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Abstract: The Wang-Landau (WL) algorithm is a recently developed stochastic algorithm
computing densities of states of a physical system. Since its inception, it has been used on a
variety of (bio-)physical systems, and in selected cases, its convergence has been proved. The
convergence speed of the algorithm is tightly tied to the connectivity properties of the underlying
random walk.
As such, we propose an efficient random walk that uses geometrical information to circumvent the
following inherent difficulties: avoiding overstepping strata, toning down concentration phenomena
in high-dimensional spaces, and accommodating multidimensional distribution.
Experiments on various models stress the importance of these improvements to make WL effective
in challenging cases. Altogether, these improvements make it possible to compute density of states
for regions of the phase space of small biomolecules.

Key-words: MCMC, Wang-Landau, statistical physics, random walk, high dimension, sampling,
importance sampling



Wang-Landau Algorithm:
an adapted random walk to boost convergence

Résumé : L’algorithme de Wang-Landau est un algorithme stochastique récemment développé
calculant la densité d’états pour des systèmes physiques. Depuis sa création, il a été utilisé sur
des systèmes (bio-)physiques. Dans certain cas, sa convergence a été prouvée. La vitesse de
convergence de l’algorithme est intimement liée aux propriétés de connectivité de la marche
aléatoire sous-jacente.

Nous proposons ici une marche aléatoire efficace utilisant des informations géométriques pour
prévenir les difficultés suivantes: passer par dessus des strates, atténuer les phénomènes de
concentration de la mesure en grande dimension, et gérer les distributions multimodales.

Les expériences numériques sur différents modèles démontrent l’importance de ces améliora-
tions pour rendre WL efficace dans des cas complexes. In fine, ces améliorations rendent possible
le calcul de densité d’état pour des régions de l’espace des phases de petite bio-molécules.

Mots-clés : MCMC, Wang-Landau, physique statistique, marche aléatoire, grande dimension,
échantillonnage, importance sampling
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WL: an adapted random walk 5

1 Introduction

The Wang-Landau algorithm for density of states calculations. The derivation of ob-
servable properties of (bio-)molecular systems at thermodynamic equilibrium relies on statistical
physics, with the formalism of stochastic ensembles playing a pivotal role[1, 2, 3, 4]. Amidst
the various algorithms available, the Wang-Landau (WL) algorithm [5, 6] is now well known
and widely used despite its recent inception, in particular due to its simplicity and genericity.
The WL algorithm estimates the density of states (DOS) of a system, which is especially useful
to compute partition functions in statistical physics, and more generally observables–e.g. the
average energy or the heat capacity. Estimating the DOS is especially challenging for standard
Markov Chain Monte Carlo techniques.

To review previous work, it is important to recall that the WL algorithm falls in the realm
of adaptive MCMC sampling algorithms. In a nutshell, WL returns an estimation of the DOS
in terms of histogram. The bins of the histogram correspond to a partitioning of the energy
range of the system. The algorithm resorts to importance sampling, using a biasing function
derived from the current estimation of the DOS. Since the limit distribution sought is defined by
the density of states, the random walk is build from the Metropolis-Hastings algorithm (M-H),
using the current DOS estimate in the rejection rate. (We note in passing that since the DOS
values used to define transition probability depend on the history, WL is not a Markov process.)
Additionally, a so-called flat histogram rule may be used to count the visits in each energy
stratum and update the learning rate when all stratum have been evenly visited. These main
ingredients recalled, one may observe that numerous improvements were made to the original
algorithm [5], both in terms of design and analysis of performances. The first key improvement
has been the 1/t algorithm which solved the so-called saturation error problem [7, 8], in which
a constant error on DOS estimates was incurred, due to a too fast reduction of the learning
rate. Another key initiative has been to tune the random walk and the energy discretization
[9], as large bins may hinder convergence by keeping the system trapped. To avoid this pitfall,
a dynamic maintenance of bins has been proposed, in order to maintain a proper balance of
samples across a stratum. Concomitantly, a random walk defined from a mixture of Gaussians
has been introduced, in order to attempt moves of the proper size. In a different vein, it has been
proposed to speed up convergence resorting to parallelism via multiple walkers [6]. However, this
approach should be taken with care, as problems arise when a large number of walker are used
[10].

On the mathematical side, for the WL algorithm variant using the flat histogram, the im-
portance of the analytical form of the DOS update rule was established [11]. For WL with a
deterministic adaptation of the learning rate, to which the 1/t variant belongs, the correctness of
the DOS estimates was proved, regardless of the particular analytical expression of the update
rule [12].

Applications. Application-wise, WL has been used on a variety of physical systems, and more
recently to biomolecules. Thermodynamics properties of RNA secondary structures were esti-
mated using the WL algorithm [13]. Properties of clusters and peptides (up to 8 a.a.) were
studied in [14]. Likewise, the thermodynamics properties of misfolded (containing a helix struc-
ture rather than a β-sheet) proteins, such as those involved in mad cow and Creutzfeldt-Jakob
diseases, were studied by feeding a coarse grain protein to the 1/t WL algorithm variant [15]. In
a similar spirit, a modified flat rule histogram was used in [16] to study properties of polymers
on a lattice, in the HP model. However, processing continuous models of protein of significant
size has remained out of reach so far [17].

RR n° 9222



6 Chevallier / Cazals

Contributions. The random walk and the energy discretization influence one another: the
average step size of the random walk should be dependent on the size energy bins. For large
energy bins, the step size should be large, and small for narrow energy bins. Thus the random
walk and bin sizes should not be independent, and the step size of the random walk should depend
on local information. Such intricacies have precluded the development of effective WL algorithms
to to handle systems as complex as bio-molecules, and the goal of this paper is precisely to improve
the convergence speed of the algorithm, especially in high dimensional settings. (NB: our focus
is not on asymptotic convergence properties.)

To make a stride towards circumventing these observations, we make three contributions
targeting improvements of the convergence speed (section 3.1). First, we design a random walk
which takes the bin size and local geometric information into account to avoid overstepping
strata (section 3.2). Second, we tackle the so-called measure concentration problem inherent to
high dimensional spaces, which is especially pregnant near local minima, and which decreases
convergence speed exponentially fast with the dimension (section 3.3). Finally, we introduce a
darting move for multimodal distributions (section 3.4). In addition, we provide a generic WL
implementation, which allows tuning all key building blocks. The source code is integrated to
the SBL Structural Biology Library [18] and http://sbl.inria.fr.

