Augustin Chevallier

Sylvain Pion

Frédéric Cazals

Hamiltonian Monte Carlo with boundary reflections, and application to polytope volume calculations

Keywords: HMC, polytope, random walk, importance sampling, billiard walk HMC, polytope, marche aléatoire, importance sampling, billiard

This paper studies HMC with reflections on the boundary of a domain, providing an enhanced alternative to Hit-and-run (HAR) to sample a target distribution in a bounded domain. We make three contributions. First, we provide a convergence bound, paving the way to more precise mixing time analysis. Second, we present a robust implementation based on multi-precision arithmetic -a mandatory ingredient to guarantee exact predicates and robust constructions. Third, we use our HMC random walk to perform polytope volume calculations, using it as an alternative to HAR within the volume algorithm by Cousins and Vempala. The tests, conducted up to dimension 50, show that the HMC RW outperforms HAR.

Introduction

1.1 Sampling in high dimensional space: a pervasive challenge Sampling with MCMC algorithms. Broadly speaking, Monte Carlo algorithms provide means to obtain numerical values from simulations resorting to randomness. Such algorithms have countless applications, as illustrated by the following examples. In statistical physics, macroscopic properties also called observables may be obtained from computer simulations generating ensembles of conformations over which averages are computed [START_REF] Landau | A guide to Monte Carlo simulations in statistical physics[END_REF]. In numerical mathematics, a frequent goal is to generate point following a given target distribution [START_REF] Robert | Monte Carlo statistical methods[END_REF]. In (Bayesian) statistics, a classical goal is the calculation of maximum a posteriori (MAP). Two classes of sampling techniques deserve a mention in this work. The first one is importance sampling [START_REF] Brooks | Handbook of Markov Chain Monte Carlo[END_REF], a generic strategy aiming at sampling rare events and reducing the variance of estimators by biasing the target distribution. The second one is Markov Chains Monte Carlo, where an ergodic Markov chain is used to target a given distribution [START_REF] Brooks | Handbook of Markov Chain Monte Carlo[END_REF]. A generic method in this realm, both conceptually elegant and remarkably generic is the Metropolis-Hastings method, where the Markov chain used consists in iteratively generating samples, and accepting/discarding them. Interestingly, this simple description suffices to capture the major difficulties of the method in high-dimensional spaces. When the target distribution allocates its mass on a typical set of small dimension, the samples generated should clearly remain in close vicinity of this set so as to avoid large rejection rates.

Hamiltonian Monte Carlo. An efficient solution to deal with such cases is Hamiltonian Monte Carlo (HMC) [START_REF] Betancourt | A conceptual introduction to Hamiltonian Monte Carlo[END_REF][START_REF] Radford | MCMC using Hamiltonian Dynamics[END_REF]. HMC aims at sampling a distribution π in a high dimensional space, by defining Markov chain in phase space R 2n , with n coordinates for the position q, and n coordinates for the velocity p. As the name suggests, HMC is governed by an ODE system defined by Hamilton's equations. In a nutshell, a HMC step involves three steps which are (i) picking a random velocity p, (ii) traveling deterministically the level set surface of the Hamiltonian, and (iii) projecting down in configuration space.

As seen from Hamilton's equation, the fact that the gradient of the target density is used to twist the momentum p rather than the position q helps forcing the dynamical system to be diffusive near the typical set [START_REF] Betancourt | A conceptual introduction to Hamiltonian Monte Carlo[END_REF]. A key difficulty though is the calculation of exact orbits, which we shall fudge around analytically in our case.

Volume calculations and density of states. Computing the volume of a polytope -a bounded region of R n defined by the intersection of a fixed set of half spaces, is a classical problem in science and engineering. Unfortunately, exact volume calculation algorithms take an exponential time in the worst case [START_REF] Büeler | Exact volume computation for polytopes: a practical study[END_REF]. A related problem to polytope volume calculations is the calculation of density of states (DoS) in statistical physics. To see why, recall that a partition function may be written as a sum or integral over energy levels of the DoS achieving a particular energy [START_REF] Landau | A guide to Monte Carlo simulations in statistical physics[END_REF]. Therefore, a classical strategy to compute a partition function consists of estimating the volume in phase space of the pre-image of an energy level.

The case of polytopes is especially interesting since considerable efforts were devoted to complexity bounds, and the hardness results obtained calibrate the intrinsic difficulty of such problems in high dimensional spaces. Complexity-wise, it can be proved that the problem is #-P hard both for V-polytopes and H-polytopes [START_REF] Dyer | On the complexity of computing the volume of a polyhedron[END_REF]. Intuitively, any deterministic algorithm using a polynomial number of points and computing the corresponding convex hull omits an exponentially large fraction of the volume. This observation naturally calls for approximation algorithms [START_REF] Bárány | Computing the volume is difficult[END_REF][START_REF] Levy | Flavors of Geometry[END_REF].

Inria

A major breakthrough was the development of the polynomial-time randomized algorithm by Dyer et al. [START_REF] Dyer | A random polynomial-time algorithm for approximating the volume of convex bodies[END_REF]. More recently, it has been shown that (ε, δ) approximations of the volume could be computed in O (n 4) [START_REF] László | Simulated annealing in convex bodies and an O * (n 4) volume algorithm[END_REF].

Remark 1. To conform with previous work, the following notations are used in this paper:

• ε: criterion used to assess the quality of the volume approximation [START_REF] Cousins | A practical volume algorithm[END_REF].

• : notation used for the total variation bound on the mixing time. See theorems 3 and 5.

The volume calculation boils down to estimating ratios in a telescoping product, each ratio being the integral over the convex of exponential functions carefully chosen according to a cooling schedule. The first function is sharply concentrated within the convex, while the last one is a flat distribution. A total of O (√ n) such functions are used. Each ratio in the telescoping product is estimated (with guarantees) using O (√ n) samples. The complexity of generating a given sample being O (n 3), the overall algorithm has complexity O (n 4).

The complexity was recently improved to O (n 3) [13, 14], using Gaussian rather than exponential functions. The improvement come from an enhanced cooling schedule, and a decreasing mixing time -O (σ 2 n 2) rather O (n 3) with σ 2 the variance of the sampled isotropic Gaussian.

Interestingly, these randomized algorithms implement a multi-phase MC strategy, and the estimation of individual terms in the telescoping product resort to importance sampling.

Random walks and mixing properties. The aforementioned randomized algorithms embark several key ingredients, the most prominent one being the strategy to generate random samples. Except in simple cases, the most generic approach is to use a random walk defining a Markov chain. Several such walks have been used, including ball walk [START_REF] Lovász | Faster mixing via average conductance[END_REF], hit-and-run (HAR) [START_REF] Lovász | Hit-and-run mixes fast[END_REF][START_REF] Lovász | Hit-and-run is fast and fun[END_REF][START_REF] Lovász | Hit-and-run from a corner[END_REF][START_REF] Haraldsdóttir | CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models[END_REF], billiard walk [START_REF] Gryazinaa | Random sampling: Billiard walk algorithm[END_REF].

