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Abstract: This paper studies HMC with reflections on the boundary of a domain, providing an
enhanced alternative to Hit-and-run (HAR) to sample a target distribution in a bounded domain.
We make three contributions. First, we provide a convergence bound, paving the way to more
precise mixing time analysis. Second, we present a robust implementation based on multi-precision
arithmetic – a mandatory ingredient to guarantee exact predicates and robust constructions. Third,
we use our HMC random walk to perform polytope volume calculations, using it as an alternative to
HAR within the volume algorithm by Cousins and Vempala. The tests, conducted up to dimension
50, show that the HMC RW outperforms HAR.
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Hamiltonian Monte Carlo avec réflexions, et application au
calcul du volume de polytopes

Résumé : Ce papier étudie HMC avec réflexions au bord du domaine, donnant une meilleure
alternative a Hit-and-Run (HAR) pour échantillonner une distribution cible dans un domaine
borné. Nous apportons trois contributions. Premièrement, nous prouvons une borne de conver-
gence, préparant le terrain pour une analyse plus précise du mixing time. Deuxièmement, nous
produisons une implémentation robuste basée sur l’arithmétique multi-precision. Troisièmement,
nous utilisons HMC avec réflexions comme une alternative à HAR pour calculer le volume de
polytopes pour l’algorithme de Cousins et Vempala. Les tests, conduits jusqu’en dimension 50
montrent que HMC avec réflexions est plus performant que HAR.

Mots-clés : HMC, polytope, marche aléatoire, importance sampling, billiard
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1 Introduction

1.1 Sampling in high dimensional space: a pervasive challenge

Sampling with MCMC algorithms. Broadly speaking, Monte Carlo algorithms provide
means to obtain numerical values from simulations resorting to randomness. Such algorithms
have countless applications, as illustrated by the following examples. In statistical physics, macro-
scopic properties also called observables may be obtained from computer simulations generating
ensembles of conformations over which averages are computed [1]. In numerical mathematics, a
frequent goal is to generate point following a given target distribution [2]. In (Bayesian) statis-
tics, a classical goal is the calculation of maximum a posteriori (MAP). Two classes of sampling
techniques deserve a mention in this work. The first one is importance sampling [3], a generic
strategy aiming at sampling rare events and reducing the variance of estimators by biasing the
target distribution. The second one is Markov Chains Monte Carlo, where an ergodic Markov
chain is used to target a given distribution [3]. A generic method in this realm, both conceptually
elegant and remarkably generic is the Metropolis-Hastings method, where the Markov chain used
consists in iteratively generating samples, and accepting/discarding them. Interestingly, this sim-
ple description suffices to capture the major difficulties of the method in high-dimensional spaces.
When the target distribution allocates its mass on a typical set of small dimension, the samples
generated should clearly remain in close vicinity of this set so as to avoid large rejection rates.

Hamiltonian Monte Carlo. An efficient solution to deal with such cases is Hamiltonian
Monte Carlo (HMC) [4, 5]. HMC aims at sampling a distribution π in a high dimensional
space, by defining Markov chain in phase space R2n, with n coordinates for the position q, and n
coordinates for the velocity p. As the name suggests, HMC is governed by an ODE system defined
by Hamilton’s equations. In a nutshell, a HMC step involves three steps which are (i) picking a
random velocity p, (ii) traveling deterministically the level set surface of the Hamiltonian, and
(iii) projecting down in configuration space.

As seen from Hamilton’s equation, the fact that the gradient of the target density is used
to twist the momentum p rather than the position q helps forcing the dynamical system to be
diffusive near the typical set [4]. A key difficulty though is the calculation of exact orbits, which
we shall fudge around analytically in our case.

Volume calculations and density of states. Computing the volume of a polytope – a
bounded region of Rn defined by the intersection of a fixed set of half spaces, is a classical
problem in science and engineering. Unfortunately, exact volume calculation algorithms take an
exponential time in the worst case [6]. A related problem to polytope volume calculations is the
calculation of density of states (DoS) in statistical physics. To see why, recall that a partition
function may be written as a sum or integral over energy levels of the DoS achieving a particular
energy [1]. Therefore, a classical strategy to compute a partition function consists of estimating
the volume in phase space of the pre-image of an energy level.

The case of polytopes is especially interesting since considerable efforts were devoted to
complexity bounds, and the hardness results obtained calibrate the intrinsic difficulty of such
problems in high dimensional spaces. Complexity-wise, it can be proved that the problem is
#-P hard both for V-polytopes and H-polytopes [7]. Intuitively, any deterministic algorithm
using a polynomial number of points and computing the corresponding convex hull omits an
exponentially large fraction of the volume. This observation naturally calls for approximation
algorithms [8, 9].

