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We report an experimental investigation of the separating/reattaching flow over a descending
ramp with a 25◦ expansion angle. Emphasis is given to mass entrainment through the boundaries
of the separated shear layer emanating from the upper edge of the ramp. For this purpose, the
Turbulent/Non-Turbulent Interface (TNTI) and the separation line inferred from image-based
analysis are used respectively to mark the upper and lower bounds of the separated shear
layer. The main objective of this study is to identify the physical parameters that scale the
development of the separated shear layer, by giving a specific emphasis to the investigation of
mass entrainment. Our results emphasize the multiscale nature of mass entrainment through the
separated shear layer. The recirculation length LR, step height h and free stream velocity U∞
are the dominant scales that organise the separated flow (and related large scale quantities as
pressure distribution or shear layer growth rate) and set mean mass fluxes. However, local viscous
mechanisms seem to be responsible for most of local mass entrainment. Furthermore, it is shown
that large scale mass entrainment is driven by incoming boundary layer properties, since LR
scales with Reθ, and in particular by its turbulent state. Surprisingly, the relationships evidenced
in this study suggest that these dependencies are established over a large distance upstream
of separation and that they might also extend to small scales, at which viscous entrainment
is dominant. If confirmed by additional studies, our findings would open new perspectives for
designing effective separation control systems.

1. Introduction
Separating/reattaching flows are of primary importance in a number of industrial applications,

encompassing bluff bodies such as ground vehicles, streamlined bodies such as wings and
blades at high incidence/pitch angle, combustion chambers, turbines and pipelines. In most of
these applications, flow separation leads to detrimental effects such as losses of aerodynamic
performances (drag increase, lift decrease or both) or intense unsteady structural loads eventually
leading to accelerated structural fatigue. This means that flow separation prevents the use of
these systems at their nominal operating conditions. To mitigate its effects, over the past decades
great attention has been paid to prediction of flow separation and its control. Anyway, research
encountered a number of complex issues. On one hand, most industrial applications feature very
large Reynolds numbers, seldom reachable to fully resolved simulations, i.e. Direct Numerical
Simulations (DNS), or even filtered simulations as Large-Eddy Simulations (LES). This implies
that simulations based on Reynolds-Averaged Navier-Stokes (RANS) equations remain the main
vector to design these systems. It is well known, however, that turbulence transport models
used in RANS are not relevant to accurately predict separating/reattaching flows even in simple
geometries (see e.g. Garnier et al. (2012)). On the other hand, knowledge of the scaling parame-
ters of separating/reattaching flows is essential to design efficient control systems and to ensure
scalability from laboratory to full-scale applications. Indeed even for black box approaches, the
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effectiveness of a control loop will depend on how well design parameters (e.g. sensor/actuator
choice and location) match flow parameters (e.g. natural frequency, sensitive regions). However,
flow separation induces complex physical interactions between a broad range of time and length
scales, making its modeling and understanding a challenging issue which is usually addressed
through time-consuming trial and error procedures. Fundamental investigations are then neces-
sary to bring new insights on the physical mechanisms underlying separating/reattaching flows.

One of the main features of these flows is a separated shear layer, which originates from the
separation of an incoming boundary layer. The separated shear layer grows and eventually hits
the wall at the reattachment point, beyond which the flow relaxes to a new boundary layer (Le
et al. (1997)). Due to their simple geometry and their widespread use in diffusers and bluff
bodies, the backward-facing step (BFS) and descending ramps of various shapes have been
used as prototypes of separating/reattaching flows. Generally speaking, these flows consist in
an asymmetric, sudden or progressive expansion resulting in a strong adverse pressure gradient,
which promotes separation. They present a large recirculation region and a rather straight sepa-
ration line (Eaton & Johnston (1981)). The separation point may be fixed or sliding, depending if
salient or rounded edges are used. Important efforts have also been dedicated to understanding the
complex physics underlying separated shear layer development and reattachment, characterised
by a wide range of time and length scales in mutual interplay. Eaton & Johnston (1981) and Le
et al. (1997) observed that in BFS at moderate Reynolds number (Re) the reattachment point
exhibits a low frequency flapping motion. The presence of the flapping motion was not observed
in the DNS and LES performed by Dandois et al. (2007) over a rounded ramp. However, these
authors reported the existence of a convective instability in the separated shear layer, which
was used for purpose of active control design. At the same time, Le et al. (1997) pointed out
that turbulent production, transport and dissipation occurring at higher frequency/wavenumber
ranges give significant contribution to the turbulent kinetic energy budget.

One important aspect highlighted by many of these works is the influence of shear layer
entrainment on the behavior of separating/reattaching flows. It is noted that the term entrainment
will be used to address all possible mechanisms that are responsible for transfer of flow properties
(scalar or vectorial) from one region of the flow to another, these regions being separated by an
interface. Chapman et al. (1958) firstly suggested that downstream of a BFS the backflow must
balance mass entrainment through the bottom edge of the separated shear layer. As such, shear
layer entrainment has a direct impact on the recirculation length LR, i.e. the streamwise distance
between the separation and reattachment point, as well as on the distribution of the pressure
coefficient Cp (see Adams & Johnston (1988a), Adams & Johnston (1988b) and references
therein). In the framework of flow control it was shown that beneficial effects (e.g. LR reduction)
are obtained by increasing entrainment into the shear layer (Sigurdson (1995) among others).
This being so, Eaton & Johnston (1981), Adams & Johnston (1988a) and Simpson (1989)
reviewed the change of LR and Cp distribution with parameters affecting the shear layer, such
as incoming boundary layer thickness and state (i.e. laminar or turbulent), Re or expansion ratio.
To date, some dependencies of LR and Cp distribution on these parameters have been evidenced,
but a full understanding is still missing.

Most of the past works on separating/reattaching flows, and in particular BFS and ramps,
focused on characteristics of the mean field (as LR or the Cp distribution) or turbulence at
large scale (Song & Eaton (2003), Song & Eaton (2004), Cherry et al. (2008), Cuvier et al.
(2011), Nadge & Govardhan (2014), Kourta et al. (2015)) with the purpose of assessing nu-
merical modelling (Neumann & Wengle (2003)) and designing control (see McCormick (2000),
Kumar & Alvi (2005), Dandois et al. (2007), Joseph et al. (2016) among others). However, this
macroscopic approach appears to be incomplete when applied to the investigation of entrain-
ment. Indeed, the multiscale nature of the turbulent interfaces (and accordingly of the transfer
mechanisms) through which entrainment takes place is known at least from the seminal work
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of Corrsin & Kistler (1955), and has been confirmed and expressed in the framework of fractal
theory by Sreenivasan & Meneveau (1986), Sreenivasan et al. (1989), Meneveau & Sreenivasan
(1990) and more recently by Thiesset et al. (2016) among others. Corrsin & Kistler (1955)
interpreted turbulent entrainment fundamentally as a small-scale, viscous phenomenon, which
nibbles bites of irrotational fluid into turbulence. Corrsin & Kistler (1955) theorised that such
nibbling mechanism is driven by jumps in the vorticity and velocity fields, that take place at the
so-called Turbulent/Non-Turbulent Interface (TNTI), on velocity and length scales that are of
the order of the smallest scales of the flow (the so-called viscous superlayer). This vision was
at first questioned by experimental studies carried out during the 1970s, that seemed to show
that turbulent entrainment is rather dominated by large structures, which engulf large chunks
of irrotational fluid into the turbulent bulk of the flow (Brown & Roshko (1974)). During the
last decades, the development of efficient image-based techniques (e.g. Planar Laser Induced
Fluorescence (PLIF) and Particle Image Velocimetry (PIV)) and the increased availability of
DNS have given access to large portions of the TNTI and of the neighbouring velocity and
vorticity fields, paving the way to finer assessment of fluxes through the TNTI. These new
measurements confirmed the existence of a viscous superlayer and showed that small scales
are responsible for most of mass transfer through the TNTI (see for instance Westerweel et al.
(2005), Westerweel et al. (2009), da Silva & Taveira (2010)). However, it was also found that
nibbling is poorly correlated to small-scale turbulence (Holzner & Lüthi (2011)) and that large
scales do influence global entrainment (Bisset et al. (2002), Krug et al. (2015)). Using time-
resolved PLIF, Mistry et al. (2016) showed recently that, given a coarse-grain filter of size ∆,
the mean mass flux through the TNTI of a turbulent jet is independent of ∆, since the fractal
scaling of interface length L(∆) is compensated by the scaling of vE(∆), the corresponding
mean entrainment velocity (i.e. the velocity of the fluid relative to the interface). This confirmed
the predictions of Meneveau & Sreenivasan (1990) and gave support to the idea that turbulent
entrainment is a multiscale phenomenon, with the local viscous transfer (nibbling) adapting to
the global entrainment rate imposed by large scales, i.e.:

vE
νLν = vE(∆)L(∆) = vE

ALA, (1.1)

where the symbols ν and A indicate quantities respectively involved in nibbling and large-scale
entrainment. The formulation expressed in eq. 1.1 has great implications in the design of control
systems for separating/reattaching flows. Indeed, it suggests that strategies targeting either small-
scale forcing (dissipation range) or large-scale forcing (production range) can both achieve
entrainment modification. The former approach implies high frequency/low energy forcing,
whereas low frequency/high energy forcing is required for the latter. Wiltse & Glezer (1993)
deployed direct small-scale excitation by means of piezoelectric actuators to control the shear
layer of a jet. The excitation frequency was tuned to one order of magnitude lower than the
convection frequency of the Kolmogorov scale, but was much larger than the natural roll-off
frequency of the shear layer. This control strategy was able to alter significantly the entire cascade
transfer of energy, while keeping the mean flow unchanged. Dandois et al. (2007) investigated the
effect of control frequency of a synthetic jet on the separation over a rounded ramp. Two reduced
frequencies were tested, each of these operating conditions leading to a strong modification of the
recirculation length, which was reduced at low frequency forcing but increased at high frequency
forcing.

