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Abstract: The Wang-Landau (WL) algorithm is a recently developed stochastic algorithm
computing densities of states of a physical system. Since its inception, it has been used on a
variety of (bio-)physical systems, and in selected cases, its convergence has been proved. The
convergence speed of the algorithm is tightly tied to the connectivity properties of the underlying
random walk.
As such, we propose an efficient random walk that uses geometrical information to circumvent the
following inherent difficulties: avoiding overstepping strata, toning down concentration phenomena
in high-dimensional spaces, and accommodating multidimensional distribution.
Experiments on various models stress the importance of these improvements to make WL effective
in challenging cases. Altogether, these improvements make it possible to compute density of states
for regions of the phase space of small biomolecules.

Key-words: MCMC, Wang-Landau, statistical physics, random walk, high dimension, sampling,
importance sampling



Wang-Landau Algorithm:
an adapted random walk to boost convergence

Résumé : L’algorithme de Wang-Landau est un algorithme stochastique récemment développé
calculant la densité d’états pour des systèmes physiques. Depuis sa création, il a été utilisé sur
des systèmes (bio-)physiques. Dans certain cas, sa convergence a été prouvée. La vitesse de
convergence de l’algorithme est intimement liée aux propriétés de connectivité de la marche
aléatoire sous-jacente.

Nous proposons ici une marche aléatoire efficace utilisant des informations géométriques pour
prévenir les difficultés suivantes: passer par dessus des strates, atténuer les phénomènes de
concentration de la mesure en grande dimension, et gérer les distributions multimodales.

Les expériences numériques sur différents modèles démontrent l’importance de ces améliora-
tions pour rendre WL efficace dans des cas complexes. In fine, ces améliorations rendent possible
le calcul de densité d’état pour des régions de l’espace des phases de petite bio-molécules.

Mots-clés : MCMC, Wang-Landau, physique statistique, marche aléatoire, grande dimension,
échantillonnage, importance sampling
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WL: an adapted random walk 5

1 Introduction

1.1 The Wang-Landau algorithm

The Wang-Landau algorithm for density of states calculations. The derivation of ob-
servable properties of (bio-)molecular systems at thermodynamic equilibrium relies on statistical
physics, with the formalism of stochastic ensembles playing a pivotal role[1, 2, 3, 4]. Amidst the
various algorithms available, the Wang-Landau (WL) algorithm [5, 6] is now well known and
widely used despite its recent inception, in particular due to its simplicity and genericity. The
WL algorithm estimates the density of states (DOS) of a system, namely the number of states
(volume in phase space) of the system available at each energy level (whence the term density),
which is especially useful to compute partition functions in statistical physics, and more gener-
ally observables–e.g. the average energy or the heat capacity. Estimating the DOS is especially
challenging in presence of broken ergodicity; in that case, the presence of multiple energy wells
prevents the system to efficiently sample the potential energy landscape (PEL), as it remains
confined in selected wells [7, 8].

To review previous work, it is important to recall that the WL algorithm falls in the realm of
adaptive Monte Carlo Markov Chain (MCMC) sampling algorithms. In a nutshell, WL returns
an estimation of the DOS in terms of histogram. The bins of the histogram correspond to a par-
titioning of the energy range of the system. The algorithm resorts to importance sampling, using
a biasing function derived from the current estimation of the DOS. Since the limit distribution
sought is defined by the density of states, the random walk is built from the Metropolis-Hastings
algorithm (M-H) [9], using the current DOS estimate in the rejection rate. (We note in passing
that since the DOS values used to define transition probability depend on the history, WL is not
a Markov process.) Additionally, a so-called flat histogram rule may be used to count the visits
in each energy stratum and update the learning rate when all strata have been evenly visited.
These main ingredients recalled, one may observe that numerous improvements were made to
the original algorithm [5], both in terms of design and analysis of performances. The first key
improvement has been the 1/t algorithm which solved the so-called error saturation problem
[10, 11], in which a constant error on DOS estimates was incurred, due to a too fast reduction of
the learning rate. Another key initiative has been to tune the random walk / proposal and the
energy discretization [12], as large bins may hinder convergence by keeping the system trapped.
To avoid this pitfall, a dynamic maintenance of bins has been proposed, in order to maintain a
proper balance of samples across a stratum. Concomitantly, a proposal defined from a mixture of
Gaussians has been introduced, in order to attempt moves of the proper size. In a different vein,
it has been proposed to speed up convergence resorting to parallelism via multiple walkers [6].
However, this approach should be taken with care, as problems arise when a large number of
walkers are used [13].

On the mathematical side, for the WL algorithm variant using the flat histogram, the im-
portance of the analytical form of the DOS update rule was established [14]. For WL with a
deterministic adaptation of the learning rate, to which the 1/t variant belongs, the correctness of
the DOS estimates was proved, regardless of the particular analytical expression of the update
rule [15].

Applications. Application-wise, WL has been used on a variety of physical systems, and more
recently to biomolecules. Thermodynamics properties of RNA secondary structures were esti-
mated using the WL algorithm [16]. Properties of clusters and peptides (up to 8 a.a.) were
studied in [17]. Likewise, the thermodynamics properties of misfolded (containing a helix struc-
ture rather than a β-sheet) proteins, such as those involved in mad cow and Creutzfeldt-Jakob
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6 Chevallier / Cazals

diseases, were studied by feeding a coarse grain protein to the 1/t WL algorithm variant [18]. In
a similar spirit, a modified flat rule histogram was used in [19] to study properties of polymers
on a lattice, in the HP model. However, processing continuous models of protein of significant
size has remained out of reach so far [20].

1.2 Contributions
The proposal used to generate candidate conformations and the energy discretization influence
one another: the average step size of the proposal should be dependent on the size energy bins.
For large energy strata, the step size should be large, and small for narrow energy bins. Thus
the proposal and bin sizes should not be independent, and the step size of the random walk
should depend on local information. Such intricacies have precluded the development of effective
WL algorithms to to handle systems as complex as bio-molecules. We make a step into this
direction, as this paper focuses on the design of proposals improving the convergence speed of
the algorithm, especially in high dimensional settings.

More specifically, we make three contributions. First, we design a proposal to avoid over-
stepping strata (section 3.3), using information on the level set surfaces bounding the strata.
Second, we design a proposal to avoid congestion–i.e. remaining stuck in a stratum, a difficulty
faced to move downward towards a local minimum or upward towards a local maximum. This
proposal uses a heuristic based on cones to fight measure concentration problems inherent to
high dimensional spaces (section 3.4). Finally, we introduce a darting move for multimodal
distributions (section 3.5).

2 The Wang-Landau algorithm

2.1 Problem statement
We first introduce some classical notations [15]. Consider a bounded subset E ⊂ Rn endowed
with the Lebesgue measure λ as a reference. Consider also a probability distribution π with
density π(x) with respect to the Lebesgue measure. Denoting U : E → RD a real valued
function, consider a discretization U0 < U1 < · · · < Ud of its range, with possibly U0 = −∞
and Ud = +∞. Also consider the partition of E into so-called strata {E1, . . . , Ed}, defined as the
pre-images of the potential energy, namely the strata Ei are

Ei = {x ∈ E|U(x) ∈ [Ui−1, Ui)}.

Our problem is to estimate

θ∗i
Def
=

∫
Ei
π(x)λ(dx),∀i = 1, . . . , d. (1)

Note that Eq. (1) is actually π(Ei), the probability of Ei with respect to π. This problem arises
in many areas of science and engineering, two of which are discussed below.

Statistical physics: partition function. In this setting, the function U is the potential
energy of a physical system. The distribution π stands for Boltzmann’s distribution, that is,
with β = 1/(kBT ) the inverse temperature (and kB Boltzmann’s constant):

π(x) = Z−1β exp(−βU(x)), with Zβ =

∫
E
exp(−βU(x))dx. (2)

Inria



WL: an adapted random walk 7

Note that Zβ is the so-called partition function of the system. In this context, Eq. (1) reads as
θ∗i = Z−1β

∫
Ei exp(−βU(x))dx, and one has

∑
i θ
∗
i = 1. The WL algorithm computes estimates θi

for θ∗i , which also satisfy
∑
i θi = 1. The individual quantities θi are of interest since their values

provide the relative weights of the strata. However, they do not give access to the partition
function Zβ itself, whose calculation requires a re-normalization.

It should also be noticed that incorporating Boltzmann’s factor π into Eq. (1) results in
quantities θi which depend on the particular temperature used.