As discussed above for the case of MCMC algorithms, the goal of such a walk is to generate samples according to a target distribution. Of particular interest is HAR, since the method is amenable to several optimizations [START_REF] Emiris | Efficient random-walk methods for approximating polytope volume[END_REF][START_REF] Emiris | Practical polytope volume approximation[END_REF], including the choice of the random line used, and the calculation of the facet of the polytope intersected by a line. In any case, the convergence is assessed by mixing properties, e.g. based on the total variation distance which measures how far the random walk is from its stationary distribution [START_REF] Levin | Markov chains and mixing times[END_REF]. For the particular case of polytope volume calculations, both HAR and ball walk were particularly studied. HAR mixes in O (n 3) from any starting point, with constants depending on the geometry of the polytope. Ball-walk mixes in O (n 3), and requires a warm-start -certain hypotheses on the starting point are required. Finally, we also mention billiard walk, a random walk based on reflections on boundaries. While we are unaware of mixing time analysis, convincing experiments have been reported for the generation of uniform samples [START_REF] Polyak | Billiard walk-a new sampling algorithm for control and optimization[END_REF].

Robustness issues. The simplest computer model to use when designing numerical / geometric algorithms is the real RAM model which assumes that exact operations on real numbers are available at constant time per operation [START_REF] Preparata | Computational geometry: an introduction[END_REF]. In practice, such assumptions are not valid, in particular due to rounding operations inherent to representations of floating point numbers in computers, and arithmetic operations are specified by the IEEE 754-2008 standard [START_REF] Muller | Handbook of floating-point arithmetic[END_REF].

The case of geometric algorithms is particularly critical, since erroneous evaluation of expressions conditioning the branching of the algorithm typically yield situations where the calculation is no more coherent (the algorithm loops or crashes), or possibly terminates with an erroneous answer.

Such situations occur near degenerate situations, and manifest systematically even on the simplest expressions in 2D space [START_REF] Kettner | Classroom examples of robustness problems in geometric computations[END_REF]. The design of robust geometric algorithms can be done in a general way using the Exact Geometric Computation paradigm [START_REF] Yap | The exact computation paradigm[END_REF], as it is done for example in the CGAL [START_REF] Cgal | [END_REF] software library. In order to do so, the CGAL kernel distinguishes between predicates and constructions. A predicate is a function whose output belongs to a finite set -e.g. boolean, or checks whether an expression is positive / negative / null. A construction exhibits a new numeric or geometric object (e.g. distance, point, vector) from pre-existing ones.

To ensure robustness, we develop our algorithms in this framework, using multi-precision number types whose accuracy can be increased on demand to ensure the correctness of predicates.

Contributions

This paper makes contributions touching upon random walks for MCMC algorithms, polytope volume calculations, and Hamiltonian Monte Carlo. More precisely:

1. In section 2, we analyse a novel random walk combining billiard walk and HMC. The random walk is designed to sample a target distribution, and piecewise smooth analytical trajectories can be obtained. For the particular case of a polytope K, intersection of the trajectory yields reflections inside K. Convergence properties are established.

2.

In section 3, we instantiate our random walk to sample distributions used for polytope volume calculations. Analytical expressions for HMC trajectories are obtained. We also provide a robust implementation of the random walk based on multi-precision interval arithmetic.

3. Finally, section 4 reports experiments comparing HAR and our random walk. The first test samples a target distribution. The second one embeds our random walk into the practical polytope volume calculation of Cousins and Vempala [START_REF] Cousins | A practical volume algorithm[END_REF]. In both cases, we show superior performances over HAR, for dimension up to n = 50.

Hamiltonian Monte Carlo method with boundary reflections

In this section we consider a bounded open set Q ⊂ R n with piecewise smooth boundary and a probability measure with density π : R n → R ≥0 such that π(x) = 0 for all x not in the closure Q of Q. We would like an algorithm sampling points according to π. The traditional HMC algorithm does not handle boundaries, hence we present a modification of HMC with reflections which is drawn from [START_REF] Afshar | Reflection, refraction, and Hamiltonian Monte Carlo[END_REF] and [START_REF] Gryazinaa | Random sampling: Billiard walk algorithm[END_REF][START_REF] Polyak | Billiard walk-a new sampling algorithm for control and optimization[END_REF].

HMC with reflections

Denoting q (i) and p (i) the i-th coordinates of position and momentum respectively, recall Hamilton's equations which state that the velocity field is orthogonal to the gradient of the Hamiltonian H:

dq (i) dt = ∂H ∂p (i) , dp (i) dt = - ∂H ∂q (i) . (1)
As with HMC, we define a potential energy U (q) = -log(π(q)) and the Hamiltonian H(q, p) = U (q) + 1 2 p 2 but this time restricted to Γ = Q × R n . We assume that π is the restriction to Q of positive smooth function defined on R n and we use Φ t the Hamiltonian flow. However, the trajectories of this flow are not included in Q even if the initial point (q, p) is in Q × R n . For Inria every q ∈ Q and every p ∈ R n , we define T (q, p) as the largest T such that for all 0 ≤ t < T , Φ t (q, p) ∈ Q. We also define T (q, p) = 0 when q is in the boundary of Q.

Following [START_REF] Afshar | Reflection, refraction, and Hamiltonian Monte Carlo[END_REF] and [START_REF] Gryazinaa | Random sampling: Billiard walk algorithm[END_REF][START_REF] Polyak | Billiard walk-a new sampling algorithm for control and optimization[END_REF], we modify the flow by forcing reflections on the boundary of Q. This flow, illustrated on Fig. 2, is denoted as follow:

Φt : Q × R n → Q × R n (q, p) → Φt (q, p) ≡ (Φ(q) t (q, p), Φ(p) t (q, p)). (2)
Note that the latter equation defines position and velocity upon applying the flow. However, as noted in [START_REF] Gryazinaa | Random sampling: Billiard walk algorithm[END_REF][START_REF] Polyak | Billiard walk-a new sampling algorithm for control and optimization[END_REF], this new flow might exhibit problematic trajectories: some of them might not be defined for all t because of singularities on the boundary, others might have huge number of reflections or even an infinite number of reflections in finite time. Hence, following ideas of [START_REF] Gryazinaa | Random sampling: Billiard walk algorithm[END_REF][START_REF] Polyak | Billiard walk-a new sampling algorithm for control and optimization[END_REF], we cull problematic trajectories by not moving in those cases.

Remark 2. For q ∈ Q and any p, T (q, p) > 0 and ΦT (q,p) (q, p) is in the boundary of Q.

Remark 3. When q is in the boundary of Q and t > 0, Φt (q, p) is only defined for the momenta p such that the open half-line with origin q and direction p, is included in Q in a neighborhood of q.

Algorithm Let M ∈ N * be the maximum number of reflections. Given a point q (t) ∈ Q, the algorithm is as follow (Fig. 1):

Figure 1 Hamiltonian Monte Carlo with reflections.

1. Choose the traveling time L ∼ unif(0, 1)

2. Pick the momentum p ∼ N (0, I n)

3. If the flow ΦL (q (t) , p) is defined and does not involve more than M reflections between t = 0 and L, and if ΦL (q (t) , p) ∈ Q

• Take q (t+1) = Φ(q) L (q (t) , p) • Else, take q (t+1) = q (t) Figure 2 Reflection of the HMC trajectory on the boundary of the polytope K: evolution of a single HMC step, starting from q (0) ; the trajectory successively reflects on hyperplanes, before stopping at q (n L) .

-n Hi Φ(q) tc i (q (0)

, p)

p(t + ci) p(t - ci) K H i H j H k Φ(q) tc j (q (0) , p) Φ(q) tc k (q (0) , p) Φ(q) tc i (q (0) , p) = q (1) q (0)
For a fixed L > 0, steps from 2. and 3. define a Markov kernel P π,L . The full algorithm (steps from 1. to 3.) define a Markov kernel P π that can be expressed with P π,L .