This study aims at providing new insights on the physical mechanisms governing the de-
velopment of the separating/reattaching flows. To our knowledge, no attempt has yet been
undertaken to study the influence on turbulent entrainment of the full range of length scales
that exists in these flows. This is the main goal of this work, which gives a specific emphasis
to mass entrainment. The motivation of this study is twofold: 1) performing an investigation
of mass entrainment through the separated shear layer that develops over a descending ramp;
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2) identifying the scaling parameters that drive mass entrainment at both large and small scales.
To this purpose, a first issue to be addressed relates to the choice of the boundaries through
which entrainment will be estimated. Among other options, the choice was made of analysing
the TNTI and the separation line, which will hereafter be called Recirculation Region Interface
(RRI) for consistency. The TNTI lies between the free flow and the sheared region. Since the flow
outside of the TNTI is unperturbed, in a way the TNTI can be considered as the upper boundary
of the shear layer. The RRI, instead, wraps the backflow region, i.e. it separates positive mean
streamwise velocities from negative ones. The RRI is the set of points where the streamwise
velocity is zero (Simpson (1989)), and as such it is not, rigorously speaking, a boundary of the
shear layer (see for example the definitions of shear layer thickness by Dandois et al. (2007)).
However, the analysis of the RRI seems of fundamental importance, as the RRI is representative
of shear layer reattachment: let us remind that the mean RRI is commonly used to determine LR.
Even if the behavior of the interface has not been thoroughly studied, the RRI is nothing more
than a constant-velocity line and as such it falls in the definitions of turbulent surfaces given
by Pope (1988). It is then expected that the RRI will share the salient characteristics of other
turbulent surfaces, such as the TNTI, in particular a multiscale nature and a role in entrainment.
The relevance of these boundaries is emphasized in figure 1, which displays a typical velocity
field measured with PIV (see § 2 and § 3 for more details). The TNTI and the RRI are plotted in
dashed and solid lines, respectively. It appears that these interfaces approximate the boundaries
of the separated shear layer well. Furthermore, the multiscale nature of interface wrinkling is
evident.

A second problem tackled by the present study concerns the identification of those flow
parameters that scale the separation/reattachment mechanisms in general and entrainment in
particular. This is an important issue, since a thorough understanding of the factors that shape
these flows might provide the elements for a model-based predictive approach for separat-
ing/reattaching flows, which would be mandatory for improving the reliability of model-based
numerical simulations and the design of control systems as well. The present work contributes
to this effort by studying the influence of a set of scaling parameters, including dimensionless
incoming boundary layer thickness (δ/h), Reynolds number based on geometry (Reh) and
Reynolds number of the incoming boundary layer (Reθ). To expand the investigation, when
possible the database reported in Kourta et al. (2015) is also taken into account.

Finally, we attempt a qualitative assessment of the full range of length scales that exists in
separating/reattaching flow. Since it has been observed that the largest and the smallest scales that
wrinkle a turbulent interface (viz. the TNTI) are representative of the range of scales contained in
the entire flow (Sreenivasan & Meneveau (1986), da Silva & Pereira (2008), de Silva et al. (2013),
Chauhan et al. (2014)). A scale-by-scale analysis of the turbulent interfaces might provide this
kind of insight.

The paper is structured as follows: § 2 introduces the experimental setup; § 3 investigates
the main characteristics of the separated flow; § 4 studies the scaling parameters of large scale
features of the flow; § 5 explains how the TNTI is detected from PIV fields; global and local
mean mass fluxes through the two interfaces are investigated in § 6; § 7 provides a discussion of
implications at small scale; a summary and conclusions are given in § 8.

2. Experimental setup
2.1. Test section and model details

Experiments were performed in the subsonic Eiffel wind tunnel of PRISME Laboratory, at
University of Orléans, France. The facility has a 2m long test section with a square cross section
of width w = 0.5m, preceded by a settling chamber connected to the test section by a 16:1
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contraction. It can reach a maximum free-stream velocity of 50m s−1, with residual turbulence
intensity of 0.5%. The experimental model (figure 2) on which separation/reattachment occurs is
composed of four parts: 1) a fifth-order polynomial contraction (Bell & Mehta (1988) and Bras-
sard & Ferchichi (2005)); 2) a flat plate where turbulent boundary layer grows; 3) a descending
ramp of slope α = 25◦, with salient edge and step height h = 30mm. The resulting expansion ratio
ER = w/(w − h) is equal to 1.064; 4) a second flat plate on which the flow relaxes. The aspect
ratio w/h is about 17, which guarantees that the mean flow is quasi bidimensional (see Eaton
& Johnston (1981) and § 3.3). We define the cartesian coordinate system (X;Y;Z), centered at
midspan on the upper ramp edge (see figure 2). Following the suggestions of Kourta et al. (2015),
transition of the boundary layer was triggered with a zigzag tripper of height 0.5mm, placed at
x/h ≈ −48.5. The model replaced the floor of the test section, so that the junctions with the
convergent and the diffuser of the wind tunnel were smooth. The reference free stream velocity
Uref and free stream pressure pref were measured with a Pitot tube (see figure 3) placed at
midspan, above the upper edge of the ramp (x/h = 0; y/h = 0; z/h = 9). Five values of Uref
were tested, ranging from Uref = 15m s−1 to Uref = 35m s−1. One straightforward choice for
a parameter of similitude is the Reynolds number based on step height Reh = Urefh/ν, where
ν = 1.5× 10−5 m2 s−1 is the kinematic viscosity for air. In a way, Reh relates viscous scales
to the scale of the macroscopic forcing of the flow. Table 1 lists the values of Reh for all tested
velocities.

2.2. Measurement devices

2.2.1. Boundary layer measurements

Since it provides the initial conditions from which the massive separation onsets, it is manda-
tory to characterise the boundary layer developing upstream of the upper edge of the ramp. In this
respect, one important concern is the choice of a suitable streamwise reference position where
boundary layer properties are assessed. One straightforward option is a close neighbourhood of
x/h = 0, but this region has the drawback of being affected by the pressure gradient induced
by geometry. This increases the probability of having boundary layer velocity profiles that
diverge from the canonical forms and are hence difficult to compare from flow to flow. The
obvious alternative is to place the reference section upstream. This choice might be promising,
because there is evidence that some degree of correlation exists between the properties of a
separating/reattaching flow and those of the boundary layer much upstream of the separation
point. For example, Neumann & Wengle (2003) reported that a passive actuator is most effective
at reducing the recirculation region of a BFS flow when it is placed at least at x/h = −4. It is
clear that this point is of extreme interest for separation control, because it might provide premise
for synthesis of feed-forward control systems based on upstream boundary layer measurements.
As so, the reference section was placed at x/h ≈ −9. At this position the sizing criterion of
Neumann & Wengle (2003) is satisfied and wall pressure gradient approaches zero (see § 3). At
the same time, the scaling laws of pressure distribution (see § 3.3) seem to still hold, which is no
longer true for more upstream positions.

Measurements were performed with a single component hot-wire (Dantec 55P15 probe) driven
in constant-temperature mode at an overheat factor of 1.25 by a Dantec Streamware 90N10
Frame. The probe was calibrated with a fourth-order polynomial and compensated for tempera-
ture drift. Probe calibration was repeated once every 2 hours. Spatial resolution can be assessed as
`w/λm. Here `w is the sensing length (1.25mm) and λm is the characteristic length scale of the
two-point velocity correlation along the length of the wire, as discussed by Philip et al. (2013).
According to these authors, one can put λm = 0.2δ for y/δ > 0.5, where δ is the boundary
layer thickness. This yields `w/λm ≈ 0.20 to 0.25, suggesting that hotwire resolution should be
sufficient to study the flow at the location of the mean TNTI (see § 5). However, close to the
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wall it is `w/λm ∼ `+w , where `w is normalised with inner scales, i.e. ν and friction velocity uτ .
Depending on Re, it is `w/λm ≈ 55 to 105. Strong attenuation of streamwise fluctuations is then
to be expected in proximity of the wall, as shown in § 3.1. For each measurement point, samples
were acquired at a rate of 20 kHz for about 13 s. To avoid aliasing, the signals were filtered with
a low-pass analog filter with a cut-off frequency fc set at 10 kHz, which ranged from 0.22 to 0.62
times the convective frequency fη = Uref/(2πη) (Mazellier & Vassilicos (2010)), which relates
transport of the smallest structures of the flow past a measurement point. In this latter expression,
η =

(
ν3/ε

)1/4
is the Kolmogorov length scale, evaluated at the mean location of the TNTI (see

§ 5). The dissipation rate ε is estimated under the hypothesis of local isotropy, using the surrogate
relation ε = 15ν〈(∂u′/∂x)2〉, where u′ is the fluctuating streamwise velocity. According to the
so-called Reynolds decomposition, it is u′ = u − U , where u and U are the instantaneous and
mean streamwise velocities. In the following, the same decomposition and notation apply to the
wall-normal velocity component v. In the expression for ε, Taylor’s hypothesis is invoked to
reconstruct the space derivative of u′ from its time derivative. The value of η is reported in table
1 for each Re.

2.2.2. Wall pressure measurements

Streamwise and spanwise wall pressure distributions were investigated with a total of 64 static
pressure taps, connected to 2 pressure scanners (µDAQ-32C models manufactured by Chell
Instruments) that were interfaced and multiplexed with an acquisition unit. Pneumatic connec-
tions were provided by 1m long vinyle tubes of inner diameter equal to 1.25mm. According to
manufacturer specifications, pressure measurement uncertainty is smaller than 6Pa. The model
was fitted with 38 pressure taps in the streamwise direction (figure 2). The spatial resolution was
finer in the neighbourhood of the edges of the ramp. Flow homogeneity in the spanwise direction
was assessed along 3 rows of pressure taps, respectively located at x/h = −7.67 (6 pressure
taps), −0.17 (8 pressure taps) and 0.36 (8 pressure taps). Note that the length of pneumatic
connections avoids any reliable analysis of pressure fluctuations. For more details about the
frequency response of our pressure measurement system, the reader is referred to Kourta et al.
(2015). Accordingly, only mean pressure distributions were computed, using 3 × 104 samples
acquired over about 50 s. This represents between 2.5× 104 and 6× 104 characteristic time
scales h/Uref , which was sufficient for statistical convergence.

2.2.3. Velocity field measurements

Particle Image Velocimetry (PIV) is the main measurement technique used in this work,
because it allows to study the development of the shear layer on conspicuous portions of the flow.
Admittedly, PIV (as most other planar imaging techniques) only resolves two components of the
velocity field and only gives access to the azimuthal component of vorticity. This is an important
drawback when studying turbulence, which is intrinsically three-dimensional. Anyway, this
limitation should not impact the analysis of the mean field (see § 6) too much, since the spanwise
pressure distribution demonstrates that the latter is almost bidimensional (§ 3.3). Bias could
be stronger when considering the smallest turbulent length scales resolved by the PIV (e.g.
when investigating entrainment through instantaneous interfaces in § 7), since the third velocity
component might become quantitatively relevant as turbulence approaches (assumed) isotropy.
Although this issue is not solved in this study, it is hoped that the bidimensional analysis allowed
by PIV data will also be qualitatively representative of entrainment in the spanwise direction.
In this respect, the results reported by Veynante et al. (2010) are encouraging. These authors
verified that properties of turbulent flames (viz. flame wrinkling) in the unresolved direction can
be modelled from planar measurements, with very good agreement with DNS.