Statistical physics: density of states. To avoid the aforementioned temperature depen-
dence, we use

π(x) = 1/λ(E), (3)

so that Eq. (1) yields
θ∗i = λ(Ei)/λ(E). (4)

The relative volume of the i-th stratum can then be used to estimate the partition function at
any temperature, using a calculation akin to numerical integration. Practically, Eq. (4) is the
target of our experiments.

Numerical integration. A closely related problem is the calculation of a D-dimensional in-
tegral

ID =

∫
E
f(x)dx. (5)

Assume that the range Yf = [ymin, ymax] spanned by f in the domain I is known, and that this
interval has been split into n interval [yi, yi + dy]. Consider the estimates from Eq. (1) with
π(x) = 1/λ(E). Assume that WL has been run, and denote yi the average value of function f
computed over all points such that f(x) ∈ [yi, yi + dy]. The integral can be estimated as [21]

I ≈
∑

i=1,...,n

θNormi yi, with θNormi = λ(E)θi. (6)

2.2 Algorithm

Sampling from a probability distribution µ. Assume we wish to sample a target distribu-
tion µ. We assume the existence of a proposal q on E with probability density q(x, ·) – a transition
starting from x. Using the Metropolis-Hastings transition kernel for general state spaces, and
denoting δx a point mass at x, we introduce a random walk Pµ whose limiting distribution is µ
– see [22, Section 3.4] and [23]:{

Pµ(x, dy) = q(x, y)α(x, y)dy + δx(dy)
∫
E(1− α(x, z))q(x, dz),

α(x, y) = min(1, µ(y)q(y,x)µ(x)q(x,y) ).
(7)

with α(x, y) the acceptance probability of the new state y. Note that the correction factor
q(y,x)/q(x,y) allows q to be non-symmetric, a feature used extensively thereafter.

RR n° 9223



8 Chevallier / Cazals

Algorithm. Consider the strata Ei defined above, as well as the mapping J : E → {1, . . . , d}
returning the index J(x) of the stratum containing x.

The WL algorithm iteratively construct a sequence θ(t) = (θ1(t), ..., θd(t)) of estimates for
the unknown vector θ∗ = (θ∗1 , ..., θ

∗
d) defined from Eq. (1). (NB: for the sake of conciseness,

we drop the index t, as the time dependency is implicit.) For an estimate θ, we introduce the
piecewise continuous probability density

πθ(x) =

(
d∑
i=1

θ∗i
θi

)−1
π(x)

θJ(x)
(8)

The weight of each Ei under πθ is proportional to θ∗i /θi; In particular, all energy levels have the
same weight 1/d under πθ∗ . The algorithm is then an importance sampling-like strategy, using
πθ as the bias. Observe that points sampled according to πθ fall on average more in bins with
underestimated density. Then the algorithm iterates the following two main steps:

• First, at each step, a point x is sampled according to πθ. More precisely, using µ = πθ in
Eq. (7) yields a Markov kernel Pπθ denoted Pθ for the sake of conciseness; this kernel is
used to sample its invariant distribution πθ.

• Second, multiply θJ(x) by an increment γ > 1 called the learning rate, and finally decrease
the learning rate by a small fraction.

The way the learning rate γ is decreased calls for a short discussion. Historically, the Flat
Histogram criterion was used [5]. Let νt(i) be the number of samples up to iteration t falling
into bin Ei. The vector {νt(i)} is said to verify the flat histogram (FH) criterion provided that,
given a constant c:

max
i=1,...,d

| νt(i)
t
− 1/d |< 1− c. (9)

If this criterion holds, γ is decreased using γ ← √γ. Since log γ ← (1/2) log γ, this regime is called
the exponential regime in the sequel. Unfortunately, this too fast rate yields an error known
as the saturation error [10, 11]. Also, the flat histogram variant is sensitive to the particular
analytical form of the update rule [14]. To circumvent this difficulty, the γt = exp(1/t) rule
was proposed [10]. Practically, one combines the two update strategies by starting with the flat
histogram and the exponential regime, switching to the 1/t rule as soon as γ is smaller than
exp(1/t) [10].

The complete algorithm (Algo. 1) depends on the following parameters which influence its
convergence speed: (i) the constant c for the flat histogram, (ii) the value of γ0, (iii) the energy
discretisation, (iv) the proposal q.

2.3 Theoretical convergence

A number of methods (auto-correlation as s function of the lag time, total variation distance,
statistical tests) have been developed to assess the convergence of MCMC methods in particular
and random processes in general [24, 25].

The convergence of WL is more challenging, since the algorithm uses a sequence of Markov
kernels Pθ. It has been studied in [15], using suitable assumptions on (i) the equilibrium mea-
sure, (ii) the Metropolis-Hastings kernel, and (iii) the sequence of learning rates. Under these
assumptions, the authors proved a central-limit like theorem giving a theoretical convergence
speed of O(1/

√
n) with n the number of steps.

Inria
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Algorithm 1 Wang Landau
1: Set θ = (1/d, ..., 1/d)
2: Set exponential regime = True
3: Set γ = γ0 with γ0 > 1
4: while t < tmax do
5: Sample xt+1 ∼ Pθ(xt, .)
6: Set θJ(xt+1) = γ θJ(xt+1)

7: Renormalise θ
8: if Exponential regime then
9: if Flat histogram then

10: γ =
√
γ

11: if γ < exp( 1
t+1 ) then

12: Set exponential regime = False
13: Set γ = exp( 1

t+1 )
14: else
15: γ = exp( 1

t+1 )

2.4 Convergence rate: further insights

The convergence speed of the WL is tightly coupled to the mixing times of the Markov chains
Pθ, which depends on the proposal q. In [12], a refinement rule for the discretisation is provided
as well as a rule to find suitable parameters for a multi-modal Gaussian proposal. The paper
does not establish any explicit link between the proposal and the discretisation. However, a
symmetric proposal is used. Such proposal will sample the space uniformly. Hence, to obtain a
high transition probability between two energy levels, the ratio of their respective volumes must
be controlled: should this ratio be too small (or to high), the probability of proposing a move
going from the smallest energy level to the biggest one vanishes. This obstruction vanishes for a
non symmetric proposal, a strategy we will be using.

For multi-modal distributions, the difficulty to switch from one mode to another can also be
a bottleneck for the mixing time. In [26], a strategy called darting is proposed. It consists in
attempting long range jumps between regions associated to precomputed modes. The knowledge
of the volume of the targeted regions allows one to guarantee detailed balance [27] whence a
procedure sampling the desired distribution. Note that for molecular systems, where Boltzmann
distribution yields one mode for each local minimum of the potential energy, local minima can be
obtained by gradient descents and associated search methods such as basin hopping and variants
[28, 29].

2.5 MCMC and adaptivity

For general MCMC algorithm, it has been shown that an adaptive Markov chain can lead to
erroneous results [30]. Practically, for a given probability π, there might exist a sequence Pi
of Markov kernels with limiting distribution π for all i such that for a given X0, the sequence
of random variables defined by Xi ∼ Pi(Xi−1, .) does not converge to the limiting distribution
π. This does not affect the Wang-Landau algorithm itself. However, any adaptivity must be
stopped before the end of the algorithm. The choice we make is to stop any adaptivity once the
flat histogram has been met a given number of times denoted NFHE in the sequel.

RR n° 9223
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3 Methods: improving convergence speed

3.1 Rationale and difficulties targeted

Diffusivity across strata. As outlined in section 2, the convergence of the Wang-Landau
algorithm largely relies on a suitable choice for the proposal q and the energy discretisation. In
particular, a suitable proposal q and energy discretisation should leave no energy stratum poorly
connected. The problem is stringent for energy strata near local minima and maxima where two
difficulties are faced: accessing the strata, and leaving them.

For the particular case of local minima which is of interest in the sequel, accessing a low
energy stratum is especially hard in high dimensional spaces: the volume of such strata being
(in general) exponentially small in the dimension, they may be visited very seldom, resulting in
an underestimation of the DoS θi.

In turn, this underestimation makes it difficult to leave the stratum. To see why, assume that
the stratum i has been reached, and that the proposal q attempts a move from say x ∈ Ei to
y ∈ Ei+1. By the M-H criterion Eq. (7) applied to the target distribution Eq. (8), this move is
accepted with probability proportional to

π(y)

π(x)

θJ(x)

θJ(y)

q(y, x)

q(x, y)
. (10)

Assuming that the ratio between q(y, x) and q(x, y) is bounded, if θJ(x) is severely underesti-
mated, the move upward will be accepted with very low probability.

