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Abstract. Partitioned approximation control is avoided in most decentralized 

control algorithms； however, it is essential to design feedforward control with 

improved tracking accuracy. As a result, this work is focused on decentralized 

adaptive partitioned approximation control for complex robotic systems using 

the orthogonal basis functions as strong approximators. In essence, the parti-

tioned approximation technique is intrinsically decentralized with some modifi-

cations. The proposed decentralized control law consists of three terms: the par-

titioned approximation-based feedforward term that is necessary for precise 

tracking, the high gain-based feedback term, and the adaptive sliding gain-

based term for compensation of modeling error. The passivity property is essen-

tial to prove the stability of local stability of the individual subsystem with 

guaranteed global stability. A two-link robot is simulated to verify the effec-

tiveness of the proposed technique. 

Keywords: Adaptive Approximation Control, Decentralized Control, Orthogo-

nal Basis Functions. 

1 Introduction 

For complex robotic systems, such as humanoid robots or any robot having a number 

of degrees of freedom (DOFs) larger than 6-DOFs, difficulties are encountered in the 

implementation of the control algorithms. Therefore, over 30 years, the robotics re-

searchers have focused on the problem of computational efficiency; see [1] for more 

details. However, the adaptive control algorithm that deals with controlling the robot-

ic systems despite their uncertain parameters may decrease the computational effi-

ciency of the dynamics O (n) algorithms [2]. Therefore, most researchers have used a 

local controller (decentralized controller) such as PID family for controlling complex 

dynamic systems [3]. However, Liu [4] has proved that decentralized PD control for 

robotic manipulator can ensure local stability without guaranteed global stability. 

Therefore, the author proposed decentralized a PD + nonlinear cubic controller with 

guaranteed global stability. Yang et al. [5] have used disturbance observer and adap-

tive sliding mode control for compensation of low-pass and high-pass coupled uncer-

tainties respectively. In general, most available control strategies are based on design-

ing PD control plus robust and or/adaptive term(s) for compensation of modeling 
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errors and the interconnections. For more details on decentralized robust/adaptive 

control, see [5] and the references therein. Apart from conventional robust control, 

adaptive approximation control is a powerful tool to control robotic manipulators with 

unknown dynamics. There are two possibilities of adaptive approximation techniques: 

lumped (global) approximation-based adaptive control and partitioned (local) approx-

imation-based adaptive control [6]-[8]. The former deals with collecting the uncer-

tainty in one term and using the linear-in-the-parameters property to represent the 

uncertainty in terms of weighting and basis-function vectors. Then the controller is 

selected based on updating the weighting vector using Lyapunov stability. This strat-

egy requires nominal (ideal) model for the unknown parameters. On the other hand, 

partitioned approximation adaptive control approximates each dynamic coefficient 

matrix of the equation of motion of the target robot separately using the linear-in-the-

parameters property. The control law is then designed based on updating the 

weighting-coefficient matrices of the corresponding basis-function matrices using 

Lyapunov stability. The interesting point is that the partitioned approximation does 

not require a nominal model for the dynamic coefficients easing the control task. 

However, most decentralized approximation control algorithms used lumped approx-

imation term combined with either PD term or nominal values [9]-[11].  

In view of above, partitioned approximation control is avoided in most decentral-

ized control algorithms despite its importance in the design of feedforward control 

with improved tracking accuracy. As a result, this work is concerned with decentral-

ized adaptive partitioned approximation control for complex robotic systems using the 

orthogonal basis functions as strong approximators. In essence, the partitioned ap-

proximation technique is intrinsically decentralized with some modifications. The 

proposed decentralized control law consists of three terms: the partitioned approxima-

tion-based feedforward term that is necessary for precise tracking, the high gain-based 

feedback term, and the adaptive sliding gain-based term for compensation of model-

ing error. The passivity property is essential to prove the stability of local stability of 

the individual subsystem with guaranteed global stability.  

The remainder of the paper can be organized as follows. Methodology is presented 

in Section 2. Section 3 described simulation results and discussions. Section 4 con-

cludes. 

 

Remark 1. Preliminaries for adaptive approximation control and the related theorems 

such as Weierstrass theorem are described with some details in [8, 13]. 