Particle images were captured with a LaVision VC-Imager camera (4032× 2688 pixels),
synchronized with a double pulse, monochromatic Nd:Yag laser (wavelength 532 nm, rated
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2× 200mJ). The PIV plane was placed at y/h ≈ −1. Large-scale velocity fields were obtained
with a Zeiss 50mm ZF Makro Planar T* lens, which provided a camera resolution of 78 µmpx−1

and an exploitable field of view of 6h x 2.5h. Three sections of the flow were successively
investigated with these settings, respectively centered at x/h ≈ −6, x/h ≈ 2.5 and x/h ≈ 5.5
(figure 3). Statistics from the last two sections were merged into a single large field of about 9h
x 2.5h, which covers the entire recirculation region. The first field, instead, provided a set of PIV
images of the incoming boundary layer: it will be referred to as the auxiliary field. In addition
to these measurements, a 200mm Nikon ED AF Micro Nikkor lens was used to investigate
small-scale TNTI features on a detailed field, placed in the neighbourhood of the upper edge of
the ramp (figure 3, field (b)). In this latter case, camera resolution was about 12 µmpx−1 on an
exploitable field of view of 1.5h x 1.2h.

The flow was seeded with olive oil droplets of mean diameter dp = 1 µm (according to the
specifications of the aerosol generator). The Stokes number of the seeded flow was then Sk =
τp/τη ≈ 2.5× 10−3, where τp is the characteristic time response of oil droplet (estimated at
2.75 µs following Kourta et al. (2015)). As Sk � 1, oil droplets should trace the flow accurately
at all turbulent scales.

PIV measurements were carried out at each tested Reh on all fields. However, data from the
detailed field at Reh = 7× 104 were discarded during post-processing due to technical problems.
For each Reh, 2000 image pairs were recorded at an acquisition rate of 2Hz. Then, image pairs
were correlated with the multipass, GPU direct correlation algorithm of the LaVision Davis 8.3
software suite. The size of the interrogation window was progressively refined from 64× 64 px2

to 16× 16 px2, in each case with 50% overlapping. This yielded a spatial resolution ∆/η ≈ 20
for both large and auxiliary fields, ∆/η ≈ 3 for the detailed field, where the value of η is the one
estimated from hot-wire data in section 2.2.1. PIV signal noise was assessed by comparing the
square root of the streamwise Reynolds stress

√
〈(u′)2〉 (the symbol 〈·〉 standing for ensemble

averaging) to the value of residual turbulence of the wind tunnel. It is found that
√
〈(u′)2〉/U∞ ≈

1.5% to 2% (PIV), for a residual turbulence of about 0.5% (hot-wire), where U∞ is the local
free stream velocity. This is comparable to PIV noise levels achieved in other works on turbulent
interfaces. For example, de Silva et al. (2013) reported

√
〈(u′)2〉/U∞ ≈ 1% in the free flow, for

a value of residual turbulence of about 0.2%.

3. Flow characterisation
This section provides an overall description of the flow. When possible, comparison with other

separating/reattaching flows is exploited. In this respect, the work of Kourta et al. (2015) provides
a particularly interesting reference. Although the experimental setup and the characteristics of
the wind tunnel are sizeably different, the shape of the ramp used in that study is identical to the
present one and the expansion ratio is comparable (ER = 1.1). The main geometrical difference
is step height, which is about 3 times higher (h = 100mm) in the study of Kourta et al. (2015).
In addition, the results reported in Kourta et al. (2015) indicate that boundary layer thickness
measured at x/h = −8.9, which is very close to the reference section adopted in the present
study, is of the same order of magnitude than the one observed here.

3.1. Incoming boundary layer

Table 1 summarizes the main properties of the incoming boundary layer for all available Reh.
Reτ is computed as δuτ/ν, where boundary layer thickness δ and friction velocity uτ were
computed with the composite boundary layer profile proposed by Chauhan et al. (2009). The
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displacement thickness δ1 and the momentum thickness θ are classically defined as follows.

δ1 (x) =

∫ ∞
0

(
1− U(x, y)

U∞(x)

)
dy (3.1a)

θ (x) =

∫ ∞
0

U(x, y)

U∞(x)

(
1− U(x, y)

U∞(x)

)
dy (3.1b)

According to Song & Eaton (2003), the values of Reθ are high enough to expect a fully turbulent
boundary layer, with the possible exception of Reθ = 2006 (Reh = 3× 104). To provide
further insight into the state of the boundary layer, figure 4 presents the profiles of U+ and
of
√
〈(u′)2〉

+
, for the incoming boundary layer at Reτ ≈ 1310 (Reh = 4× 104, Reθ = 3262).

Both curves are normalized with inner scales. For comparison purposes, the velocity profiles at
Reτ = 1043 (Reθ = 3270) extracted from the DNS of a Zero-Pressure Gradient (ZPG) boundary
layer (Schlatter & Örlü (2010)) are also reported. One can notice a fairly good agreement for
U+, while

√
〈(u′)2〉

+
collapses well on the DNS for y+ > 100 only. The strong attenuation

of the inner peak of
√
〈(u′)2〉

+
may be mainly attributed to spatial integration over the sensing

length of the hotwire probe (see for example Wyngaard (1968), Ligrani & Bradshaw (1987),
Örlü & Alfredsson (2010) and Philip et al. (2013)) but also to various effects such as pressure
gradient and wall interferences. Since the RRI is not defined in the boundary layer and the TNTI
is rather located in its outer region, probe resolution is good enough for the purposes of this
work. Figure 4 also reports the boundary layer profiles computed from PIV data of the auxiliary
field, at Reh = 4× 104. Due to wall reflections, data are exploitable only for y+ > 500, which
corresponds roughly to y/δ > 0.38. According to Chauhan et al. (2014), this extent is sufficient
to cover almost the entire distribution of the TNTI.

3.2. The separated shear layer

Figure 5 shows the mean separated flow for Reh = 5× 104. The separation of the incoming
boundary layer is induced by the sharp expansion of the test section. Downstream of the separa-
tion point, the flow is marked by a large mean recirculation region where U < 0, which extends
up to the reattachment point where the separated shear layer hits the wall. The RRI is the external
boundary of the recirculation region. In this study, it is defined either by the isoline U = 0 on
the mean streamwise velocity field, or by the set of points where the backflow coefficient χ is
equal to 0.5, χ being defined as the fraction of time that the flow moves downstream (Simpson
(1989), Cuvier (2012)). The recirculation region is usually characterized by its length LR, which
corresponds to the streamwise distance between the separation point (i.e. the first point of the
RRI) and the reattachment point (i.e. the last point of the RRI). Although not shown here,
topologies that are comparable to that displayed in figure 5 were observed for each Reh, the
main difference being the location of the mean reattachment point, which moves upstream for
increasing Reh. Based on PIV data, in this work the ratio LR/h ranges from 5.16 to 4.11 (table
2). This trend is consistent with data reported by Kourta et al. (2015) and those observed in
other massively separated turbulent flows, e.g. downstream of a backward-facing step (Eaton
& Johnston (1981)). It seems important to stress that LR can be interpreted as the streamwise
scale of shear layer development. The latter is often characterised with the streamwise evolution
of either a generalised momentum thickness θSL or of the vorticity thickness δω . According to
Dandois et al. (2007), θSL and δω are defined as follows:

θSL(x) =

∫ ∞
ymin

U(x, y)− Umin(x)
U∞(x)− Umin(x)

(
1− U(x, y)− Umin(x)

U∞(x)− Umin(x)

)
dy, (3.2a)



Scaling of separated shear layers 9

δω(x) =
U∞(x)− Umin(x)
(∂U(x, y)/∂y)max

, (3.2b)

where Umin(x) is a local minimum streamwise velocity. Figure 6 shows clearly that LR and
h are appropriate scaling parameters for both θSL and δω . In principle, the development of the
shear layer may be governed by at least two factors: entrainment of external fluid, that drives the
spreading rate of free shear layers (see Pope (2000)) and ER. Adams & Johnston (1988a) show
that for high values of δ/h the influence of ER is sizeable at shear layer reattachment. To have
some insights into the relative weight of these two mechanisms, let us consider spreading rates
typical of free turbulent mixing layers, modelled by Browand & Troutt (1985) as follows:

dθSL
dx

= 0.034
U∞(x)− Umin(x)
U∞(x) + Umin(x)

, (3.3a)

dδω
dx

= 0.17
U∞(x)− Umin(x)
U∞(x) + Umin(x)

. (3.3b)

For x/LR < 0.5, the velocity ratio in eq. 3.3 ranges between 1.15 and 1.3. Then, equations 3.3
yield dθSL/dx ≈ 0.042 ± 0.003 and dδω/dx ≈ 0.205 ± 0.015, compared to measured values
of 0.05 ± 0.006 and 0.22 ± 0.03, respectively. The relatively good agreement of estimated and
observed values suggests that the separated shear layer behaves similarly to a free shear layer
in a large region downstream of the upper edge of the ramp (Eaton & Johnston (1981)). This
means that, in this region, the growth of the separated shear layer is dominated by entrainment.
Interestingly, the growth rates of θSL/h and δω/h decrease for x/LR > 0.5 and eq. 3.3 are
no longer acceptable approximations. A similar slope change at a similar relative position was
also observed by Dandois et al. (2007). Although the interactions between ER and shear layer
impingment at reattachment are complex (Adams & Johnston (1988a)), pressure data shown at §
3.3 illustrate that lower spreading rates are correlated with strong pressure recovery: this suggests
that ER might indeed play a role in the second half of the flow. However, entrainment appears
to be the main contributor to spreading of the separated shear layer as a whole, since 75% of
total shear layer growth takes place within x/LR < 0.5. Finally, provided that the TNTI and the
RRI are well approximated by straight lines (see figure 5), it is easy to show that LR/h evolves
as (dθSL/dx)

−1 or (dδω/dx)
−1 equivalently, i.e. the faster the separated shear layer grows, the

smaller is the recirculation region (also see Adams & Johnston (1988a) on this matter). This is
well supported by the inserts in figure 6.

