
HAL Id: hal-01919901
https://hal.science/hal-01919901

Submitted on 12 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IRIM at TRECVID 2018: Instance Search
Boris Mansencal, Jenny Benois-Pineau, Hervé Bredin, Georges Quénot

To cite this version:
Boris Mansencal, Jenny Benois-Pineau, Hervé Bredin, Georges Quénot. IRIM at TRECVID 2018:
Instance Search. TRECVid workshop 2018, Nov 2018, Gaithersburg, Maryland, United States. �hal-
01919901�

https://hal.science/hal-01919901
https://hal.archives-ouvertes.fr


IRIM at TRECVID 2018: Instance Search

Boris Mansencal1, Jenny Benois-Pineau1, Hervé Bredin2, and Georges Quénot3

1LaBRI UMR 5800, Université Bordeaux / CNRS / Bordeaux INP, Talence Cedex, France
2CNRS, LIMSI, Université Paris-Saclay, BP 133, 91403 Orsay Cedex, France

3Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Abstract

The IRIM group is a consortium of French teams work-
ing on Multimedia Indexing and Retrieval. This paper
describes its participation to the TRECVID 2018 in-
stance search task.

1 Introduction

The TRECVID 2018 instance search task is described
in the TRECVID 2018 overview papers [1, 2, 3].

A new type of query was introduced in 2016 and
continued since: asking to retrieve specific persons in
specific locations.

These queries are applied on a dataset consisting
of videos from the BBC EastEnders soap opera. 30
mixed queries are built from 10 locations (Cafe1,
Cafe2, Foyer, Kitchen1, Kitchen2, Laundrette, Livin-
gRoom1, LivingRoom2, Market and Pub) and 25 per-
sons (Archie, Billy, Brad, Chelsea, Darrin, Dot, Fatboy,
Garry, Heather, Ian, Jack, Jane, Janine, Jim, Max,
Minty, Mo, Pat, Patrick, Peggy, Phil, Ryan, Shirley,
Stacey and Zainab). This year topics include for exam-
ple: Jane at Cafe2 or Max at Laundrette. For persons,
4 example images are given. For locations, between 6
and 12 images are given. Shots from which these im-
ages were extracted are provided. A sample video 0 is
also given.

Two conditions are considered:
• A: only provided images are used as examples

• E: video are used as examples (and optionally im-
age examples)

Each run must also specify the source of training
data:

• A: only sample video 0

• B: other external data

• C: only provided images/videos in the query

• D: sample video 0 AND provided images/videos in
the query (A+C)

• E: external data AND NIST provided data (sample
video 0 OR query images/videos)

Two French laboratories (LaBRI, LIMSI) as part
of IRIM consortium (coordinated by Georges Quénot,
LIG) collaborated to participate to the TRECVID 2018
instance search task with fully automatic runs.

The IRIM approach to retrieve the shots containing
a specific person in a specific location consists in three
steps: first person recognition and location recognition
are performed independently, then a late fusion is ap-
plied to produce the mixed query result.

Due to reduced man power, IRIM 2018 participation
kept part of our 2017 location recognition method[4]
and the same late fusion scheme, and only focused on
improving person recognition performance.

2 Person recognition

For person recognition, two methods were developed by
LIMSI and LABRI.

2.1 LIMSI method

For person recognition, the face recognition method de-
veloped by LIMSI is similar to LIMSI 2017 method[4].
It is derived from the work described in [5].

This face recognition module is actually built upon
three submodules.

First, shot boundaries are detected using optical flow
and displaced frame difference [6].

Then, face tracking-by-detection is applied within
each shot using a detector based on histogram of ori-
ented gradients [7] and the correlation tracker proposed
in [8]. More precisely, face detection is applied every
500ms, and tracking is performed at 25fps in both for-
ward and backward directions.

Finally, each face track is processed using the ResNet
network with 29 convolutional layers [9] available in
the dlib machine learning toolkit [10]. This network
was trained on a dataset of about 3 million faces and
7485 identities, derived from FaceScrub [11] and VGG-
Face [12] datasets. It projects each face into a 128-
dimensional Euclidean space, in which faces from the



same person are expected to be close to each other (Eu-
clidean distance d ¡= 0.6). Each face track is described
by its average face embedding and compared with that
of the target person using the Euclidean distance.

