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Abstract

A nonlinear image-based visual servo control approach for pipeline following of fully-actuated Autonomous Underwater Vehicles
(AUV) is proposed. It makes use of the binormalized Plücker coordinates of the pipeline borders detected in the image plane as
feedback information while the system dynamics are exploited in a cascade manner in the control design. Unlike conventional
solutions that consider only the system kinematics, the proposed control scheme accounts for the full system dynamics in order to
obtain an enlarged provable stability domain. Control robustness with respect to model uncertainties and external disturbances is re-
inforced using integral corrections. Robustness and efficiency of the proposed approach are illustrated via both realistic simulations
and experimental results on a real AUV.

Keywords: AUV, pipeline following, visual servoing, nonlinear control

1. Introduction

Underwater pipelines are widely used for transportation of
oil, gas or other fluids from production sites to distribution sites.
Laid down on the ocean floor, they are often subject to extreme
conditions (temperature, pressure, humidity, sea current, vibra-
tion, salt, dust, etc.) that may lead to multiple problems such as
corrosion, crack, joint failure, shock loading and leakage. Reg-
ular inspection, monitoring and maintenance of transportation
pipelines are thus highly recommended for safe operation. Con-
ventional pipeline monitoring and inspection methods generally
consist in using surface ships and remotely operated underwa-
ter vehicles, with the consequence of slow response and mo-
bilization time Christ and Wernli (2007). Moreover, methods
involving human divers in deep water are difficult to implement
due to the inhospitable environment with high health and safety
risks. As underwater operations increase in scale and in com-
plexity, the need for employing Autonomous Underwater Ve-
hicles (AUV) increases Shukla and Karki (2016b,a). However,
unlike unmanned aerial vehicles that have seen an impressive
growth within the last two decades, progress in AUV research
and development has been drastically hindered by the lack of
global positioning systems, particularly due to the attenuation
of electromagnetic waves in water.

The dynamics of AUVs are very nonlinear, with highly
coupled translational and rotational dynamics Fossen (2002);
Leonard (1997). Strong perturbations due to sea currents
are also a source of complexity. Robust control design for
AUVs thus has been extensively investigated. However, exist-
ing control approaches such as PID Allen et al. (1997), LQR
Naeem et al. (2003), H∞ Fryxell et al. (1996), optimal control
Spangelo and Egeland (1994), sliding mode control Josserand
(2006); Lapierre et al. (2008), Lyapunov backstepping-based

control Repoulias and Papadopoulos (2007); Aguiar and Pas-
coal (2007); Antonelli (2007) and Lyapunov model-based con-
trol Refsnes et al. (2008); Smallwood and Whitcomb (2004)
mostly concern the pre-programmed trajectory tracking prob-
lem with little regard to the local topography of the environ-
ment.

In this paper, the problem of pipeline following for AUVs,
commonly addressed by using either a monocular camera or an
acoustic sensor such as side scan sonar (SSS) or multi-beam
echo-sounder, is revisited. Control objectives often consist in
steering the vehicle above the pipeline and in regulating its for-
ward speed to a reference value that can be specified in advance
or online by a human operator. Most existing works on this
topic have been devoted to pipeline detection from camera im-
ages or SSS-images and to the derivation of the relative head-
ing and position (up to a scale factor) of the AUV with respect
to (w.r.t.) the pipeline. Basic kinematic controllers have been
applied without considering the system dynamics Matsumoto
and Yoshihiko (1995); Antich and Ortiz (2003); Inzartsev and
Pavin (2009); Bagnitsky et al. (2011) with the consequence
that the stability is not systematically guaranteed. Other con-
trol approaches for pipeline following have been proposed in a
more “abstract” manner in the sense that error tracking terms
are directly defined from image features Rives and Borrelly
(1997); Krupı́nski et al. (2012). These image-based visual ser-
voing (IBVS) approaches do not require much knowledge about
the 3D environment and demand less computations. For in-
stance, Rives and Borrelly (1997) proposed an IBVS controller
for fully-actuated AUVs using polar representation of lines (i.e.
pipeline borders) while exploiting the so-called task-function
approach developed by Samson et al. (1991). However, only
local stability is proved since both the image Jacobian and Hes-
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sian matrices considered in the control design are evaluated at
the desired pose in the image plane. The domain of convergence
is thus impossible to be characterized. The present paper aims
at extending the provable domain of stability by taking the ve-
hicle dynamics into account and by adapting the IBVS control
approach proposed in Mahony and Hamel (2005) to the case
of AUVs. More precisely, image features used for control de-
sign are the bi-normalized Plücker coordinates Plücker (1865)
of the pipeline borders. The resulting dynamic IBVS controller
ensures the semi-global asymptotic stability.

This paper is organized as follows. Section 2 recalls notation
and system modeling. In Section 3, the problem of pipeline fol-
lowing by visual servoing is formulated. Section 4 presents the
proposed controller based on a cascade inner-outer loop control
architecture, where the inner-loop controller stabilizes the vehi-
cle’s velocities about a desired velocity setpoint and the outer-
loop controller derives the desired velocities and their deriva-
tive from image features. Convincing comparative simulation
results and experimental validations, with a video as supple-
mentary material, are reported in Section 5 to illustrate the ro-
bustness and performance of the proposed control approach. Fi-
nally, concluding remarks are provided in Section 6.

Some basic materials of this paper such as notation and sys-
tem modelling are borrowed from our other work Krupı́nski
et al. (2017), which deals with a completely different IBVS
control problem (i.e. fixed-point stabilization exploiting the ho-
mography matrix). Finally, for the sake of completeness in
Section 4.2 the inner-loop controller is recalled from Krupı́nski
et al. (2017). Note, however, that the main contribution of the
present paper concerns the outer-loop control design level.