3.3. Wall pressure distribution

Separation has a direct effect on wall pressure distribution and accordingly on entrainment
(see e.g. Eaton & Johnston (1981)). Figure 7 shows the streamwise evolution of the pressure
coefficient Cp, defined as follows:

Cp =
p− pref
1/2 ρU2

ref

(3.4)

where p is wall pressure. The streamwise coordinate is normalised on h. The Cp distribution
appears to be a relatively weak function of Reh. Downstream of the contraction,Cp stays roughly
constant until the flow approaches the ramp. Although not perfectly zero, the dimensionless
pressure gradient Cpx = hdCp/dx in this region is small (figure 7(b)), so that its influence
on boundary layer development is assumed to be mild. The onset of separation at the upper
edge of the ramp (x/h = 0) induces a strong decrease of pressure. The recirculation region
is characterized by a low pressure plateau followed by a rapid pressure rise that reaches a
maximum at x/h ≈ 7. In the following, the plateau and the peak Cp values will be referred to
as base Cp (noted Cp,b) and peak reattachment Cp (noted Cp,r), respectively. Spanwise pressure
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distributions (figure 8) confirm that the mean flow over the model is nearly bidimensional and
that the mean separation is homogeneous at least over 60% of tunnel width. Using h to normalize
the streamwise distance, Cp and Cpx are in good agreement with Kourta et al. (2015) in all those
regions where the geometries of the two experiments are comparable, that is downstream of
the separation point and over a large fraction of the flat plate upstream of the edge of the ramp
(figure 7). This simply indicates that, for ramps with the same geometry, the pressure distribution
roughly scales with step height. According to Adams & Johnston (1988a), the difference in
observed Cp,r can be explained by the different δ/h ratios, that are of the order of 1 for the
present study and 0.18 for Kourta et al. (2015). In this respect, let us consider the reduced
pressure coefficient C∗p , defined by Chapman et al. (1958) as:

C∗p =
Cp − Cp,b
1− Cp,b

. (3.5)

Figure 9 shows that the values of C∗p,r from the present study and from Kourta et al. (2015) agree
acceptably well with the δ/h correlation observed by Adams & Johnston (1988a) in BFS flows
(ER = 1.25, Reh = 3.6× 104). Deviations might be due to Reh effects or to geometric factors
(e.g. the slope of the ramp or the different value of ER). Figure 10 presents the streamwise
C∗p distribution, normalised on LR as suggested by Roshko & Lau (1965). For x/LR between
0 and 1, C∗p data from the present work and from Kourta et al. (2015) collapse well on the
curve observed by Roshko & Lau (1965). As already mentioned at § 3.2, the C∗p distribution
appears to be correlated to the development of the shear layer shown in figure 6: the region where
entrainment drives shear layer growth (x/LR < 0.5) corresponds to the C∗p,b plateau, while for
x/LR > 0.5 lower spreading rates seem to be linked with pressure recovery. Interestingly, the
collapse of C∗p distributions is less satisfactory for x/LR > 1, as if after reattachment LR was
no longer the (unique) flow-organising scale.

4. Some considerations on scaling of the separated shear layer
4.1. Dependencies on the incoming boundary layer

The work of Adams & Johnston (1988a) motivated us at investigating the dependencies of
shear layer properties on those of the incoming boundary layer. It is important to notice that in
this work the possible influence of several parameters such as ramp characteristics (e.g. α or
salient/rounded edge profile) and free stream turbulence (see for example Adams & Johnston
(1988b)) were not considered. Future works will address this issue. To begin with, figure 9
already provides such a correlation in terms of δ/h and C∗p . However the overlapping effects of
δ/h and Reθ (which are inseparable in our experimental setup) make its interpretation complex.
Furthermore, the dimensionless length δ/h provides a comparison between the incoming flow
and the perturbation induced by the expansion, but it tells nothing about turbulence in the
incoming flow, which is known to have a huge influence on shear layer development. Reθ and
LR/h form an alterative set of parameters that could characterise the upstream dependencies of
the shear layer, since Reθ is intended to include some information about the state of the incoming
boundary layer whereas LR/h relates to shear layer development. It is found that LR/h evolves
as Remθ (shown in figure 11(a)), where m is a negative power, at least on the available range
of Reθ. This relationship seems to be robust to δ/h, since the point reported by Kourta et al.
(2015) (Reθ = 2983, LR/h = 5) falls well within the trend defined by measurements taken in
this study. Surprisingly, our measurements reveal that m changes abruptly from −0.1 to −0.55
around a critical value Reθc = 4100. This seems to be linked to the evolution of the turbulent
state of the flow. Figure 12 presents the vertical profiles of Reynolds stresses at x/LR ≈ 0.1 and
x/LR ≈ 0.8 for all available Re. The curves are normalised on θSL and U∞. Let us use Reθc
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to discriminate low Reθ from high Reθ. Figures 12 (a), (b) and (c) show that at x/LR ≈ 0.1
Reynolds stresses scale relatively well with θSL and U∞ both at low and high Reθ, separately.
However, we observe that peak values of 〈u′2〉 and−〈u′v′〉 for high and low Reθ do not collapse,
with much more intense turbulent levels at high Reθ. This difference seems consistent with the
change of power law found in figure 11. The turbulent level of the flow changes as one moves
downstream of the mean separation point. Figures 12 (d), (e) and (f) highlight that, at x/LR ≈
0.8, Reynolds stress profiles are a more progressive function of Reθ. Similar Reθ dependencies of
turbulent quantities have already been observed in separating/reattaching flows, for example by
Song & Eaton (2003). However, peak values of Reynolds stresses also evolve as Remθ , where m
is now positive. Once again m changes abruptly around Reθc. The values of m appear to change
in the streamwise direction also, but the Reθ trends shown in the inserts in figure 12 (d), (e) and
(f) are representative. This further supports the interpretation suggested by figure 11, i.e. that LR
decreases with increasing turbulence levels.

4.2. RANS equation in the separated shear layer

It seems now wise to give some physical underpinning to these observations. To begin with, let
us consider the transport equation for mean momentum. Putting in evidence the pressure term,
one can write:

1

ρ

∂p

∂xi
= −Uj

∂Ui
∂xj

+ ν
∂2Ui
∂x2j

− ∂

∂xj
〈u′iu′j〉, (4.1)

where repeted indexes indicate summation. PIV data give access to all quantities on the right
hand side of eq. 4.1 (see appendix A). The results presented at § 3.3 prove that the development
of the shear layer is correlated to the longitudinal pressure gradient. Then, we first focus on the
mean streamwise momentum transport equation, which by dropping negligible terms is rewritten
as:

∂p

∂x
≈ −ρ ∂

∂y
(UV + 〈u′v′〉)− ρ∂〈u

′2〉
∂x

, (4.2)

The relative weight of the terms on the right hand side of eq. 4.2 evolves in the streamwise
direction. In particular, figure 13(a) shows their evolution along the RRI. It appears that the
convective term V ∂U/∂y, related to the main component of mean shear, is dominant in the
neighbourhood of the separation point. This is no longer the case in the neighbourhood of the
reattachment point (x/LR ≈ 0.7), where ∂〈u′v′〉/∂x overweights the other terms and causes
∂p/∂y to reach its maximum.

We now investigate the RANS equation for the vertical velocity component v. Neglecting
smaller terms listed in appendix A, eq. 4.1 becomes:

∂p

∂y
≈ −ρ∂〈v

′2〉
∂y

. (4.3)

It is observed that ∂p/∂y always favours an injection of mass into Vc, because here 〈v′2〉 is higher
than inside the recirculation region or in the external flow (Cuvier (2012), Kourta et al. (2015)).
However, on most of the large field ∂p/∂y is not well correlated to local mass fluxes. Following
Pope (2000), eq. 4.3 can be integrated to:

p/ρ = p0/ρ− 〈v′2〉, (4.4)

where p0 is the pressure in the free flow. The streamwise pressure gradient can then be computed
by taking the derivative of 4.4, which gives:

1

ρ

∂p

∂x
=

1

ρ

dp0
dx
− ∂〈v′2〉

∂x
. (4.5)
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By plugging into eq. 4.2, this yields for the mean RRI:

dp0
dx
≈ −ρ

(
∂

∂y
(UV + 〈u′v′〉) + ∂

∂x

(
〈u′2〉 − 〈v′2〉

))
. (4.6)

Now, if one considers that the mean TNTI bounds the free flow, eq. 4.6 evaluated at the mean
RRI should at least approximate the evolution of the pressure gradient along the TNTI. Figure
13(b) reports the longitudinal pressure gradient along the TNTI at Reh = 5× 104, computed
with both eq. 4.1 (evaluated at the TNTI) and eq. 4.6 (evaluated at the RRI). Similar results are
obtained at all Reh and are not shown for sake of simplicity. The agreement of the two curves
is not completely satisfactory in the first part of the separated region, but tendencies are clearly
the same throughout the flow. This should confirm, at least qualitatively, that the mean pressure
distribution connects the two mean interfaces on scales of the order of LR.

4.3. On the role of turbulent shear-stresses

The prominent role of ∂〈u′v′〉/∂x at reattachment is consistent with important past results,
that can be invoked to develop the present analysis. In particular, close to reattachment, Chapman
et al. (1958) wrote:

∂p

∂x
≈ −ρ∂〈u

′v′〉
∂y

. (4.7)

Figure 12 suggests that 〈u′v′〉 ∼ R∗uvU
2
∞, where R∗uv is a local turbulent shear-stress intensity,

and that ∂/∂y ∼ 1/θSL within the shear layer. It is pointed out that for similar considerations
Chapman et al. (1958) suggested to scale the y axis with a displacement thickness δ∗. The two
scalings are equivalent, at least for dimensional analysis. Normalising all terms of eq. 4.7 gives:

∂Cp
∂x∗

1/2ρU2
∞

X
≈ −ρ∂〈u

′v′〉∗

∂y∗
R∗uvU

2
∞

θSL
, (4.8)

where the superscript ∗ indicates normalisation and X is a characteristic streamwise scale. On
dimensional ground, eq. 4.8 is a valid approximation of the RANS equation if:

X ∼ − θSL,r
2R∗uv,r

≈ 0.2h

0.026
≈ 7.7h ∼ LR, (4.9)

where the empirical values of θSL,r and R∗uv,r were calculated at the mean reattachment point.
Eq. 4.9 shows that LR depends on the interaction of the separated shear layer with the wall.
Also, the agreement between the numerical value of X (7.7h) and the position of Cp,r (≈ 7h) is
impressive, if one considers the relative simplicity of the premises to eq. 4.7. This confirms the
idea that the pressure rise is one of the main effects of the interaction of the separated shear layer
with the wall, at least for the present value of ER. In the framework of this section, however,
the most important suggestion given by eq. 4.9 is that LR should be a function of shear layer
properties in a neighbourhood of reattachment. Hence, taking into account that h is constant in
this study, one should verify that at least in the mean:

CSL = − θSL
2hR∗uv

∼ LR/h ∼

{
Re−0.1θ , if Reθ < Reθc.
Re−0.55θ , if Reθ > Reθc.