Two variants were tested, that differ only in the way
the target embeddings were obtained. In the first case,
we apply face detection on the (four) provided exam-
ple images and use the average face embedding. In the
second case, we search the test set for the face tracks
corresponding to the provided example images and use
face track average face embeddings – hopefully making
the resulting embedding less sensitive to pose and il-
lumination variability. The results obtained by these
two variants are hereinafter referred to respectively as
pers1A and pers1E.

The source code for this module is available in
pyannote-video [13], that was initially introduced in [5].

2.2 LaBRI method

The previously described LIMSI method was our best
performing person recognition method of the two meth-
ods used in our 2017 participation[4]. However, two
issues were identified with this method.
• The face detector works mainly for frontal faces

and thus misses lots of detections. Faces are
missed on database movies but more tragically on
example images. For instance, no face is detected
on any of the 4 provided example images for “Mo”
person. Besides, the rather low framerate at which
detections are made on movies (i.e., every 500ms)
is also a cause of detections misses.

• The averaging of face embeddings may not be op-
timal for correct face recognition. Indeed we may
average faces of variable quality.

LaBRI method tries to address these issues.
First, the face detection is done with another de-

tector, the pre-trained CNN based face detector, us-
ing a MMOD loss function[14], available in dlib [10].
This detector is applied at a framerate of 8fps on the
movies. Then, as in LIMSI method, each face is pro-
jected into a 128-dimensional Euclidean space using the
same ResNet network with 29 convolutional layers, also
available in dlib [10]. However, here, no face tracking is
done and no average of face embeddings is computed.

The distance between a query person and a shot is
determined by computing the Euclidean distance be-
tween each face descriptor found on the given exam-
ple images and each movie face descriptor. For a given
shot, we compute the Euclidean distance (dq,s) between
each face descriptor (fq) found on the given example
images and each face descriptor (fs) found on the shot
frames. In order to get one final distance for a given
query example, we first combine the distances for the
example images. For instance, for 4 detected faces on
4 example images for a given person, we combine the 4

respective distances with each face descriptor from the
shot computing the mean of the K minimum distances
(K in [0; 4[). It is noteworthy that K=1 is equivalent
to compute the MIN of the 4 distances, and K=4 is the
MEAN of the 4 distances. Finally, in order to get a
final distance for the shot, we combine the M distances
for the M face detections on the shot by computing the
MIN.

This method is hereinafter referred to as pers2:
pers2A for A condition, pers2E for E condition.

This method may be completed in three ways.

2.2.1 Data augmentation

In order to complete the 4 provided example image per
person, we automatically collected images from Google
Images.

We made automatic queries with “EastEnders XXX”
where XXX is the name of the searched person. We
kept the 200 first top results of the query. Then, in
order to check that the returned images really contain
the searched person, for each returned image, we detect
faces on the image, compute the face descriptors, and
compute the distances between each face descriptors
and the four given example face descriptors. If this
distance is inferior to a threshold thf for one of the four
provided example images then the face descriptor is
kept as a new person example. As the face recognition
network was trained to classify faces of a given identity
with an Euclidean distance inferior to 0.6, we chose
thf = 0.51.

It is noteworthy that the query time depends in the
number of images we want to get back. Both queries
and checks can be parallelized. Finally, we do a two-by-
two distance check to eliminate possible duplicates on
kept descriptors. This way we obtained approximately
a mean of 42 additional example face images per query
person. The minimum is only 1 additional image (for
Darrin) and the maximum is 115 additional images (for
Max ). Figure 1 show examples of faces of retrieved
images for data augmentation for two persons: Brad
and Patrick. We can see that retrieved images quality
is quite varied.

This method is hereinafter referred to as G.

2.2.2 Face reranking

Similar to NII-Hitachi-UIT work for INS17[15], we do
face reranking by training an SVM to classify faces cor-
responding to a specific person.

During a first search, the face descriptors of the top-
N shots, with the smallest distance to the given ex-
ample face descriptors, are kept as positive samples.
For frames with several face detections, the descriptors
with the second smallest distances are kept as negative
samples. A SVM is then trained to classify faces corre-



Figure 1: Example of data augmentation faces for two
characters: Brad on first row, and Patrick on second
row

sponding to query person. We tested both a linear and
RBF kernel.