As suggested by this discussion, we aim for a ladder-like random walk connecting each energy
level with the one bellow and the one on top with an as high as possible probability (Fig. 1).
Such a random walk is termed diffusive. To this end, the following difficulties must be overcome
by the proposal q:

• Difficulty 1: no overstep – section 3.3. To avoid overstepping strata, we introduce a
topography adapted proposal which exploits the geometry of level set surfaces of the land-
scape.

• Difficulty 2: no congestion – section 3.4. We develop a high dimensional geometry aware
biasing strategy to promote the effective move across strata. This strategy learns the right
aperture angle of cones encompassing the level set surfaces of strata below/above. In high
dimensions, this is a difficult endeavor since proposals exploring uniformly the entire space
face difficulties to hit these strata.

• Difficulty 3: multimodal distributions – section 3.5. To deal with the case of multi-
modal distributions, we resort to darting, a strategy meant to connect parts of the energy
landscape which are separated by energetic or entropic barriers.

• Difficulty 4: energy range discretization – section 3.6. Slow convergence may be due
to an inappropriate energy discretization. We resort to a refinement strategy to fix such
problems.

Remark 1. It may be noticed that Eq. (10) simplifies in two settings: the first ratio is equal to
one with π is uniform – see also Eq. 3; the last one is also equal to one when the proposal is
symmetric. In that case, one is left with θJ(x)/θJ(y).

Inria



WL: an adapted random walk 11

Figure 1 Diffusivity between strata in WL.We consider a potential energy function U whose
strata or energy levels are denoted Ei = {x ∈ E|U(x) ∈ [Ui−1, Ui)}. Energy levels may be seen
as the nodes of a graph and may be connected in a variety of ways. In this work, we exploit a
proposal q, which, via the Metropolis-Hastings criterion, connects strata in the WL algorithm
in a ladder-like fashion. This strategy is especially well suited to sample a basin of arbitrary
geometry.

En

En−1

E1

E0

En−2

3.2 Metrics to assess the diffusivity
We now introduce criteria to be correlated with the convergence of WL. We actually assess the
notion of diffusivity just introduced in two ways: (i) using the moves proposed by q to study
the diffusivity of the proposal, and (ii) using the moves proposed by q and processed by the WL
M-H criterion to study the diffusivity of WL. To present the criteria based on these two types
of moves, recall that there are d strata denoted E1, . . . , Ed.

Descending times. As a global metric targeting moves accepted by WL, we resort to so-called
descending times:

Definition. 1. A descent across d strata is defined by two times t0 and t1 such that

• xt0 ∈ Ed and xt0−1 /∈ Ed.

• xt1 ∈ E1 and ∀t ∈ [t0, t1[, xt /∈ E1.

The descending time is then t1 − t0.

Aggregated transition matrices (ATM). To further our analysis, we also define:

Definition. 2. Consider an execution of WL. The aggregated transition matrix for q, denoted
ATMq, is the d × (d + 1) row stochastic matrix providing the frequencies of transitions between
strata corresponding to the moves proposed by q along the execution. (Nb: column d + 1 corre-
sponds to moves ending outside the bounded region E.)

The aggregated transition matrix for WL, denoted ATMWL, is the d×d row stochastic matrix
providing the frequencies of transitions within WL.

These definitions call for the following comments:
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12 Chevallier / Cazals

• The entries of the matrices are frequencies observed over an execution run of WL, rather
than probabilities.

• For the sake of coherence, we represent matrices ATMq and ATMWL as d×(d+1) matrices,
even though the last column differs: it may be populated for ATMq, but is never so for
ATMWL. Indeed, in the course of the WL algorithm, moves leaving the strata are rejected.

• Matrix ATMWL is not the matrix of a discrete Markov chain whose state space is the set
of strata. Indeed, transitions are recorded for the evolving kernels Pθ used in the course of
the WL algorithm.

• Finally and most importantly, these matrices are meant to provide a concise encoding of
the diffusivity of the random walks. In short, for a given row of either matrix, consider the
connected components of the populated cells–that is the strata which are accessible from
a given stratum. Ideally, one expects one connected component of width at least three,
meaning that from a given stratum, one stays in place or visits the strata above and below
in energy.

Remark 2. Descending times and aggregated transition matrices target different purposes. On
the one hand, descending times only use the extreme strata, while transition matrices encode
information involving all strata. On the other hand, descending times are easily localized. Con-
sider a situation where the potential energy landscapes has two regions characterized by low and
large descending times. Spatializing descending times, e.g. by clustering, is easier than defining
localized aggregated transition matrices.

3.3 No overstepping across strata
3.3.1 Problem

Strata of small thickness tend to be stepped over. This typically happens when the landscape is
steep or the discretization is fine. It is thus important to adapt the travel distance of the proposal
in such regions.

A Gaussian mixture identical for all strata has been used [12]. However, the mixture is
symmetric (see section 2.4) and does not exploit the geometry of the landscape.

3.3.2 Solution

Rationale. We estimate the local shape of the energy function using a Taylor expansion of the
energy. We use an order two expansion since the gradient vanishes near local minima.

We first sample a vector u uniformly at random in the unit sphere Sn−1. We then compute
the Taylor expansion in the direction of u with h ∈ R:

U(x+ hu) = U(x) + h(∇U · u) +
1

2
h2(uTHessu). (11)

Assuming that x ∈ Ei, using the Taylor expansion, we compute the interval [h0, h1] such that for
h ∈ [h0, h1] (Fig. 2)

x+ hu ∈ Ei (12)

Doing the same for Ei−1 and Ei+1 yields [h−1, h0] and [h1, h2]. The last steps are to pick any of
these 3 intervals with probability 1/3 and to sample h uniformly in the chosen interval. Doing
so effectively adapts the proposal to the local shape of the energy landscape, allowing multiple
scales. Even better, it also changes and adapts to the chosen direction.

Inria
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Figure 2 Proposal exploiting the geometry of the landscape to avoid overstepping
strata: a move from x0 ∈ Ei should either stay in Ei, move to Ei−1, or move to Ei+1. The
intersection between a random line through x0 with the level set surfaces of a quadratic approx-
imation of the potential yields points {Hi} defining three segments [H−1, H0], [H0, H1], [H1, H2].
Each such segment is chosen at random with probability 1/3, and a point is generated uniformly
at random within the chosen segment. Note that the same random line can be obtained for two
opposite vectors u and −u.

x0

~u H1 H2

Ei

Ei+1

Ei−1
Hi = x0 + hiu

Ei−2

H−1
H0

Probability for the proposal. We now set up the formulae. Assume that the vector u is
sampled uniformly at random in the unit sphere Sn−1. Also compute the hi from from the Taylor
expansion at x in the direction of vector u = y−x

‖y−x‖ . Then, the probability density of going from
x to y for any x and y with respect to the Lebesgue measure on {x+ Ru} is

Pno-overstep (x, y | u) = 1{x+Ru}(y)

2∑
i=0

1[hi−1,hi](< y − x, u >)
1

3|hi − hi−1|
(13)

Consider also the uniform probability density on Sn−1:

Punifdir (u) = 1/Area(Sn−1) =
Γ(n/2)

2πn/2
(14)

Taking into account the fact that vectors u and −u yield the same intervals, and that we consider
the sphere of radius ‖y − x‖, the final proposal reads as

qunifno-overstep(x, y) = 2
1

‖y − x‖n−1
Punifdir

(
y − x
‖y − x‖

)
Pno-overstep

(
x, y | u =

y − x
‖y − x‖

)
. (15)

Remark 3. Equation (11) explicitly uses the Hessian. In practice, the second order directional
term is estimated numerically using the gradient.

Remark 4. To understand the interest of the previous calculation, the analysis of an overly
simplified case is of interest. Assume that the domain E is a cube, and the level set surfaces
bounding the strata are hyperplanes parallel to one face. We call the width W (Ei) of a stratum
Ei the distance between its two bounding planes. Assume the strata Eix 3 x and Eiy 3 y are
consecutive. It is easy to show using Thales theorem that if the boundary of the domain is not
hit:

qunifno-overstep(y, x)

qunifno-overstep(x, y)
=
W (Eiy )

W (Eix)
.