. (4.10)

In eq. 4.10, the overline symbol indicates the average over a streamwise domain within LR
where eq. 4.7 is valid, i.e. x/LR ∈ [0.7, 1]. The Reθ trend of CSL is shown in figure 11 (b).
Very good agreement with figure 11 (a) is obtained both at low and high Reθ. We stress the
importance of this latter result, that provides new insight in the functionning and possible control
of separating/reattaching shear layers, as follows. The size of the recirculation region relative to
step height (and more in general those features of the flow that scale with it) is strongly influenced
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by the interactions of the shear layer with the wall. The latter depend on the turbulent properties of
the shear layer in the neighbourhood of reattachment, which are in turn correlated to the turbulent
state of the incoming boundary layer, represented by Reθ. Since the pressure rise at reattachment
seems to be one of the consequences of impingment, in the mean the fluidic system composed
by the incoming boundary layer, the separated shear layer and the wall might behave like a
closed loop, in which the (favourable) pressure gradient induced upstream of separation acts as
a feedback branch, influencing properties of the incoming boundary layer. This might explain
why boundary layer quantities (e.g. δ/h and Reθ) estimated far upstream of separation show
some degree of correlation with properties of the separated shear layer (see Neumann & Wengle
(2003) and § 2.2.1). Also, it appears that controlling turbulent shear-stress intensity within the
shear layer or possibly within the incoming boundary layer could be an efficient strategy to
reduce LR and eventually reattach the shear layer to the ramp.

Further work is needed to better assess the validity of both correlations presented in figure
11(a) and (b). In particular, more precise data are required to understand the local behavior of the
exponent m: the good collapse with h shown by θSL (figure 6) suggests that 〈R∗uv〉 ∼ 1/LR, but
in principle the relationship between θSL and R∗uv might itself be a function of Reθ. In spite of
these open questions, θ and LR will be used as scaling parameters in the following sections.

4.4. On the role of mean shear

Thanks to available PIV data, the approach of Chapman et al. (1958) can be extended to the
investigation of a neighbourhood of the separation point with very little effort. Figure 13 shows
that the convective term ∂UV/∂y determines the pressure gradient in this region, since Reynolds
stresses balance each other. Then, eq. 4.2 can be rewritten as:

∂p

∂x
≈ −ρ∂UV

∂y
. (4.11)

Of course, one can put U ∼ U∞. Since the mean flow is almost bidimensional (see § 3.3), by
applying the continuity equation to the recirculation region one obtains V ∼ U∞Y/LR, where
Y is a suitable vertical scale of the recirculation region. Then, normalising eq. 4.11 gives:

∂Cp
∂x∗

1/2ρU2
∞

X
≈ −ρ∂U

∗V ∗

∂y∗
U2
∞Y

Y LR
, (4.12)

where the same notation as in eq. 4.7 applies. Dimensional analysis then yields:

X ∼ LR
2
. (4.13)

If it is accepted that eq. 4.11 represents at least the dominant feature of a free shear layer, eq. 4.13
states that in presence of a wall a free shear layer approximation holds just up to x/LR ≈ 0.5.
This is pleasingly consistent with the considerations of § 3.2. However, it must be stressed that the
growth rate of the shear layer is influenced by the interaction with the wall even for x/LR < 0.5:
since LR/h ∼ (dθSL/dx)

−1 (§ 3.2), it follows immediately that (dθSL/dx) ∼ C−1SL. The
presence of the wall might then explain why measured growth rates do not match free shear
layer models perfectly.

5. TNTI detection
The TNTI and the RRI have a central role in this work because they provide a set of boundaries

at which to study mean entrainment. In addition, their multiscale nature (see figure 1) allows an
attempt to extend the investigation beyond the analysis of the mean field of the previous section,
to the role of turbulent scales. The definition of mean RRI was already introduced at § 3.2 and its
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possible extension to instantaneous fields is straightforward. The present section will then detail
how the TNTI is detected on the instantaneous and mean velocity fields.

This study follows the TNTI-detection method developed by de Silva et al. (2013) and
Chauhan et al. (2014), which exclusively relies on PIV images to detect the TNTI of an
equilibrated turbulent boundary layer. The method will be recalled here briefly, as it is explained
in detail in their original papers. The PIV velocity fields are used to compute k̃, a dimensionless,
turbulent kinetic energy locally averaged on a square kernel. k̃ is close to zero in the irrotational
field, but it increases rapidly in the turbulent one. Then, a threshold value k̃th identifying the
instantaneous TNTI can be computed iteratively. The retained k̃th is the one for which the
following criterion is fulfilled:

Zi + 3σi ≈ δ, (5.1)

where Zi and σi are respectively the mean and the standard deviation of the position of the
TNTI above the wall. This method is attractive because it can be applied with virtually no
extra experimental cost compared to usual PIV measurements, and with reasonable extra post-
processing. In addition, the definition of k̃ can be easily modified to better take into account the
contribution to turbulent energy of the vertical velocity component over the separation. We then
define k̃ in percentage of mean free stream energy, as:

k̃ =
100

9(U2
∞ + V 2

∞)

1∑
m,n=−1

[(um,n − U∞)2 + (vm,n − V∞)2], (5.2)

where U∞ and V∞ are respectively the streamwise and the wall-normal components of the local,
free stream velocity. In eq. 5.2 the side of the kernel is equal to 3 correlation windows and the
indexes m and n allow to iterate on the two dimensions of the kernel. For the sake of clarity,
the dependencies on (x) of U∞ and V∞ and on (x, y) of um,n and vm,n were omitted. Since
the original convergence criterion given by Eq. 5.1 cannot be directly applied to the massive
separation, k̃th is computed on the boundary layer images provided by the auxiliary field. Then,
k̃th is applied to the other PIV fields, to detect the TNTI above the massive separation. Figure 14
shows one instantaneous TNTI over the detailed field. Results over the large field are comparable,
but at a lower resolution. Following Chauhan et al. (2014), pockets of inhomogeneous fluid that
are found on both sides of the TNTI were filtered out.

Although the choice of k̃th was data-driven and consistent with experimental conditions (in
particular Reh), no particular trend is found with respect to Reh. Table 3 shows that in most
cases one can put k̃th ≈ 0.35. Scatter of threshold values, in particular at Reh = 4× 104,
appears to be due to slightly different levels of PIV noise and to the quality of the PIV fields
in general. However statistics of TNTI position presented in table 4 seem much less sensitive to
these issues, suggesting that noise mostly affects the value of k̃th, rather than the position of the
detected TNTI. PIV resolution has a sizeable effect on the value of k̃th (−30% if the size of the
PIV correlation window is increased from 16× 16 px2 to 48× 48 px2) but instantaneous TNTIs
prove to be qualitatively robust to resolution and more in general to the choice of k̃th (see figure
15). This supports the choice of also applying the values of k̃th computed on the auxiliary field
to the finer images of the detailed field, and allows comparison between the latter and the large
field.

TNTI detection was assessed based on several a posteriori observations. Firstly, converged
Zi and σi are comparable to literature (see table 4 and references in Chauhan et al. (2014)).
Secondly, k̃th values are of the same order of magnitude as those reported by de Silva et al.
(2013) and Chauhan et al. (2014). Even though exact quantitative comparison with such different
experiments seems inappropriate, this element is reassuring if one keeps in mind that the wind
tunnel at Prisme Laboratory and the facility used in those studies have comparable levels of free
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stream turbulence and PIV noise. Finally, TNTI robustness to detection thresholds ensures that,
to some extent, uncertainties on k̃th will not impact our conclusions significantly.

Once a suitable k̃th has been chosen, the mean TNTI (shown in figure 5) can be computed
either by detecting the k̃th isoline on the mean k̃ field or as the set of points where intermittency
γ is equal to 0.5 (Corrsin & Kistler (1955)). Alternatively, Maurice et al. (2016) showed that the
mean position of a turbulent interface (viz. a flame) is also obtained by averaging the positions of
a large set of its instantaneous realisations. As a side note, it is pointed out that the energy-based
definition of the TNTI is not consistent with the velocity-based definition of the RRI. The work of
Kwon et al. (2014) suggests that the TNTI could also be detected with a velocity criterion, with
very good agreement with the approach used here. However, since this inconsistency does not
impact the computation of mass fluxes, it is more convenient to adopt the energy-based definition
of the TNTI. This choice allows a simple use of eq. 7.4, on which a large part of § 7 is developed.

6. Mean field mass entrainment
This section investigates mass entrainment in the mean field, by quantifying the mass fluxes

exchanged through both the mean TNTI and the mean RRI. Since the mean field is bidimensional
(see figure 8), the use of mass fluxes computed from PIV images is justified.