This method is hereinafter referred to as S.

2.2.3 Transcripts

Using NIST provided transcripts, we do face post-
filtering.

We extract shots where the name of the searched
person appears. If the person name is present in a
shot, we boost this shot and k nearby shots. Indeed,
if her name appears in the transcript, it could give a
hint that this person is present in the scene. However,
the person is not necessarily present when her name
is pronounced. In particular, if the “shot/reverse shot”
filming technique is used, when person A is speaking to
person B, only person A is visible on screen. But person
B may be shown in the previous or next shot. As we
are computing distances between faces descriptors, we
actually reduce the found face descriptor distance for
the shots: d′ = d ∗ α with α = 0.9. We used k = 3 and
took care of boosting a shot at most once.

This method is hereinafter referred to as N.

3 Location recognition

For location recognition, the method developed by
LaBRI, applied in INS 2016 and 2017[16, 4], was used.

3.1 LaBRI method

The classical Bag-of-Words (BoW) approach with sim-
ilarity search was applied. It consists in the follow-
ing. First, sparse features are detected on regions of
each example-frame and described by a feature descrip-
tor. Feature descriptors are then quantized into vi-
sual words, creating a visual vocabulary. A similarity
is then computed between histogram of quantized fea-
tures of query frame and those of database frames.

For features detection, the Harris-Laplace detector,
described in [17], is used. Detections are filtered out if
they belong to bounding boxes of characters (see Sec-
tion 3.1.1). Kept detected interest regions are then
described by the OpponentSIFT descriptor (of dimen-
sion 384). The RootSIFT [18] post-processing step is
applied.

Approximate k-means algorithm [19] is then used to
compute a vocabulary of k=1M visual words. Vocab-
ulary on Opponent SIFT descriptors is computed on
24K randomly selected frames from the shots, with one
image extracted per shot (that is 5% of the 471K shots).
Hard assignment is used to compute the BoW signa-
ture. BoW is then weighted by the tf-idf scheme[20].

To compute shot signatures, a temporal aggregation
is used. Several keyframes are uniformly extracted per
shot, at a given frame rate. A global histogram is com-
puted for all the keyframes of the shot and averaged
over the shot. This is the joint average scheme or av-
erage pooling used in [21]. This histogram is then nor-
malized. Keyframes are extracted at a rate of 1 fps
(that represents ∼1.57M images for the 471K shots).

For query, in the A condition (only images used as
examples for topics), the normalized BoW vector of
each example image is used as query signature. In the
E condition (video examples used for topics), the sig-
nature of the shot to which belongs the example image
is used as query signature. A similarity (or distance)
is then computed between the query signature and all
the shots of the dataset (accelerated with an inverted
file index).

We used L2-norm and the cosine similarity respec-
tively for histogram normalization and similarity mea-
sure.

Some filtering (see Section 4) and a re-ranking step
(see Section 3.1.2) are then applied.

Each example image (or shot in E condition) e, of
each location l, is queried against each shot s, to ob-
tain a similarity Sim(e, l, s). A late fusion operator is
applied to get a similarity Sim(l, s) for each location l
with regard to each shot s. The MAX operator is used.

The results obtained by this method are hereinafter
referred to as loc1.

3.1.1 Characters filtering

As EastEnders is a soap opera, scenes consist mainly in
two or more characters interacting at a given location.
Besides, numerous shots show the main characters, shot
in close-up, talking to each other, and with not much
motion. So a significant part of the features extracted
for a frame and even a shot is detected on characters.
To compute a shot signature that better represents the
location, we want to remove all the descriptors detected
on characters and keep only those corresponding to the
actual location. Hence, we detect characters to filter



out features located on them.
To detect characters, we took advantage of the face

detection already performed for the face recognition
step (see Section 2.1). From a face bounding box, we
construct a bounding area that roughly encompasses
the character bounding box. Figure 2 gives an example
of such a construction. It is a very coarse approxima-
tion of the person bounding box, but it is very fast to
compute. Detected features are then filtered keeping
only those outside these bounding areas. This filtering
process is applied to all the keyframes extracted for the
shot.