Furthermore, in the cube:
W (Eix)

W (Eiy )
=

Volume(Eix)

Volume(Eiy )
=
θ∗ix
θ∗iy

.
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14 Chevallier / Cazals

Therefore, from Eq. (10), the acceptance ratio in Metropolis-Hastings (eq. 10) in Wang-Landau
when the vector θ is close to θ∗ is close to 1. It effectively brings the asymptotic rejection rate
of the Wang-Landau random walk to 0.

3.4 No congestion: dealing with high dimensionality and concentration
3.4.1 Problem

As noticed in section 3.1, we wish to design a proposal diffusing from Ei to Ei−1 and Ei+1. In
the sequel, we present a strategy meeting this goal, based on a random direction in a suitable
cone, in conjunction with the no overstep strategy from section 3.3. Our presentation focuses on
moves downward which is helpful near local minima, yet readily generalizes to moves upward for
the case of local maxima.

Consider the problem of lowering the energy by moving from stratum Ei to Ei−1 (Fig. 3),
starting at point x0. To do so, a direction in a cone of angle α(x0, Ei−1) must be chosen because
directions outside this cone do not intersect Ei−1. As the dimension increases, the probability
of sampling a point in a cone of fixed aperture decreases exponentially with the dimension (Fig.
4), preventing the proposal to reach the stratum Ei−1.

Figure 3 Reaching region Ei−1 from Ei
near a local minimum: cone of suit-
able directions. Note that a similar prob-
lem is faced to move upward near a local
maximum.

x0

Eiα(x0, Ei−1)

Ei−1

Figure 4 Ratio between the area of the
spherical cap subtained by an angle θ
and that of the whole n-dimensional
hemisphere Sn−1/2 – see Eq. (36 in
Appendix. Ranges explored: dimension
n ∈ [3, 100], and angle θ ∈ [0, π/2].

3.4.2 Solution

Rationale. The most straightforward way to overcome this problem is to decrease the bin size.
Indeed doing so makes α(x0, Ei−1) closer to π/2. In practice, the bin splitting strategy from [12]
achieves this goal. However, the number of required strata increases with dimension, making
this strategy less effective.

Let Cdown(x0, Ei−1) ⊂ Sn−1 the subset of directions which allow moving into Ei−1 from a point
x0 ∈ Ei. Ideally, we could avoid splitting bins if we could bias the choice of direction towards

Inria



WL: an adapted random walk 15

this subset. An approximation of Cdown(x0, Ei−1) could be found using a full second order Taylor
expansion (thus requiring the full Hessian matrix). However this would be computationally very
costly and the sampling procedure on such an approximation is unknown. Therefore, we limit
ourselves to isotropic estimations of Cdown(x0, Ei−1), i.e. Cdown(x0, Ei−1) is estimated by an
isotropic cone of angle α(x0, Ei−1).

At a given point, consider the gradient of U . We take ∇U as the cone axis since it is
the most natural candidate in the absence of additional information. In contrast, the aperture
angle α(x0, Ei−1) depends on the geometry of the level set bounding Ei−1 – a global information
unavailable. We bypass this problem by assuming that a single aperture α(Ei, Ei−1) is suitable
for the majority of points in Ei. This assumption holds if for example the curvature and width
of stratum do not vary too much. The aperture can now be estimated during runtime. However,
as noted in 2.5, adaptivity in MCMC algorithms can prevent convergence. Therefore, if the flat
histogram criterion is used, we stop the learning procedure when the flat histogram criterion has
been reached NFHE times .

Estimating the aperture angle. For a stratum Ei, we wish to select an angle amidst a
predefined set {α(0)

i , ..., α
(k)
i }. We apply the following procedure–which is independent from the

generation of xt+1. For a given point xt ∈ Ei sampled by Wang-Landau, consider the cones of
apex xt, axis ∇U(xt), and aperture angles α(j)

i . We sample M vectors uniformly in each cone,
and check for each of them whether the stratum Ei−1 can be reached. Assume m points xt has
been sampled. We compute for each cone the probability to reach Ei−1 over the m×M vectors
sampled. Since this probability is expected to be large for cones of small aperture, we pick the
largest cone whose probability is larger than a user specified threshold pc. If no such angle exists,
we use the fallback bin split strategy of section 3.6.

Probability for the proposal. Assume one knows how to sample uniformly at random a
point in a cone, whence a random direction defined by the apex of the cone and that point – SI
Section 6. With 1cone(·) the indicator function of the cone, the corresponding probability reads
as

P conedir (u) = 1cone(u)/Area(Sn−1 ∩ cone). (16)

We introduce the following proposal based upon the no overstep proposal in the direction just
chosen:

qconeno-overstep(x, y) = 2
1

‖y − x‖n−1
P conedir

(
y − x
‖y − x‖

)
Pno-overstep

(
x, y | u =

y − x
‖y − x‖

)
(17)

Remark 5. Similarly to Eq. (15), Eq. (17) uses both vectors u and −u indistinguishably,
even though our focus in on moving downwards. This is a design choice meant to make the
implementation easier. In the worst case, a factor of two is lost to move downward.

Remark 6. The previous strategy, which uses a dictionary of cone apertures, calls for the fol-
lowing comments:

• The cone strategy combines local and non local pieces of information. The local information
resides in the gradient. The non local information resides in the geometry of level set
surfaces bounding the strata; this geometry is indeed accounted for indirectly by learning
the right aperture angle. Using non local information makes it different from Hamiltonian
Monte Carlo (HMC) [31] or Metropolis-adjusted Langevin algorithm (MALA) [32].
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16 Chevallier / Cazals

• The aperture angle of the cone is actually critical. Consider the set of directions delimited
on Sn−1 by a given cone. When the dimension increases, the mass of this set of directions
concentrates on the boundary of the cone. Therefore, if the cone aperture is overestimated,
sampled directions will end up with high probability in this region, and the corresponding
proposal will miss the targeted stratum.

• Since the used cones are isotropic, one expects the method to be less efficient to handle
highly non isotropic cases. However, moderately non isotropic cases are handled as well –
see Experiments.

• Even if a suitable cone is found by the previous procedure, the Metropolis-Hasting acceptance
rate might be low – for instance if strata are too wide or if the curvatures of level sets non
constant.

3.5 Handling multimodal distributions via darting
3.5.1 Problem

Classical proposals face difficulties to connect basins which are separated by energetic or entropic
barriers (regions with high density of states but possibly no local minimum) [33, 34], inducing
long mixing times.

3.5.2 Solution

Assuming one has a a priori knowledge of the positions m1, ..,mK of theses minima, it is natural
to introduce another type of move allowing jumps from one minima to another. To implement
this, we use a darting strategy – see [26, 27].

Darting in its simplest form defines a radius ρ, then adds transitions between the balls
B(mi, ρ). In practice, if xt ∈ B(mi, ρ), one picks a ball at random–let j be its index, and
proposes the following move: xt+1 ∼ Unif(B(mj , ρ)). However the balls B(mi, ρ) do not match
the level set surfaces of their respective basins. Hence U(xt+1) − U(mj) might be much larger
than U(xt)− U(mi), leading to poor acceptance rates in the Wang-Landau algorithm.

Choice of the candidate point. Denoting mkt the local minimum whose basin contains xt,
define ∆Ut = U(xt)− U(mkt). Our rationale to optimize the acceptance ratio in Wang-Landau
is to control both ∆Ut − ∆Ut+1 and the ratio q(y, x)/q(x, y). For the former, we proceed as
follows in two steps. First, we chose a target energy. For a given xt, let k be the index of the
minimum chosen at random. For some β > 0, we choose a target energy

TU ∼ Unif(U(mk) + ∆Ut − β, U(mk) + ∆Ut + β). (18)

Second, we propose a point xt+1 such that U(xt+1) = TU (Fig. 6). To this end, we sample a
vector u uniformly in the ellipsoid defined by vTH(k)v = 1 where H(k) is the Hessian of U at
mk. Then we do a line search to find the intersection between the target energy TU and the half
line mk + R+u (Fig. 5).

When to jump. The strategy just described requires a line search which is expensive if the
target point is far from the local minimum. Furthermore, under some assumptions which are
true if jumps are only allowed close to the local minima, the expression of the transition kernel
can be simplified. Hence we introduce S a user defined parameter, and the darting proposal is
only used if ∆Ut ≤ S.