Inria



HMC with boundary reflections 5

A major breakthrough was the development of the polynomial-time randomized algorithm
by Dyer et al. [10]. More recently, it has been shown that (ε, δ) approximations of the volume
could be computed in O?(n4) [11].

Remark 1. To conform with previous work, the following notations are used in this paper:

• ε: criterion used to assess the quality of the volume approximation [12].

• ε: notation used for the total variation bound on the mixing time. See theorems 3 and 5.

The volume calculation boils down to estimating ratios in a telescoping product, each ratio
being the integral over the convex of exponential functions carefully chosen according to a cooling
schedule. The first function is sharply concentrated within the convex, while the last one is a flat
distribution. A total of O?(

√
n) such functions are used. Each ratio in the telescoping product

is estimated (with guarantees) using O?(
√
n) samples. The complexity of generating a given

sample being O?(n3), the overall algorithm has complexity O?(n4).
The complexity was recently improved to O?(n3) [13, 14], using Gaussian rather than expo-

nential functions. The improvement come from an enhanced cooling schedule, and a decreasing
mixing time – O?(σ2n2) rather O?(n3) with σ2 the variance of the sampled isotropic Gaussian.

Interestingly, these randomized algorithms implement a multi-phase MC strategy, and the
estimation of individual terms in the telescoping product resort to importance sampling.

Random walks and mixing properties. The aforementioned randomized algorithms em-
bark several key ingredients, the most prominent one being the strategy to generate random
samples. Except in simple cases, the most generic approach is to use a random walk defining a
Markov chain. Several such walks have been used, including ball walk [15], hit-and-run (HAR)
[16, 17, 18, 19], billiard walk [20].

As discussed above for the case of MCMC algorithms, the goal of such a walk is to generate
samples according to a target distribution. Of particular interest is HAR, since the method is
amenable to several optimizations [21, 22], including the choice of the random line used, and
the calculation of the facet of the polytope intersected by a line. In any case, the convergence
is assessed by mixing properties, e.g. based on the total variation distance which measures
how far the random walk is from its stationary distribution [23]. For the particular case of
polytope volume calculations, both HAR and ball walk were particularly studied. HAR mixes
in O?(n3) from any starting point, with constants depending on the geometry of the polytope.
Ball-walk mixes in O?(n3), and requires a warm-start – certain hypotheses on the starting point
are required. Finally, we also mention billiard walk, a random walk based on reflections on
boundaries. While we are unaware of mixing time analysis, convincing experiments have been
reported for the generation of uniform samples [24].

Robustness issues. The simplest computer model to use when designing numerical / geo-
metric algorithms is the real RAM model which assumes that exact operations on real numbers
are available at constant time per operation [25]. In practice, such assumptions are not valid, in
particular due to rounding operations inherent to representations of floating point numbers in
computers, and arithmetic operations are specified by the IEEE 754-2008 standard [26].

The case of geometric algorithms is particularly critical, since erroneous evaluation of expres-
sions conditioning the branching of the algorithm typically yield situations where the calculation
is no more coherent (the algorithm loops or crashes), or possibly terminates with an erroneous
answer.

Such situations occur near degenerate situations, and manifest systematically even on the
simplest expressions in 2D space [27]. The design of robust geometric algorithms can be done in

RR n° 9222



6 Cazals / Chevallier / Pion

a general way using the Exact Geometric Computation paradigm [28], as it is done for example
in the CGAL [29] software library. In order to do so, the CGAL kernel distinguishes between
predicates and constructions. A predicate is a function whose output belongs to a finite set – e.g.
boolean, or checks whether an expression is positive / negative / null. A construction exhibits a
new numeric or geometric object (e.g. distance, point, vector) from pre-existing ones.

To ensure robustness, we develop our algorithms in this framework, using multi-precision
number types whose accuracy can be increased on demand to ensure the correctness of predicates.

1.2 Contributions
This paper makes contributions touching upon random walks for MCMC algorithms, polytope
volume calculations, and Hamiltonian Monte Carlo. More precisely:

1. In section 2, we analyse a novel random walk combining billiard walk and HMC. The
random walk is designed to sample a target distribution, and piecewise smooth analytical
trajectories can be obtained. For the particular case of a polytope K, intersection of the
trajectory yields reflections inside K. Convergence properties are established.

2. In section 3, we instantiate our random walk to sample distributions used for polytope
volume calculations. Analytical expressions for HMC trajectories are obtained. We also
provide a robust implementation of the random walk based on multi-precision interval
arithmetic.