For L > 0, let Γ L be the largest subset of Γ where ΦL is defined, admits no more than M reflections, and the trajectory do not finish in a singularity at time L. Γ L is open and therefore measurable. Let Φ(q, p) = ΦL (q, p) if (q, p) ∈ Γ L (q, p) if (q, p) / ∈ Γ L the application from Γ to Γ which corresponds to steps 3 and 4.

Remark 4. For any point (q, p) ∈ Γ, if L is small enough, (q, p) ∈ Γ L . However, if L is too large, Γ L could be empty.

Measure invariance via detailed balance

We recall the definition of detailed balance:

Definition 1 (detailed balance / reversible). A Markov chain P is said to satisfy detailed balance (or reversible) with respect to the measure π if for every A and B measurable,

B P (x, A)π(dx) = A P (x, B)π(dx)
Let A and B be measurable subsets of Q. Then let

A B = {(q, p) ∈ Γ L |q ∈ A, Φ(q, p) ∈ B × R n }
Inria the subset of Γ of all positions in A with momenta that brings them in B after time L. Similarly, we define Ψ(q, p) = (Φ(q) (q, p), -Φ(p) (q, p)) on Γ.

Lemma 1. The maps Φ and Ψ preserve the Lebesgue measure on Γ L . ie for every

A ⊂ Γ L measurable, λ(Φ-1 (A)) = λ(A)
Proof. Clearly it is enough to prove that Φt preserves the Lebesgue measure. In [START_REF] Afshar | Reflection, refraction, and Hamiltonian Monte Carlo[END_REF], it is proved that for a fixed step size, the Euler method for numerical integration applied to the Hamiltonian flow with reflections, gives rise to a flow that preserves the Lebesgue measure. Letting the step size going to zero, we see that Φt is the pointwise limit of transformations that preserves the Lebesgue measure which implies that Φt preserve the Lebesgue measure.

Lemma 2. 1. Ψ(Γ L) ⊂ Γ L 2. Ψ • Ψ = I on Γ L 3.
For any measurable sets A and B of R n ,

B A = Ψ(A B)
4. H(Ψ(q, p)) = H(q, p) for all (q, p) ∈ Γ.

Proof. 1. and 2. are simple consequences of the reversibility of the Hamiltonian flow with reflections.

3. Let A and B be measurable sets of

R n . Ψ q (A B) ⊂ B and Ψ(Ψ(A B)) = A B thus Ψ(A B) ⊂ B A . By symmetry, Ψ(B A) ⊂ A B . Hence by composing with Ψ: Ψ(Ψ(B A)) ⊂ Ψ(A B). Using 2., we deduce B A ⊂ Ψ(A B).
4. is clear.

Theorem 1. P π,L and π satisfy detailed balance.

Proof. Let A and B be measurable sets of R n . The left hand side of the detailed balance equation becomes

A P π,L (q, B)dπ(q) = A P π,L (q, B) exp(-U (q))dq = A {p|(q,p)∈Γ L , Φ(q) (q,p)∈B} exp(-p 2)dp + {p|(q,p) / ∈Γ L , Φ(q) (q,p)∈B} exp(-p 2)dp exp(-U (q))dq = A B exp(-H(q, p))dqdp + A {p|(q,p) / ∈Γ L } 1 B (q) exp(-H(q, p))dqdp = A B exp(-H(q, p))dqdp + A∩B {p|(q,p) / ∈Γ L } exp(-H(q, p))dqdp.
By symmetry:

B P π,L (q, A)dπ(q) = B A exp(-H(q, p))dqdp + A∩B {p|(q,p) / ∈Γ L } exp(-H(q, p))dqdp RR n°9222
Using lemma 2 and the measure conservation of lemma 1 we obtain:

A B exp(-H(q, p))dqdp = Ψ(B A) exp(-H(q, p))dqdp = B A exp(-H(Ψ(q, p)))dqdp = B A exp(-H(q, p))dqdp
Which concludes the proof.

Theorem 2. P π satisfies detailed balance with respect to π.

Proof. this is a direct consequence of theorem 1

Convergence result

Detailed balance ensures that π is invariant by P π , but it does not imply the convergence of the P n to π by itself. In this section, we prove additional results to get such a convergence result. This requires extra assumptions on Q.

We recall the following definition and theorem from [START_REF] Roberts | General state space Markov chains and MCMC algorithms[END_REF].

Definition 2. A subset C ⊂ X is small (or, (n 0 , , ν)-small) if there exists a positive integer n 0 , a real > 0, and a probability measure ν(.) on X such that the following minorisation condition holds:

P n0 (x, .) ≥ ν(.) x ∈ C
i.e. P n0 (x, A) ≥ ν(A) for all x ∈ C and all measurable A ⊂ X

Intuitively, the previous definition states that whatever the starting point x-whence the adjective small, the iterated kernels P n0 (x, .) cover a common measure ν(.). Note that the value of n 0 is the number of steps needed to reach ν -and can be equal to one. Theorem 3. Consider a Markov chain with invariant probability distribution π(.). Suppose that X is small (i.e., the entire state space is small). Then the chain is uniformly ergodic, and in fact

P n (x, .) -π(.) T V ≤ (1 -) n/n0 (3)
for all x ∈ X , where r is the greatest integer not exceeding r and the norm is the total variation.

The following theorem provides a sufficient condition for Q to be small with respect to P π .

Theorem 4. If Q if convex and the gradient of the potential energy ∇U is bounded on Q, then Q is small for P π .

Proof. We assume without any loss of generality that 0 ∈ Q. Let q (1) , q (2) ∈ Q. One way to get a trajectory going from the point q (1) to a point very close to q (2) , is to select a very high momentum p α = 1 α (q (2) -q (1)) and a short time t α = α with α > 0. When α → 0, the potential energy term U of the Hamiltonian becomes less and less relevant, thus the trajectory converges to a straight line and lim α→0 Φ q tα (q (1) , p α) = q (2) . This intuition is formalized using the scaled variables

q(t) = q(αt) p(t) = αp(αt). (4)

Inria

The equation of motion becomes:

dq dt (t) = p(t) (5)
dp dt (t) = α 2 ∇ q U (q(t)). (6)
which defines a flow φ(α, t, q, p). It should be noted that φ(-α, t, q, p) = φ(α, t, q, p) for every α, t, q, p and that φ is correctly defined for α = 0. In this case, it is easy to see that:

φ(0, t, q, p) = q + pt. (7
)
As π is the restriction of a positive smooth function, φ is defined for every (α, t, q, p)

∈ [-1, 1] × R + × R n × R n .
Furthermore, α 2 ∇ q U is smooth. Hence, using the differentiability of the solutions of differential equations on parameters and initial conditions (see [START_REF] Burke | Continuity and differentiability of solutions[END_REF]), we see that φ is

C 2 on] -1, 1[×Q × R + × R n .
Since Q is open, there exists ρ > 0 such that B(0, 2ρ) ⊂ Q. Let ν be the measure on Q which is the Lebesgue measure on B(0, ρ/2) and zero outside the ball B(0, ρ/2).

Our aim is to show that there exists > 0 such that for every q ∈ Q, P π (q, .) ≥ ν(.). Note that we would only need that P n0 π (q, .) ≥ ν(.) for some n 0 , but since Q is convex we will be able to take n 0 = 1.