(a) (b)

(c) (d)

Figure 2: Example of a frame with characters bound-
ing area computation and filtering of keypoints. (a) a
keyframe with face detections as bounding boxes. (b)
the bounding areas computed for characters. (c) the
(3514) features detected on the whole frame. (d) the
(2488) kept features after filtering thanks to characters
bounding areas. Programme material copyrighted by
BBC

3.1.2 Re-ranking

A re-ranking step is performed on the top ranked shots
of the query results. The method is inspired from [22].
First, as queries have several images and shots contain
multiple frames, it would be impractical to verify ev-
ery image-frame pair. A representative pair of query
image and video frame is thus selected. For each shot
and each query topic, the pair of video frame and query
image whose BoW histogram L1 distance is minimal is
selected as representative. Then, for this representa-
tive pair, a VQ-based feature matching is performed in
which features quantized to the same words are con-
sidered as matches. Finally, a RANSAC method is ap-
plied to find the number of matches following the same

affine transformation of image plane. This re-ranking
method is practical for large datasets in particular be-
cause matching is rather fast to compute: there is no
computation of distances between actual features and
thus no need to load these features from disk. We ap-
plied this re-ranking step on the top 3300 results of
each location query.

4 Results filtering

Three filtering steps may be applied to the results of
queries.

4.1 Credits filtering

The videos from the dataset may contain extra shots
unrelated to EastEnders soap opera. In particular,
they often contain advertising at the end. As these
videos often have opening and end credits, we can de-
tect those in order to remove unrelated shots from re-
sults. More precisely, we need to filter out all the shots
before the last frame of the opening credits and after
the first frame of the end credits.

One difficulty is that the credits are not exactly the
same in all the videos. Figure 3 shows examples of
frames used for credits.

(a) (b)

(c) (d)

Figure 3: Examples of opening and end credits frames.
(a), (b) and (c) show different opening credits last
frame examples. (d) shows an example of first frame of
end credits, with the start of the rolling credits at the
bottom. Programme material copyrighted by BBC

To detect opening and end credits respectively last
and first frame, we use a near duplicate frame detection
method. The last frame of opening credits is searched
from the start till the N1-th frame of the movie. The



first frame of the end credits is searched from the N2-
th frame of the movie till the end of the video. N1 is
arbitrarily set to 3500. N2 is computed to be 97% of
the movie length. On these segments, we compute the
minimal distance between the current frame and a set
of example frames (see Figure 3). The distance is com-
puted as one minus the correlation of the histograms
(of 32 bins) computed on the luminosity channel of the
two frames. If the minimal distance is below a fixed
threshold, frames are considered to be duplicate.

If the end (resp. start) of the opening (resp. end)
credits is found, the similarities of shots correspond-
ing to frames before (resp. after) this frame are sub-
stantially lowered. This filtering operation is here-
inafter referred to as pc. The new similarity pc(sim)
is computed as a fraction of the current similarity sim:
pc(sim) = αc ∗ sim, with αc respectively set to 0.1 and
0.2 for opening and end credits.

This filtering using opening and end credits is here-
inafter referred as C.

4.2 Indoor/Outdoor shots filtering

For query regarding an indoor (respectively outdoor)
location, results should also contain only indoor (re-
spectively outdoor) locations. To this end, an in-
door/outdoor classifier is applied to the query images
and shots, and only shots of the same category than
the query image (or shot) are kept in the results.

This classifier is built on the Places365 database and
models, derived from the work by [23]. The 365 cate-
gories of the database have been manually classified:
190 categories as indoor, 175 categories as outdoor.
The pre-trained Places365 VGG16 model is applied
to each image. An image is classified as indoor (re-
spectively outdoor), if the majority of the 365 cate-
gories are in the indoor (respectively outdoor) category.
Time permitting, this rudimentary classifier should be
replaced by one model fine-tuned to detect these two
categories.

This filtering using indoor/outdoor categorization is
hereinafter referred as I.

4.3 Shot threads filtering

Inspired from [24], we compute shots threads, that is
temporally constrained clustering of shots that appear
similar. A shot belongs to a cluster if the intersection
of the BoW signatures between this shot and the other
shots of the cluster is inferior to a threshold.