Inria



WL: an adapted random walk 17

Figure 5 Darting: reaching a prescribed energy level set via line search in the direc-
tion of vector u. The line search starts from minimum mk with target energy Target.

u

xt+1 U = Target

mk

Figure 6 Handling multimodal distributions via darting: jumping between two local
minima. While darting, the difference of energy with the local minima is controlled to monitor
the acceptance rate. Note that ∆U = U(xt)−U(mkt) and TU ∼ Unif(U(mk)+∆Ut−β, U(mk)+
∆Ut + β)

∆U
TU − U(mk)

xt
xt+1

U

mkt

mk

Transition kernel. Computing the transition kernel of the darting move is non trivial, but can
be done using a suitable change of variables. The full computation is detailed in the appendix –
section 7, however for the sake of conciseness, we only give here the final result. For any x and
y in Rn, let k be the closest minima to y, Ik = [U(mk) + ∆U − β, U(mk) + ∆U + β], λi and ei
the eigenvalues and eigenvectors of the Hessian of U at mk. Finally, denoting < u, v > the dot
product, let

l =

√∑
i

λi < y −mk, ei >2. (19)

Using the latter and denoting 1Ik(u) the indicator functor for the interval Ik, the transition
probability is given by:

qdarting(x, y) =
1

K

Γ
(
n
2

)
2β

2π
n
2

1Ik(U(y))
1

ln
∇U(y)T (y −mk)

∏
i≤n

√
λi. (20)

3.6 Splitting energy bins
Splitting an energy bin may prompt two scenarios: it can improve the mixing time of the random
walk, and thus improve both the precision of the estimated DoS and the complexity to get it;
or it has no effect on the mixing time, resulting an improvement of the precision at the expense
of the computational burden. The goal is to refine bins in the former case only. Thus we only
split bins when the cone strategy fails, as a fallback. We monitor the failure of the cone strategy
by computing the proportion of steps in which the random walk has the possibility to go up or
down in energy (see 3.3 ) and the success rate of the Metropolis-Hasting criterion when going up
or down. If either of these statistics are below a user defined threshold for a given bin, the bin
is halved.
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3.7 The final combined proposal
The final proposal combines the building blocks introduced in sections 3.3, 3.4 and 3.5, plus a
Gaussian proposal with transition qgauss. Let p(x) = (pno-overstep(x), pgauss(x), pdarting(x)) such
that pno-overstep(x) + pgauss(x) + pdarting(x) = 1 for all x ∈ Rn. In addition, let pcone(x) < 1 be
the probability of modifying the no overstep strategy by using the cone. The final proposal is

• choose one of the proposals at random with probability vector p(xt),

• if the no overstep strategy is selected, use the cone with probability pcone(x) to choose the
direction along which the proposal acts,

• sample the point xt+1 according to the chosen proposal.

The combined proposal therefore has the following transition probability:

q(x, y) = pno-overstep(x)
[
(1− pcone(x))qunifno-overstep(x, y) + pcone(x)qconeno-overstep(x, y)

]
+ pdarting(x)qdarting(x, y) + pgauss(x)qgauss(x, y)

(21)

Remark 7. Eq. 21 calls for two comments:

• Since the proposal q is used in the Metropolis-Hastings algorithm, it is crucial to be able to
compute q(x, y) for any x and y.

• The cone based strategy restricts the set of directions explored. The constraint pcone(x) < 1
leaves open the probability to pick any direction on the unit sphere.

4 Experiments

4.1 Setup
4.1.1 Implementation and parameters

Our implementation of a fully generic Wang-Landau algorithm is described in the companion
paper [35]. The corresponding C++ generic code, which allows tuning the physical system,
as well as the main ingredients of the algorithm is currently being integrated to the Structural
Biology Library – see [36] and http://sbl.inria.fr.

In the tests presented below, the initial number of strata d was specified along with each
example.

Otherwise, the following hyper-parameters were set as follows:

• Parameter from section 2.2:

– Flat histogram threshold: c = 0.1 for synthetic models, c = 0.05 for the molecule.

• Parameters from section 3.4:

– k = 10 cones, with the associated aperture angles sampled uniformly in [0.2π/2, 0.8π/2],

– M = 1 direction sampled in a cone,

– pc = 0.4 as probability threshold to select the largest possible cone.

Inria
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• Parameters from section 3.5

– Parameter S =∞ and β = 0.001 used for darting.

• Parameters from section 3.7:

– Relative weights of the three components of the proposal, i.e. pno-overstep(x), pcone(x), pdarting(x),
pgauss. pcone(x) and pdarting(x) are set to zero to turn off these strategies. Otherwise,
the values are specified along with the examples.

4.1.2 Statistics of interest

Our experiments target three points: correctness, mixing time, and ability to handle complex
systems. For the sake of conciseness, time t refers to t steps of Wang-Landau.

Correctness, stability, and convergence. When an analytical solution for θ∗ is known, we
simply resort to the relative error for estimates at time t, defined by:

error(t) =
∑
i

|θ∗i − θi(t)|
θ∗i

. (22)

We plot this function along time.
When no analytical solution is known–see the dialanine molecular model below, we assess

convergence in two ways, based on several runs (N = 60). First, we plot an observable along
time, akin to the partition function, at a fixed temperature:

Z

λ(E)
=

1

λ(E)

∫
E

exp (−U(x)/kT ) ≈
∑

Energy levels U

θ∗i exp (−U/kT ). (23)

Second, we provide box plots on a per bin basis. We also resort to violin plots when more details
are required in terms of distribution modes. (Recall that a violin plot displays a kernel density
estimate of the data points processed.)

Mixing time. We use the descending times and the aggregated transition matrices–Section
3.1.

Remark 8. Note that we do not normalize the descending times by the number of strata. Indeed,
as seen in section 3.6, increasing the number of strata can decrease the mixing time. Hence the
number of strata is a parameter tuned for convergence speed and therefore should not be taken
into account when measuring mixing time.

4.1.3 Contenders

As a yardstick, we compare our proposal (section 3.7) against the isotropic Gaussian proposals.
However, while our proposal is used with its default parameters as specified above, the Gaussian
variance needs to be tuned for a fair comparison [25]. Hence we compare with 3 Gaussian
proposals (resp. high, adequate and low variances).
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4.1.4 Models

Analytical models. We study three analytical models. The first model is the isotropic har-
monic potential. The second is a non isotropic harmonic potential, to ensure that the algorithm
behaves correctly in non trivial settings (Remark 6). The last model is a potential with two local
minimum designed to study darting.

Molecular model. Finally, our last system is a classical toy molecular system, namely the
blocked alanine peptide Ace-Ala-Nme (Fig 8), referred to as dialanine for the sake of conciseness.
This system underwent extensive thermodynamic studies, using techniques as diverse as molec-
ular dynamics [37], Monte Carlo and energy landscape based methods [38], or dimensionality
reduction methods [39].

We use the amber99-sb force field in vacuum and aim to compute the density of state between
-21 kcal/mol and 4 kcal/mol associated to one local minima – by enforcing the simulation to
remain inside the basin of this local minimum (φ = 59.8862, ψ = −35.5193).

Figure 7 Dual well function in dimension three. Plot of Eq. (24) for xi ∈ [−1, 1], xi ∈
[−1/2, 1/2].
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Figure 8 Dialanine (Ace-Ala-Nme) and the two dihedral angles Φ and Ψ

Ψ
Φ

4.2 Results

4.2.1 Single well potential: isotropic

We study here the simple harmonic model

U(x) =
∑

x2i

with state space the unit ball in dimension n = 25. The energy discretisation is [ai, ai+1] with
ai = i/10 for i ∈ {0..9}. The improved proposal is defined with pno-overstep = 1, pgauss = 0,
pdarting = 0, and pcone = 0.5. The flat histogram threshold is set to c = 0.1. Since the exact
result is known, we plot the exact error.

Let us first focus on the error (Fig. 9(Left)). For the Gaussian proposals, the best scale is
σ = 0.1, as smaller and larger values (resp. σ = 0.01 and σ = 1) yield large errors. Our proposal
based on the no overstep alone is on par with the best Gaussian. Moreover, adding the cone
yields the best results. This radical improvement owes to a descending time orders of magnitude
smaller for the cone strategy (Fig. 9(Right)). These observations are coherent with the ATM
matrices (Fig. 10), which show that (i) the proposals based on Gaussians face a high diversity in
terms of strata reached, (ii) our proposal has an ideal diffusivity encoded in a tridiagonal matrix,
(iii) the cone improves the probability to move downward. (Compare e.g. the probabilities to
move from the energy slice [0.1, 0.2] to [0.0, 0.1]. Equivalently, one sees a gradient of colors when
moving upward and to the left in the ATM matrices from the third and fourth row of Fig. 10.)