2 The Wang-Landau algorithm

2.1 Problem statement
Consider a probability distribution with density π(x) defined on a subset E ⊂ RD. Also consider
a partition of E into so-called strata {E1, . . . , Ed}. Denoting λ the Lebesgue measure, our problem
is to estimate

θ∗i
Def
=

∫
Ei
π(x)λ(dx). (1)

This problem arises in many areas of science and engineering, two of them being of particular
interest in the sequel.

Statistical physics. Assume that one is given a potential energy function U : Rn −→ R. The
measure of interest π is given by Boltzmann’s distribution

π(x) = Z−1β exp(−βU(x)), with Zβ =

∫
E
exp(−βU(x))dx. (2)

Note that Zβ is the so-called partition function of the system. Consider the following discretiza-
tion U0 < U1 < ... < Ud of the potential energy space. The strata Ei are the pre-images of the
potential energy, that is

Ei = {x ∈ E|U(x) ∈ [Ui−1, Ui)}

In this context, Eq. (1) reads as θ∗i = Z−1β
∫
Ei exp(−βU(x))dx, and one has

∑
i θ
∗
i = 1. The WL

algorithm computes estimates θi for θ∗i , which also satisfy
∑
i θi = 1. The individual quantities

θi are of interest since their values provide the relative weights of the strata. However, they do
not give access to the partition function Zβ itself, whose calculation requires a re-normalization.

It should also be noticed that incorporating Boltzmann’s factor π into Eq. (1) results in
quantities θi which depend on the particular temperature used. If one uses π(x) = 1/λ(E)
instead, the quantities θi are volumes in phase space, and can be used to estimate the partition
function at any temperature, using a calculation akin to numerical integration.

Inria
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Numerical integration. A closely related problem is the calculation of a D-dimensional in-
tegral

ID =

∫
E
f(x)dx. (3)

Assume that the range Yf = [ymin, ymax] spanned by f in the domain I is known, and that this
interval has been split into n interval [yi, yi + dy]. Consider the the estimates from Eq. (1) with
π(x) = 1/λ(E). Assume that WL has been run, and denote yi the average value of function f
computed over all points such that f(y) ∈ [yi, yi + dy]. The integral can be estimated as [19]

I ≈
∑

i=1,...,n

θNormi yi, with θNormi = λ(E)θi. (4)

2.2 Algorithm
Sampling from a probability distribution µ. We assume the existence of a random walk
q on the E with transition probability density q(x, y) – one transition from x to y. Using the
Metropolis-Hastings transition kernel, and denoting δx a point mass at x, we introduce a random
walk Pµ whose limiting distribution is µ [20]:

Pµ(x, dy) = q(x, y)α(x, y)dy + δx(dy)

∫
E
(1− α(x, z))q(x, dz), (5)

where the acceptance probability of the new state y is given by

α(x, y) = 1 ∧ µ(y)q(y, x)

µ(x)q(x, y)
(6)

Note that here, we allow q to be non-symmetric by introducing the correction factor q(y,x)q(x,y) , which
will be used extensively later.

Algorithm. Consider the strata Ei defined above, as well at the mapping J : A → {1, . . . , d}
returning the index J(x) of the energy level of x.

The WL algorithm iteratively construct a sequence θ(t) of estimates of θ∗ = (θ∗1 , ..., θ
∗
d). For

an estimate θ, we introduce the probability density

πθ(x) =

(
d∑
i=1

θ∗i
θi

)−1
π(x)

θJ(x)
(7)

The weight of each Ei under πθ is proportional to θ∗i /θi; In particular, all energy levels have the
same weight 1/d under πθ∗ . The algorithm is then an importance sampling-like strategy, using
πθ as the bias.

Observe that points sampled according to πθ fall on average more in bins with underestimated
density. The rationale of the algorithm is to sample at each step a point x according πθ, multiply
θJ(x) by an increment γ > 1 called the learning rate, and finally decrease the learning rate by
a small fraction. A Markov kernel Pθ with invariant density πθ is build using Eq.5 model and is
used to sampled points from πθ.

How to decrease the learning rate γ requires a small discussion. Historically [5], the rule used
the Flat Histogram criterion. Let νt(i) be the number of samples up to iteration t falling into bin

RR n° 9222



8 Chevallier / Cazals

Ei. The vector {νt(i)} is said to verify the flat histogram (FH) criterion provided that, given
a constant c:

max
i=1,...,d

| νt(i)
t
− 1/d |< c. (8)

If the criterion was verified, γ is decreased using γ =
√
γ. Unfortunately, this too fast rate

yields an error known as the saturation error [7, 8]. Also, the flat histogram variant is sensitive
to the particular analytical form of the update rule [11]. To circumvent this difficulty, the rate
γt = exp(1/t) rule was proposed [7]. Practically, one combines the two update strategies by
starting with the flat histogram strategy and switching as soon as the proposed γ is smaller than
exp(1/t) – [7] and Fig. 1.

The complete algorithm (Algo. 1) depends on the following parameters which influence its
convergence speed: (i) the constant c for the flat histogram, (ii) the value of γ0, (iii) the energy
discretisation, (iv) the random walk q.

Algorithm 1 Wang Landau
1: Set θ = (1/d, ..., 1/d)
2: Set exponential regime = True
3: Set γ = γ0 with γ0 > 1
4: while t < tmax do
5: Sample xt+1 ∼ Pθ(xt, .)
6: Set θJ(xt+1) = γ θJ(xt+1)

7: Renormalise θ
8: if Exponential regime then
9: if Flat histogram then

10: γ =
√
γ

11: if γ < exp( 1
t+1 ) then

12: Set exponential regime = False
13: Set γ = exp( 1

t+1 )
14: else
15: γ = exp( 1

t+1 )

2.3 Theoretical convergence

The theoretical convergence has been studied [12], using suitable assumptions on (i) the equi-
librium measure, (ii) the Metropolis-Hastings kernel, and (iii) the sequence of learning rates.
Under these assumptions, the Wang-Landau algorithm has been proven to converge. The au-
thors proved a central-limit like theorem which give a theoretical convergence speed of O(1/

√
n)

where n is the number of step.
This theoretical convergence speed is the same than the one of classical Monte Carlo inte-

gration. Practically though, Monte-Carlo integration often fails while Wang-Landau does not,
stressing the role of constants in the convergence speed.