6.1. Mean mass balance

To begin with, a mean mass balance is computed over the fixed control volume Vc shown in
figure 5. Vc is delimited by the mean TNTI, the mean RRI and two vertical sections, placed at the
position of the mean separation and reattachment points. Note that the volume Vc encompasses
the mean separated shear layer. The total mass flux per spanwise unit length through one
boundary of Vc is given by:

ṁi = −ρ
∫
Li

U(l) · n(l) dl = −ρ
∫
Li

(U(l) sin(φ(l)) + V (l) cos(φ(l))) dl, (6.1)

where ρ is air density, Li is the length of one boundary, l a curvilinear abscissa, n(l) is the
local normal to the boundary (pointing outward of Vc) and φ is the angle between n(l) and the
Y axis. Due to the different definitions of the two interfaces, it is n(l)TNTI = −∇k̃/|∇k̃|
and n(l)RRI = −∇U/|∇U |. It is worth noticing that ṁ2 must be zero, since the RRI is the
only permeable boundary of the recirculation bubble, which is, in average, two-dimensional and
stationary. This is consistent with the idea that backflow and shear layer entrainment through
the RRI must balance out (Chapman et al. (1958), Adams & Johnston (1988b)). The topology
of the flow also suggests that ṁ1 (at the mean separation point) will be positive and ṁ3 (at
the mean reattachment point) negative. Since in general the TNTI is not a streamline, it will be
ṁ4 = ṁ3 − ṁ1 6= 0. The scaling of ṁ4 can be predicted on dimensional ground. With good
approximation, the right hand side of eq. 1.1 can be rewritten as:

vAEL
A ≈ ṁ4, (6.2)

It is straightforward from figure 5 that the length of the mean TNTI above the recirculation region
scales with LR. Following § 4.1, it is then LA ∼ LR ∼ hRemθ . Since φ is small along both the
mean RRI and the mean TNTI, from eq. 6.1 vAE could be approximated as follows:

vAE ∼ U∞φTNTI + V. (6.3)

The geometry of the problem suggests that φ ∼ h/LR, at least for the present values of h and
LR. This comes to say that the slope of the TNTI relates to shear layer development, as in the
case of the RRI (§ 3.2). The continuity equation can be invoked to obtain the scaling of V (see §
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4.4). We put Y = h, so that V ∼ U∞h/LR. This relationship can be interpreted as a measure of
streamline deviation due to the ramp: the steeper is the deviation, the higher will be the vertical
velocity component acquired by the flow. Finally, it is vAE ∼ U∞h/LR, which implies that:

ṁ4 ∼ U∞ Re−mθ hRemθ ∼ U∞ h. (6.4)

Minding that h is constant in this study, ṁ4 should then scale with U∞. Measured mean mass
fluxes are reported in table 5. Uncertainties on the mass balance appear to be mainly due to laser
reflections introducing corrupted velocity vectors near the wall. In any case, our results evidence
that mass is not conserved within Vc: the TNTI contributes to the mass balance with at least 30%
of the mass injected into Vc by the separating boundary layer, which is by far not negligible. This
confirms that entrainment of irrotational fluid plays an important role in the functionning of the
separated shear layer. Eq. 6.4 is also verified relatively well. Considering that ṁ1 ∼ U∞δ and
that δ ≈ h in this study, it is possible to write:

ṁ4 ≈ 0.3± 0.03 ṁ1 ≈ 0.3U∞h, (6.5)

which is consistent with the prediction provided by eq. 6.4. Taking into account all dependancies,
this can be interpreted geometrically as follows: while the mean slope of the TNTI increases with
Reθ, the reduction (as LR) of mean TNTI length is compensated for by the higher contribution
of velocity (due to increased streamline deviation).

6.2. Local mean mass fluxes

To gather information of a finer grain, let us now consider the normalized local mean fluxes per
unit surface through the mean RRI and the mean TNTI. This extends the 0-dimensional analysis
of § 6.1 by including the streamwise evolution of local mass fluxes. According to Eq. 6.1, the
normalised local flux at each point of any of the two boundaries can be computed as:

ṁ∗xi =
1

ρU∞

dṁi

dl
= − 1

U∞
(U(l) sin(φ(l)) + V (l) cos(φ(l)). (6.6)

6.2.1. Local mean fluxes through the RRI

The streamwise evolution of ṁ∗x2 is reported in figure 16(a). It appears that all curves collapse
nicely under a longitudinal scaling based on LR, which is consistent with findings of the previous
sections. ṁ∗x2 is very well correlated with local pressure gradients shown in figure 13(a). In
addition, ṁ∗x2 has an odd shape, with a sign inversion at x/LR ≈ 0.5 and almost antisymmetrical
peaks, which is compatible with the mean mass flux through the RRI being zero (see § 6.1). On
this basis, the analysis of ṁ∗x2 for, say, x/LR < 0.5 can provide information on the scaling
of fluxes through the entire RRI, even if ṁ2 = 0. Considering the scaling of figure 16(a), the
integral of ṁ∗x2/LR over x/LR < 0.5 will give:

1

ρU∞LR

∫ LR/2

0

dṁi

dl
dl =

1

U∞LR

∫ LR/2

0

U(l) · n(l) dl ≈ vAE
U∞

, (6.7)

where in analogy with eq. 1.1 vAE is the mean, large scale entrainment velocity at the RRI. Based
on data from the large PIV field, eq. 6.7 gives vAE/U∞ ≈ 0.0237 ± 0.002 on the available Reθ
range. If this is so, the mean mass flux that goes through the recirculation region can be computed
as:

ṁIN
2 = −ṁOUT

2 ≈ vAELR/2 ∼ U∞ hRemθ . (6.8)

Generally speaking, the interpretation of eq. 6.8 is not straightforward, since θ = θ(U∞).
However, it can be shown from table 1 that θ does not change much on the tested range of
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U∞. Then, eq. 6.8 can be approximated with:

ṁIN
2 = −ṁOUT

2 ∼ hU1+m
∞ ∼ h

{
U0.9
∞ , if Reθ < Reθc.

U0.45
∞ , if Reθ > Reθc.

(6.9)

Figure 17 shows that this is well supported by the data for both low and high Reθ. All in all, the
amount of mass crossing (twice) the RRI appears to increase with U∞, at least on the spanned
U∞ range, in spite of the shrinking recirculation region. Such behaviour is remarkably different
from the one observed at the TNTI and modelled by eq. 6.4. In any case, if it is admitted that
eq. 1.1 might hold for a variety of turbulent interfaces, it is clear that eq. 6.8 would provide the
scaling of mean large scale mass tranfer vAEL

A for the RRI.

6.2.2. Local mean fluxes through the TNTI

Figure 16(b) presents the streamwise evolution of ṁ∗x4, which once again is very well corre-
lated to the local pressure gradient (figure 13(b)). An inflection is evident at x/LR ≈ 0.5 and
a maximum is reached in the neighbourhood of the reattachment point. The scaling based on
U∞ and LR is applied as in the case of the RRI, but a dependency on Reθ is evident, which
reminds the one observed in figure 12(a) and (c). This is not too surprising because, unlike along
the RRI, eq. 6.4 predicts that vAE/U∞ ∼ Re−mθ along the TNTI. It is interesting to use local
mass fluxes through the TNTI to verify this latter relationship. Applying eq. 6.7 to the TNTI
over x/LR ∈ (0, 1) and fitting a power law to its output yields vAE/U∞ ∼ Re0.2θ if Reθ < Reθc,
and vAE/U∞ ∼ Re0.7θ if Reθ > Reθc. Although the change in slope at Reθc is well captured, the
accuracy of this result is not completely satisfactory. The hint to a possible explanation is given by
figure 16(b), which suggests that the intensity of transfer is not homogeneous along the TNTI. In
particular, a simple integration along the TNTI allows to verify that 80% to 90% of ṁ4, slightly
decreasing with Reθ, is accounted for by the portion of the TNTI over x/LR ∈ (0.5, 1). Let us
then separatedly test eq. 6.4 on two dinstinct subregions of the TNTI, defined by the domains
x/LR ∈ (0, 0.5) and x/LR ∈ (0.5, 1). On each domain, values of vAE/U∞ are obtained with
eq. 6.7 and then fitted with power laws in the form Reqθ. Values of best-fit exponents are reported
in table 6. It appears clear that vAE/U∞ scales as predicted by eq. 6.4 on x/LR ∈ (0.5, 1) only,
while faster power laws are observed on x/LR ∈ (0, 0.5). The extension of eq. 6.4 to the whole
TNTI is still a quite satisfactory approximation, as shown in section 6.1, because the second half
of the TNTI contributes for most of transferred mass. As for x/LR ∈ (0, 0.5), its scaling seems
to be determined by the free shear layer behavior observed in this region, which in particular
imposes dθSL/dx ∼ Re−mθ . Developing from Pope (2000) eq. 5.222, one can put:

dθSL
dx

∼ vAE |RRI + vAE |TNTI
U∞

∼ Re−mθ . (6.10)

This relationship is verified acceptably well with available data, in particular at high Reθ (figure
11(c)). The RRI contribution is found to be predominant, as it accounts for up to 80% of
dθSL/dx for Reθ < Reθc and up to 60% for Reθ > Reθc. This being so, the evolution of
vAE |TNTI/U∞ must be faster than Re−mθ for eq. 6.10 to be verified. With a known scaling law
for vAE |TNTI/U∞, it is also possible to sketch the evolution of the mean amount of entrained
mass on x/LR ∈ (0, 0.5). Since the length of the mean TNTI scales as LR, it will be:

vAEL
A ∼ U∞hReq+mθ = U∞h

{
Re0.64θ , if Reθ < Reθc.
Re1.06θ , if Reθ > Reθc.

(6.11)

The final values of the exponents in eq. 6.11 deserve some caution because they might cumulate
errors on both m and q, but the resulting scaling law seems an acceptable starting point for
the discussion proposed in the next sections. In any case, at this stage it seems more important
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to retain that in the present flow the scaling law of TNTI mass entrainment changes along the
streamwise direction. In particular, the effect of incoming boundary layer conditions (with Reθ)
are sizeable in a large neighbourhood of the separation point, but vanish after x/LR ≈ 0.5.
This observation seems to support the interest of control strategies enhancing transfer from the
external flow to turbulence, based on an early manipulation of the boundary layer.

7. Implications for small scale transfer
Results obtained so far suggest that U∞, LR, h and θ are the scaling parameters of the

flow (and in particular of mass transfer) at large scale. Also, dependencies on Reθ through the
turbulent state of the shear layer were highlighted. Eq. 1.1 suggests that these findings might have
consequences at small scale, the investigation of which would be the next step of this study. This
is not a simple task, mainly due to the estimation of vE(∆). The impressive work of Mistry et al.
(2016) demonstates that reliable measurements of vE(∆) demand highly accurate information
on geometry and time evolution of an instantaneous turbulent interface. Admittedly, our datasets
do not fulfill these requirements, since their time and space resolutions are not high enough.
However, they might be sufficient for a qualitative analysis of small scale behaviours, based on
two-point statistics at the boundaries of the shear layer. In spite of their relative simplicity, the
approaches developed in what follows require the statistical properties of the interfaces to be
homogeneous on a sufficiently large region of the flow. This condition is not verified by the
RRI. In the case of the TNTI, homogeneity is approximated acceptably well over most of the
recirculation region. For these reasons, the two-point analysis was restricted to the TNTI, by
using data provided by the detailed field.