2 Methods 

2.1 Dynamics of Contact-Free Motion Robots 

The equation of motion for n-DOF robotic manipulators in free space can be ex-

pressed as  

   ),()(),()( qqqgqqCqqD 
f  (1) 
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where nRD  is the inertia matrix of the links, nRC  is the Coriolis and centripe-

tal matrix of the links, nRg  is the gravity vector, nRq  represents the angular 

joint displacement, n
f R  is the friction joint torque vector, and nR  denotes to 

the output joint torques. 

Based on Eq. (1), the -k th subsystem of the target robot, where nk  can be ex-

pressed as  

 kkkfkkj

n

1j

kjj

n

1j

kj τ)q,(qτqgq)q(q,cq(q)d 


 )(  (2) 

The inertia, Coriolis and centripetal, and the gravity terms of Eq. (2) include coupled 

nonlinear functions, therefore, they are written in terms of general state variables.  

The objective of decentralized control is to control every DOF individually; therefore, 

Eq. (2) can be further expressed as 

 kkkkkkkk qqqqqcqqd  ),(),()(    (3a) 

with 
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 (3b) 

The following properties assumptions are necessary for adaptive approximation con-

trol assuming robotic manipulators with revolute joints [3, 12]. 

 

Property 1. The inertia matrix, Coriolis and centrifugal matrix, and the gravity vec-

tors are uniformly bounded. 

This property can be extended such that the dynamic coefficients and the disturbance 

term )τ,g,c,c,d,(d fkkkjkkkjkk , with njk ,  are uniformly bounded. 

 

Property 2. The matrix CDM 2   is a skew-symmetric matrix, i.e., 
nT R  sMss ,0 , if ),( qqC   is defined using the Christoffel symbols.  

Accordingly, the diagonal elements of M  are equal to zero, i.e., ,0iim  ni .  

The last property is important in deriving the stability of the proposed controller. 

 

Assumption 1. The state variables of the target robots are measureable and bounded. 

 

Assumption 2. Each entry of dynamic matrices of ,,,   gCD  and f  satisfies condi-

tions of Weierstrass approximation theorem [13], i.e., they can be represented as a 

linear combination of basis functions. 
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2.2 Decomposition Technique 

Let us recall the partitioned approximation technique described in details in [8]. Ac-

cordingly, Eq. (1) can be expressed as  
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 (4) 

where 
βR(.)w , βR  represent the weighting-coefficient and basis-function vec-

tors respectively, and nR  denotes to the accumulated modeling error vector. Ac-

cording to Eq. (4), the partitioned approximation technique has inherently decentrali-

zation features that can be exploited for decentralized control. In view of properties 1, 

2, assumptions 1, 2, and Eq. (4), Eq. (3) can be reformulated as 

 kkk
T

kkCk
T
CkkDk

T
Dk τεqq    www   (5) 

where 

 DkDk
T
Dkkk ε(q)d  w , CkCk

T
Ckkk ε(q)c  w , kk

T
kk ε(q)   w  (6) 

with (.)ε  is the corresponding modeling error. Accordingly, the dynamics of the cou-

pled robotic system is transformed to decoupled subsystems based on linear combina-

tions of basis function with constant weighting coefficients that should be updated 

using the Lyapunov theory. 

 

Remark 2. A significant property that is inherently featured by Eq. (5) is that the 

whole system can freely be transformed to arbitrary subsystems. For example, a 6-

DOF robot can be decoupled to two 3-DOF robotic subsystems, and so on. 

2.3 Controller Design 

The intuitive control law can be selected as 

 )ˆˆˆˆ
kkkkkkkkkkkk (s (t)sgn ΓsKv )q(cv(q)dτ    (7) 

with  ,eΛ-qv  c d kkdkkk
T
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 dkkkkkkkkk qqe ,eΛev-qs    

where the symbol ( .̂ ) refers to the estimation, kK  and k  are positive feedback 

gains. )(ˆ tkΓ  denotes to the adaptive sliding gain that should be updated in order to 
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avoid the demand of modeling error bounds, please for more details on adaptive slid-

ing mode control see [14], and  

 
s

s
sgn(s)  (8) 