From these shots threads, a filtering step of results
is derived where similarities of shots belonging to the
same shot thread (or cluster) are combined with a fu-
sion operator.

We used a fusion operator derived from MAX opera-
tor. This operator computes the new similarity sim′(s)

of shot s from its initial similarity sim(s) and the max-
imum similarity of the shot thread t this way:

sim′(s) = β ∗ sim+ (1 − β) ∗MAX(si)
si∈t

(1)

We used low values of β (typically 0.2).
This filtering using shots threads is hereinafter re-

ferred as T .

5 Late Fusion

Once the scores for the face recognition and location
recognition steps are computed, we apply a late fusion
operation, denoted ⊕. As scores are of different nature
(distances for pers1 and pers2, similarities for loc1), the
fusion operator is applied on the ranks. For two ranks
rank1 and rank2, the chosen operator ⊕ is a simple
linear combination of the ranks:

⊕(rank1, rank2) = α ∗ rank1 + (1 − α) ∗ rank2 (2)

This operator may be used to fuse the two person re-
sults. Then it is finally used to fuse person and location
results.

We chose α = 0.28 for A condition, and α = 0.41 for
E condition.

6 Evaluation of the submitted
runs

Eight runs were submitted by IRIM in 2018: four runs
for A condition and four for E condition. Table 1
presents the results obtained by these runs as well as
the best and median runs for comparison.

rank System/run MAP
1 Best run: F E E PKU ICST 1 0.4629
3 F A C IRIM 2 0.4426
4 F A E IRIM 1 0.4424
5 F E C IRIM 2 0.4365
6 F E E IRIM 1 0.4325
9 F A E IRIM 3 0.3980
10 F E E IRIM 3 0.3952
12 F A C IRIM 4 0.3835
15 F E C IRIM 4 0.3772
16 Median run 0.3696

Table 1: IRIM, best and median runs results among
the 31 fully automatic INS submitted runs.

Two fully automatic runs of PKU-ICST were ranked
first, the first IRIM run was ranked third. IRIM, with
its best run, thus finished second in terms of partici-
pants.



The eight submitted runs by IRIM may be described
by the following equations (where ⊕ is the rank based
fusion method):

F E E IRIM 1 = (p1E ⊕ l1E)

F E C IRIM 2 = (p2E ⊕ l1E)

F E E IRIM 3 = (p3E ⊕ l1E)

F E C IRIM 4 = (p4E ⊕ l1E)

F A E IRIM 1 = (p1A⊕ l1A)

F A C IRIM 2 = (p2A⊕ l1A)

F A E IRIM 3 = (p3A⊕ l1A)

F A C IRIM 4 = (p4A⊕ l1A)

where:

p1E = (pers2E +G+ T +N) ⊕ (pers2E + S + T +N)

p2E = pers2E + S + T +N

p3E = pers2E +G+ T +N

p4E = (pers2E + T +N) ⊕ (pers1E + T +N)

l1E = loc1E + C + I +R+ T

and likewise for A condition.
As a remainder:

• C indicates the begin and end credits filtering

• I indicates the indoor/ourdoor filtering

• R indicates the application of the re-ranking step
for locations

• T indicates the filtering by shots threads

• G indicates data augmentation for persons

• N indicates post-filtering using transcripts and
person name for persons

• S indicates reranking using an SVM for persons
Some remarks on the submitted runs:
• Runs differ only on the used person location

method : they all use the same location recognition
method l1. This method was studied in details in
[4]. The largest contributions to location recog-
nition performance were R and T steps. Even if
C and I contributions were negligible, these steps
were kept for comparison sake.

• Regarding source of training data, only cases C
and E are present. Runs 1 and 3 use data aug-
mentation G, thus are in case E. Runs 2 and 4
only use provided query images/videos and thus
are in case C.

From Table 1, we can observe that the best results
were obtained for runs 1 and 2, thus with p1 and p2
person recognition methods. Besides, methods for the
A condition seem to produce slightly better results than
methods for E condition.