3. Finally, section 4 reports experiments comparing HAR and our random walk. The first test
samples a target distribution. The second one embeds our random walk into the practical
polytope volume calculation of Cousins and Vempala [12]. In both cases, we show superior
performances over HAR, for dimension up to n = 50.

2 Hamiltonian Monte Carlo method with boundary reflec-
tions

In this section we consider a bounded open set Q ⊂ Rn with piecewise smooth boundary and a
probability measure with density π : Rn → R≥0 such that π(x) = 0 for all x not in the closure
Q of Q. We would like an algorithm sampling points according to π. The traditional HMC
algorithm does not handle boundaries, hence we present a modification of HMC with reflections
which is drawn from [30] and [20, 24].

2.1 HMC with reflections
Denoting q(i) and p(i) the i-th coordinates of position and momentum respectively, recall Hamil-
ton’s equations which state that the velocity field is orthogonal to the gradient of the Hamiltonian
H:

dq(i)

dt
=

∂H

∂p(i)
,
dp(i)

dt
= − ∂H

∂q(i)
. (1)

As with HMC, we define a potential energy U(q) = − log(π(q)) and the Hamiltonian H(q, p) =
U(q) + 1

2‖p‖
2 but this time restricted to Γ = Q× Rn. We assume that π is the restriction to Q

of positive smooth function defined on Rn and we use Φt the Hamiltonian flow. However, the
trajectories of this flow are not included in Q even if the initial point (q, p) is in Q × Rn. For

Inria



HMC with boundary reflections 7

every q ∈ Q and every p ∈ Rn, we define T (q, p) as the largest T such that for all 0 ≤ t < T ,
Φt(q, p) ∈ Q. We also define T (q, p) = 0 when q is in the boundary of Q.

Following [30] and [20, 24], we modify the flow by forcing reflections on the boundary of Q.
This flow, illustrated on Fig. 2, is denoted as follow:

{
Φ̃t : Q× Rn → Q× Rn

(q, p) 7→ Φ̃t(q, p) ≡ (Φ̃
(q)
t (q, p), Φ̃

(p)
t (q, p)).

(2)

Note that the latter equation defines position and velocity upon applying the flow. However,
as noted in [20, 24], this new flow might exhibit problematic trajectories: some of them might
not be defined for all t because of singularities on the boundary, others might have huge number
of reflections or even an infinite number of reflections in finite time. Hence, following ideas of
[20, 24], we cull problematic trajectories by not moving in those cases.

Remark 2. For q ∈ Q and any p, T (q, p) > 0 and Φ̃T (q,p)(q, p) is in the boundary of Q.

Remark 3. When q is in the boundary of Q and t > 0, Φ̃t(q, p) is only defined for the momenta
p such that the open half-line with origin q and direction p, is included in Q in a neighborhood
of q.

Algorithm Let M ∈ N∗ be the maximum number of reflections. Given a point q(t) ∈ Q, the
algorithm is as follow (Fig. 1):

Figure 1 Hamiltonian Monte Carlo with reflections.

1. Choose the traveling time L ∼ unif(0, 1)

2. Pick the momentum p ∼ N (0, In)

3. If the flow Φ̃L(q(t), p) is defined and does not involve
more than M reflections between t = 0 and L, and if
Φ̃L(q(t), p) ∈ Q

• Take q(t+1) = Φ̃
(q)
L (q(t), p)

• Else, take q(t+1) = q(t)

RR n° 9222



8 Cazals / Chevallier / Pion

Figure 2 Reflection of the HMC trajectory on the boundary of the polytope K:
evolution of a single HMC step, starting from q(0); the trajectory successively reflects
on hyperplanes, before stopping at q(nL).

−nHi

Φ̃
(q)
tci

(q(0), p)

p(t+ci)

p(t−ci)

K

Hi

Hj
Hk

Φ̃
(q)
tcj

(q(0), p)
Φ̃

(q)
tck

(q(0), p)

Φ̃
(q)
tci

(q(0), p) = q(1)

q(0)

For a fixed L > 0, steps from 2. and 3. define a Markov kernel Pπ,L. The full algorithm
(steps from 1. to 3.) define a Markov kernel Pπ that can be expressed with Pπ,L.

For L > 0, let ΓL be the largest subset of Γ where Φ̃L is defined, admits no more than M
reflections, and the trajectory do not finish in a singularity at time L. ΓL is open and therefore
measurable. Let

Φ̄(q, p) =

{
Φ̃L(q, p) if (q, p) ∈ ΓL

(q, p) if (q, p) /∈ ΓL

the application from Γ to Γ which corresponds to steps 3 and 4.