2.4 Convergence rate: further insights

The convergence speed of the algorithm is tightly coupled to the mixing times of the Markov
chains Pθ, which is roughly the time it take for P tθ(x, .) to converge to πθ for any x.

Inria
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In many cases, the bottleneck for the mixing time is the visit of all the energy levels. In [9],
a refinement rule for the discretisation is provided as well as a rule to find suitable parameters
for a multi-modal Gaussian random walk. The paper do not provide any explicit insights on the
link between the random walk and the discretisation. However, they use a symmetric random
walk. Such random walk will sample the space uniformly. Hence, to obtain a high transition
probability between two energy levels, the ratio of their respective volumes must be controlled:
should the ratio be too small (or to high), the probability of proposing a move going from the
smallest energy level to the biggest is so small that is never occurs. Observe that this restriction
vanishes in using a non symmetric random walk, a strategy we will be using.

For multi-modal distributions, the difficulty to switch from one mode to another can also be
a bottleneck for the mixing time. In [21], a strategy called darting is proposed. It consists in
attempting long range jumps between regions associated to precomputed modes. The knowledge
of the volume of the targeted regions allows one to guarantee detailed balance [22] whence a
procedure sampling the desired distribution. Note that for molecular systems, where Boltzmann
distribution yields one mode for each local minimum of the potential energy, local minima can be
obtained by gradient descents and associated search methods such as basin hopping and variants
[23, 24].

2.5 MCMC and adaptivity

For general MCMC algorithm, it has been shown that an adaptive random walk can lead to
erroneous results [25]. Practically, for a given probability π, there might exist a sequence Pi
of Markov kernels with limiting distribution π for all i such that for a given X0, the sequence
of random variables defined by Xi ∼ Pi(Xi−1, .) does not converge to the limiting distribution
π. This does not affect the Wang-Landau algorithm itself. However, any adaptivity must be
stopped before the end of the algorithm. The choice we make is to stop any adaptivity once the
flat histogram has been met a given number of times denoted NFHE in the sequel.

3 Improving convergence speed

3.1 Rationale

The performances of WL result from a subtle interplay between various ingredients, notably the
energy discretization, the topography of the landscape, and the random walk. The improvements
presented thereafter target the following difficulties:

• Difficulty 1 – section 3.2: topography adapted random walk to avoid overstepping strata.
The random walk should exploit the geometry of the landscape, to foster the diffusivity
between strata.

• Difficulty 2 – section 3.3: curse of dimensionality and concentration phenomena. In high
dimensions, when the probability mass is concentrated in a small typical set, move sets
exploring uniformly the entire space face difficulties to sample such sets. We introduce a
biasing strategy (in terms of directions for the move set), promoting diffusivity between
strata.

• Difficulty 3 – section 3.4: multimodal distributions. To deal with the case of multimodal
distributions, we resort to darting, a strategy meant to connect parts of the energy land-
scape which are separated by regions of low probability.

RR n° 9222



10 Chevallier / Cazals

• Difficulty 4 – section 3.5: energy range discretization. Slow mixing of the random walk
may be due to an inappropriate energy discretization. We resort to a refinement strategy
to fix such problems.

All in all, we aim for a ladder-like random walk as described in Fig. 2 which connects each
energy level with the one bellow and the one on top with an as high as possible probability.

3.2 Overstepping strata

3.2.1 Problem

Strata of small thickness tend to be stepped over. This typically happens when the landscape
is steep‘ or the discretization is fine. It is thus important to adapt the travel distance of the
random walk in such regions.

A Gaussian mixture identical for all strata has been used [9]. However, the mixture is
symmetric (see section 2.4) and does not exploit the geometry of the landscape.

3.2.2 Solution

We estimate the local "steepness " of the energy function using an order 2 Taylor expansion of
the energy. Normally, one would think that the "steepness" of the energy function (and thus the
diameter of the energy levels) is encoded by gradient. However, around locals minimums this
fails spectacularly as the gradient becomes close to 0 making the energy function appear flat.
First we pick a direction ~u in the unit sphere Sn−1. Then we compute the Taylor expansion in
the direction u with h ∈ R:

U(x+ h~u) = U(x) + h(∇U · ~u) + 1/2h2(~uTHess ~u). (9)

Remark 1. A numerical approximation can be efficiently computed using the gradient only,
avoiding the costly computation of the Hessian.

Assuming that x is in Ei, we compute using the Taylor expansion the interval [h0, h1] such
that for h ∈ [h0, h1] (Fig. 3)

x+ h~u ∈ Ei (10)

Doing the same for Ei−1 and Ei+1 yields [h−1, h0] and [h1, h2]. The last steps are to pick any of
these 3 intervals with probability 1/3 and to sample h uniformly in the chosen interval.

Doing so effectively adapt the random walk to the local steepness of the energy landscape,
allowing multiple scales. Even better, it also changes and adapt to the chosen direction ~u.

For any x and y, with u = y−x
‖y−x‖ , we can compute the probability of going from x to y with

this random walk:

qflat(x, y) = Pdir(u)
1

‖y − x‖n−1
2∑
i=0

1[hi−1,hi] < y − x, u > 1

|hi − hi−1|
(11)

=
Γ(n/2)

2πn/2‖y − x‖n−1
2∑
i=0

1[hi−1,hi] < y − x, u > 1

|hi − hi−1|
(12)

Note that the term before the sum is symmetric in x and y, hence it simplifies when computing
qflat(y,x)

qflat(x,y)
.

Inria



WL: an adapted random walk 11

Remark 2. In the ideal case where the level sets are planes ( meaning that the gradient domi-
nates), the Metropolis-Hastings correction factor qflat(y,x)

qflat(x,y)
introduced by the non symmetry of the

random walk when sampling a point in Ei starting from x0 in E1 is V (Ei)/V (E1), which cancels
out the metropolis acceptance ratio in Wang-Landau when θ is close to θ∗. It effectively bringing
the asymptotic rejection rate of the Wang-Landau random walk to 0.

3.3 High dimensionality and concentration

3.3.1 Problem

Consider the problem of lowering the energy by moving from stratum Ei to Ei−1 (Fig. 4). To
do so, a direction in a cone of angle α must be chosen–any direction outside of this cone never
intersects Ei−1. As the dimension increases, the probability of sampling a point in a cone of
aperture α decreases exponentially with the dimension (Fig. 5), preventing the random walk to
reach the stratum Ei−1.