A primary version of this work has been presented in
Krupı́nski et al. (2012) and a part of experimental results has
been reported in Krupı́nski et al. (2015). A number of improve-
ments w.r.t. Krupı́nski et al. (2012) are proposed in this paper.
For instance, to mitigate the strong coupling between the ver-
tical motion and the transverse and yaw motions of the AUV
w.r.t. the pipeline that may lead to a large overshoot in altitude
with a risk of collision with the ocean floor (see our prior work
Krupı́nski et al. (2012)), a decoupling strategy has been intro-
duced. Moreover, unlike Krupı́nski et al. (2012); Mahony and
Hamel (2005) the desired feature is directly expressed in the
body-fixed frame, avoiding the need of full attitude estimation
to compute the visual error. Finally, the comparative simulation
study w.r.t. the state-of-the-art IBVS controller Rives and Bor-
relly (1997) and the experimental validations have been newly
developed.

2. System Modelling

2.1. Notation

The following notation is introduced (Fig. 1).
• Let G and B denote the AUV’s center of mass (CoM) and

center of buoyancy (CoB), respectively. Let m denote its mass
and J0 denote its inertia matrix w.r.t. the CoB. g denotes the
gravity constant, i.e. g ≈ 9.81(m/s2).

C
−→e c

1−→e c
2

−→e c
3

rG

G

CrC

B B −→e b
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Figure 1: Notation

• A = {O;−→e a
1,
−→e a

2,
−→e a

3} is an inertial frame. Let B =

{B;−→e b
1,
−→e b

2,
−→e b

3} denote a frame attached to the AUV, with ori-
gin coinciding with the vehicle’s CoB. Let C = {C;−→e c

1,
−→e c

2,
−→e c

3}

be a frame attached to the camera, which is displaced from the
origin of B by a vector

−−→
BC and whose base vectors are parallel

to those of B. The vectors of coordinates expressed in B of
−−→
BC

and
−−→
BG are denoted as rC ∈ R3 and rG ∈ R3, respectively.
• The orientation (i.e. attitude) of B w.r.t. A is represented

by the rotation matrix R ∈ SO(3). Let p and pC denote the
position of the origins of B and C expressed inA, respectively.
One has p = pC − RrC .
• The angular velocity vector ofB relative toA, expressed in

B, is denoted as Ω ∈ R3. The translational (or linear) velocity
vectors of the origins of B and C, expressed in B, are denoted
as V ∈ R3 and VC ∈ R3 respectively. One has V = VC −Ω×rC .
• The vector of coordinates of the fluid (i.e. current) velocity

inA andB are denoted as v f and Vf , respectively. In this paper,
it is assumed that vf is constant. Vh , V − Vf is the vector of
coordinates of the CoB’s velocity w.r.t. the fluid.
• {e1, e2, e3} denotes the canonical basis of R3. I3 is the iden-

tity matrix of R3×3. For all u ∈ R3, the notation u× denotes the
skew-symmetric matrix associated with the cross product by u,
i.e., u×v = u × v, ∀v ∈ R3. πx = I3 − xx> is the projection onto
the tangent space of the sphere S 2 of a point x ∈ S 2.

2.2. Recall on system modelling
Define Wh , [V>h , Ω

>]> ∈ R6. The total kinetic energy of
the body-fluid system ET is defined as the sum of the kinetic
energy of the vehicle EB and the one of the surrounding fluid
EF , i.e. ET = EB + EF with

EB =
1
2

W>hMBWh, with MB ,
[

mI3 −mrG×
mrG× J0

]
EF =

1
2

W>hMAWh, with MA ,
[

M11
A M12

A
M21

A M22
A

]
MA ∈ R6×6 is referred to as the added mass matrix, which is
approximately constant and symmetric Fossen (2002). Thus,

ET =
1
2

W>hMT Wh, with MT =

[
M D>
D J

]
(1)

with M , mI3 + M11
A , J , J0 + M22

A , D , mrG× + M21
A . The

translational and rotational momentums are derived as
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
Πth =

∂ET

∂Vh
= MVh + D>Ω

Πrh =
∂ET

∂Ω
= JΩ + DVh

(2)

The equations of motion are given by Leonard (1997)

ṗ = RV (3a)

Ṙ = RΩ× (3b)

Π̇th = Πth ×Ω + Fc + Fgb + Fd (3c)

Π̇rh = Πrh×Ω +Πrh×Vh + Γc + Γg + Γd (3d)

where Fc ∈ R3 and Γc ∈ R3 are the force and torque control
vector inputs, Fgb , (mg − Fb)R>e3 is the sum of the gravita-
tional and buoyancy forces, Γg , mgrG ×R>e3 is the gravity
torque, and the hydrodynamic damping force and torque vec-
tors Fd and Γd are modeled as{

Fd(Vh) = −(DVl + |Vh|DVq)Vh

Γd(Ω) = −(DΩl + |Ω|DΩq)Ω (4)

with positive damping matrices DVl, DVq, DΩl, DΩq ∈ R3×3.

2.3. Model for control design
The momentum terms Πth, Πrh and their dynamics (3c)–(3d)

involve unknown current velocity V f , thereby complicating the
control design process. Therefore, System (3) can be rewritten
as follows

ṗ = RV (5a)

Ṙ = RΩ× (5b)

Π̇t = Πt ×Ω + Fc + Fgb + F̄d + ∆F (5c)

Π̇r = Πr×Ω +Πt×V+Γc+Γg+Γd +∆Γ (5d)

with new momentum terms (compared to (2))

Πt , MV + D>Ω, Πr , JΩ + DV

and new dissipative force (compared to (4))

F̄d , −(DVl+|V|DVq)V

and “disturbance” terms ∆F and ∆Γ given by

∆F , −MΩ×V f − (MV f )×Ω + Fd − F̄d

∆Γ , (MV f )×V f − (MV f )×V − (MV)×V f

−DΩ×V f − (DV f )×Ω

The disturbance terms ∆F and ∆Γ vanish if v f = 0. Otherwise,
they should be addressed using either an estimator or integral
compensation actions.