The density of the probability measure associated with momenta is exp(-1/2 p 2), and taking into account the rescaling of the momenta, we define the probability density

γ(p) = α exp(- 1 2 1 α p 2). (8)
Q is bounded, hence there exists > 0 such that for every (q, p) ∈ {(q, p)|q ∈ Q, p ∈ B(-q, ρ)},

γ(p) > Let A = {(α, t, q, p) : |α| ≤ 1/2, t ∈ [1/2, 3/2], q ∈ Q, p ∈ B(-q, ρ)}.
A is compact, hence the first and second order derivatives of φ are bounded on A. Thus there exists Z > 0 such that for every (α, t, q, p) ∈ A, φ q (α, t, q, p) -φ q (0, 1, q, p)

≤ (α + |t -1|)Z (9)
and

d p φ q (α, t, q, p) -d v φ q (0, 1, q, p) ≤ (α + |t -1|)Z. (10
)
Using equation 7, the two above inequalities are equivalent to

φ q (α, t, q, p) -(q + p) ≤ (α + |t -1|)Z (11)
and

d p φ q (α, t, q, p) -Id R n ≤ (α + |t -1|)Z (12
)
The determinant is continuous, so there exists 0 < β < 1 such that d p φ q (α, t, q, p)

-Id R n < β implies 1/2 < |d p φ(α, t, q, p)| < 2. (13
)
Finally, using Lemma 3 together with the fact that ∇U is bounded, we deduce that there exists α 0 > 0 such that for every 0 < α ≤ α 0 and every q ∈ Q and p ∈ B(-q, ρ), the trajectory φ q (α, t, q, p) for t ≤ 1 stays in Q. It follows that φ and Φ coincide, for there is no reflection.

Let α = min(ρ 4Z , 1 2Z , β 2Z , α 0) > 0. Let any t ∈ [1 -β 2Z , 1]
and q be in Q. By lemma 4 below, the map f : p → φ q (α, t, q, p) is a C 1 diffeomorphism from B(-q, ρ) to V = φ q (α, t, q, B(-q, ρ)) and by Lemma 5 (applied to f translated by -q), B(0, ρ/2) ⊂ V . Furthermore, equation 13 implies that for every

q ∈ V |df -1 (q)| > 1/2. (14
)
Hence, the push forward measure ξ of ν by f is non zero on B(0, ρ/2), and has a density

ξ(q) = ν(f -1 (q))|df -1 (q)| ≥ /2 (15)
on B(0, ρ/2). Hence, under the condition that the travel time t is in [1 -β 2Z , 1], we get the following transition probability:

P (q, .|t ∈ [1 - β 2Z , 1]) ≥ 2 ν(.)
For the random walk, t is sampled uniformly in [0, 1], hence

P (q, .) ≥ 2 β 2Z ν(.)
which concludes the proof.

Remark 5. The previous proof uses n 0 = 1. We believe it should be possible to extend the proof to non convex Q by taking n 0 > 1, and some extra regularity assumptions on Q.

Lemmas used in the proof

Lemma 3. Let Q be an open convex subset in R n that contains the ball B(0, 2ρ), let x be a point in Q and let v be in B(0, ρ) -x. Let f : R n → R n be a continuous and bounded map. Suppose that (x(t), v(t)) ∈ R 2n is the solution of the Cauchy problem

x(0) = x v(0) = v x (t) = v(t) v (t) = af (t)
where a is a real number. If |a| ≤ ρ f ∞ then for all t ∈ [0, 1], x(t) is in the convex hull of x and of the ball B(0, 2ρ) and therefore in Q.

Proof. Suppose |a| ≤ ρ f ∞ . By the mean value theorem, v(t) = v + w(t) where w(t) ≤ |a| f ∞ t ≤ ρt for t ≥ 0. The derivative of function y(t) = x(t) -vt is w(t), therefore by the mean value theorem, y(t) = y(0) + tz(t) where z(t) ≤ ρt/2. Therefore for all t ∈ [0, 1],

x(t) = y(t) + vt = (1 -t)x + t((v + x) + z(t))
is in the convex hull of x and of the ball B(0, 2ρ).

Inria

Lemma 4. Let B be an open ball in R n and let ϕ : B → R n be a differentiable map. If for each x in B, dϕ(x) -Id < 1, then ϕ is a diffeomorphism.

Proof. The only thing to prove is that ϕ is one to one. Let x = y be two points in B. Consider the map f : t ∈ [0, y -x] → ϕ(x + tu) • u where u = y-x y-x . Using Schwarz inequality and the assumption we obtain

f (t) = dϕ(x + tu)(u) • u = Id(u) • u + (dϕ(x + tu) -Id)(u) • u ≥ 1 -dϕ(x + tu) -Id u u > 0. It follows that f (y -x) > f (0). Now f (0) = ϕ(x) • u and f (y -x) = ϕ(y) • u, hence ϕ(x) = ϕ(y).
Lemma 5. Let B = B(0, r) be a closed ball in R n of center 0 and radius r > 0 and let ϕ : B → R n be a one to one continuous map. If for all x in B, d(x, ϕ(x)) ≤ r/4 then ϕ(B) contains the ball B(0, r/2).

Proof. By Jordan-Brouwer Theorem, the complement in R n of the image Σ of the sphere S = ∂B has exactly two connected components C 1 and C 2 , one which is bounded, say C 1 , and one which is not. By assumption the open ball

• B(O, r/2) doesn't intersect Σ, hence is included in C 1 or C 2 .
The image E = ϕ(

(B) is compact, C i \ E is open. Now C i is connected, hence E or C i \ E is empty. Therefore E = C i .
Since ϕ(B) is compact, E is bounded, and therefore E = C i = C 1 . Moreover, by assumption, ϕ(0) ∈ B o (0, r/2) ∩ E which implies that B o (0, r/2) ⊂ E.

Application: computing the volume of a polytope

In this section, we specialize our generic algorithm (Algorithm 1) so as to use it as a building block of the polytope volume calculation from [START_REF] Cousins | A practical volume algorithm[END_REF]. The corresponding pseudo-code is provided in the supplemental section 6.

Volume algorithm

Consider a polytope defined by linear inequalities Ax ≤ b. The algorithm used in [START_REF] Cousins | A practical volume algorithm[END_REF] computes the volume of such a polytope with target relative error ε. The principle is a multi-phase Monte Carlo computation, which splits the calculation into m steps. Let {f 0 , . . . , f m-1 } be m isotropic Gaussian distributions i.e.

f i (x) = exp(-x 2 /(2σ 2 i)) with σ i = 1/ √ 2a i , or equivalently f i (x) = exp(-a i x 2
), such that the first one is highly concentrated around a point deep inside the convex, and the last one is an almost flat distribution. The volume calculation reduces to computing the telescoping product

Vol(K) = K f 0 (x)dx K f 1 (x)dx K f 0 (x)dx . . . K dx K f m-1 (x)dx ≡ K f 0 (x)dx i=1,...,m R i (16)
Each of these ratio are estimated using Monte-Carlo integration with respect to the density

π i (x) = f i (x) K f i (y)dy 1 K (x) (17)
via importance sampling. The method then uses as core block an algorithm sampling the previous distribution, usually using HAR. In our case, HMC with reflections will be used instead. For X 1 , ..., X k consecutive points given by the random walk, the Monte-Carlo estimation R k i is given by: R

(k) i = 1 k k j=1 f i (X j) f i-1 (X j) . (18
)
Instead of using a fixed number of points for the Monte-Carlo integration, a stopping criterion is introduced by [START_REF] Cousins | A practical volume algorithm[END_REF]. Let ε = ε/ √ m; this is the relative ratio error allocated for each ratio R i estimation. Consider a sliding window of size W (= 4n 2 + 500) (n is the dimension). When W consecutive estimated ratios R

(k-W +1) i , ..., R (k) i
are within ε /2, the convergence for R i is declared.