The mathematical relationship of Eq. (8) is very useful in the stability proof discussed 

later. Substituting Eq. (7) into Eq. (3a) leads to the output position closed loop dy-

namics 

 kk
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kkCk
T
CkkDk

T
Dkkkkkkkkkk εvv)(s  sgn(t)ΓsKscsd   )~~~(ˆ  www   (9) 

From Eq. (9), the closed loop control system is stable if  0,ε k  ,0~
(.)w  and 

kkk εδ(t)Γ ˆ . This requires finding suitable update laws for the weighting coeffi-

cients and the adaptive sliding gain. Let us select the following updating adaptive 

laws for the weighting vectors and adaptive sliding gain as follows. 
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 ˆ,ˆ,ˆ,ˆ  QwQwQw  (10) 

where ββ
(.) R Q  is a positive-definite adaptation matrix, and k  is an adaptation 

gain. 

 

Theorem 1. The k-th subsystem of the robotic manipulator, nk , described by Eq. 

(5) combined with the input control law of Eq. (7), and with the adaptation laws of the 

weighting vectors, and the adaptive sliding gain of Eq. (10) is stable in the sense of 

Lyapunov stability [15]-[17]. 

 

Proof. 

Consider the following Lyapunov-like function ( kV ) along the trajectory of Eq. (9) 
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Taking the derivative of the last equation leads to 
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 (12) 

By substituting Eq. (9) into Eq. (12), using the adaptation laws of Eq. (10), and apply-

ing passivity property 2 lead to 

 kkkkkkkk
2
kkk s(t))Γ(δ)(t)sgn(sΓsεssKV ˆˆ   (13) 
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Using Eq. (8) yields 

 kkkk
2
kkk sδεssKV  ˂ 0 (14) 

Both ks  and )(
~

tΓk  reach zero in finite time resulting in position error approaching to 

zero provided that kδ ˂ kε . 

 

Remark 3. Although kδ  should be larger than or equal to the upper bound of the 

modeling error, it is not included in the design of the proposed control law. Accord-

ingly, the proposed control law of Eq. (7) does not require the bounds of the modeling 

error. 

3 Simulation Results and Discussions 

A simple 2-link manipulator is simulated to prove the validity of the proposed con-

troller (Fig. 1). The parameters of the simulated manipulators are borrowed from [17]. 

It is assumed that the two joints are actuated with direct drive (gear ratio=1). The 

target manipulator moves freely (without constrained motion) with the following 

desired trajectories [16]: t))cos(2(130q 0
d1   and t))cos(2(145q 0

d2  . 

 

Fig. 1. The 2-link manipulator 

Accordingly, the control law of Eq. (7) with the corresponding updating adaptive laws 

of the weighting vectors, Eq. (10), is used for precise tracking the desired references. 

A decentralized control is applied to each link subsystem using the proposed algo-

rithms. The number of terms of basis orthogonal basis functions is 15 neglecting the 

modeling error (assuming a sufficient number of basis functions are used). The feed-

back and the adaptation gains are as follows: 

1515 01.0,,75,100 IQIQQk  kCkDkk    K .  

The adaptive partitioned approximation control (APAC) is compared with the decou-

pled proportional-derivative controller (PD) that is used extensively for control of 
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robotic manipulators. The PD control law can be described as (Liu, 1999 [4]): 

)( kkkkkk eeKsK   , with 100kK . Figures 2 and 3 show the position errors 

and the input control torques respectively considering both the APAC and PD control-

lers. Both controllers work well with small position error; however, the APAC shows 

more accuracy than the PD considering the same high gain. One important point 

should be mentioned is that although the APAC control law does not track precisely 

the dynamic coefficients of the equation of motion for each subsystem, the controller 

tracks well the desired references. The system signals should be persistently excited in 

order to ensure good estimation for unknown parameters [13]. 
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Fig. 2. The position error for the 2-link robot 
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Fig. 3.  The input control torques for the 2-link robot. 

4 Conclusions 

This paper proposes decentralized adaptive control based on partitioned approxima-

tion technique. The control law consists of three terms: adaptive partitioned approxi-
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mation-based feedforward term, high-gain feedback term, and an adaptive sliding 

term for compensation for modeling error. Further work is required to consider the 

joint flexibility and actuator dynamics. 
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