In the sequel the system’s equations (5) will be used for con-
trol design, with the unknown disturbance terms ∆F and ∆Γ con-
sidered as constant vectors.

3. Problem formulation of pipeline following by visual ser-
voing

Assume that the AUV is equipped with an Inertial Measure-
ment Unit (IMU), a Doppler Velocity Log (DVL) and a monoc-
ular camera. The IMU provides measurements of the angular

velocity Ω and an approximate of the gravity direction R>e3
(i.e., roll and pitch angles), whereas the DVL measures the
translational velocity V. The visual features considered are
the pipeline borders assumed to be parallel to each other (see
Fig. 2). Assume that the curvature of the pipeline is negligi-
ble so that the pipeline direction u in the inertial frame is ap-
proximatively constant. The inertial frame is chosen such that
u ∈ span(e1, e3).

C

u
u

U

y1
1

y2
1

y1
2

y2
2

Figure 2: Geometrical basis of the pipeline-following visual servo control prob-
lem

Provided that the observed borderlines of the pipeline are
parallel, their Plücker coordinates (hi,U) ∈ S 2 × S 2, i = {1, 2},
expressed in the camera frame C, can be measured directly from
the image features Mahony and Hamel (2005) as follows (see
Fig. 2) 

hi ,
y1

i × y2
i

|y1
i × y2

i |

U = ±
h1 × h2

|h1 × h2|

(6)

where y1
i and y2

i are the metric pixel coordinates (i.e. 3D coor-
dinates of a point divided by its depth) of points belonging to
the observed borderline i w.r.t. the optical center of the image.
The direction of the pipeline U expressed in the camera frame
is specified up to a sign that should be assigned by the opera-
tor. The proposed visual servo control is based on the centroid
vector computed from visual features (6) as follows (see Fig. 3)

q , h1 + h2

One verifies that hi is also equal to hi = Hi
|Hi |

where Hi = Pi × U
and Pi is the vector of coordinates, expressed in C, of the closest
point Pi on the line to the origin of the camera frame C.

The kinematics of U,Pi and Hi, with i = 1, 2, are inherited
from the camera motion relative to the observed pipeline. Since
u is constant by assumption, one obtains Mahony and Hamel
(2005) 

U̇ = −Ω × U
Ṗi = −Ω × Pi − πUVC

Ḣi = −Ω ×Hi − VC × U
(7)

From these equations one derives the dynamics of the centroid
vector q as

q̇ = −Ω × q −Q(VC × U) (8)
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Figure 3: Illustration of the construction of the visual variable q

where Q ,
∑2

i=1
1
|Hi |
πhi is a symmetric positive definite matrix,

with |Hi| equal to the distance from the origin of the camera
frame to the borderline of index i, i.e. |Hi| = |Pi|. Since these
distances are not known when using a monocular camera, the
matrix Q is not known either for control design.

Let q? be the reference value of q. Control action must
ensure the asymptotic stabilization of q about q?. The latter
is typically chosen constant and parallel to e2 (i.e. q̇? = 0,
q? = |q?|e2), leading implicitly to stabilize the AUV in the
middle of the pipeline at the desired relative distance encoded
in |q?|.

Remark 1. It is worth providing a physical interpretation on
the magnitude of q?. It is verified that |q?| = 2 cosα? with
α? = artan(lp/(2d?)), where lp and d? are respectively the
width of the pipeline and the distance between the camera and
the pipeline associated to q?. This means that the norm of
q? must be chosen smaller than 2 (i.e. |q?| < 2) and that
the more it gets close to 2 the larger the distance d? (i.e.,
lim|q? |→2 d? = +∞).

Define the visual position-like error as

δ1 , q − πUq? (9)

Note that δ1 is orthogonal to U, which is an important property
to be exploited in the outer-loop control design.

The control objective consists of stabilizing the lateral and
vertical positions of the vehicle w.r.t. the pipeline to the desired
values with null roll angle (i.e. stabilizing δ1 and φ about zero),
stabilizing the vector U about e1, and V>U about the reference
speed vr ∈ R. Additionally, the pitch angle must asymptotically
converge to the slope angle β (−π/2 < β < π/2) of the pipeline.

Lemma 1. If (U, e>2 R>e3) asymptotically converge to (e1, 0),
then roll, pitch and yaw angles locally asymptotically converge
to (0, β, 0).

Proof. Since u ∈ span(e1, e3) and under assumption that U →
e1 and e>2 R>e3 → 0, one deduces sinφ → 0, sinθ → sinβ,
sinψ→ 0, which locally ensures the convergence of (φ, θ, ψ) to
(0, β, 0).

AUV
IMU

Image

Inner

Outer
δ1,U

loop

loop
processing

Vr , V̇r

Ωr , Ω̇r

Ω,R>e3

Fc,Γc

DVL
V

Figure 4: Block diagram of the proposed control scheme

4. Control design

The following cascade inner-outer loop control architecture
(illustrated by Fig. 4) is adopted.
• The inner-loop control defines the force and torque control

vectors Fc and Γc that ensure the asymptotic stabilization
of (V,Ω) about (Vr,Ωr), where the reference velocities Vr

and Ωr are defined by the outer-loop control.

• The outer-loop control is specifically designed from the
image features to define the desired velocity setpoint Vr

and Ωr as well as their derivative to fulfill the main objec-
tive of stabilizing (δ1,U,V) about (0, e1, vre1).

4.1. Outer-loop control design

For a fully-actuated AUV with force and torque control in-
puts, it is not too difficult to design an inner-loop controller
that ensures the global asymptotic stability and local exponen-
tial stability of the equilibrium (V,Ω) = (Vr,Ωr), provided that
the derivatives of Vr and Ωr are computable by the controller.
Let us thus postpone the inner-loop control design and focus on
the outer-loop control design, which is the main contribution of
this paper.