HMC algorithm

This specialization has two advantages: first, trajectories have analytic expressions -see also [START_REF] Pakman | Exact hamiltonian Monte Carlo for truncated multivariate gaussians[END_REF]; second, the intersection between a trajectory and n hyperplanes has a simple analytical expression.

Analytical trajectories. As recalled in section 3.1, importance sampling is used to estimate the ratios R i . Hence, we build an HMC method to sample from π i (x) from Eq. [START_REF] Lovász | Hit-and-run is fast and fun[END_REF].

Let U (q) = log(exp(-a i ||q|| 2)) = -a i ||q|| 2 and H(q, p) = U (q) + 1/2 p 2 . Note that the normalization constant 1 K fi(y)dy was discarded because it does not change the trajectory (its gradient is 0). Rewriting the dynamical system associated to this Hamiltonian yields the following differential equations:

d 2 q j dt 2 (t) = -2a i q j (t) for j ≤ n. (19
)
Each coordinate is independent and has a solution of the form

q j (t) = C j cos(wt + φ j) (20)
With C j , w, φ j ∈ R. The parameter Φ j satisfies the following 2 equations:

cos(φ j) = qj (0) Cj sin(φ j) = -pj (0) ωCj (21)
Thus we deduce:

       ω = √ 2a i C j = q j (0) 2 + p j (0) 2 /w 2 φ j = arctan - pj (0) qj (0)ω + 1 {qj (0)<0} π (22)
It should be noted that these equations are the same for any choice of coordinates as long as the basis is orthonormal. This allows us to choose a basis suited to the computations we want to do.

Inria

Collision with convex boundary. To restrict the sampling algorithm to the convex K, trajectories should reflect on the boundary of K. The convex K is defined by a set of hyperplanes. Hence, we need to compute the intersection time of a trajectory with each hyperplane and take the smallest time. Thankfully, there is an analytical expression. The hyperplanes are defined by a matrix A and a vector b, and hyperplane i is defined by the equation

(Ax) i = b i . (23
)
To compute the collision time with an hyperplane H, we make the following remark: let n H be the normal of the hyperplane. We can complete n H to an orthonormal basis. In this basis, the collision time depends only on what happens for the coordinate on n H . Consider q n H (t) =< q(t), n h > and p n H (t) =< p(t), n H > the coordinates along the normal of the hyperplane.

Let ω n H ,C n H and φ n H be the parameters of the trajectory along direction n H . Finding the intersection times is equivalent to solving the equation for t:

C n H cos(ω n H t + φ n H) = b i (24)
We deduce that if |C n H | < b i , there is no solution, and else, the following times are solution:

t 1 = (arccos(b i /C n H) -φ n H) /ω n H . t 2 = (-arccos(b i /C n H) -φ n H) /ω n H . (25)
One solution corresponds to the entry into K, while the other corresponds to the exit out of K.

We select the exit trajectory via a dot product between the velocity at t 1 and t 2 and the outward normal n H . In the sequel, the corresponding value is denoted t c for time of collision.

Travel time choice with respect to a i

The algorithm described in Fig. 1 can be slightly generalised by choosing a travel time L uniformly in [0, L max] instead of [0, 1]. We propose here a strategy to chose L max with respect to the parameter a i of the Gaussian we are trying to sample (σ = 1/ √ 2a i). We distinguish two main cases here. First, if a i is large, then the probability measure is concentrated in a neighbourhood of 0, and the trajectories will seldom hit the boundaries and the strategy is largely unaffected by the convex. Second, if a i is close to 0, the distribution is close the uniform distribution of the convex. Case 1. If a i is large, we consider q j (t) be a solution of the dynamical system 19 and we introduce space-time rescaling for the trajectory:

qj (t) = √ a i q j (t/ √ a i).
It satisfies eq. 19 with a i = 1:

d 2 qj dt 2 (t) = qj (t) with initial condition dq j dt (0) = dq j dt (0) ∼ N (0, 1). (26
)
It follows that in the absence of convex boundaries, the rescaled process q is sampling the distribution associated to a i = 1, i.e. the standard normal distribution. Therefore, any sensible value for L max (1) taken for a i = 1 should be scaled as L max (a i) = L max (1)/ √ a i .

Case 2. When a i goes to 0, the previous strategy leads L ai max → ∞. We argue that in this case, the trajectories converges to billiard trajectories with reflections on the boundary and that the optimal L max should be therefore close to the optimal L max for a i = 0. However, this optimal value has not been studied to the best of our knowledge.

Values used in experiments. Wwe chose the following L max :

L max (a i) = 1/ √ a i if a i > 1 = 1 if a i ≤ 1 (27)
3.4 HMC implementation based on interval arithmetic

Robustness issues

The algorithm as stated before is prone to numerical rounding errors. As a particular case, one may consider the situation where rounding errors would be such that the point computed on the HMC trajectory would be outside the convex. More generally, all geometric constructions and geometric predicates on them potentially raise robustness issues -see list in section 3.4.3.

As discussed in Introduction, we guarantee robustness using the Exact Geometric Computation paradigm. More specifically, recall that efficient arithmetic operations usually combine two ingredients: first, an interval representation of the numbers, as non overlapping intervals yield exact predicates; second, an arbitrary precision representation of the interval bounds, as precision can be increased so as to yield exact predicates and constructions of controlled accuracy. In the sequel, we use the iRRAM library which provides these two ingredients [START_REF] Müller | The iRRAM: Exact arithmetic in C++[END_REF].

For the sake of clarity, all functions for which the iRRAM library plays a key role are highlighted in blue.

iRRAM and used features

We represent points as d-dimensional points whose coordinates are of the iRRAM number type. In iRRAM, a real number is represented by two types of data: firstly a symbolic representation memorizing the way it was defined (type of function and pointers to the operands), and secondly a numeric approximation using an interval with rational endpoints guaranteed to enclose the exact real value. The accuracy of the latter interval can be increased if needed, by recomputing it using recursively increased precision of the operands intervals that defines it. Therefore, for a real number t, the iRRAM encoding q iRRAM (t) of the position q(t) of the HMC trajectory is numerically represented by a d-dimensional box certified to contain the exact real position.

The iRRAM number type enjoys two specific operations which are key in our implementation:

• operator x < y: predicate answering the < comparison operator. If the interval representations of x and y overlap, these intervals are automatically refined, a feature called precision refinement thereafter.

• Near_inf_double(iRRAM x) : returns the nearest double < the iRRAM number x.

Robust operations

Our robust implementation calls for the following operations (i) Computing the trajectory parameters -Eq. (22), (ii) Finding the exit intersection time -Eq. (25), (iii) Finding the smallest exit intersection time amongst all hyperplanes, and (iv) Evolving the trajectory. In the sequel,

Inria

we detail these operations, and refer the reader to the SI section 6; in particular, Algorithm 2 refines Algorithm 1 based on these robust primitives.

Trajectory parameters. Following Eq. (22), we construct the numbers C j , w and φ j as iRRAM number types. See Algorithm 3.

Exit intersection time t c with one hyperplane. Intersecting the trajectory with a hyperplane yields two solutions (Eq. 25) respectively exiting and entering the convex. The collision time t c corresponds to the former. Assuming that the normal vector to the hyperplane is oriented outwards, the value t c is such that < p(t c), n H >> 0. The evaluation of this predicate triggers a precision refinement if needed.