7.1. Fractal analysis

For simplicity, we begin by characterising the term L(∆) appearing in eq. 1.1. L(∆) can be
assessed easily, at least compared to vE(∆), in the well known framework of fractal analysis.
This technique provides information on the range of scales on which a turbulent interface
develops and on the complexity of its convolutions (i.e. its roughness). These are key parameters
for mass entrainment as for any other transfer problem (e.g. combustion at a turbulent flame or
diffusion of chemicals), because the more convoluted is the interface, the larger is the available
exchange surface. It is known since the seminal work of Sreenivasan & Meneveau (1986) that the
contributions of wrinkles of a turbulent interface to its arclength L are well fitted by a self-similar
expression L(r) ∼ r−β , where r is the scale of wrinkles and β is the fractal codimension, at least
between an inner scale ηi and an outer scale ηo. This is to say that small-scale wrinkles contribute
much more to total interface length than large bulges and valleys. Also, the higher is β, the more
the interface is wrinkled. For r � ηo, L(r) is equal to L0, which is close to the length of the
mean interface. For r � ηi, it is instead L(r)/L0 = (ηo/ηi)

β (Sreenivasan et al. (1989)). The
recent work of Thiesset et al. (2016) matches these threes scalings into the following expression.

L(r)

L0
=

(
ηo
ηi

)β 1 +
(
r
ηo

)2
1 +

(
r
ηi

)2

β/2

. (7.1)

Table 7 summarizes the values of β, ηi, ηo, L0 and Ltot, the total average length of the TNTI,
estimated from data collected on the detailed field. To this purpose, each instantaneous interface
was processed with the caliper technique (see Cintosun et al. (2007) among others), which
associates to a scale r the length n × r, where n is the number of r-long segments needed to
approximate the entire interface. The operation is repeated for a wide enough range of r. The
ensemble-averaged, log-log plot of r versus n× r is known as the Richardson plot, which gives
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the cumulative contribution of all scales larger than r to total interface length (figure 18). Then,
eq. 7.1 is fitted (in a least-mean square sense) onto the Richardson plot. This approach has the
advantage of yielding unambiguous values of the fractal parameters even at low and moderate
Re numbers (see Thiesset et al. (2016)). It is found that β agrees with previous observations in
TNTIs (see Sreenivasan & Meneveau (1986) and Chauhan et al. (2014)) and in other turbulent
interfaces (Thiesset et al. (2016) and references therein). The range of surface-producing scales
spans almost 1.5 decades, bounded by ηo ≈ 0.2h and ηi ∼ η. This latter result should be
considered qualitative, since neither PIV nor hotwire data are resolved enough to accurately
assess the smallest scales of the flow. It is observed that L(∆) ≈ Ltot for the present value of ∆.
As for L0, it does not scale with Reθ (as aspected for the mean TNTI) because it is imposed by
the extent of the detailed field. The ratio Ltot/L0 should then be considered as a surface density,
i.e. the amount of developed surface per mean unit TNTI length. Ltot/L0 seems to evolve with
Reθ (see insert in figure 18). For convenience, the hypothesis is made that Ltot/L0 also scales
with a power law Repθ , with p changing from ≈ 0.17 for Reθ < Reθc to ≈ 0.46 Reθ > Reθc.

7.2. Discussion

With these considerations, it is now possible to discuss the implications of eq. 1.1, at least on
the extent of the detailed field. Eq. 6.11 provides a scaling law for large scale entrainment (i.e.
the right-hand side of eq. 1.1) over the domain x/LR ∈ (0, 0.5), which includes the detailed
field. As for the small-scale side of eq. 1.1, section § 7.1 provides useful information on the term
L (∆). In particular, the evolution of surface density Ltot/L0 was modelled with Repθ . Since the
physical scaling (i.e. not skewed by the fixed size of the detailed field) of mean TNTI length
depends on Remθ , it seems reasonable to put:

L (∆) ∼ Ltot
L0

LR ∼ hRep+mθ ∼ h

{
Re0.07θ , if Reθ < Reθc.
Re−0.09θ , if Reθ > Reθc.

(7.2)

Rather than on the value of the exponents, it is once again convenient to focus on the qualitative
message of eq. 7.2, which is that the increasing wrinkling of the TNTI seems to be roughly
compensated for by its decreasing mean length. Plugging eq. 6.11 and eq. 7.2 into eq. 1.1 allows
to predict a qualitative behavior for vE (∆) /U∞. With trivial manipulations, it is found:

vE (∆)

U∞
∼

{
Re0.58θ , if Reθ < Reθc.
Re1.15θ , if Reθ > Reθc.

(7.3)

Available data do not allow to verify eq. 7.3 with a direct measurement of vE (∆). However, a
qualitative assessment is possible by using an indirect estimation, for example by following the
method proposed by Philip et al. (2014). Based on an energy balance between the turbulent and
the non-turbulent parts of the flow and considering that on the detailed field it is ∆ ∼ η, at each
point of the TNTI one can put:

vE · n ≈ vE
ν · n ≈ 2ν

Kth
vjSjini, (7.4)

where vE is now a local entrainment velocity and n is the local normal to the TNTI. As for
other symbols, Kth is the dimensional value of k̃th, v = u − U∞, Sji is the strain-rate tensor
and all quantities are evaluated at the TNTI. The reader is referred to Philip et al. (2014) and
to Chauhan et al. (2014) for thorough demonstrations of this result. It is worth noticing that,
due to insufficient spatial PIV resolution, in Philip et al. (2014) eq. 7.4 yielded underestimated
values of entrainment velocity, which did not allow to verify a relation for energy equivalent to
eq. 1.1. Since our PIV datasets are not fully resolved either, similar limitations are likely to apply.
This means that our findings should be taken with caution, in the framework of this qualitative
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discussion. This being said, the mean entrainment velocity vE (∆) can be obtained simply by
averaging eq. 7.4 on the whole set of instantaneous TNTIs. Then, the best fit of the usual Reθ
power laws gives:

vE (∆)

U∞
∼

{
Re0.82θ , if Reθ < Reθc.
Re1.89θ , if Reθ > Reθc.

(7.5)

It is clear that the prediction of eq. 7.3 is not well verified, but this result is encouraging, at least
with respect to the limitations of the method, if one considers that the order of magnitude of
the exponents is roughly recovered. In addition, it seems that the ratios of the exponents in eq.
7.5 (≈2.3) is similar to the one predicted by eq. 7.3 (≈2), which suggests that the scaling of
mean entrainment at small scale might also change at Reθc. In particular, this seems to support
the assumption made on the behaviour of surface density at § 7.1. Although not definitive, these
findings motivate a further effort. Based on eq. 7.4, it is possible to qualitatively assess the scale-
by-scale contributions to mass transfer brought by all turbulent scales, smaller than LR, that
wrinkle the TNTI. Once again we follow the interesting work of Chauhan et al. (2014), which
proposes to compute the instantaneous local mass flux through the TNTI (or rather its projection
on the X-Y plane) as:

dṁ = ρvE · ndl, (7.6)

where dl is one element of interface length. Then, the scale-by-scale mass transfer through
the TNTI can be estimated with the Fourier spectrum Ψdṁ of dṁ. Figure 19(a) shows the
premultiplied spectra Ψdṁks, computed on the detailed field and normalised on U2

∞ and ηo
(symbol F ), with respect to wavelength λs = 2π/ks along s, ks being the wavenumber.
Following Foucaut et al. (2004), the lower bound of each spectrum corresponds to a cut-off wave
number ks,c, computed from PIV resolution as ks,c = 2.8/∆. Since λs represents the arclength
of a wrinkle on the interface, it is interesting to estimate the scale r of the turbulent structure
that produces it. Generally speaking, it seems reasonable to consider λs = C(r)r, where C(r)
is a scale-dependant proportionality factor. For the sake of simplicity and in the context of the
present qualitative analysis, isotropy at each scale is assumed, which yields r = λs/π. Values
of r are reported on the top horizontal axes of figure 19. Within the limit of available resolution,
a peak of instantaneous mass transfer appears at r|max/ηo ≈ 0.03 ≈ ηi/ηo on each spectrum,
i.e. at scales that might be associated to viscous transfer mechanisms (nibbling). This suggests
that transfer is a multiscale phenomenon: while instantaneous, local entrainment takes place
predominantly at small scale, global transfer rates in a separating/reattaching flow are set by
large scale parameters much upstream of separation (see eq. 6.11). These qualitative findings
are consistent with observations made in other flows, as turbulent boundary layers (see Chauhan
et al. (2014)) and turbulent jets (see Westerweel et al. (2009)).

It would be tempting to investigate if a normalisation based on power laws in the form Re2γθ ,
where γ varies at Reθc, makes the whole spectra collapse to a single curve, i.e. if instantaneous,
local entrainment at all (resolved) scales also depends on large scale parameters of the incoming
boundary layer. The factor 2 is included in the exponent for convenience, since on dimensional
basis it is Ψdṁks ∼ dṁ2. A qualitative assessment of this hypothesis can be obtained indirectly,
as follows. Firstly, peak values of ΨFdṁ are collected from figure 19(a). Secondly, Re2γθ power
laws are best-fitted onto them, which yields γ ≈ 0.27 for Reθ < Reθc and γ ≈ 1.27 for
Reθ > Reθc. If the initial scaling assumption holds, by definition these values of γ should make
normalized mass spectra collapse. This is quite well verified in figure 19(b), where premultiplied
spectra were normalised based on U2

∞Re2γθ and, to further test the link with large scales, on LR
(noted with the symbol R). This observation fosters the idea that a unique scaling based on Reθ
power laws might exist for the entire mass entrainment spectrum. Such scaling seems rather to
depend on large scale parameters, which would be in agreement with the findings of Holzner
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& Lüthi (2011), showing that local entrainement velocities at the TNTI are poorly correlated
to local dissipation, and also broadly consistent with the big picture sketched by the theory of
Meneveau & Sreenivasan (1990) and the experimental results of Mistry et al. (2016).