The outer-loop control design is directly based on the fea-
tures measured in the image plane, with the objective of stabi-
lizing (δ1,U,V) about (0, e1, vre1).

From (7), (8) and (9) one verifies that the dynamics of δ1
satisfies

δ̇1 = −Ω × q −Q(VC × U) + (U̇U> + UU̇>)q?

= −Ω × (δ1 + πUq?) −Q(VC × U)+
(−Ω×UU> + UU>Ω×)q?

= −Ω × δ1 − πU(Ω × q?) −Q(VC × U) (10)

Now in order to provide the reader with some control in-
sights, the kinematic case using the velocities V and Ω as con-
trol inputs is investigated.

Lemma 2. (Kinematic Control) The kinematic controller

{
Ω = kue1 × U
V = U × δ1 + vrU +Ω × rC

(11a)
(11b)

with ku a positive gain, globally asymptotically stabilize U
about ±e1 and δ1 about zero. Additionally, the velocities Ω
and V converge to zero and vrU, respectively.
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Proof. Consider the following positive storage function:

S1 , 1 − U>e1 (12)

From (7), (11a) and (12) one verifies that the derivative of S1
satisfies

Ṡ1 = −U>Ω×e1 = −Ω>(e1 × U) = −ku(U2
2 + U2

3)

Provided that Ω is considered as control input, system (7) is
autonomous. Therefore, the application of LaSalle’s principle
ensures the convergence of Ṡ1 and thus, of U2 and U3 to zero.
This implies that U converges to either e1 or −e1. The conver-
gence of Ω to zero then follows from its definition (11a).

From (11b) one deduces VC = kδU×δ1 +vrU. Now, consider
the second positive storage function S2 , 1

2 |δ1|
2. Using (10),

and the expression of VC obtained previously and the orthogo-
nality of δ1 to U, one deduces

Ṡ2 = −δ>1 πU(Ω × q?) − δ>1 Q(VC × U)
= −δ>1 πU(Ω × q?) + kδδ>1 Q(U × (U × δ1))
= −δ>1 πU(Ω × q?) − kδδ>1 Qδ1 (13)

Since the matrix Q is positive definite and the vanishing term
πU(Ω × q?) remains bounded for all time, one deduces from
(18) and the definition of S2 that Ṡ2 and, thus, δ1 converge to
zero. Finally, the convergence of δ1 and Ω to zero ensure the
convergence of V to vrU.

Remark 2. Since V and Ω are not the physical control vari-
ables, some modifications should be made. In view of Lemma 2,
one may define the reference velocities Vr andΩr as in the right
hand side of Eqs. (11a)–(11b) and apply an inner-loop control
to ensure that V and Ω converge to Vr and Ωr. However, since
the derivative of Vr is not computable by the inner-loop control
due to the term δ1 involved in the expression (11b) and, subse-
quently, the stability of the equilibrium (V,Ω) = (Vr,Ωr) is no
longer guaranteed unconditionally. More precisely, in order to
compute the derivative of Vr, one needs to know the derivative
of δ1. Nevertheless, in view of the expression (10) of δ̇1, it is not
computable by the controller due to the unknown matrix Q.

As mentioned previously, the knowledge of the derivative
terms V̇r and Ω̇r is required by the inner-loop controller. To
this purpose, the reference velocities Vr and Ωr are defined as
(compared to (11a)–(11b))

Ωr , kue1 × U − kωe1(e>2 R>e3)

Vr , [e1]×

[
0
δ̄2

]
+ vre1 +Ωr × rC

(14a)

(14b)

where ku and kω are some positive gains, and the augmented
variable δ̄2 ∈ R2 is the solution to the augmented system:

˙̄δ2 = K1δ̄1 −K2δ̄2, δ̄2(0) = δ̄0 (15)

with δ̄0 ∈ R2 the initial condition, some positive diagonal 2×2
gain matrices K1 =diag(k11, k12),K2 = diag(k21, k22) ∈ R2×2,

and δ̄1 , [δ1,2, δ1,3]> ∈ R2 the vector of the two last compo-
nents of δ1. Since the derivative of U and δ̄2, given by (7) and
(15) respectively, can be computed by the controller and since
δ̄2 can be obtained by integration of Eq. (15), it is straight-
forward to verify that V̇r and Ω̇r are also computable by the
controller.

Proposition 1. Let the reference velocities Vr and Ωr be spec-
ified by the outer-loop controller as in Eqs. (14a)–(14b). Ap-
ply any inner-loop controller that ensures the global asymp-
totic stability and local exponential stability of the equilibrium
(VC ,Ω) = (VCr,Ωr). Let λsup

Q̄
, λinf

Q̄ > 0 denote the supre-
mum of the largest eigenvalue and the infimum of the small-
est eigenvalue of the symmetric positive definite matrix Q̄ ,[
Q2,2 Q2,3
Q2,3 Q3,3

]
∈ R2×2. Let γ ˙̄Q denote the bound of ˙̄Q. Assume

that the control gains K1 and K2 involved in Eqs. (14b) and
(15) satisfy

k1max <
k2

2min

ελ
sup
Q̄

, k1min >
(1 + ε)γ ˙̄Q

2ε(λinf
Q̄

)2
k2max (16)

with some positive number ε and

k1max , max(k11, k12), k1min , min(k11, k12)

k2max , max(k21, k22), k2min , min(k21, k22)

Then, U is stabilized about ±e1 and δ1 and δ̄2 are stabilized
about zero. Additionally, (Ω,V) asymptotically converge to
(0, vrU).

Proof. As a consequence of the inner-loop control, the velocity
errors Ṽ , V − Vr and Ω̃ , Ω −Ωr converge to zero.