Smallest exit intersection time. Since the boundary of K involves several hyperplanes, the nearest one, which corresponds to the smallest exit time, must be determined. To do so, we first construct the intersection time t ci with respect to each hyperplane. Then we compute t c = min i t ci . This calculation is tantamount to sorting the individual intersection times, which in turn requires the comparison operator <. iRRAM provides such an operator, which triggers precision refinement if needed. See Algorithm 4. Remark 6. We note that in case the trajectory would hit a face of dimension < d -1, an equality between exit times occurs. The absence of separation bound in iRRAM does not allow us to handle such cases, and an infinite refinement loop is entered. However, for each starting point, the measure of velocities leading to such sets is null. Practically, such a case was never faced-as expected.

The Is_strictly_in_convex(q) predicate. To constrain the trajectory within the convex, we resort to a predicate telling whether a given position q belongs to the interior K o of K. This predicate, denoted Is_strictly_in_convex(iRRAM_point_d p), checks < op, n > < b i holds for every hyperplane, and triggers the iRRAM refinement if needed so. (Nb: < •, • > stands for the dot product of two vectors.)

Performing one HMC step. Equipped with the previous operations, our robust implementation -Algorithm 2, hinges on two operations:

• Calling the predicate Is_strictly_in_convex(q(t < c)). Recall that in iRRAM, a d-dimensional point is represented as a box. This is in particular the case for the collision points with the hyperplanes, and for the final point returned. To ensure that all such points are strictly within the convex, we call the aforementioned Is_strictly_in_convex() .

• Computing the nearest inferior double t < c = Near_inf_double(t c). The intersection point between the trajectory and a hyperplane is defined analytically -Eq. (25). The iRRAM representation of the collision time is an interval certified to contain the exact solution, and the corresponding d-dimensional point q iRRAM (t < c) is represented as a box. We note that the box q iRRAM (t < c) intersects the interior K o of the convex K. Indeed: -the exact collision point q(t c) lies on its defining hyperplane i.e. q(t c) ∈ H i by definition of t < c , the exact embedding q(t < c) satisfies

q(t < c) ∈ K o -the iRRAM box q iRRAM (t < c) corresponding to t < c intersects K o since q iRRAM (t < c) q(t < c) ∈ K o

Cube: HMC mixing time is O(log n)

We make a small digression in the case of the cube. It turns out that in this special case, the mixing time of the HMC random walk is O(log n) with n the dimension, and the average complexity per step (the average number of calls to the oracle per step) is linear with the dimension. We assume without any loss of generality that the cube is [0, 1] n . Rigorously:

Theorem 5. Let P (n) k
the distribution after k steps in dimension n and g n an isotropic Gaussian of parameter a i restricted to [0, 1] n . Then there exists 0 < ρ < 1 such that for every > 0, every n > 1 and every x ∈ R n , we have for k ≥ (log n -log)/(log 1/ρ):

P (n) k (x, .) -g n T V ≤ . (28
)
where the norm is the total variation. Furthermore, the average number of reflections per step is O(n).

Proof. We consider the canonical basis of R n . As shown before in Eq. (20), the trajectory coordinates associated to the Gaussian are all independent from each other. Furthermore, when a reflection with a boundary occurs, it means that one of the coordinates reached 0 or 1. The reflection simply switches the sign of the momentum for this coordinate, leaving other coordinates unchanged. Finally, the initial momentum vector is sampled according to p(0) ∼ N (0, I n), therefore each coordinate of p(0) is sampled from an independent Gaussian N (0, 1) in R.

Hence we conclude that each coordinate has the behavior of a 1-dimensional HMC random walk sampling a 1-dimensional Gaussian, all independent from each other.

Let us consider the 1-dimensional random walk for a given Gaussian. We write P k (x, .) the distribution after k steps starting from x ∈ [0, 1], and g the probability density associated with the restriction of the Gaussian to [0, 1]. Using theorem 3 combined with theorem 4 for the 1-D Gaussian restricted to [0, 1], we deduce that there exists 0 < ρ < 1 such that for all x ∈ [0, 1],

P k (x, .) -g T V ≤ ρ k .
Observe that writing P (n) k the distribution after k steps in dimension n and g n the Gaussian restricted to [0, 1] n , we have

P (n) k (x, y) = P k (x 1 , y 1)P (n-1) k ((x 2 , ..., x n), (y 2 , ..., y n)), g n (x) = g(x 1)g n-1 ((x 2 , ..., x n)) (29)

Inria

The total variation distance can be written as

P (n) k (x, .) -g n T V = 1 2 [0,1] n P (n) (x, y) -g n (y) dy = 1 2 [0,1]×[0,1] n-1 P k (x, y 1)P (n-1) k (x, y 2) -g(y 1)g n-1 (y 2) dy 1 dy 2 = 1 2 [0,1]×[0,1] n-1 (P k (x, y 1) -g(y 1) + g(y 1)) P (n-1) k (x, y 2) -g(y 1)g n-1 (y 2) dy 1 dy 2 ≤ 1 2 [0,1]×[0,1] n-1 (P k (x, y 1) -g(y 1)) P (n-1) k (x, y 2) dy 1 dy 2 + 1 2 [0,1]×[0,1] n-1 g(y 1)P (n-1) k (x, y 2) -g(y 1)g n-1 (y 2) dy 1 dy 2 ≤ 1 2 [0,1] |P k (x, y 1) -g(y 1)| dy 1 + 1 2 [0,1] n-1 P (n-1) k (x, y 2) -g n-1 (y 2) dy 2
We deduce

P (n) k (x, .) -g n T V ≤ n P k (x, .) -g T V ≤ nρ k (30)
Hence for a fixed , if k satisfies nρ k ≤ , then for every x, P

k (x, .) -g n T V ≤ . Thus we take k ≥ (log n -log)/(log 1/ρ), and the mixing time is O(log n).

In addition, as each coordinate is from each other, the total number of reflections is the sum of reflections per coordinate. Hence, the number of reflections is proportional to the dimension.

Using the previous strategy for the choice of the maximum travel time, we formulate the following conjectures:

Conjecture on the mixing time. There exists a constant C such that for every isotropic Gaussian associated to a i , such that for every > 0, every n > 1 and every x ∈ R n , we have for k ≥ C(log n -log) P

k (x, .) -g n T V ≤ where the norm is the total variation. Furthermore, the average number of reflections per step is O(n).

Conjecture on the complexity. The algorithm from [START_REF] Cousins | Bypassing KLS: Gaussian cooling and an O * (n 3) volume algorithm[END_REF][START_REF] Cousins | Gaussian cooling and O * (n 3) algorithms for volume and gaussian volume[END_REF] generates one point from a warm start with complexity O * (n 2 σ) complexity (O * means ignoring log terms). With O(n) phases -each with a constant number of points, one gets an overall complexity of O * (n 3).

With our random walk, the number of steps is O * (1) to generate one point, with each step costing O * (n) calls to oracle. This leads in our case to a total complexity of O * (n 2).

Experiments

Implementation and code availability

Implementation. The implementation of our algorithm for the particular case of a convex polytope Q = K is provided in the Structural Bioinformatics Library (SBL, http://sbl.inria. fr), a state-of-the-art environment targeting molecular simulation at large [START_REF] Cazals | The Structural Bioinformatics Library: modeling in biomolecular science and beyond[END_REF]. The corresponding package, Hamiltonian_Monte_Carlo is ascribed to the Core / Geometry-Topology component of the library. The user manual of the package, as well as a jupyter notebook illustrating the main functionalities, can be accessed from https://sbl.inria.fr/doc/Hamiltonian_Monte_ Carlo-user-manual.html.