3.3.2 Solution

The most straightforward way to overcome this problem is to decrease the bin size. Indeed doing
so makes α closer to π/2, increasing the probability of picking a direction allowing going from Ei
to Ei−1. In practice, the bin splitting strategy from [9] achieves this goal. However, the number
of strata increases with dimension, making this strategy less effective as the dimension increases.

Another way to solve this problem is to bias the random walk toward the cone allowing
reaching Ei−1.

Let Cdown(x) ⊂ Sn−1 the subset of direction which allow moving downward (or upward)
from a point x. An approximation of Cdown(x) could be found using a full second order Taylor
expansion (thus requiring the full Hessian matrix). However sampling points uniformly in this
subset is hard, hence we fall back on a simpler approximation stipulating that a single cone can
be used for each stratum. This hypothesis relies on the following two assumptions:

• the strata is not too wide,

• the curvature of the strata does not vary to much.

For each point x in stratum Ei, we define a cone of direction ∇U(x) and angle αi. The angle
αi is estimated in the course of the algorithm until the flat histogram has been reached NFHE
times – see section 2.5.

Estimating the angle For a stratum Ei, we wish to select an angle amidst the set α(0)
i , ..., α

(k)
i .

We apply the following procedure–which is independent from the generation of xt+1. For a given
point xt ∈ Ei sampled by Wang-Landau, consider the cones of apex xt, direction ∇U(xt), and
aperture angles α(j)

i . We sample M directions uniformly in each cone, and check for each such
direction whether the stratum Ei−1 (or respectively Ei+1) can be reached. Once a prescribed
number of points xt has been processed, we compute the probability of picking a direction which
reaches Ei−1 (or respectively Ei+1) for each cone. Then, we select the widest angle such that this
probability is larger than a user defined threshold. If no such angle exist, we might rely on what
is described in section 3.5.

Remark 3. The previous strategy calls for the following comments:
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12 Chevallier / Cazals

• The aperture angle of the cone is actually critical. Consider the set of directions delimited
on Sd−1 by a given cone. When the dimension increases, the mass of this set of directions
concentrates on the boundary of the cone. Therefore, if the cone is too large, sampled
directions will end up with high probability in this region, and the corresponding random
walk will miss the targeted stratum.

• Since cones are isotropic, the method is not suited to handle highly non isotropic cases.
However as we will see in the experiments, it works well enough even for moderately non
isotropic cases.

• Even if a suitable cone is found by the previous procedure, the Metropolis Hasting acceptance
rate might be low – for instance if strata are too wide or the curvature of level sets non
constant.

Uniform direction in a cone. Sampling a uniform direction is non trivial. we provide, a
detailed sampling algorithms in the appendix – section 7.

3.4 Handling multimodal distributions via darting

3.4.1 Problem

For classical random walks, transitions between minima of multimodal distributions are rare
events, inducing long mixing times.

3.4.2 Solution

Assuming one has a a priori knowledge of the positions m1, ..,mK of theses minima, it is natural
to introduce another type of move allowing jumps from one minima to another. To implement
this, we use a darting strategy – see [21, 22] and section 2.4.

Darting in its simplest form defines a radius ρ, then add transitions between the ballsB(mi, ρ).
In practice, if xt ∈ B(mi, ρ), one picks a ball at random, call its index j, and proposes the
following move: xt+1 ∼ Unif(B(mj , ρ)). However the balls B(mi, ρ) do not match the level
set surfaces of their respective basins. Hence U(xt+1) − U(mj) might be much larger than
U(xt)− U(mi), leading to poor acceptance rates in the Wang-Landau algorithm.

Choice of the candidate point. Denoting mkt the local minimum whose basin contains xt,
define ∆Ut = U(xt)− U(mkt). Our rationale to optimize the acceptance ratio in Wang-Landau
is to control both ∆Ut − ∆Ut+1 and the ratio q(y, x)/q(x, y). For the former, we proceed as
follows in two steps. First, we chose a target energy. For a given xt, let k be the index of the
minimum chosen at random. For some β > 0, we choose a target energy

TU ∼ Unif(U(mk) + ∆Ut − β, U(mk) + ∆Ut + β). (13)

Second, we propose a point xt+1 such that U(xt+1) = TU (Fig. 6). To this end, we sample a
direction u uniformly in the ellipsoid defined by vTH(k)v = 1 where H(k) is the Hessian of U
at mk. Then we do a line search to find the intersection between the target energy TU and the
half line mk + R+u (Fig. 7).

Inria



WL: an adapted random walk 13

When to jump. The previous strategy requires a line search which is expensive if the target
point is far from the local minimum. Furthermore, under some assumptions which are true if
jumps are only allowed close to the local minima, the expression of the transition kernel can be
simplified. Hence we introduce M a user defined parameter, and the darting move set is only
used if ∆Ut ≤M .

Transition kernel. Computing the transition kernel of the darting move is non trivial, but
can be done using a suitable change of variable. The full computation is detailed in the appendix
– section 8, however for the sake of brevity, we only give here the final result. For any x and y
in Rn, let k be the closest minima to y, Ik = [U(mk) + ∆U − β, U(mk) + ∆U + β], λi and ei the
eigenvalues and eigenvectors of the Hessian of U at mk. Finally, let

l =

√∑
i

λi < y −mk, ei >2. (14)

Using the latter, the the transition probability is given by:

qdart(x, y) =
1

K

Γ
(
n
2

)
2β

2π
n
2

1Ik(U(y))
1

ln
∇U(y)T (y −mk)

∏
i≤n

√
λi. (15)

3.5 Splitting energy bins
As a general rule, more bins means slower convergence speed. Thus we only split bins when the
cone strategy fails, as a fallback. We monitor the failure of the cone strategy by computing the
proportion of steps in which the random walk has the possibility to go up or down in energy (see
3.2 ) and the success rate of the metropolis hasting criterion when going up or down. If either
of these statistics are too low for a given bin, the bin is split in half.

3.6 The random walk
The final random walk combines the previous random walks. Let p = (pflat, pcone, pdarting) such
that pflat + pcone + pdarting = 1. The final random walk is:

• chose one of the random walk at random with probability vector p

• sample a point according to the chosen random walk

Such random walk has the following transition probability:

q(x, y) = pflatqflat(x, y) + pconeqcone(x, y) + pdartingqdarting(x, y) (16)

Remark 4. The quantities pflat, pcone, pdarting are parameters, which may depend upon the
location x. Note that in the setting pcone = 0, the the improvement yielded by the cone is unused.