First, the convergence of U2 and U3 to zero is studied. Con-
sider the storage function S1 defined by (12). One verifies that

Ṡ1 =Ω>(e1×U)= (Ω̃+Ωr)>(e1×U)=−kuU2
2−kuU2

3 +εS1 (17)

with εS1 , Ω̃>(e1 × U) a vanishing term. The application of
Barbalat’s lemma (see Khalil (2002)) then ensures the conver-
gence of U2 and U3 to zero, which implies that U converge to
either e1 or −e1.

Now the convergence of Ωr to zero is studied. Consider the
storage function S3 = 1 − e>3 R>e3. One verifies that

Ṡ3 = −(Ω̃ +Ωr)>(e3 × R>e3)
= −kω(e>2 R>e3)e>1 (e3 × R>e3) + εS3

= −kω|e>2 R>e3|
2 + εS3 (18)

with εS3 , −ku(e1×U)>(e3×R>e3)−Ω̃>(e3×R>e3) a vanishing
term. From there the application of Barbalat’s lemma ensures
the convergence of e>2 R>e3 to zero. One then easily deduces
the convergence of Ω and Ωr to zero using its definition (14a).

The convergence of δ1 and δ̄2 to zero is now investigated.
Using (10), (14b) and (15) one deduces

δ̇1 = Q(U×Vr) + εδ1 = −Qπe1

[
0
δ̄2

]
+ εδ1 = −Q

[
0
δ̄2

]
+ εδ1 (19)
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with εδ1 , −Ω×δ1−πU(Ω×q?)+Q(U×(Ṽ+Ω×rC)) a vanishing
term. One notes that the first component of δ1 converges to zero
by construction since δ1 is orthogonal to U.

One deduces the following zero-dynamics, corresponding to
εδ1 ≡ 0:  ˙̄δ1 = −Q̄δ̄2

˙̄δ2 = K1δ̄1 −K2δ̄2

(20)

By application of singular perturbation theory Khalil (2002), in
order to prove the convergence of δ1 and δ̄2 to zero, it suffices
to prove the exponential stability of the equilibrium (δ1, δ̄2) =

(0, 0) of the zero-dynamics (20).
Consider the following Lyapunov function candidate:

L =
1 + ε

2
δ̄
>

1 Q̄−1δ̄1 +
1
2
δ̄
>

2 K−1
1 δ̄2 − εδ̄

>

1 K−1
2 δ̄2

≥
1 + ε

2λsup
Q̄

|δ̄1|
2 +

1
2k1max

|δ̄2|
2 −

ε

k2min
|δ̄1| |δ̄2|

(21)

with some positive number ε. One verifies from (20) and (21)
that

L̇ =
1 + ε

2
δ̄
>

1 Q̄−1 ˙̄QQ̄−1δ̄1 − δ̄
>

2 K−1
1 K2δ̄2 − εδ̄

>

1 K−1
2 K1δ̄1

+ εδ̄
>

2 K−1
2 Q̄δ̄2

≤ −

εk1min

k2max
−

(1 + ε)γ ˙̄Q

2(λinf
Q̄

)2

 |δ̄1|
2 −

 k2min

k1max
−
ελ

sup
Q̄

k2min

 |δ̄2|
2

From there, using condition (16) one deduces that L is positive
definite and L̇ negative definite. The exponential convergence
of δ̄1 and δ̄2 to zero then directly follows, allowing one to con-
clude the proof.

Remark 3. The outer-loop controller (14)–(15) has been im-
proved w.r.t. the one proposed in our prior work Krupı́nski et al.
(2012). In particular, the use of diagonal gain matrices K1 and
K2 (justified by rigourous stability analysis) instead of the cor-
responding scalar gains used in Krupı́nski et al. (2012) allows
one to locally decouple the outer-loop system (in first order ap-
proximations) into 3 independent subsystems corresponding to
yaw, vertical and lateral dynamics, with the flexibility of inde-
pendent gain tuning. This allows one to limit the influence of
yaw and lateral dynamics on the transient behaviour of the ver-
tical motion and thus avoid large overshoot in the altitude and
limit the risk of collision with the ocean floor.

An additional modification to the outer-loop controller (14)–
(15) in order to reduce the influence of a large initial yaw error
on the transient translational motion can be made by replacing
the expression (14b) by the following equation:

Vr = µ(|U1|)[e1]×

[
0
δ̄2

]
+ µ(|U1|)vre1 +Ωr × rC (22)

where µ(·) is a differentiable monotonic increasing function de-
fined in [0, 1] satisfying µ(0) > 0 and µ(1) = 1. For instance,
µ(x) = ε + (1 − ε)x2n, with 0 < ε < 1 a small number and
n a large integer, has been chosen in the simulation section.

The introduction of the function µ(·) allows one to prioritize the
stabilization of U to e1 over the stabilization of other control
variables (i.e. δ1 and V1). It can be easily shown that this modi-
fication does not affect the stability results stated in Proposition
1. In fact, from the proof of Proposition 1 one notes that the
outer-loop control (14a) of Ωr ensures the convergence of U to
±e1 independently from any expression of Vr. Therefore, µ(·)
ultimately converges to 1, which implies that (22) is ultimately
equivalent to (14b) and hence the associated stability analysis
can proceed identically.

4.2. Recall on inner-loop control design

Although the inner-loop control design for a fully-actuated
AUV is not too challenging and is not the main preoccupation
of this paper, it is recalled here for completeness.

