of the models. Experimental results suggested that applying the former to the output of the recurrent layer had a negative effect on performance. For this reason, batch normalization was applied only to the output of the hidden layers. As for dropout, we tried three different mechanisms. A simple dropout layer [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] is applied to the output of the hidden layers, as applying dropout to the output of the recurrent layer introduces too much noise and does not improve performance. We also tested a dropout on the embeddings [START_REF] Gal | A theoretically grounded application of dropout in recurrent neural networks[END_REF]) that effectively skips some of the word embeddings in the sequence, as dropping part of the embedding vector causes a loss of information, while dropping entire words can help reduce overfitting. In addition, a recurrent dropout [START_REF] Gal | A theoretically grounded application of dropout in recurrent neural networks[END_REF] was also tested.

While evaluating the models, we tested both a Long Short Term Memory (LSTM) [START_REF] Felix A Gers | Learning to forget: Continual prediction with LSTM[END_REF] and a Gated Recurrent Unit (GRU) [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF] as recurrent layers. The latter is functionally very similar to an LSTM but by using less weights it can sometimes reduce the variance of the model, improving its performance.

Ngram-based Neural Networks

Ngram-based neural networks are structurally similar to the recurrent models. We first compute the unigrams and bigrams over the lemmatized social media posts. The resulting vector is then normalized by using tf-idf from scikit-learn and concatenated to the social-specific features. One or two hidden feed-forward layers are then used, and the same output layer as in the recurrent models is used. The same dropout and batch normalization techniques used in the recurrent models have been tested for the ngram-based neural networks as well. For the first submitted run of Task 2: HaSpeeDe-TW, we used unigrams and bigrams along with the required preprocessing steps based on tf-idf model.

Linear SVC System

We implemented a Linear Support Vector Classification system (i.e., LinearSVC) [START_REF] Fan | Liblinear: A library for large linear classification[END_REF] based on bag-of-words (i.e., unigrams), using scikit-learn (Pedregosa et al., 2011b) for the first submitted run in Task 2: HaSpeeDe-TW. We chose this system as it scales well for large-scale samples, and it is efficient to solve text classification problems. To deal with imbalanced labels, we set the class weight parameter as "balanced". To mitigate overfitting, penalty parameter C was scaled as 0.7.

Submitted Runs and Results

In this Section we describe the single runs submitted for each task and we present the results. The official ranking reported for each run is given in terms of macro-average F-score.

Task 1: HaSpeeDe-FB

For Task 1: HaSpeeDe-FB, two recurrent models were used. The first submitted run used a single fully connected layer of size 200 and a GRU of size 100 as the recurrent layer. Recurrent dropout was applied to the GRU with value 0.2. The second submitted run used two fully connected layers of size 500 and a GRU of size 300 as the recurrent layer. Simple dropout was applied to the output of the feed-forward layers with value 0.5. The first run ranked third and the second ranked fourth out of 18 submissions (Table 1). As shown in Table 1, both runs yield a better performance on the hate speech class. For Task 3.1: Cross-HaSpeeDe FB two recurrent models were used. In the first submitted run, two hidden layers of size 500 were used. An LSTM of size 200 was adopted as the recurrent layer. Embeddings dropout was applied with value 0.5 and a simple dropout was applied to the output of the feed-forward layers with value 0.5. The recurrent model for the second run had one hidden layer of size 500. A GRU of size 200 was used as the recurrent layer and no dropout was applied. The first run ranked second out of 17 submissions while the second run registered the best score in the Task 3.1: Cross-HaSpeeDe FB. In both runs, the models showed good performance over the non hate speech class, whereas the precision on the hate speech class does not exceed 0.5 (see Table 3). For Task 3.2: Cross-HaSpeeDe TW two recurrent models were used. In the first submitted run, two hidden layers of size 500 were used together with a GRU of size 200 as the recurrent layer. Simple dropout was applied to the output of the feedforward layers with value 0.2, whereas the recurrent dropout has value 0.2. In the second submitted run, one hidden layer of size 200 was used adopting an LSTM of size 200 as the recurrent layer. Embeddings dropout was applied with value 0.5. The first run ranked fourth out of 17 submissions, while the other run ranked second. Table 4 shows that in both cases the system showed good performance over the hate speech class, while detecting negative instances proved difficult, in particular in terms of precision over the non hate speech class. 

Error Analysis and Discussion

Although all our runs obtained satisfactory results in each task, there is still room for improvement. In particular, we noticed that our models have problems in classifying social media messages containing the following specific phenomena: (i) dialects (e.g. "un se ponno sentì...ma come se fà...") or bad orthography (e.g. "Io no nesdune delle due.....momti pesanti"); (ii) sarcasm, "Dopo i campi rom via pure i centri sociali. L'unico problema sarà distinguere gli uni dagli altri"; (iii) references to world knowledge, typically used for an indirect attack not containing an explicit insult (e.g. "un certo Adolf sarebbe utile ancora oggi con certi soggetti"); (iv) metaphorical expressions, usually referring to ways to physically eliminate the targets of hate speech messages (e.g. "Ruspali").

As for false positives, some errors come from the misclassification of messages containing the lemmas "terrorista", "terrorismo", "immigrato" that are extremely frequent in particular in the Twitter dataset. These lemmas are associated to the hate speech class even when they appear in messages reporting the title of a news, eg. "Il Giappone senza immigrati a corto di forza lavoro".

In Task 2: HaSpeeDe-TW, when the classifier relies on sentiment and emotion features, we registered several misclassified instances containing relevant content words not covered by EmoLex. This is due to the fact that for every English word, EmoLex provides only one translated entry, thus limiting the overall coverage. For instance, "to kill" is translated in Italian with "uccidere" not considering synonyms such as "ammazzare" often used in the dataset.

Finally, we noticed some inconsistencies in the gold standard. For example, the message "Al solo vederle danno il voltastomaco!" is annotated as hate speech while, the almost equivalent, "Appena le ho viste ho vomitato" is considered a non hate speech instance while our models identify it as hate speech. Similarly, an insult like "ridicoli" is annotated as non hate speech in "CERTO CHE GLI ONOREVOLI DEL PD SI RICONOSCONO A KILOMETRI ... RIDICOLI" but as hate speech in "Ci vorrebbe anche qua Putin, invece di quei RIDICOLI...PAROLACCE PAROLACCE".

Conclusions

In this paper we presented an overview of the runs submitted for the four subtasks of HaSpeeDe evaluation exercise. We implemented a number of different models, comparing recurrent neural networks, ngram-based neural networks and linear SVC. While RNNs perform better in three of four tasks, classification on Twitter data achieves a better ranking using the ngram based neural network. Our system was ranked first among all the teams in one of the cross-domain task, i.e. Cross-HaSpeeDe FB. This is probably due to the fact that considering the whole sequence of inputs with a recurrent neural networks and using a prelearned representation by using word embeddings help the model to learn some common traits of hate speech across different social media.

Table 4 :

 4 Results on Cross-HaSpeeDe TW

			First Run		
	Category	P	R	F1	Instances
	Non Hate	0.493 0.703 0.580	323
	Hate	0.822 0.656 0.730	677
	Macro AVG 0.658 0.679 0.655	1000
			Second Run		
	Non Hate	0.537 0.653 0.589	323
	Hate	0.815 0.731 0.771	677
	Macro AVG 0.676 0.692 0.680	1000

https://gitlab.com/ashmikuz/ creep-cyberbullying-classifier

https://github.com/0707pinar/ Hate-Speech-Detection/

To split the data we use the scikit-learn train test split function, using

as seed value.

https://github.com/facebookresearch/ fastText
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