RR n° 9222



14 Chevallier / Cazals

4 Experiments

4.1 Setup

4.1.1 Statistics of interest

Our experiments target three points: correctness, mixing time, and ability to handle complex
systems. For the sake of conciseness, time t refers to t steps of Wang-Landau.

Correctness, stability, and convergence. When an analytical solution for θ∗ is known, we
simply resort to the relative error for estimates at time t, defined by:

error(t) =
∑
i

|θ∗i − θi(t)|
θ∗i

. (17)

We plot this function along time.
When no analytical solution is known–see the dialanine model below, we assess convergence

in two ways, based on several runs (N=60). First, we plot an observable along time, akin to the
partition function, at a fixed temperature:

Z

λ(E)
=

1

λ(E)

∫
E

exp (−U(x)/kT ) ≈
∑

Energy levels U

θ∗i exp (−U/kT ). (18)

Second, we provide box plots on a per bin basis. We also resort to violin plots when more details
are required–in terms of modes of the distribution.

Mixing time. A classical assessment of the mixing time is in terms of auto-correlation as a
function of the lag time [26]. In our setting, where diffusivity across energy strata is targeted, a
simpler proxy for the mixing time of Pθ is provided by the climbing and descending times.

A climb across d strata is defined by two times t0 and t1 such that

• xt0 ∈ E0 and xt0−1 /∈ E0.

• xt1 ∈ Ed−1 and ∀t ∈ [t0, t1[, xt /∈ Ed−1.

The climbing time is then t1 − t0.
Note that we do not normalize the climb times by the number of strata. Indeed, as seen in

section 3.5, increasing the number of strata can decrease the mixing time. Hence the number of
strata is a parameter tuned for convergence speed and therefore should not be taken into account
when measuring mixing time.

In the context of multi-modal distributions, another proxy for the mixing is the time taken by
the random walk to go from one mode to the other. To that end, we monitor the time evolution
of the proportion of time spent in one of the modes.

4.1.2 Contenders

As a yardstick, we compare our random walk (section 3.6) against the Gaussian random walk.
However, while our random walk do not require parameter tuning, the Gaussian variance needs
to be tuned for a fair comparison [26]. Hence we compare with 3 Gaussian walks with high,
adequate and low variances with respect to the tuned variance.
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WL: an adapted random walk 15

4.1.3 Models

Analytical models. We study three analytical models. The first model is the isotropic har-
monic potential. The second is a non isotropic harmonic potential, to ensure that the algorithm
behaves correctly in non trivial settings (Remark 3). The last model is a potential with two local
minimum designed to study darting.

Molecular model. Finally, our last system is the usual toy molecular system, namely the
blocked alanine peptide Ace-Ala-Nme (Fig 11), referred to as dialanine for the sake of conciseness.

We use the amber99-sb force field in vacuum and aim to compute the density of state between
-21 kcal/mol and 4 kcal/mol associated to one local minima – by enforcing the simulation to
remain inside the basin of this local minimum (φ = 59.8862, ψ = −35.5193).

4.2 Results
4.2.1 Single well potential

We study here the simple harmonic model

U(x) =
∑

x2i

with state space the unit ball in dimension n = 30. Since the exact result is know, we plot the
exact error.

Let us first focus on the error (Fig. 8(Top)). The cone strategy yields the best results; all
remaining strategies fail to converge in the imparted time (107 steps). This radical improvement
owes to a climb time orders of magnitude smaller for the cone strategy (Fig. 8(Bottom)).

The comparable performances of the Gaussian random walk with ours (with cone off) owes to
the fact that on this example, with the chosen discretization, strata overstepping is not critical.

4.2.2 Single well potential - no isotropic

To challenge all methods with a non-isotropic case (Remark 3), we use the following non isotropic
potential energy:

U(x) =

n∑
i=1

ix2i

Also in dimension n = 30, the results are on par with the isotropic case (Fig. 9).

4.2.3 Dual wells potential: darting

To challenge darting, we use the usual one-dimensional dual well potential energy function x4−x2,
and add a quadratic potential in other dimensions:

U(x) = x41 − x21 +

n∑
i=2

x2i .

This potential energy has 2 local minimum at (− 1√
2
, 0, ..., 0) and ( 1√

2
, 0, ..., 0). The additional

coordinates makes it harder to travel from one minimum to the other by making it hard to choose
suitable directions.

We setup the darting move set with these two minima, and compare our random walk with
and without darting.
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Both methods yield correct values (Fig. 10(Top)). (Data not shown for darting disabled:
since the potential energy function is symmetric for the first coordinate, the algorithm computes
the correct value even if it never crosses the energy barrier.)

It appears that the random walk allows crossing the energy barrier almost instantly, while
with darting disabled the first jump appears after 105 samples (Fig. 10(Bottom)). This induces
a large difference in the mixing time.

4.2.4 Dialanine

To compute the value defined by Eq. (18) restricted to the basin of the local minimum with
torsion angles, we enforce the simulation to remain within this basin. Checking whether a point
is in a given minima basin of attraction requires a minimization of the potential energy. Since
this is costly operation, we check this condition every N (=100) steps. If the random walk has
escaped, we roll back to the latest point in this basin. (Note that this requires downgrading all
statistics and random number generators [27].)

Remark 5. The previous roll back strategy may introduce some bias, as an excursion outside
the basin may not be detected. The effectiveness of this strategy relies on a bounded proportion
of roll backs, see [27].

We perform 60 runs, each with 107 steps.

To analyze convergence, we plot the time evolution of the observable defined from the partition
function at T = 300K (Eq. (18), Fig. 12(Top)). Since all simulations use the same number of
bins, we also provide a box plot for each bin Fig. 12(Middle)). Finally, to check whether the
observable is unimodal or not, we perform a violin plot at three different time frames along the
course of the simulation (Fig. 12(Bottom)).

We note that the convergence was reached to a different extent as a function of the volume
of strata: the smaller the volume of a stratum, the higher the variance of estimates. This
is expected as sampling rare events is always more challenging. It appears, though, that the
observable converges (Fig. 12(Bottom)), since values concentrate along a single mode.