Inspection of Fig. 10 also yields three interesting points:

• The WL Metropolis-Hastings criterion also balances the probabilities to enter and leave
a stratum, as shown by the comparable colors apart from the diagonal for ATMWL – as
opposed to ATMq.

• While doing so, it refuses moves, which results in populating the diagonal.

• Matrix ATMq shows it is easier to climb strata than to go downhill.
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Figure 9 Isotropic single well in dimension 25: comparison of the five proposals.
Values have been averaged over 30 runs. The five proposals used are the three Gaussian based
proposals, plus our combined proposal with and without the cone improvement. (Left) Com-
parison of the evolution of relative error – Eq. (22) (Right) Box plot of the descend-
ing times.
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4.2.2 Single well potential: non isotropic

To challenge all methods with a non-isotropic case (Remark 6), we use the following non isotropic
potential energy:

U(x) =

n∑
i=1

ix2i

Also in dimension n = 25, the energy discretisation is [ai, ai+1] with ai = i/10 for i ∈ {0..9}.
The improved proposal is defined with pno-overstep = 1, pgauss = 0, pdarting = 0, and pcone = 0.5.
The flat histogram threshold is set to c = 0.1. The results are on par with the isotropic case (SI
Figs. 18 and 19), showing in particular the effectiveness of the cone strategy in this anisotropic
setting.
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Figure 10 Isotropic single well, n = 25, : aggregated transition matrices. One line
or row corresponds to one stratum. For a given matrix line, the color coding indicates the
probabilities (log scale) to move from a stratum to the remaining ones. Note that the matrices
of our proposal are tridiagonal.
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Figure 11 Dual well potential in dimension 30: analysis of darting. (Left) Evolution
of relative error of Eq. (22) when using darting. (Right) Comparison of time spent
in the first well with and without darting.
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4.2.3 Dual wells potential: darting

To challenge darting, we use the usual one-dimensional dual well potential energy function x4−x2,
and add a quadratic potential in other dimensions:

U(x) = x41 − x21 +

n∑
i=2

x2i . (24)

This potential energy has 2 local minimum at (− 1√
2
, 0, ..., 0) and ( 1√

2
, 0, ..., 0) (Fig. 7). The

additional coordinates makes it harder to travel from one minimum to the other by making it
hard to choose suitable directions. More specifically, direction x1 corresponds to an energetic
barrier, while the remaining directions add volume in phase space, which corresponds to an
entropic barrier [33].

We setup the darting proposal with these two minima, and compare our proposal with and
without darting. The energy discretisation is −0.25 < 0 < 0.2 < 0.4 < 0.6 < 0.8 < 1. The
proposal is set up with pdarting = 0.5, pno-overstep = 0.45, pgauss = 0.05, pcone = 0.5 when darting
is enabled and pdarting = 0, pno-overstep = 0.9, pgauss = 0.1, pcone = 0.5 when darting is disabled.
The Gaussian move variance is set to σ = 1. The flat histogram threshold is set to c = 0.1.

Both methods yield correct values (Fig. 11(Left)). (Data not shown for darting disabled:
since the potential energy function is symmetric for the first coordinate, the algorithm computes
the correct value even if it never crosses the energy barrier.)

It appears that the proposal allows crossing the energy barrier almost instantly, while with
darting disabled the first jump appears after 105 samples (Fig. 11(Right)). This induces a large
difference in the mixing time.

4.2.4 Dialanine

On this system, the results reported thereafter were obtained using the cone improvement, as
convergence could not be obtained without it.

To compute the value defined by Eq. (23) restricted to the basin of the local minimum with
torsion angles, we enforce the simulation to remain within this basin. Checking whether a point
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is in a given minima basin of attraction requires a minimization of the potential energy. Since
this is costly operation, we check this condition every N (=100) steps. If the random walk has
escaped, we roll back to the latest point in this basin. (Note that this requires downgrading all
statistics and random number generators [35].)

Remark 9. The roll back strategy just described may introduce some bias, as an excursion
outside the basin may not be detected. The effectiveness of this strategy relies on a bounded
proportion of roll backs, see [35] for details.

We perform 60 runs, each with 107 steps. The energy discretisation can be found in Fig. 12(Top
Right)). The proposal was set up with no darting and no Gaussian moves: pno-overstep = 1 and
pcone = 0.6. The flat histogram threshold is set to c = 0.05.

To analyze convergence, we plot the time evolution of the observable defined from the partition
function at T = 300K (Eq. (23), Fig. 12(Top Left)). Since all simulations use the same number
of bins, we also provide a box plot for each bin Fig. 12(Top Right)). Finally, to check whether
the observable is unimodal or not, we perform a violin plot at three different time frames along
the course of the simulation (Fig. 12(Bottom)).

We note that the convergence was reached to a different extent as a function of the volume
of strata: the smaller the volume of a stratum, the higher the variance of estimates. This
is expected as sampling rare events is always more challenging. It appears, though, that the
observable converges (Fig. 12(Bottom)), since values concentrate along a single mode.

To get further insights, we study the contribution of individual strata reweighted by Boltz-
mann’s factor (Fig. 13). We first note that the energy range used is sufficiently large since
contributions of the last stratum is one order of magnitude smaller than the highest one (Fig.
13(Left)). The more detailed violin plots–not in log scale, also shows that distributions within
strata are unimodal.

The analysis of ATM reveals two interesting facts. First, we first observe that without cone,
moving downward is more challenging whatever the energy level (Fig. 14 bottom left, lower
diagonal of ATMq). The cone improves this state of affairs, even though the PEL is not isotropic
– a priori. Second, we note that the moves proposed using the cone are accepted to a significant
extent (Fig. 14, comparison of lower diagonals of ATMq and ATMWL.)
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Figure 12 Analysis of convergence for dialanine, using amber-69sb force field in
vacuum. Results averaged over 60 independent simulations. (Top Left) evolution of the
partition function. (Top Right) Box plot of the estimation θi for each bin i. (Bottom)
Violin plot of the partition function at T = 300K, at three different time frames along
the course of the simulation.
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Figure 13 Dialanine with amber-69sb force field in vacuum: analysis of convergence.
Results averaged over 60 independent simulations. (Left) Box plot of the final bins volume
with respect to the Boltzmann distribution at T = 300K. Log scale. (Right) Violin
plot of the final bins volume with respect to the Boltzmann distribution at T = 300K
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Figure 14 Dialanine with amber-69sb force field in vacuum: aggregated transition
matrices. One line or row corresponds to one stratum. For a given matrix line, the color coding
indicates the probabilities (log scale) to move from a stratum to the remaining ones. Note that
the matrices of our proposal are tridiagonal.
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5 Conclusion and outlook

Contributions. Given a physical system characterized by an energy, the Wang-Landau (WL)
algorithm is a stochastic method returning an estimation of the density of states in terms of
histogram. WL is an adaptive Monte-Carlo method inherently using a discrete set of values
whose pre-images in phase space define regions called strata. To compute the volume of these
strata, a core component of WL is the proposal used to generate candidate conformations and
navigate between the strata. In this work, we make an explicit link between the convergence
of the Wang-Landau algorithm and the underlying proposal, developing of a novel composite
proposal targeting the following three difficulties: avoiding overstepping strata, avoiding con-
gestion – remaining trapped within strata, and accommodating multimodal distributions. The
performances of our proposal are assessed by measuring so-called descending times which quan-
tify the diffusivity across strata, and so-called aggregated transition matrices which encode the
diffusivity across strata. All in all, the resulting Wang-Landau algorithm is effective to compute
observables for small biomolecules, within hours on a laptop computer.

We believe that a key feature of our proposal is its ability to exploit non local geometric
information in the following sense: the no overstep strategy exploits the geometry of level set
surfaces bounding the strata; the cone strategy implicitly combines information on the gradient
and the level set surfaces too; finally, darting exploits the a priori knowledge on the location of

RR n° 9223



28 Chevallier / Cazals

local minima. We note in passing that the WL algorithm based upon a proposal using geometric
information beyond the gradient makes it different in spirit from methods such as HMC or MALA
which only use local geometric information. In addition, WL is based on an energy discretization
yielding a piecewise continuous target probability distribution, while HMC and MALA primarily
target continuous models. In fact, the combination of the original WL with a geometry aware
proposal bears similarities with the multi-phase Monte Carlo sampling methods used to compute
the volume of polytopes in high-dimensional spaces, as in both cases, the algorithm exploits
a discretization based on strata – in a sequential rather than global way for polytope volume
calculations.