In order to better understand the individual con-
tributions of our methods, we present in Table 2 the
mAP computed with different individual face recogni-
tion methods and variants, for 2016, 2017 and 2018
queries. In all cases, the same location recognition
method l1 is used and late fused with face recognition
results.

Some observations can be drawn from these results:

• The row A1 corresponds to the pers1 method used
for person recognition. INS18 results for the A
condition and INS16 results for the E condition
are not present: as two persons were not detected,
respectively Patrick and Mo, the final result was
non representative.

• The B rows compare the pers2 method, varying
the number K of example faces used to compute
the euclidean distance with detections on shot. K
varies from 1 to 4. We can see that K=1, i.e., MIN,
is the worst of the 4 tested methods. For K=2, 3
or 4, the difference is meaningful on 2017 queries.
The best results are obtained for K=2 or 3. K=3
was used for all the submitted runs. Compared
to pers1 method (row A1), we can see that the
results are slightly inferior on 2017, but better on
2016 and 2018 queries (when available). It seems
to give credit to our hypothesis that computing
distances against averaged face embeddings may
in certain cases be detrimental to face recognition
performance.

• The C1 row allows to evaluate the benefits of using
step N , post-filtering with transcripts and person
name. Compared to row B2, we can see that it
does not really change the performance, except for
2017 queries, where the improvement is noticeable.

• The D rows display the effect of step S, reranking
using an SVM. Overall, the results are improved,
compared to row B2. Rows D1 and D2, compared
to D3 and D4 allow to see the effect of an RBF or
linear kernel. The RBF kernel bring better results.
Adding step N (D1 vs D2, D3 vs D4) only seems to
slightly change the results. D2 is exactly our 2018
submitted run2, that is our better ranked run.

• The E rows allow to see the effects of step G, data
augmentation for persons. The results are also im-
proved (E1 vs B2). The step N (E2 vs C1) seems
to also have a limited effect. E2 is our 2018 sub-
mitted run3.

• The F rows combine step G, data augmentation
for persons, followed by step S, reranking using an
SVM with an RBF kernel. The results are worst
than G or S step alone.

• The G1 row shows the results for another way to
combine steps G and S, via late fusion. Here, the



Person recognition method
MAP (condition A) MAP (condition E)

2016 2017 2018 2016 2017 2018
A1) pers1 + T 0.2860 0.3719 X X 0.4083 0.2849
B1) pers2 (K=4) + T 0.3318 0.3260 0.3529 0.3454 0.3621 0.3536
B2) pers2 (K=3) + T 0.3324 0.3518 0.3603 0.3429 0.3927 0.3590
B3) pers2 (K=2) + T 0.3284 0.3540 0.3508 0.3401 0.3950 0.3503
B4) pers2 (K=1) + T 0.2919 0.2765 0.2772 0.3014 0.3079 0.2818
C1) pers2 (K=3) + + T N 0.3309 0.3762 0.3626 0.3412 0.4163 0.3646
D1) pers2 (K=3) + S (RBF) + T 0.3793 0.4569 0.4409 0.3935 0.5163 0.4347
D2) pers2 (K=3) + S (RBF) + T + N == Run2 0.3788 0.4575 0.4426 0.3927 0.5202 0.4365
D3) pers2 (K=3) + S (LIN) + T 0.3795 0.4355 0.4258 0.3930 0.4978 0.4156
D4) pers2 (K=3) + S (LIN) + T + N 0.3786 0.4355 0.4279 0.3917 0.5010 0.4180
E1) (pers2 + G) (K=3) + T 0.3959 0.4529 0.3974 0.4033 0.5021 0.3936
E2) (pers2 + G) (K=3) + T + N == Run3 0.3901 0.4574 0.3980 0.3983 0.5110 0.3952
F1) (pers2 + G) (K=3) + S (RBF) + T 0.3798 0.4417 0.4292 0.3895 0.4905 0.4222
F2) (pers2 + G) (K=3) + S (RBF) + T + N 0.3797 0.4435 0.4305 0.3888 0.4953 0.4241

G1)
(pers2 + G) (K=3) + T + N ⊕
pers2 (K=3) + S (RBF) + T + N == Run1

0.3860 0.4772 0.4424 0.3965 0.5315 0.4325

H1) pers2 (K=3) + T + N ⊕ pers1 + T + N == Run4 0.3673 0.4452 0.3835 0.3765 0.4895 0.3772

Table 2: Various person recognition methods evaluations on 2016, 2017 and 2018 queries, against NIST groundtruth.
In all cases, late fusion is done with location recognition method l1

results are better than individual methods on 2017
queries and quite similar to D2 results alone for
2018 queries. G1 is our 2018 submitted run1.