To get further insights, we study the contribution of individual strata reweighted by Boltz-
mann’s factor (Fig. 13). We first note that the energy range used is sufficiently large since
contributions of the last stratum is one order of magnitude smaller than the highest one (Fig.
13(Top)). The more detailed violin plots–not in log scale, also shows that distributions within
strata are unimodal.

5 Outlook

Given a physical system characterized by an energy, the Wang-Landau algorithm is a stochastic
method returning an estimation of the density of states in terms of histogram. A core component
of the method is the random walk used to navigate between the strata i.e. the preimages
in configuration space of the energy slices defining the histogram. In this work, we make an
explicit link between the convergence of the Wang-Landau algorithm and mixing properties of
the underlying random walk. This analysis prompted the development of a novel, parameter-
free random walk. This random walk embarks three components which respectively target the
following three difficulties: avoiding overstepping strata, coping with the curse of dimensionality,
and accommodating multi-model distributions. The geometry awareness removes the necessity
of tuning the variance of the random walk while performing well with strata of varying width.
The cone improvement is crucial to deal with concentration phenomena in high dimensional

Inria



WL: an adapted random walk 17

Figure 1 Wang-Landau: evolution of the learning rate. The stairways curve corresponds
to the halving rule–which yields a saturation of the error. The smooth 1/t curve yields conver-
gence. Practically, the two strategies are combined to improve the convergence speed: one starts
with the halving rule, switching to the 1/t rule when the two curves meet [7]. Note the length
of plateaus to move from t to t+ 1 depend on the random walk–whence the depicted variability.

γ

t

problems. Darting is necessary for multimodals distributions with low transition probabilities
between modes. The performances of our random walk are assessed by measuring so-called
climbing times which quantify the diffusivity across strata. All in all, the resulting Wang-Landau
algorithm is effective is computing observables for small biomolecules, within hours on a laptop
computer.

Our work calls for developments on two types of questions. On the design side, while our
random work operates in Cartesian coordinates, switching to internal coordinates is an appealing
strategy to handle biomolecules whose conformational changes are best described by valence and
torsion angles. On the analysis side, our assessment is experimental and prompts challenging
analysis issues. On the one hand, a rigorous analysis of the mixing time of our random walk
would provided insights on which geometric features of the conformational space / landscape
matter. On the other hand, bridging the gap between the mixing time of the random walk and
the convergence speed of WL would be of high interest.
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18 Chevallier / Cazals

Figure 2 Connectedness between pre-images of energy bins is prime to fast conver-
gence. Energy levels may be seen as the nodes of a graph and may be connected in a variety
of ways. In this work, we exploit a random walk aiming at describing a ladder to connect these
nodes.

En

En−1

E1

E0

En−2

Figure 3 Exploiting the geometry of the landscape to avoid overstepping strata.
The intersection between a random line through x0 with the level set surfaces of a quadratic
approximation of the potential yields points {Xi} from which the random walk is defined – see
main text.

x0

~u

X1

X0

X−1

X2

E0
E1 E2

Xi = x0 + hiu
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Figure 6 Handling multimodal distributions via darting: jumping between 2 min-
ima. While darting, the difference of energy with the local minima is controlled to monitor the
acceptance rate.

∆U
∆U + ε

xt
xt+1

U

mkt

mk

Figure 7 Darting: reaching a prescribed energy level via line search in direction u.
The line search starts from minimum mk with target energy Target.

u

xt+1 U = Target

mk

6 Artwork

6.1 Method

Figure 4 Reaching region Ei−1 from Ei:
cone of suitable directions.

x0

Ei

Ei−1

x1

α

Figure 5 Ratio between the area of the
spherical cap subtained by an angle θ
and that of the whole n-dimensional
hemisphere Sn−1/2. Ranges explored: di-
mension n ∈ [3, 100], and angle θ ∈ [0, π/2].
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6.2 Results

Figure 11 Dialanine (Ace-Ala-Nme) and the two dihedral angles Φ and Ψ

Ψ
Φ
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Figure 8 Isotrop single well in dimension 30: comparison of the five random walks.
The five random walks used are the three Gaussian based RW, plus the improved random walk
with and without the cone improvement. (Top) Comparison of the evolution of relative
error – Eq. (17) (Bottom) Box plot of the climbing times.
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Figure 9 Non isotropic single well in dimension 30: comparison of the five random
walks. The five random walks used are the three Gaussian based RW, plus the improved
random walk with and without the cone improvement. (Top) Comparison of the evolution
of relative error – Eq. (17) (Bottom) Box plot of the climbing times.
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Figure 10 Dual well potential in dimension 30: analysis of darting. (Top) Evolution
of relative error – Eq. (17) (Bottom) Comparison of time spent in the first well with
and without darting
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Figure 12 Analysis of convergence for dialanine, using amber-69sb forcefield in vac-
uum. Results averaged over 60 independant simulations. (Top) evolution of the partition
function. (Middle) Box plot of the estimation θi for each bin i. (Bottom) Violin plot
of the partition function at T = 300K, at three different time frames along the course
of the simulation.
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Figure 13 Analysis of convergence for dialanine, using amber-69sb forcefield in vac-
uum. Results averaged over 60 independant simulations. (Top) Violin plot of the final bins
volume with respect to the Boltzman distribution at T = 300K (Bottom) Violin plot
of the final bins volume with respect to the Boltzman distribution at T = 300K
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7 Appendix: uniform sampling in a hypercone

We wish to sample uniformly at random in the intersection of a cone of aperture α intersected
with a d-dimensional ball Bd(R) as described in Fig.14. The algorithm and the calculations use
the notations of Fig. 14.

Figure 14 Uniform sampling within a conic region. The volume defined by the grey region
is the union of a cone and of a spherical cap.
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L R

β
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7.1 Pre-requisites

Special functions. We shall need the Beta and incomplete Beta functions, defined by{
B(a, b) =

∫ 1

0
tx−1(1− t)y−1dt,

B(x; a, b) =
∫ x
0
tx−1(1− t)y−1dt( with 0 < x < 1).