Robustness. As explained in section 3.4.2, the main number type used to ensure robustness is the iRRAM number type. However, for the particular case of a polytope, we also need to check that the starting point belongs to the interior of K. (For a starting point on the boundary, one would have to check that the initial velocity is such that the trajectory enters the interior of the convex.) Since iRRAM does not have separation bounds to decide equality to zero, to perform this initial check, we instantiate the predicate Is_strictly_in_convex using the number type CGAL::Lazy_exact_nt<CGAL::Quotient<CGAL::MP_Float».

We stress in passing that from dimension 10 onward, repeated runs using doubles systematically yield a significant fraction of point outside the convex, leading to crashes. Volume calculations. As described in section 3, we also embed our random walk in the framework of [START_REF] Cousins | A practical volume algorithm[END_REF]. We reuse the MATLAB code provided by [START_REF] Cousins | A practical volume algorithm[END_REF] and adapt it so as to call our HMC random walk instead of the usual HAR random walk.

Illustrations of the HMC random walk

Our first illustration features samples generated by HMC for the cube [-1, 1] 3 and the standard simplex

x i ≤ 1 in dimension three. Varying σ rapidly yields concentrated samples (Fig. 3).

Our second illustration shows the ability of the algorithm to escape corners. As opposed to Hit-And-Run, HMC indeed escapes corners much faster, yielding an an almost uniform distribution after 10 steps even when the dimension increases (Fig. 4).

Inria

Analysis

Volume computation

The goal of this experiment is twofold: first estimate the complexity (i.e. the number of calls to the oracle) with respect to the dimension. Then study the influence of the choice of the maximum travel time for HMC. The MATLAB implementation of the volume computation algorithm from [START_REF] Cousins | A practical volume algorithm[END_REF] introduced the stop criterion of Eq. [START_REF] Lovász | Hit-and-run from a corner[END_REF]. Intuitively, the sliding window size W should be at least as large as the mixing time of the chosen random walk. In the case of HAR, the mixing time increases with the dimension, hence the value of W chosen by [START_REF] Cousins | A practical volume algorithm[END_REF] depends on the dimension: W = 500 + 4n 2 . However, in the HMC case, we hope for a smaller mixing time and especially a smaller growth rate with respect to the dimension. Therefore, the growth rate of W used in [START_REF] Cousins | A practical volume algorithm[END_REF] might be too large and impede the convergence speed for HMC. For that reason, we modified the MATLAB code to allow for different W .

Statistics. We collect the following statistics:

• the relative error | V -Vol(K) | /Vol(K) with V the estimated volume as a function of the dimension.

• Number of sampled points for a single volume computation.

• Complexity, i.e. the number of calls to the oracle. For HAR, this is equal to the number of sampled points. For HMC, it takes the number of reflections into account. • for HMC, the average number of calls to the oracle per point sampled.

Parameters used.

• Window size. Our experiments cover the following cases:

dimension independent: W = 10, 30.

dimension dependent: W = 30 + 4 √ n, 30 + 4n, 30 + 4n 1.5 , 30 + 4n 2 .

• Maximum travel time for HMC. Our experiments cover travel times between t min the radius of the inscribed ball of the convex and t max the diameter of the convex.

• Target error ε = 0.1 -see Section 3.1 and [START_REF] Cousins | A practical volume algorithm[END_REF]. Note that to comply a targeted error ε, we will show that the of the window size is crucial.

Experiments. The overall goal of the experiments is to determine an empirical growth rate of the complexity with respect to the dimension for the algorithm with HMC and compare with HAR. Ideally, one would try every parameters for a set of dimensions, then study the optimum parameters for each dimension, deduce the scaling of these parameters with the dimension. However this requires a very large number of simulations. Hence we settle for two experiments with one parameter fixed for each of them:

• (Experiment 1) we fix the maximum travel time at a reasonable value (as we will see in (Experiment 2)). Then we plot the error and complexity for dimensions 10...50 with different stopping criterion W . Then we select suitable values for W and use them to estimate the complexity growth rate with the dimension.

Inria

• (Experiment 2) we fix the stopping criterion (W) and vary the maximum travel time for several dimensions.

Models

There are many available polytopes to study. We make the choice to select a few representatives ones in terms of difficulties we want to handle and then present a detailed analysis. First, we choose the cube, as it has good theoretical properties while being a difficult case for the HAR. Second, we choose the simplex, as it has sharp angles and is a widely used convex shape. For the comparison with HAR, we take the isotropic simplex since it is already rounded. However for the travel time experiment, we take the standard simplex for the simplicity of it's geometric features such as the diameters of the circumscribed and inscribed spheres.

Running times

Volume calculations presented thereafter were performed on a laptop computer. In dimension 50, each individual calculation computation time is of the order of 10 seconds, so that running times are not further analyzed.

Tests on volume calculations

Complexity analysis -stopping criterion

We ran the volume computation 50 times for each dimension using different values for W . From section.3.5, we recall that the mixing time of the HMC random walk is known in the case of the cube and is O(log(n)). Our intuition for the value of W defining the stop criterion is that it is linked to the mixing time of the random walk. Hence we expect that using W = cst for HMC on the cube would lead to a very slow growth of the error with the dimension. Since the maximum dimension is 50 and log(50) ≈ 1.7, we do not expect to see the effect of the log with our dimension range. In addition, we expect super logarithmic values of W to yield a relative error decrease when the dimension increases.

Since the algorithm is targeting a relative error ε, we wish to identify values of W yielding a constant relative error whatever the dimension. With that in mind, for HMC, we expect to eliminate values of W for which the error would decrease with the dimension. On the contrary, for HAR, we expect to eliminate values of W for which the error increases with the dimension, since W might not grow as fast as the mixing time. We test both the cube (Fig. 5) -a model for which HMC is well understood, and the isotropic simplex (Fig. 6).

To study the complexity i.e. the number of calls to the oracle, we perform a linear regression on the complexity curves (Figs. 5,6, bottom plots). Remarkably, all correlation coefficients obtained were superior to 0.997. The complexity growth rates are summarized in Fig. 7.

As expected, the error explodes for HAR when W is too small, so that plausible values for W are W = 30 + 4n 1.5 and W = 30 + 4n 2 . For the cube, the complexities are O * (n 2.08) and O * (n 2.45) respectively. If the original choice of W with n 2 is correct [START_REF] Cousins | A practical volume algorithm[END_REF], we see a O(n 0.55) improvement over the theoretical complexity of O * (n 3).

For HMC, the error clearly decreases for W = 30 + 4n 1.5 and W = 30 + 4n 2 , but we cannot firmly discard any other W since no clear increase or decrease is apparent. For the cube, we expected that the error would decrease for any super logarithmic value of W . We conjecture that we cannot see the decrease in relative error because of a too small dimension range. Another possibility would be a too aggressive cooling schedule as in [START_REF] Cousins | A practical volume algorithm[END_REF], but we believe this unlikely.

RR n°9222

The experimental complexity for the cube using W = cst is O(n 1.27), while the theoretical complexity is O * (n 2), representing an improvement of O(n 0.73), slightly larger than for HAR. For the simplex, the results are overall similar. Scaling of the complexity with the dimension, computed using the same data as Fig. 5 and Fig. 6. Plausible complexities are highlighted in yellow. Exponents for the complexity growth rates were obtained with a linear regression on the complexity curves of Figs.