The inner-loop control objective can be stated as the stabi-
lization of (Ṽ, Ω̃) about zero, with Ṽ , V−Vr and Ω̃ , Ω−Ωr.
Then, using (5c) and (5d) one obtains the following coupled er-
ror dynamics:

M ˙̃V + D> ˙̃
Ω =(MV + D>Ω)×Ω̃ +

(
MṼ + D>Ω̃

)
×Ωr

+ Fgb + F̄d + ∆F + Fr + Fc (23a)

J ˙̃
Ω + D ˙̃V =(JΩ + DV)×Ω̃ + (MV + D>Ω)×Ṽ

+
(
JΩ̃ + DṼ

)
×Ωr +

(
MṼ + D>Ω̃

)
×Vr

+ Γg + Γd + ∆Γ + Γr + Γc (23b)

where Fr and Γr, the feedforward terms that should be compen-
sated for by the controller, are defined by:

Fr , −MV̇r − D>Ω̇r +
(
MVr + D>Ωr

)
×Ωr

Γr , −JΩ̇r − DV̇r +
(
JΩr + DVr

)
×Ωr +

(
MVr + D>Ωr

)
×Vr

For the sake of completeness, the following proposition are
recalled from our prior work Krupı́nski et al. (2017).

Proposition 2. (see (Krupı́nski et al., 2017, Pro.3)) Consider
the system dynamics (23a)–(23b) and apply the following con-
troller:

Fc = −KVṼ −KiVzV − (MṼ + D>Ω̃) ×Ωr

+ D>(Ω̃ ×Ωr) + M(Ω̃ × Vr) − Fgb − F̄dr − Fr

Γc = −KΩΩ̃ −KiΩzΩ − (JΩ̃)×Ωr − (D>Ω̃)×Vr

− Γg − Γ̄dr − Γr

(24)

with KV , KΩ, KiV , KiΩ some positive diagonal 3 × 3 gain ma-
trices, zV ,

∫ t
0 Ṽ(s)ds, zΩ ,

∫ t
0 Ω̃(s)ds, and{

F̄dr , −(DVl + |V|DVq)Vr

Γdr , −(DΩl + |Ω|DΩq)Ωr
(25)

Assume that the disturbance terms ∆F and ∆Γ are constant and
that Vr,Ωr and their derivative are bounded. Then, the equilib-
rium of the controlled system (V,Ω, zV , zΩ) = (Vr,Ωr, z?V , z

?
Ω

),
with z?V = K−1

iV ∆F and z?
Ω

= K−1
Ω
∆Γ, is globally asymptotically

stable (GAS) and locally exponentially stable (LES).
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The proof of this proposition given in Krupı́nski et al. (2017)
consists in showing that the time-derivative of the following
Lyapunov function candidate is negative semi-definite:

Linner , 1
2 W̃>MT W̃+ 1

2 (zV−K−1
iV ∆F)>KiV (zV −K−1

iV ∆F)

+ 1
2 (zΩ−K−1

iΩ∆Γ)>KiΩ(zΩ −K−1
iΩ∆Γ)

with MT > 0 given by (1) and W̃ , [Ṽ>, Ω̃>]>.
In practice the roll motion may not be actuated by conception

(i.e. Γc1 ≡ 0) like the Girona-500 AUV used for experiment
validations and is, thus, left passively stabilized by restoring
and dissipative roll moments. A solution to such a situation
can be easily adapted as proposed in (Krupı́nski et al., 2017,
Sec.IV.A).

5. Validation results

5.1. Comparative simulation results

This section illustrates the performance of the proposed ap-
proach compared to the state-of-the-art IBVS approach pro-
posed in Rives and Borrelly (1997) via a realistic simulation
of a fully-actuated AUV model. Simulations have been car-
ried out using Matlab/Simulink. The physical parameters of the
simulated fully-actuated AUV given in Tab. 1 are those of the
Girona-500 AUV along with rough estimates of added mass,
added inertia and damping coefficients.

Specification Numerical value
Mass m [kg] 160

Fgb [N] 1.047mg
rG [m] [0 0 0.15]>

rC [m] [0 0 0]>

J = J0 + M22
A [kg.m2]


88 5 10
5 110 8
10 8 70


M11

A [kg]


20 5 10
5 320 12

10 12 320


M12

A = M21>
A [kg.m]


1 10 4

10 1 3
4 3 0.5


DVl [kg.s−1] diag(1, 1.2, 1.4)
DVq [kg.m−1] diag(30, 1700, 2550)

DΩl [kg.m2.s−1] diag(0.3, 0.2, 0.4)
DΩq [N.m] diag(3, 2, 4)

Table 1: Specifications of the simulated AUV.

For all comparisons, the value of q? is q? = 1.9901e2 that
corresponds to the situation where the vehicle moves at 1[m]
above and in the middle of the pipeline having a diameter of
0.2[m]. The desired speed vr along the pipeline is 1[m/s].

In order to make fair and simple comparisons between the
two approaches, it is considered that the current velocity is
equal to zero and that the estimated parameters of the AUV’s
model are equal to the real values. In the sequel, it is called:
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Figure 5: Comparison 1 (left (resp. right) column for controller 1 (resp. 2)) for
small initial errors pC(0) = [0, 1.5,−3.5]> and R(0) = R

{ 5π
180 ,0,

−25π
180 }

(from top
to bottom): AUV position and attitude (Euler angles) vs. time, visual error vs.
time.
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Figure 6: Comparison 2 (left (resp. right) column for controller 1 (resp. 2))
for medium initial errors pC(0) = [0, 3,−6]> and R(0) = R

{ 15π
180 ,

10π
180 ,

30π
180 }

(from
top to bottom): AUV position and attitude (Euler angles) vs. time, visual error
vs. time.

• Controller 1 – the proposed controller: The control
gains of the inner-loop and outer-loop are tuned based on
the classical pole placement technique. For the inner-loop,
two triple negative real poles equal to −2 and −4 are cho-
sen for the linearized closed-loop system (24) for the par-
ticular case where Vr ≡ Ωr ≡ v f ≡ 0. The gain matrices
KV , KΩ, KiV and KiΩ are given by

– KV = diag(330.8, 922.1, 960), KiV = 0,

– KΩ = diag(351.8, 438.7, 280), KiΩ = 0.