(19)

Using both, one defines the regularized incomplete Beta factor

Ix(a, b) =
B(x; a, b)

B(a, b)
. (20)

Spheres and balls: surface and volume. The surface area of a sphere of a d − 1 sphere
Sd−1(R) of radius R in Rd

Aread−1(R) = Rd−1
2 πd/2

Γ (d/2)
≡ Rd−1Ad. (21)

The volume of the corresponding ball Bd(R) satisfies

Vold(R) = R
Aread(R)

d
= Rd

2

d

πd/2

Γ (d/2)
= Rd

πd/2

Γ (d/2 + 1)
≡ RdVd. (22)
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To generate a point X uniformly at random on the unit the unit sphere Sd, we generate
a point X = (x1, . . . , xd)

t whose coordinates are iid Gaussian with µ = 0 and σ = 1. The
corresponding density is given by

fG(X) =
1

(2π)d/2
e−

x2
1+x2

2+···+x2
d

2 . (23)

To obtain a unit vector, we normalize the latter as X
‖X‖ . (NB: due to normalization the

coordinates of this vector are not independent.)

Random generation within a ball. To generate a point uniformly at random inside Bd(R =
1), observe that the volume of Bd(r) = rdVd. Differentiating yields

d

dr
(rdVd) = drd−1Vd. (24)

Therefore one generate a random value using the density drd−1 for r ∈ [0, 1].

Spherical caps of the d-dimensional ball. We consider a conic region inside the d-dimensional
ball, consisting of the union of a pyramid and that of a spherical cap defined by the cone of aper-
ture α (Fig. 14). Surface and volume of such a cap is easily computed [28].

To compute the volume of the cap, we integrate the volume of a d− 1 dimensional sphere or
radius r sinβ whose height element is d(r cosβ) = r sinβ:

V Cap
d,α (r) =

∫ α

0

Vold−1(r sinβ)d(r cosβ) =
Vold(r)

2
Isin2 α(

n+ 1

2
,

1

2
). (25)

Note that the incomplete Beta factor as the probability for a point of the ball to also be inside
the spherical cap.

To compute the surface of the cap, we integrate the area of a d − 1 dimensional sphere or
radius r sinβ with arc element rdβ:

ACap
d,α (r) =

∫ α

0

Aread−1(r sinβ)rdβ =
Aread−1(r)

2
Isin2 α(

n− 1

2
,

1

2
). (26)

7.2 Algorithm to uniformly sample a hypercone

7.2.1 Overview

The algorithm proceeds in 3 steps:

• (i) Decide whether one samples from the cone or the spherical cap,

• (ii) Pick a slice in the cone or spherical cap,

• (iii) Sample the slice.

More formally:

• (i) Draw u ∈ [0, V Cone
n,α (1) + V Cap

n,α (1)]. If u < V Cone
n,α (1), we pick in the cone (ie l < L), else

we pick in the cap (ie l > L).
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• (ii) Pick a slice of the cone or the cap at distance l from the center, using the density

fcone(l) = Cconer(l)
n−11l≤L = Ccone tan(α)n−1ln−11l≤L (27)

or

fcap(l) = Ccapr(l)
n−11l>L = Ccap(1− l2)

n−1
2 1l>L (28)

with Ccone and Ccap normalization constants used to define probability densities.

• (iii) Draw uniformly at random in the corresponding n− 1 ball, using the density from Eq.
(24).

7.2.2 Sampling from fcap

The previous algorithm requires sampling from fcap defined in eq.(28). The most straightforward
way to sample from a probability density is to compute the inverse of the cumulative distribution
function (F (x) =

∫ x
−∞ f(y)dy). This requires to compute a primitive of the density. However,

see BEFORE, there is no simple analytic expression for the primitive of fcap. Hence, we fall back
to rejection sampling with a well chosen base distribution such that the rejection rate do note
depend on the dimension n.

Observe that while (1− l2)
n−1
2 do not have a simple primitive, the function l(1− l2)

n−1
2 do.

Therefore we define
gcap(l) = MCcapl(1− l2)

n−1
2 (29)

withM such that for all l, gcap(l) ≥ fcap(l) which is required for rejection sampling. The optimal
choice for M is:

M =
1

L
=

1

cosα

. L g̃cap the renormalized version of gcap. Assuming we can sample point from g̃cap, the acceptance
rate for each l in the rejection algorithm used with fcap and gcap is

fcap(l)

gcap(l)
=

1

lM
≤ 1

M

as l ≤ 1. Hence the acceptance rate do not depend on n and only on α the opening of the cone.

Sampling from g̃cap: To sample from g̃cap we compute the inverse of it’s cumulative distri-
bution.

Let

B(x) =

∫ x

L

l(1− l2)
n−1
2 dl

using the change of variable y = 1− l2, we deduce:

B(x) =

[
− (1− y2)(1+n)/2

1 + n

]x
L

=
(1− L2)(1+n)/2

1 + n
− (1− x2)(1+n)/2

1 + n
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The cumulative distribution for g̃cap is

F (x) = 1x>L
B(x)

B(1)

= 1x>L

(
1− (1− x2)(1+n)/2

(1− L2)(1+n)/2

)
And it’s inverse:

F−1(x) =
√

1− (1− L2)(1− x)2/(n+1)

Hence we can sample from g̃cap.

7.2.3 Sampling from fcone

The inverse CDF for fcone is straightforward to compute:

F−1cone(x) = Lx1/n

Therefore we can sample from fcone.

7.3 Changing the cone axis
The previous section algorithm generates a point in a cone whose axis is fixed: e1 = (1, 0, ...0).
In practice, the axis of a cone is aligned with the gradient of the potential energy – Section 3.3.

To handle arbitrary cones, we apply a linear transformation. We describe here how to apply
this transformation with a contained complexity. Let d ∈ Rn \ {e1} be the desired axis of the
cone.
Let H be the hyperplane orthogonal to e1. In the algorithm, we generates points in H. Suppose
we generate (x2, ..., xn) in H. For any orthonrmal basis ε2, ..., εn of H, the points x2ε2+ ...+xnεn
will have the same distribution in H. Hence we try to find a basis ε2, ..., εn adapted to our prob-
lem.

We choose ε2 = d−<d,e1>e1
‖d−<d,e1>e1‖ .

We complete this base with ε3, ..., εn, and we will see that the choice of these ε3, ..., εn do not
matter.
Let R the rotation such that R(e1) = d and R(εi) = εi for i > 2.