• The H1 row displays the results of late fusion of
pers1 and pers2, with step N . This fusion results
is better than individual methods alone (A1 and
C1). H1 is our 2018 submitted run4.

Overall, we can see that D2 combination gave the
better results for 2018 queries, G1 combination gave
better results for 2017 queries, and E1 gave better for
2016 queries. So, data augmentation and face reranking
seem to improve person recognition results the most.
However, even if some results are really close, there is
not a single combination that gives the better results
on all queries. Besides, it can also be observed that
best results on 2016 and 2017 queries are obtained in
E condition, but best results on 2018 queries are ob-
tained in A condition. It is noteworthy that this eval-
uation is done on mixed queries (’person P at location
L’). To better evaluate individual methods, individual
groundtruth for person or location alone is necessary.
As seen in [4], the individual groundtruth extracted
from this complete groundtruth is very incomplete and
thus is not very meaningful for thorough evaluation.

7 Conclusion

Our system proposes a simple scheme that combines
two person recognition methods and one location recog-
nition methods, first do a late fusion on face recognition

results, and apply a final late fusion to get the mixed
query results.

Our system effectiveness continues to improve com-
pared to our previous year participation.

This year, we reused a part of our 2017 location
recognition method, and focused on improving person
recognition results.

For the location recognition method, there are still
some points that should be examined. For instance,
the character filtering is quite rough and it should be
explored if it does not filter out too many features.
Besides, applying a deep-learning approach effectively
to location search is still a challenge.

For the person recognition method, we have com-
bined two methods, that differs in particular on how
distances between query and database face descriptors
are computed. We also started to investigate how to
use data augmentation, faces reranking and transcripts
to further improve these results. This partial evalua-
tion shows that some steps, like data augmentation and
faces reranking, are particularly useful and bring real
improvements to face recognition results and thus final
results. But other steps, like post-filtering using tran-
script and person name, need to be improved to bring
significant benefits. PKU-ICST got a high increase of
mAP using text-based search and transcripts in their
INS17 participation[25]. We should further investigate
how these transcripts could be better exploited. Be-
sides, we should also research how to improve the fusion
of our individual methods. For example, when doing
late fusion of individual person recognition methods,



we do not always get better results. Moreover, no spe-
cific combination is better on all the three years topics.
We should check in details, query by query, where the
differences in performance come from. However, as we
only have a ground truth for mixed queries (’person P
at location L’), it is not easy to know exactly whether
it is the location recognition part or the person recog-
nition part that must be improved first.

8 Acknowledgments

This work has been carried out in the context of the
IRIM (Indexation et Recherche d’Information Mul-
timédia) of the GDR-ISIS research network from
CNRS. This work has also been partially carried out
in the context of the Guimuteic project funded by
Fonds Européen de Développement Régional (FEDER)
of région Auvergne Rhône-Alpes. Finally, it was also
supported by ANR through the PLUMCOT (ANR-16-
CE92-0025) project.

References

[1] A. F. Smeaton, P. Over, and W. Kraaij, “Evalua-
tion campaigns and TRECVid,” in MIR ’06: Pro-
ceedings of the 8th ACM International Workshop
on Multimedia Information Retrieval, (New York,
NY, USA), pp. 321–330, ACM Press, 2006.

[2] G. Awad, A. Butt, K. Curtis, J. Fiscus, A. Godil,
A. F. Smeaton, Y. Graham, W. Kraaij, G. Qunot,
J. Magalhaes, D. Semedo, and S. Blasi, “Trecvid
2018: Benchmarking video activity detection,
video captioning and matching, video storytelling
linking and video search,” in Proceedings of
TRECVID 2018, NIST, USA, 2018.

[3] G. Awad, W. Kraaij, P. Over, and S. Satoh, “In-
stance search retrospective with focus on trecvid,”
International Journal of Multimedia Information
Retrieval, vol. 6, no. 1, pp. 1–29, 2017.