For the outer-loop, negative real poles (−2.6,−1.2) for the
subsystem of vertical motion, and negative real double
pole −2.5 for the subsystem of the lateral motion are used
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Figure 7: Comparison 3 (left (resp. right) column for controller 1 (resp. 2))
for large initial errors pC(0) = [0, 3,−4]> and R(0) = R

{ 45π
180 ,

10π
180 ,

60π
180 }

(from top
to bottom): AUV position and attitude (Euler angles) vs. time, visual error vs.
time.

on the linear approximation of system (20) at the equilib-
rium. The gains are given by

– ku = 6, kω = 0.5,

– K1 = diag(41.36, 3.31), K2 = diag(3.8, 5),

– µ(|U1|) = ε + (1 − ε)|U1|
2n with ε = 0.05, n = 5.

• Controller 2 – the IBVS controller proposed in Rives
and Borrelly (1997): It is based on classical visual servo-
ing approach applied to lines, corresponding to the projec-
tion of the borderlines of the pipe onto image features. In
this case, the visual errors are given by the difference of
the polar coordinates [ρ1, θ1, ρ2, θ2]> of the current lines
and the associated values [ρ?1 , θ

?
1 , ρ

?
2 , θ

?
2 ]> of the desired

lines. As discussed in Rives and Borrelly (1997) two lines
are not enough to ensure a global minimum, roll stabiliza-
tion to zero is needed independently. Therefore, the term
kωe>1 (e3 × R>e3) is added in the computation of the con-
trol torques to help the roll stabilization to zero. The gains
involved in this controller are1: k = 0.3, µ = 5/3, β = 1,
kω = 0.5.

Extensive simulations have been carried out using the two
controllers. Three simulations are reported next that correspond
to three different initial conditions (i.e. small, medium and large
errors in translations and rotations).

• In the first simulation (see Fig. 5), both the controllers
exhibit a quite good behaviour. The pose (i.e. position and
orientation) quickly converges to the desired values while
the visual errors converge smoothly to zero.

• In the second simulation (see Fig. 6), the convergence of
the visual errors to zero and of the pose to the desired val-

1The notation of gains k, µ, β is adopted in Rives and Borrelly (1997)

ues is still achieved for both controllers. However, one ob-
serves some oscillations in the attitude’s time evolution of
Controller 2 in contrast to the smooth convergence without
overshoot in the attitude of Controller 1.

• When the initial errors are very large especially in roll an-
gle (see Fig. 7), Controller 2 becomes unstable while Con-
troller 1 still ensures a very satisfactory performance (i.e.
fast convergence without oscillations). The poor perfor-
mance of Controller 1 in this case is not surprising since
its design and stability analysis are only established on lo-
cal basis.

The reported simulations show some net improvements in
terms of convergence domain and smooth transient response of
the proposed IBVS approach w.r.t. to the IBVS approach pro-
posed in Rives and Borrelly (1997).

5.2. Experimental results
The Girona-500 AUV developed by the Underwater Vision

and Robotics Center (Girona, Spain) Ribas et al. (2012) (see
Fig. 8) has been used to perform experimental validations.
The AUV is composed of an aluminium frame to support three
torpedo-shaped hulls. Its dimensions are 1×1×1.5[m] in height,
width and length, and its weight is approximately 160[kg] in air.
The vehicle is actuated by two horizontal thrusters for yaw and
surge actuations, two vertical thrusters for heave and pitch actu-
ations and one lateral thruster for sway actuation. Roll motion
is left passively stabilized (i.e. Γc1 ≡ 0). The mounted sensor
suite of the AUV consists of an IMU, a DVL and a downward-
looking camera providing images at about 5-7[Hz].

Figure 8: Girona-500 AUV and experimental setup

In order to emulate an inspection of an underwater pipeline, a
pipeline mockup, whose diameter is approximatively 0.2[m], is
placed in a pool (see Fig. 8). ROS middleware is used to trans-
fer images from camera in low-bandwidth compressed formats.
A bridge between ROS images and OpenCV is also used to ob-
tain in real time the parameters of the pipeline borders.

The control gains and other parameters involved in the com-
putation of the control inputs are given by

• KV = diag(145.4, 418.5, 480), KiV =0.1KV

• KΩ = diag(96.9, 124.7, 70), KiΩ =0.1KΩ

• ku = 0.5, kω = 1

• K1 = diag(2.65, 0.3), K2 = diag(0.9, 1.5)
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(a) Initial image (b) t=2s (c) t=5s (d) t=12s (e) t=19s (f) t=26s

Figure 9: Initial image and current images during convergence

• q? = 1.9901e2, vr = 0.15[m/s]

• rC = [0.5, 0, 0.5]>[m]

The estimated summed inertia (i.e., inertia + added inertia) and
summed mass (i.e., mass + added mass) are those in Tab. 1
in which the off-diagonal elements are neglected. Finally, the
damping force and torque vectors (i.e. F̄d and Γd) are also ne-
glected. In the following, experimental results will be reported.
Due to space limitation, only brief but representative parts of to-
tal results are presented. However, the reader is invited to view
a video clip showing the whole experiment (see multimedia at-
tachment) at https://youtu.be/jPHlJ2CYHLI.
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Figure 10: Direction of the pipeline and vector q vs. time

Experimental results are reported in Figs. 9–12. They corre-
spond to the multimedia attachment. Fig. 10 shows the practical
convergence of U near to e1 whereas the vector of image fea-
ture q converges near to the desired value. The time evolution
of the visual error δ1 is given in Fig. 11. One observes that the
convergence is obtained in a short period with quite satisfactory
behaviour. Fig. 9 presents an overview of current images taken
during the AUV’s motion where the lines obtained from image
processing using Hough algorithm are displayed in red.