Further work. We foresee stimulating questions in three complementary directions: design,
analysis, and applications. On the design front, the cone based strategy is rooted in the ex-
ploitation of the geometry of level set surfaces near one local minimum or maximum. Therefore,
designing a similar strategy to handle the descent into multiple basins would open new perspec-
tives, possibly in conjunction with topological persistence and darting. On the analysis side, since
level set surfaces bounding the strata are used, it would be particularly important to understand
how the choice of strata affects the convergence of WL, and see whether error bounds (rather than
asymptotic estimates) can be obtained for DoS estimates. Along the way, an analysis connecting
aggregated transition matrices and the convergence of Wang-Landau would be of high interest.
Finally, on the application side, while our proposal operates in Cartesian coordinates, switching
to internal coordinates is an appealing strategy to handle biomolecules whose conformational
changes are best described by valence and torsion angles.
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6 Appendix: uniform sampling in a hypercone

We wish to sample uniformly at random in the intersection of a cone of aperture α intersected
with a n-dimensional ball Bn(R) as described in Fig.15. The procedure therefore yields a random
point in the cone, and the direction defined by this point and the apex of the cone. The algorithm
and the calculations use the notations of Fig. 15.

6.1 Uniform direction in a cone: algorithm overview

The classical strategy to uniformly sample on the unit sphere consists of picking a random vector
of independent and identically distributed (iid) normally distributed random variables, and to
normalize the obtained vector. In a similar spirit, to sample uniformly the intersection between
a cone and the unit sphere Sn−1, we sample uniformly the intersection between the cone and the
unit ball bounded by Sn−1, and renormalize the result. In the following, we sketch the algorithm,
and refer the reader to the supplemental section for full details (Fig. 15 and supplemental section
6).

Figure 15 Uniform sampling the intersection between the unit ball and a cone. The
volume defined by the grey region is the union of a conic region and of a spherical region.

α

L R

β

l

r(l)

PBase

VCone

VCap

P

conic region
spherical

region

The algorithm proceeds in three steps:

• (i) Decide whether one samples from the conic or the spherical regions,

• (ii) Pick a slice in the cone or spherical cap,

• (iii) Sample the slice.

More formally, consider a n− 1 dimensional ball of radius 1 and the cone of angle α. We define:

• Voln(1): the volume of the unit ball in dimension n,

• Ix: the incomplete Beta factor – Def. in SI Section 6.2,
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• the volumes of the conic and spherical regions respectively – Fig 15 and supplemental
section 6:

V Cone
n,α =

Voln(1)

2
Isin2 α(

n+ 1

2
,

1

2
) (25)

V Cap
n,α =

Ln

n
tann−1(α). (26)

Using these notations, the three aforementioned steps go as follows – details in section 6:

• (i) Draw u ∈ [0, V Cone
n,α (1) + V Cap

n,α (1)]. If u < V Cone
n,α (1), we pick in the cone (i.e. l < L),

else we pick in the cap (i.e. l > L).

• (ii) Pick a slice of the cone or the cap at distance l from the center, using the density

fcone(l) = Cconer(l)
n−11l≤L = Ccone tan(α)n−1ln−11l≤L (27)

or

fcap(l) = Ccapr(l)
n−11l>L = Ccap(1− l2)

n−1
2 1l>L (28)

with Ccone and Ccap normalization constants used to define probability densities.

• (iii) Draw uniformly at random in the corresponding n− 1 ball, using the density from Eq.
(34).

6.2 Pre-requisites
Special functions. We shall need the Beta and incomplete Beta functions, defined by{

B(a, b) =
∫ 1

0
tx−1(1− t)y−1dt,

B(x; a, b) =
∫ x
0
tx−1(1− t)y−1dt( with 0 < x < 1).

(29)

Using both, one defines the regularized incomplete Beta factor

Ix(a, b) =
B(x; a, b)

B(a, b)
. (30)

Spheres and balls: surface and volume. The surface area of a sphere of a n − 1 sphere
Sn−1(R) of radius R in Rd

Arean−1(R) = Rn−1
2 πn/2

Γ (d/2)
≡ Rn−1An. (31)

The volume of the corresponding ball Bn(R) satisfies

Voln(R) = R
Arean(R)

n
= Rn

2

n

πn/2

Γ (n/2)
= Rn

πn/2

Γ (n/2 + 1)
≡ RnVn. (32)

To generate a point X uniformly at random on the unit the unit sphere Sn, we generate
a point X = (x1, . . . , xn)t whose coordinates are iid Gaussian with µ = 0 and σ = 1. The
corresponding density is given by

fG(X) =
1

(2π)n/2
e−

x21+x22+···+x2n
2 . (33)

To obtain a unit vector, we normalize the latter as X
‖X‖ . (NB: due to normalization the

coordinates of this vector are not independent.)
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Random generation within a ball. To generate a point uniformly at random inside Bn(R =
1), observe that the volume of Bn(r) = rnVn. Differentiating yields

d

dr
(rnVn) = drn−1Vn. (34)

Therefore one generate a random value using the density drn−1 for r ∈ [0, 1].

Spherical caps of the n-dimensional ball. We consider a conic region inside the n-dimensional
ball, consisting of the union of a pyramid and that of a spherical cap defined by the cone of aper-
ture α (Fig. 15). Surface and volume of such a cap is easily computed [40].

To compute the volume of the cap, we integrate the volume of a n− 1 dimensional sphere or
radius r sinβ whose height element is d(r cosβ) = r sinβ:

V Cap
n,α (r) =

∫ α

0

Voln−1(r sinβ)d(r cosβ) =
Voln(r)

2
Isin2 α(

n+ 1

2
,

1

2
). (35)

Note that the incomplete Beta factor as the probability for a point of the ball to also be inside
the spherical cap.

To compute the surface of the cap, we integrate the area of a n − 1 dimensional sphere or
radius r sinβ with arc element rdβ:

ACap
n,α (r) =

∫ α

0

Arean−1(r sinβ)rdβ =
Arean−1(r)

2
Isin2 α(

n− 1

2
,

1

2
). (36)

6.3 Algorithm to uniformly sample a hypercone

6.3.1 Sampling from fcap

The previous algorithm requires sampling from fcap defined in eq.(28). The most straightforward
way to sample from a probability density is to compute the inverse of the cumulative distribution
function (F (x) =

∫ x
−∞ f(y)dy). This requires to compute a primitive of the density. However,

there is no simple analytic expression for the primitive of fcap. Hence, we fall back to rejection
sampling with a well chosen base distribution such that the rejection rate do note depend on the
dimension n.

Observe that while (1− l2)
n−1
2 do not have a simple primitive, the function l(1− l2)

n−1
2 do.

Therefore we define
gcap(l) = MCcapl(1− l2)

n−1
2 (37)

withM such that for all l, gcap(l) ≥ fcap(l) which is required for rejection sampling. The optimal
choice for M is:

M =
1

L
=

1

cosα
.

L g̃cap the renormalized version of gcap. Assuming we can sample point from g̃cap, the acceptance
rate for each l in the rejection algorithm used with fcap and gcap is

fcap(l)

gcap(l)
=

1

lM
≤ 1

M

as l ≤ 1. Hence the acceptance rate do not depend on n and only on α the opening of the cone.
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Sampling from g̃cap: To sample from g̃cap we compute the inverse of its cumulative distribu-
tion.

Let
B(x) =

∫ x

L

l(1− l2)
n−1
2 dl

using the change of variable y = 1− l2, we deduce:

B(x) =

[
− (1− y2)(1+n)/2

1 + n

]x
L

=
(1− L2)(1+n)/2

1 + n
− (1− x2)(1+n)/2

1 + n

The cumulative distribution for g̃cap is

F (x) = 1x>L
B(x)

B(1)

= 1x>L

(
1− (1− x2)(1+n)/2

(1− L2)(1+n)/2

)
And its inverse:

F−1(x) =
√

1− (1− L2)(1− x)2/(n+1)

Hence we can sample from g̃cap.

6.3.2 Sampling from fcone

The inverse CDF for fcone is straightforward to compute:

F−1cone(x) = Lx1/n

Therefore we can sample from fcone.