[4] B. Mansencal et al., “IRIM at TRECVID 2017:
Instance Search,” in Proceedings of TRECVID
2017, NIST, USA, 2017.

[5] H. Bredin and G. Gelly, “Improving speaker di-
arization of TV series using talking-face detection
and clustering,” in ACM MM 2016, 24th ACM
International Conference on Multimedia, (Amster-
dam, The Netherlands), October 2016.

[6] Y. Yusoff, W. Christmas, and J. Kittler, “A
Study on Automatic Shot Change Detection,” in
Multimedia Applications, Services and Techniques,
pp. 177–189, Springer, 1998.

[7] N. Dalal and B. Triggs, “Histograms of Oriented
Gradients for Human Detection,” in Computer Vi-
sion and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, vol. 1,
pp. 886–893 vol. 1, June 2005.

[8] M. Danelljan, G. Häger, F. Shahbaz Khan, and
M. Felsberg, “Accurate Scale Estimation for Ro-
bust Visual Tracking,” in Proceedings of the
British Machine Vision Conference, BMVA Press,
2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” in The
IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2016.

[10] D. E. King, “Dlib-ml: A Machine Learning
Toolkit,” Journal of Machine Learning Research,
vol. 10, pp. 1755–1758, 2009.

[11] H.-W. Ng and S. Winkler, “A data-driven ap-
proach to cleaning large face datasets,” in Image
Processing (ICIP), 2014 IEEE International Con-
ference on, pp. 343–347, IEEE, 2014.

[12] O. M. Parkhi, A. Vedaldi, and A. Zisserman,
“Deep face recognition,” in British Machine Vi-
sion Conference, 2015.

[13] H. Bredin, “pyannote-video: Face Detection,
Tracking and Clustering in Videos.” http://
github.com/pyannote/pyannote-video. Ac-
cessed: 2016-07-04.

[14] D. E. King, “Max-margin object detection,”
CoRR, vol. abs/1502.00046, 2015.

[15] P. Sang et al., “NII Hitachi UIT at TRECVID
2017,” in Proceedings of TRECVID 2017, NIST,
USA, 2017.

[16] B. Mansencal et al., “IRIM at TRECVID 2016:
Instance Search,” in Proceedings of TRECVID
2016, NIST, USA, 2016.

[17] K. Mikolajczyk and C. Schmid, “Scale & affine
invariant interest point detectors,” International
Journal of Computer Vision, vol. 60, no. 1, pp. 63–
86, 2004.

[18] R. Arandjelović and A. Zisserman, “Three things
everyone should know to improve object retrieval,”
in IEEE Conference on Computer Vision and Pat-
tern Recognition, 2012.

[19] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zis-
serman, “Object Retrieval with Large Vocabular-
ies and Fast Spatial Matching,” in Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, 2007.



[20] M. J. Salton, G; McGill, Introduction to modern
information retrieval. McGraw-Hill, 1986.

[21] C.-Z. Zhu, H. Jegou, and S. Ichi Satoh, “Query-
Adaptive Asymmetrical Dissimilarities for Visual
Object Retrieval,” in The IEEE International
Conference on Computer Vision (ICCV), Decem-
ber 2013.

[22] X. Zhou, C.-Z. Zhu, Q. Zhu, S. Satoh, and Y.-T.
Guo, “A practical spatial re-ranking method for
instance search from videos,” in Image Processing
(ICIP), 2014 IEEE International Conference on,
pp. 3008–3012, IEEE, 2014.

[23] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba,
and A. Oliva, “Learning Deep Features for Scene
Recognition using Places Database,” in Advances
in Neural Information Processing Systems 27
(Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, eds.), pp. 487–
495, Curran Associates, Inc., 2014.

[24] M. Tapaswi, M. Bauml, and R. Stiefelhagen, “Sto-
ryGraphs: Visualizing Character Interactions as
a Timeline,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion, pp. 827–834, 2014.

[25] Y. Peng et al., “PKU ICST at TRECVID
2017: Instance Search task,” in Proceedings of
TRECVID 2017, NIST, USA, 2017.