Let H0 = V ect(e1), H1 = V ect(e1, ε2) and H2 = V ect(ε3, ..., εn).
Let x ∈ Rn. Then there exists u1, u2 and v such that

x = u1e1 + u2ε2 + u3v

with v = x− < x, e1 > e1− < x, ε2 > ε2 ∈ H2. u1, u2 and v are straightforward to compute. We
easily get:

R(x) = R(u1e1 + u2ε2) + u3v

Thus the transformation R can be reduced to a simple rotate in R2. Let θ =< e1, d >. Then

R(u1e1 + u2ε2) = u1d+ u2 (cos(θ + π/2)e1 + sin(θ + π/2)ε2)

Thus we full transform is as follow:
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• compute

ε2 =
d− < d, e1 > e1
‖d− < d, e1 > e1‖

• compute u1 =< x, e1 >, u2 =< x, ε2 > and v = x− u1e1 − u2ε2

• compute θ = (e1, x) and d̃ = (cos(θ + π/2)e1 + sin(θ + π/2)ε2)

• R(x) = u1d+ u2d̃+ v

RR n° 9222
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8 Appendix: transition probability for darting

8.1 Notations

We give here a detailed computation of the transition probability for darting given by eq. 15.
We use the same notations than in section 3.4. Let us write Pdart the Markov kernel associated
to the darting move. Let x be a point of E . The transition kernel has a density, hence we write
P (x, y) instead of P (x, dy). For a minimum k, let H(k) the Hessian of U at mk. Let λ1, ..., λn
it’s eigenvalues and e1, .., en it’s eigenvectors as an orthonormal basis. Finally let Ak ⊂ E be the
basin of attraction of minimum k and let kx the minimum such that x ∈ Akx . We consider the
following rescaling of state space:

hk(y) = mk +
∑
i

√
λi(y −mk|ei)ei. (30)

Let Ũk(z) = U(h−1k (z)) the potential energy in the rescaled space. Let f̃k(u, TU ) the application
which associates the first intersection between mk + αu and Ũ = TU + U(mk) with α > 0.
Formally, f̃k is an application defined on Sn−1 × R+.

Let fk(u, TU ) = h−1(f̃(u, TU )). Also let fk∗(µk,x) be the pushforward measure of µk,x by fk.
Then, the Markov kernel seen as an operator on measures is given by:

Pdart(x, .) =
1

K

∑
k

fk∗(µk,x)∫
µk,x

(31)

where µk,x is the product measure of the Lebesgue measure on Sn−1 and the Lebesgue measure
of

Ik(x) = [U(x)− U(kx) + U(k)− β, U(x)− U(kx) + U(k) + β] (32)

8.2 Assumptions

The following assumption ensures that function fk defines a bijection between the set of directions
and the restriction of the target energy level set surface to the basin of a local minimum:

Assumption 1. For every local minimum k ≤ K, u ∈ Sn−1, TU ∈ [U(mk), U(mk) + M ], the
intersection {y|y = mk + αu, α > 0} ∩ {y|U(y) = TU} ∩ Ak is a single point. See Fig. 15 and
Fig. 16.

Doing a line search for every minimum is expensive. Using constant M defined in Section
3.4(see paragraph When to jump), we introduce the following assumption to simplify Eq. (31):

Assumption 2. For every y such that U(y)− U(mky ) ≤M , then for every k ≤ K,

‖y −mky‖ ≤ ‖y −mk‖

The simplified expression for Eq. (31) reads as

P (x, y) =
1

K

fky∗(µky,x)∫
µky,x
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where ky is the closest minimum to y. As a final observation, assumptions 1 and 2 are true if M
is small enough (using a second order Taylor expansion for the proof at the bottom of the local
minima)

Figure 15 Not allowed by assumption 1 as there are multiple intersection point between a
direction and the restriction of an energy level set to a basin.

mk

U = TU

Figure 16 Not allowed by assumption 1 as selected directions yield intersection points
outside the basin of m1.

m1 m2

U = TU

basins boundary

8.3 Derivation of the transition probability
Under assumption 1, fk is a bijection from Sn−1 × [U(mk), U(mk) + M ] to the connected
component containing mk of the set of point {y|U(y) ≤ U(mk) +M}. Hence it’s inverse is well
defined. The density of the pushfoward measure can be computed using the usual change of
variable formula:

fk∗(µk,x)(y) = |J(f−1k )(y)|1Ik(U(y))

For notation simplicity, we consider a fixed k and write f = fk and h = hk for the following
computation. The inverse of f has the following expression:

f̃−1(z) =

(
z −mk

‖z −mk‖
, Ũ(z)

)
Let z = h(y) and u = z−mk

‖z−mk‖ , and choose w1, ..., wn−1 in Rn such that w1, ..., wn−1, u is an
orthonormal basis of Rn. Let l = ‖z −mk‖. Then:

∂f̃−1

∂wi
(z) =

(
1

l
wi,

∂Ũ

∂wi
(y)

)
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Observe that w1, ..., wn−1 is an orthonormal basis of the tangent space of Sn−1 at u. Then
considering that f̃−1 is an application from an open set of Rn to Sn−1 × R+, the Jacobian of
f−1 becomes:

J(f̃−1)(z) =


1
l 0 ... 0 0
0 1

l ... 0 0
...

...
. . .

...
...

0 0 ... 1
l 0

(∇Ũ(z)|w1) (∇Ũ(z)|w2) ... (∇Ũ(z)|wn−1) (∇Ũ(z)|u)


Hence

|J(f̃−1)(z)| = 1

ln−1
(∇Ũ(z)|u)

And using Ũ(z) = U(h−1(z)),

∂Ũ

∂u
(z) = ∇U(y)TJ(h−1)(z)u (33)

= ∇U(y)TJ(h−1)(z)
z −mk

l
(34)

= ∇U(y)TJ(h−1)(z)(h(y)−mk)
1

l
(35)

= ∇U(y)T (y −mk)
1

l
(36)

Where the simplification in equation 36 is justified by the fact that h(y)−mk = J(h)(y−mk) =
J(h−1)−1(y −mk). Combining the two previous equations:

|J(f̃−1)(z)| = 1

ln
∇U(y)T (y −mk)

We deduce:

|J(f−1)(y)| = |J(h)| 1
ln
∇U(y)T (y −mk)

The Jacobian matrix of h is easy to compute:

|J(h)| =
∏
i≤n

√
λi

Hence we deduce:

fk∗(µk,x)(y) = 1Ik(U(y))
1

ln
∇U(y)T (y −mk)

∏
i≤n

√
λi (37)

The rescaling factor for measure µk,x is:∫
µk,x =

2π
n
2

Γ
(
n
2

)
2β

(38)

Injecting equations 37 and 38 into equation 31 allows us to compute Pdart(x, y).
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