6.4 Changing the cone axis

The previous section algorithm generates a point in a cone whose axis is fixed: e1 = (1, 0, ...0).
In practice, the axis of a cone is aligned with the gradient of the potential energy – Section 3.4.

To handle arbitrary cones, we apply a linear transformation. We describe here how to apply
this transformation with a contained complexity. Let d ∈ Rn \ {e1} be the desired axis of the
cone.
Let H be the hyperplane orthogonal to e1. In the algorithm, we generates points in H. Suppose
we generate (x2, ..., xn) in H. For any orthonrmal basis ε2, ..., εn of H, the points x2ε2+ ...+xnεn
will have the same distribution in H. Hence we try to find a basis ε2, ..., εn adapted to our prob-
lem.

We choose ε2 = d−<d,e1>e1
‖d−<d,e1>e1‖ .

We complete this base with ε3, ..., εn, and we will see that the choice of these ε3, ..., εn do not
matter.
Let R the rotation such that R(e1) = d and R(εi) = εi for i > 2.
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Let H0 = V ect(e1), H1 = V ect(e1, ε2) and H2 = V ect(ε3, ..., εn).
Let x ∈ Rn. Then there exists u1, u2 and v such that

x = u1e1 + u2ε2 + u3v

with v = x− < x, e1 > e1− < x, ε2 > ε2 ∈ H2. u1, u2 and v are straightforward to compute. We
easily get:

R(x) = R(u1e1 + u2ε2) + u3v

Thus the transformation R can be reduced to a simple rotate in R2. Let θ =< e1, d >. Then

R(u1e1 + u2ε2) = u1d+ u2 (cos(θ + π/2)e1 + sin(θ + π/2)ε2)

Thus we full transform is as follow:

• compute

ε2 =
d− < d, e1 > e1
‖d− < d, e1 > e1‖

• compute u1 =< x, e1 >, u2 =< x, ε2 > and v = x− u1e1 − u2ε2

• compute θ = (e1, x) and d̃ = (cos(θ + π/2)e1 + sin(θ + π/2)ε2)

• R(x) = u1d+ u2d̃+ v
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7 Appendix: transition probability for darting

7.1 Notations

We give here a detailed computation of the transition probability for darting given by eq. 20.
We use the same notations than in section 3.5. Let us write Pdart the Markov kernel associated
to the darting move. Let x be a point of E . The transition kernel has a density, hence we write
P (x, y) instead of P (x, dy). For a minimum k, let H(k) the Hessian of U at mk. Let λ1, ..., λn
its eigenvalues and e1, .., en its eigenvectors as an orthonormal basis. Finally let Ak ⊂ E be the
basin of attraction of minimum k and let kx the minimum such that x ∈ Akx . We consider the
following rescaling of state space:

hk(y) = mk +
∑
i

√
λi(y −mk|ei)ei. (38)

Let Ũk(z) = U(h−1k (z)) the potential energy in the rescaled space. Let f̃k(u, TU ) the application
which associates the first intersection between mk + αu and Ũ = TU + U(mk) with α > 0.
Formally, f̃k is an application defined on Sn−1 × R+.

Let fk(u, TU ) = h−1(f̃(u, TU )). Also let fk∗(µk,x) be the pushforward measure of µk,x by fk.
Then, the Markov kernel seen as an operator on measures is given by:

Pdart(x, .) =
1

K

∑
k

fk∗(µk,x)∫
µk,x

(39)

where µk,x is the product measure of the Lebesgue measure on Sn−1 and the Lebesgue measure
of

Ik(x) = [U(x)− U(kx) + U(k)− β, U(x)− U(kx) + U(k) + β] (40)

7.2 Assumptions

We first define assumptions ensuring that function fk defines a bijection between the set of
directions and the restriction of the target energy level set surface to the basin of a local minimum.
Intuitively, the level set surface seen from a local minimum should be star shaped, and the energy
range considered should not contain any critical value associated with a saddle point. More
formally:

Assumption 1. For every local minimum k ≤ K, u ∈ Sn−1, TU ∈ [U(mk), U(mk) + M ], the
intersection {y|y = mk + αu, α > 0} ∩ {y|U(y) = TU} ∩ Ak is a single point. See Fig. 16 and
Fig. 17.

Doing a line search for every minimum is expensive. Using constant M defined in Section
3.5(see paragraph When to jump), we introduce the following assumption to simplify Eq. (39),
which essentially states that the points considered belong to the Voronoi region of the local
minimum mk:

Assumption 2. For every y such that U(y)− U(mky ) ≤M , then for every k ≤ K,

‖y −mky‖ ≤ ‖y −mk‖
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The simplified expression for Eq. (39) reads as

P (x, y) =
1

K

fky∗(µky,x)∫
µky,x

where ky is the closest minimum to y. As a final observation, assumptions 1 and 2 are true if M
is small enough (using a second order Taylor expansion for the proof at the bottom of the local
minima)

Figure 16 Not allowed by assumption 1 as there are multiple intersection point between a
direction and the restriction of an energy level set to a basin.

mk

U = TU

Figure 17 Not allowed by assumption 1 as selected directions yield intersection points
outside the basin of m1.

m1 m2

U = TU

basins boundary

7.3 Derivation of the transition probability
Under assumption 1, fk is a bijection from Sn−1 × [U(mk), U(mk) + M ] to the connected
component containing mk of the set of point {y|U(y) ≤ U(mk) + M}. Hence its inverse is well
defined. The density of the pushfoward measure can be computed using the usual change of
variable formula:

fk∗(µk,x)(y) = |J(f−1k )(y)|1Ik(U(y))

For notation simplicity, we consider a fixed k and write f = fk and h = hk for the following
computation. The inverse of f has the following expression:

f̃−1(z) =

(
z −mk

‖z −mk‖
, Ũ(z)

)

RR n° 9223



38 Chevallier / Cazals

Let z = h(y) and u = z−mk
‖z−mk‖ , and choose w1, ..., wn−1 in Rn such that w1, ..., wn−1, u is an

orthonormal basis of Rn. Let l = ‖z −mk‖. Then:

∂f̃−1

∂wi
(z) =

(
1

l
wi,

∂Ũ

∂wi
(y)

)
Observe that w1, ..., wn−1 is an orthonormal basis of the tangent space of Sn−1 at u. Then
considering that f̃−1 is an application from an open set of Rn to Sn−1 × R+, the Jacobian of
f−1 becomes:

J(f̃−1)(z) =


1
l 0 ... 0 0
0 1

l ... 0 0
...

...
. . .

...
...

0 0 ... 1
l 0

(∇Ũ(z)|w1) (∇Ũ(z)|w2) ... (∇Ũ(z)|wn−1) (∇Ũ(z)|u)


Hence

|J(f̃−1)(z)| = 1

ln−1
(∇Ũ(z)|u)

And using Ũ(z) = U(h−1(z)),

∂Ũ

∂u
(z) = ∇U(y)TJ(h−1)(z)u (41)

= ∇U(y)TJ(h−1)(z)
z −mk

l
(42)

= ∇U(y)TJ(h−1)(z)(h(y)−mk)
1

l
(43)

= ∇U(y)T (y −mk)
1

l
(44)

Where the simplification in equation 44 is justified by the fact that h(y)−mk = J(h)(y−mk) =
J(h−1)−1(y −mk). Combining the two previous equations:

|J(f̃−1)(z)| = 1

ln
∇U(y)T (y −mk)

We deduce:

|J(f−1)(y)| = |J(h)| 1
ln
∇U(y)T (y −mk)

The Jacobian matrix of h is easy to compute:

|J(h)| =
∏
i≤n

√
λi

Hence we deduce:

fk∗(µk,x)(y) = 1Ik(U(y))
1

ln
∇U(y)T (y −mk)

∏
i≤n

√
λi (45)

The rescaling factor for measure µk,x is:∫
µk,x =

2π
n
2

Γ
(
n
2

)
2β

(46)

Injecting equations 45 and 46 into equation 39 allows us to compute Pdart(x, y).
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Figure 18 Non isotropic single well in dimension 25: comparison of the five propos-
als. Values have been averaged over 30 runs. The five proposals used are the three Gaussian
based proposals, plus our combined proposal with and without the cone improvement. (Left)
Comparison of the evolution of relative error – Eq. (22) (Right) Box plot of the
descending times.
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8 Appendix: results
8.0.1 Single well potential: non isotropic
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Figure 19 Anisotropic single well, n = 25, : aggregated transition matrices.
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