Finally, Fig. 12 shows the control force and torque vectors
computed from the inner-loop. Since the Girona-500 AUV is
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Figure 11: Visual error δ1 vs. time
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Figure 12: Control force and torque vs. time

positively buoyant, the third component of the control force
vector practically converges to 75[N]. The longitudinal compo-
nent Fc1 practically converges to the force needed to counter-
act the drag force corresponding to the forward velocity about
0.15[m/s] along the pipeline. The lateral component Fc2 also
converges near to a non-null value (≈ 6[N]) which can be ex-
plained by the fact that the vehicle is not perfectly aligned with
the pipeline and thus resulting in non-negligible lateral drag. As
for the control torque, the second component Γc2 converges near
to −7[N.m], allowing to maintain the vehicle horizontally. This
non-null value is due to the fact that the vector

−−→
BG connecting
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the CoB and CoM is not aligned with the vertical basis vector
−→e b

3. From this figure one also observes some isolated spikes in
the control forces and torques. This is intrinsically due to the
fact that for some “security” reason the Girona-500 AUV ran-
domly sent some impulsive additive signals to the inner-loop
control independently from the proposed controller. However,
these “incidental” random and short signals did not affect the
overall performance of the proposed approach, showing the ro-
bustness of the latter.

6. Conclusions

A nonlinear visual servo control for pipeline following for
fully-actuated AUVs has been proposed. The originality of the
proposed approach lies in exploiting the full system dynamics
in control design. The controller directly uses the image fea-
tures as feedback information without exploiting the relative
pose of the vehicle with respect to the environment. Since prac-
tically no knowledge of the Cartesian world is mandatory, the
implementation, especially in uncertain or changing scenes is
greatly simplified. Rigorous stability analysis for closed-loop
systems has been given. The theoretical analysis has been com-
plemented by comparative simulation results between the pro-
posed control approach and an existing IBVS controller and
also by experimental validations that shows the effectiveness of
the proposed control scheme, even when the system parameters
are not known precisely. As perspectives, it would be interest-
ing to improve the proposed approach in the case where DVL
measurements become inaccurate or missing, due to low veloc-
ity or in close proximity to man-made infrastructures.

Acknowledgement: This work was supported by the CNRS-
PEPS CONGRE project, the FUI GreenExplorer project and by
Cybernetix company (Technip group).

References

Aguiar, A. P., Pascoal, A. M., 2007. Dynamic positioning and way-point track-
ing of underactuated AUVs in the presence of ocean currents. International
Journal of Control 80 (7), 1092–1108.

Allen, B., Stokey, R., Austin, T., Forrester, N., Goldsborough, R., Purcell, M.,
von Alt, C., 1997. REMUS: a small, low cost AUV; system description, field
trials and performance results. In: MTS/IEEE OCEANS’97. pp. 994–1000.

Antich, J., Ortiz, A., 2003. Underwater cable tracking by visual feedback. Pat-
tern Recognition and Image Analysis 2652, 53–61.

Antonelli, G., 2007. On the use of adaptive/integral actions for six-degrees-
of-freedom control of autonomous underwater vehicles. IEEE Journal of
Oceanic Engineering 32 (2), 300–312.

Bagnitsky, A., Inzartsev, A., Pavin, A., Melman, S., Morozov, M., 2011. Side
scan sonar using for underwater cables & pipelines tracking by means of
auv. In: IEEE Symposium on Underwater Technology (UT) and Workshop
on Scientific Use of Submarine Cables and Related Technologies (SSC). pp.
1–10.

Christ, R., Wernli, R., 2007. The ROV Manual: A User Guide for Observation
Class Remotely Operated Vehicles. Butterworth-Heinemann.

Fossen, T. I., 2002. Marine Control Systems. Marine Cybernetix AS.
Fryxell, D., Oliveira, P., Pascoal, A., Silvestre, C., Kaminer, I., 1996. Naviga-

tion, guidance and control of AUVs: An application to the MARIUS vehicle.
Control Engineering Practice 4, 401–409.

Inzartsev, A., Pavin, A., 2009. AUV application for inspection of underwater
communications. INTECH Open Access Publisher.

Josserand, T. M., 2006. Optimally-robust nonlinear control of a class of robotic
underwater vehicles. Ph.d. thesis, University of Texas at Austin.

Khalil, H. K., 2002. Nonlinear systems (3rd Edition). Prentice Hall.
Krupı́nski, S., Allibert, G., Hua, M., Hamel, T., 2017. An inertial-aided

homography-based visual servo control approach for (almost) fully-actuated
autonomous underwater vehicles. IEEE Transactions on Robotics 33 (5),
1041–1060.

Krupı́nski, S., Allibert, G., Hua, M.-D., Hamel, T., 2012. Pipeline tracking for
fully-actuated autonomous underwater vehicle using visual servo control.
In: American Control Conference (ACC). pp. 6196–6202.

Krupı́nski, S., Desouche, R., Palomeras, N., Allibert, G., Hua, M.-D., 2015.
Pool testing of auv visual servoing for autonomous inspection. In: 4th IFAC
Workshop on Navigation, Guidance and Control of Underwater Vehicles,
IFAC-PapersOnLine. Vol. 48. pp. 274–280.

Lapierre, L., Soetanto, D., Pascoal, A., 2008. Robust nonlinear path-following
control of an AUV. IEEE Journal of Oceanic Engineering 33, 89–102.

Leonard, N. E., 1997. Stability of a bottom-heavy underwater vehicle. Auto-
matica 33 (3), 331–246.

Mahony, R., Hamel, T., 2005. Image-based visual servo control of aerial robotic
systems using linear image features. IEEE Transactions on Robotics 21 (2),
227–239.

Matsumoto, S., Yoshihiko, I., 1995. Real-time vision-based tracking of
submarine-cables for AUV/ROV. In: MTS/IEEE OCEANS95. pp. 1997–
2002.

Naeem, W., Sutton, R., Ahmad, S. M., Burns, R. S., 2003. A review of guidance
laws applicable to unmanned underwater vehicles. The Journal of Naviga-
tion 56 (1), 15–29.
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