8. Conclusions
In this study we investigated mass entrainment in the turbulent separating/reattaching

flow downstream of a descending ramp, over a range of Reh. The focus is on the turbulent
boundaries of the separated shear layer, which are the Turbulent/Non-Turbulent Interface and
the Recirculation Region Interface. They bound the shear layer respectively from the free stream
and from the recirculation region. It is found that the mean mass fluxes through the interfaces
are quantitatively significant and well correlated to the main properties of the separated shear
layer, for example its spreading rate and its induced pressure field. Based on one-point statistical
analysis, it is shown that the scaling parameters of this separating/reattaching flow are the
recirculation length LR, step height h and free stream velocity U∞. A new finding is that LR/h
and many other large-scale features of this flow seem to scale with power laws of Reθ, where
Reθ is evaluated in the incoming boundary layer several step height upstream of separation.
Interestingly, the exponent depends on the turbulent state of the incoming flow, with a sharp
change at a critical Reθ value (in these experiments, it is observed Reθc = 4100). Finally, a
qualitative analysis of mass entrainment at small scale (for the moment limited to the TNTI)
suggests that transfer is a multiscale phenomenon: large scale parameters set the mean mass
fluxes, but viscous mechanisms seem to contribute the most to local mass entrainment. This is
consistent with observations made in other flows, as turbulent boundary layers and turbulent
jets. Also, it appears that scaling of large-scale features (including the power law dependency
on Reθ) might extend to the whole range of scales that wrinkle the TNTI. All together, our
results demonstrate that many large and small-scale features of this separating/reattaching flow
scale with properties of the incoming boundary layer much upstream of separation. Further
studies are required to assess and complete our findings, for example by using a wider range
of physical parameters and extending the analysis to higher Reynolds numbers. If confirmed,
such dependency would open new perspectives for the synthesis of feed-forward system for
controlling flow separation.

This work was supported by the French National Research Agency (ANR) through the In-
vestissements d’Avenir program under the Labex CAPRYSSES Project (ANR-11-LABX-0006-
01). The authors wish to gratefully thank Dr. Thiesset for stimulating discussion and for his help
in the fractal analysis of the TNTI.

Appendix A. Computation of pressure gradient along the TNTI and the RRI
This appendix explains how the pressure gradient∇p = ∂p/∂xi was computed from the PIV

large field, along the two interfaces under investigation. The starting point is the incompress-
ible Reynolds Averaged Navier-Stokes equation for mean momentum transfer, eq 4.1, reported
hereafter for convenience:

1

ρ

∂p

∂xi
= −Uj

∂Ui
∂xj

+ ν
∂2Ui
∂x2j

− ∂

∂xj
〈u′iu′j〉, (A 1)

Since PIV only gives access to the streamwise (u) and vertical (v) velocity components, it will
be i, j = 1, 2. This approximation should be acceptable because the mean large field is almost
bidimensional, as discussed in section 2.2.3. All terms on the right hand side of eq. A 1 are
directly available from the large field PIV data. For simplicity, a central difference scheme is
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adopted to approximate derivatives. Before derivation, the fields of Ui and 〈u′iu′j〉 are convoluted
with a top-hat filter of kernel side equal to 5 velocity vectors, in order to reduce amplification
of noise. Once the two fields of ∂p/∂x and ∂p/∂y have been reconstructed, the evolution of the
pressure gradients along the TNTI and the RRI are computed by interpolating them at the points
that compose the two interfaces. With the same procedure, the trend and the order of magnitude
of each term of eq. A 1 can also be assessed. In particular, the analysis of the resulting filtered
terms along the RRI shows that viscous stresses are negligible (as expected) and also that:

∂U

∂x
∼ ∂V

∂x
∼ ∂V

∂y
<<

∂U

∂y

∂〈u′v′〉
∂x

<<
∂〈v′2〉
∂y

, (A 2)

which allows to rewrite eq. A 1 as eq. 4.2 for u, and as eq. 4.3 for v. These are classical results
for shear flows (see for example Pope (2000) page 111 and following) that apply, in particular,
to free shear layers.
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FIGURE 1. Instantaneous streamwise velocity field over the descending ramp. Instantaneous RRI.
- - - Instantaneous TNTI.
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FIGURE 2. Dimensions of the experimental model. Dots represent pressure taps. The boundary layer
measured at x/h = −9 (red line) is used as a reference for scaling parameters.
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FIGURE 3. Integration of the experimental model into the wind tunnel and PIV setups. Letters indicate the
three PIV fields. (a) Large field; (b) Detailed field; (c) Auxiliary field.
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FIGURE 4. Normalized boundary layer velocity profiles at Reτ = 1310 (Reθ = 3262). (a) U+; (b)√
〈(u′)2〉+. + hotwire measurements at x/h =−9; ◦ average along the PIV auxiliary field. (shown

in red online) DNS at Reτ = 1043 (Reθ = 3270) as given in Schlatter & Örlü (2010). - - - Log law, κ =
0.39 and B = 4.3 (Marusic et al. (2013)).
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Symbols:© Reh = 3× 104; � Reh = 4× 104; � Reh = 5× 104; : Reh = 6× 104; N Reh = 7× 104.
The inserts show the LR dependency on shear layer growth rate. −1 power law.

Uref [ms
−1] δ/h uτ [ms

−1] Reh Reδ1 Reθ Reτ H12 η [mm]
15 0.99 0.66 3× 104 2878 2006 1300 1.43 0.150
20 0.84 0.78 4× 104 4671 3262 1310 1.43 0.146
25 0.94 0.93 5× 104 5787 4122 1750 1.40 0.133
30 0.97 1.10 6× 104 6656 4738 2130 1.40 0.130
35 1.00 1.25 7× 104 7555 5512 2646 1.37 0.124

TABLE 1. Boundary layer properties, measured at the reference section x/h = −9. The full boundary layer
thickness δ and the friction velocity uτ are obtained with the composite profile of Chauhan et al. (2009). It
is Reh = U∞h/ν, Reδ1 = U∞δ1/ν, Reθ = U∞θ/ν and Reτ = δuτ/ν. H12 is the shape factor (≡ δ1/θ).
The Kolmogorov length scale, η, is estimated at the height from the wall where the mean TNTI is located.
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Reh/104 3 4 5 6 7
LR/h 5.16 4.94 4.83 4.48 4.11

TABLE 2. Evolution of the recirculation length LR with Reh.
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FIGURE 10. Streamwise distributions of reduced pressure coefficients. Symbols: © Reh = 3× 104; �
Reh = 4× 104; � Reh = 5× 104; : Reh = 6× 104; N Reh = 7× 104. (red online)
Reduced pressure data from Kourta et al. (2015). (black online) Roshko & Lau (1965) series
A. (magenta online) Roshko & Lau (1965) series D. (green online) BFS data by Adams &
Johnston (1988a)
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FIGURE 12. Reynold stresses 〈u′2〉, 〈v′2〉 and −〈u′v′〉 in the separated shear layer at (a), (b), (c) x/LR ≈
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FIGURE 14. Instantaneous TNTI detected over the detailed field at Reh = 5× 104. The colormap
represents the distribution of ln k̃.

Reh/104 3 4 5 6 7
k̃th 0.31 0.45 0.36 0.36 0.34

TABLE 3. Value of k̃th at different Reh.
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FIGURE 15. Instantaneous TNTI detected on the detailed field at Reh = 5× 104, at different spatial
resolutions. (a) ∆/h = 6.4× 10−3. The grayscale highlights the evolution of the detected turbulent region
if the threshold value is tuned within k̃th± 50%. Darker shades of gray are used for higher threshold values;
(b) ∆/h = 1.3× 10−2; (c) ∆/h = 1.9× 10−2.
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FIGURE 16. Normalized local mass fluxes along (a) the RRI; (b) the TNTI. Symbols as in figure 6.

Reτ Zi/δ σi/δ
Corrsin & Kistler (1955) <2000 0.80 0.16
Chauhan et al. (2014) (Hotwire) 2700-22000 0.64-067 0.11-0.13
Chauhan et al. (2014) (PIV) 14500 0.67 0.11
Present study 1300-2646 0.634-0.651 0.117-0.122

TABLE 4. Comparison of mean value and standard deviation of TNTI position in the boundary layer.
Other references are reported in Chauhan et al. (2014).
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FIGURE 18. Richardson plot of the TNTI, computed on the detailed field. (a) Comparison of data at
Reh = 5× 104 with the best fit of eq. 7.1 ( shown in red online). (b) Comparison of Richardson
plots at all available Reh, with symbols as in figure 6. The best fit of eq. 7.1 is also reported for each
dataset ( in black online). Note that eq. 7.1 attains Ltot for values of r that are not resolved in this
experiment. Accordingly, Richardson plots are cut-off at a scale rc, associated to PIV resolution ∆. rc is
computed following the considerations of section 7.2 as 2/kc. Red dots mark ηi/ηo. The insert shows the
evolution of Ltot/L0 in function of Reθ .
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FIGURE 19. Premultiplied spectra of instantaneous mass fluxes computed on the detailed field. (a)
Normalisation based on ηo and U2

∞. Red dots mark ηi/ηo. (b) Normalisation based on LR and U2
∞ Re2γθ ,

where γ ≈ 0.27 for Reθ < Reθc and γ ≈ 1.27 for Reθ > Reθc. Symbols as in figure 6.

Reh/104 3 4 5 6 7
ṁ3/ṁ1 -1.31 -1.31 -1.29 -1.34 -1.30
ṁ4/ṁ1 0.31 0.33 0.33 0.32 0.27

(ṁ1 + ṁ3 + ṁ4)/ṁ1 0.00 0.02 0.04 0.02 0.03

ṁ2/ṁ1 -0.02 -0.02 -0.01 -0.01 -0.00

TABLE 5. Mass fluxes normalized on ṁ1, the mass flux due to the incoming boundary layer.

x/LR −m∈ (0, 1) ∈ (0, 0.5) ∈ (0.5, 1)

Reθ
< Reθc 0.2 0.74 0.07 0.10
> Reθc 0.7 1.61 0.54 0.55

TABLE 6. Best fit exponents for the relation vAE |TNTI/U∞ = Reqθ (eq. 6.4), tested on the entire LR and
on two domains within it. The expected value −m is also reminded.

Reh/104 β L0/h Ltot/h Ltot/L0 ηi/h× 10−3 ηi/η ηo/h
3 0.32 1.61 4.80 2.98 7.1 1.44 0.2052
4 0.37 1.61 5.33 3.31 7.8 1.60 0.1920
5 0.38 1.61 5.39 3.35 8.0 1.80 0.1837
6 0.41 1.55 5.53 3.57 7.8 1.89 0.1856

TABLE 7. Fractal parameters of the TNTI for all available Reh, computed on the detailed field. β is the
fractal dimension, Ltot is the total average length of the TNTI, L0 relates to the length of the visible section
of the mean TNTI and ηi and ηo are the inner and the outer scale, respectively. Low values of L0/h reflect
the small size of the detailed field.