Conclusion

Sampling a target distribution is a central problem in science and engineering. A core difficulty is to deal with high dimensional spaces, and strategies based on random walks proved instrumental both to gain theoretical understanding and develop effective methods. In this context, this paper makes three contributions. First, we develop novel insights regarding Hamiltonian Monte Carlo (HMC) based strategies with reflections on boundaries. These strategies leverage the properties of billiard trajectories which escape corners easily contrarily to Hit and Run. Moreover, our intuition is that the effectiveness of the HMC strategies lies in reflections, which are instrumental to decorrelate points and therefore decrease the mixing time. We provide a detailed proof of detailed balance for HMC with reflections (which was not used before even for HMC without reflections) and the well connectedness of the random walk, leading to a convergence bound.

Second, in the particular case of polyhedral domains we present a robust implementation based on multi-precision arithmetic. This ingredient is mandatory to guarantee exact predicates and robust constructions, following the traditional terminology in robust geometric computations.

Third, we use our HMC random walk for polytope volume calculations, using it as an alternative to the celebrated Hit-and-run (HAR) random walk used in the practical volume algorithm by Cousins and Vempala. The tests, conducted up to dimension 50, show that the HMC random walk outperforms the HAR random walk.

Our work clearly leaves stimulating questions open, two of which are of prominent importance. The first one is the choice of the optimal travel time required to sample a convex uniformly, which would ideally be determined at runtime for each convex. The second one is the analysis of the incidence of reflections on the mixing time, so as to quantify the speed at which reflections decorrelate successive points.

Supporting information: pseudo-code

In the following, we provide the pseudo-code for the high level description of the HMC algorithm (Fig. 1).

Algorithm 1 Hamiltonian Monte Carlo step with real RAM arithmetic model 1: HMC_step(q) 2: Choose a travel time L ∼ U nif (0, L max). (intersection, t c) ← Intersect_hyper_planes(q, p) // find intersection with hyperplanes 7:

if intersection = False OR dist < t c then 8:

(q, p) = Update_positions_momenta(q, p, dist) // update traj. with distance dist 9:

Set dist = 0 (q, p) = Update_positions_momenta(q, p, t c)

12:

Reflext_normal(p(t c), n c)

13:

Set dist = dist -t c
Algorithm 2 Hamiltonian Monte Carlo step with iRRAM number type 1: HMC_step(q) 2: Choose a travel time L ∼ U nif (0, L max). (intersection, t c) ← Intersect_hyper_planes(q, p) with t c an iRRAM REAL. if intersection = False OR dist < t < c then 9:

(q, p) = Update_positions_momenta(q, p, dist) // update trajectory with distance dist (q, p) = Update_positions_momenta(q, p, t < c)

12:

Reflext_normal(p(t < c), n c)

13:

Set dist = dist -t < c 14:

Is_strictly_in_convex(q)

15:

Return q

RR n°9222

Algorithm 3 Find trajectory parameters for a given direction.

1: Compute_traj_params(q dir , p dir) 2: Set ω = √ 2a 3: Compute C = q 2 dir + p 2 dir /w 2 4: Compute φ = arctan(-p dir q dir ω) 5: if p dir < 0 and φ < 0 then Compute the outward pointing normal n H to the hplane 5:

Compute the dot products q n H =< q, n H > and p n H =< p, n H > 6:

[ω, C, Φ] = Compute_traj_params(q n H , p n H)

7:
if C > b i then if intersection = False then 16:

Set t c = t 17:

Set t c = n H

18:

Set intersection = True [ω, C, Φ] = Compute_traj_params (q i ,p i)

4:

Set q i = C cos(ωt + φ)

5:

Set p i = -ωC sin(ωt + φ) 6: Return (q, p)

Inria 7 Supporting information: results

To complement the analysis of section 4.4.1, we provide in the following plots with the variance of the statistics of interest (Figs. [START_REF] Bárány | Computing the volume is difficult[END_REF][START_REF] Levy | Flavors of Geometry[END_REF][START_REF] Dyer | A random polynomial-time algorithm for approximating the volume of convex bodies[END_REF].

•B)

 of the interior of the ball B is included in C i , one of the two connected components of R n \ Σ. On the one hand, by Jordan-Brouwer invariance of the domain theorem, E is open. On the other hand, E = ϕ(B) ∩ C i and since ϕ

Figure 3

 3 Figure 3 HMC for the cube [-1, 1] 3 and the standard simplex in dimension 3: role of σ. First column: σ = 1; second column: σ = 0.01. In all cases, n = 10, 000 samples.

Figure 4

 4 Figure4HMC for the cube [-1, 1] n : ability to escape corners, and comparison to Hitand-run. For n > 3, the plot displays projections of the first two coordinates. Simulations were started from a corner (q (0) i = 0.9). Samples generated after 10 steps of HAR or HMC, repeated 500 times -whence 500 samples. A nearly flat isotropic Gaussian distribution (σ = √ 500) was used to approach the uniform distribution.

Figure 5 Figure 6

 56 Figure 5 Cube: relative errors (top) and complexities i.e. number of calls to the oracle(bottom) for volume computation -HAR (left) vs HMC (right) with the maximum travel time fixed at 1 for HMC. All quantities are averaged over 50 runs.

3 : 4 :

 34 choose p ∼ N (0, I n) Set dist = L 5: while dist > 0 do 6:

3 : 4 :

 34 choose p ∼ N (0, I n) iRRAM REAL Set dist = L 5: while dist > 0 do 6:

6 :φ = φ + π 7 : 2 :

 672 if p dir > 0 and φ > 0 then 8: φ = φ -π 9: Return [ω, C, φ] Algorithm 4 Intersecting the trajectory with hyperplanes bounding the polytope 1: Intersect_hyper_planes(q, p) Set intersection = False 3: for each hyperplane H of equation (Ax) i = b i do 4:

8 :

 8 t1 = (arccos(b i /C) -φ) /ω

Figure 8

 8 Figure 8 Error analysis: variance as a function of the dimension. Model: isotropic simplex. (Left) HAR (Right) HMC For the same window size, the variance of the error is lower for HMC.

Figure 9

 9 Figure 9 Number of generated points: variance. Model: isotropic simplex. (Left) HAR (Right) HMC The log scale hints at a polynomial number of points as a function of the dimension.

Figure 10 (

 10 Figure 10 (Left) Number of oracle calls for HMC (Right) Ratio between the number of oracle calls and the number of points generated Plots for the isotropic simplex.

 5, 6 -see main text.

	Window size		complexity	
			HMC		HAR
		Cube	Iso Simplex	Cube	Iso Simplex
	W = 10	O(n 1.27)	O(n 1.33)	O(n 0.60)	O(n 0.1)
	W = 30	O(n 1.25)	O(n 1.36)	O(n 0.64)	O(n 0.64)
	W = 30 + 4n 0.5 O(n 1.39)	O(n 1.54)	O(n 0.86)	O(n 0.90)
	W = 30 + 4n 1	O(n 1.77)	O(n 1.95)	O(n 1.54)	O(n 1.51)
	W = 30 + 4n 1.5 O(n 2.17)	O(n 2.36)	O(n 2.08)	O(n 2.11)
	W = 30 + 4n 2	O(n 2.54)	O(n 2.71)	O(n 2.46)	O(n 2.50)

 Set n c = n H 23: Return (intersection, t c) Algorithm 5 Reflecting the normal 1: Reflext_normal(p, n) 2: n = n/ n // unit normal 3: Return p -2 < p, n > n Algorithm 6 Update trajectory with distance t 1: Update_positions_momenta(q, p, t) 2: for i from 1 to n do

	19:	else
	20:	if t < t c then
	21:	Set t c = t
	22:	
	3:	

RR n°9222

Acknowledgments. We are grateful to B. Cousins and S. Vempala [12] for providing a high quality MATLAB code.