Remark 4. For any point (q, p) ∈ Γ, if L is small enough, (q, p) ∈ ΓL. However, if L is too
large, ΓL could be empty.

2.2 Measure invariance via detailed balance
We recall the definition of detailed balance:

Definition 1 (detailed balance / reversible). A Markov chain P is said to satisfy detailed balance
(or reversible) with respect to the measure π if for every A and B measurable,∫

B

P (x,A)π(dx) =

∫
A

P (x,B)π(dx)

Let A and B be measurable subsets of Q. Then let

AB = {(q, p) ∈ ΓL|q ∈ A, Φ̄(q, p) ∈ B × Rn}

Inria



HMC with boundary reflections 9

the subset of Γ of all positions in A with momenta that brings them in B after time L. Similarly,
we define

Ψ(q, p) = (Φ̄(q)(q, p),−Φ̄(p)(q, p))

on Γ.

Lemma 1. The maps Φ̄ and Ψ preserve the Lebesgue measure on ΓL. ie for every A ⊂ ΓL
measurable, λ(Φ̄−1(A)) = λ(A)

Proof. Clearly it is enough to prove that Φ̃t preserves the Lebesgue measure. In [30], it is proved
that for a fixed step size, the Euler method for numerical integration applied to the Hamiltonian
flow with reflections, gives rise to a flow that preserves the Lebesgue measure. Letting the step
size going to zero, we see that Φ̃t is the pointwise limit of transformations that preserves the
Lebesgue measure which implies that Φ̃t preserve the Lebesgue measure.

Lemma 2. 1. Ψ(ΓL) ⊂ ΓL

2. Ψ ◦Ψ = I on ΓL

3. For any measurable sets A and B of Rn,

BA = Ψ(AB)

4. H(Ψ(q, p)) = H(q, p) for all (q, p) ∈ Γ.

Proof. 1. and 2. are simple consequences of the reversibility of the Hamiltonian flow with
reflections.
3. Let A and B be measurable sets of Rn.
Ψq(AB) ⊂ B and Ψ(Ψ(AB)) = AB thus Ψ(AB) ⊂ BA.
By symmetry, Ψ(BA) ⊂ AB . Hence by composing with Ψ: Ψ(Ψ(BA)) ⊂ Ψ(AB). Using 2., we
deduce BA ⊂ Ψ(AB).
4. is clear.

Theorem 1. Pπ,L and π satisfy detailed balance.

Proof. Let A and B be measurable sets of Rn. The left hand side of the detailed balance equation
becomes∫

A

Pπ,L(q,B)dπ(q) =

∫
A

Pπ,L(q,B) exp(−U(q))dq

=

∫
A

[ ∫
{p|(q,p)∈ΓL,Φ̄(q)(q,p)∈B}

exp(−‖p‖2)dp

+

∫
{p|(q,p)/∈ΓL,Φ̄(q)(q,p)∈B}

exp(−‖p‖2)dp
]

exp(−U(q))dq

=

∫
AB

exp(−H(q, p))dqdp+

∫
A

∫
{p|(q,p)/∈ΓL}

1B(q) exp(−H(q, p))dqdp

=

∫
AB

exp(−H(q, p))dqdp+

∫
A∩B

∫
{p|(q,p)/∈ΓL}

exp(−H(q, p))dqdp.

By symmetry:∫
B

Pπ,L(q, A)dπ(q) =

∫
BA

exp(−H(q, p))dqdp+

∫
A∩B

∫
{p|(q,p)/∈ΓL}

exp(−H(q, p))dqdp

RR n° 9222



10 Cazals / Chevallier / Pion

Using lemma 2 and the measure conservation of lemma 1 we obtain:∫
AB

exp(−H(q, p))dqdp =

∫
Ψ(BA)

exp(−H(q, p))dqdp

=

∫
BA

exp(−H(Ψ(q, p)))dqdp

=

∫
BA

exp(−H(q, p))dqdp

Which concludes the proof.

Theorem 2. Pπ satisfies detailed balance with respect to π.

Proof. this is a direct consequence of theorem 1

2.3 Convergence result
Detailed balance ensures that π is invariant by Pπ, but it does not imply the convergence of the
Pn to π by itself. In this section, we prove additional results to get such a convergence result.
This requires extra assumptions on Q.

We recall the following definition and theorem from [31].

Definition 2. A subset C ⊂ X is small (or, (n0, ε, ν)-small) if there exists a positive integer n0,
a real ε > 0, and a probability measure ν(.) on X such that the following minorisation condition
holds:

Pn0(x, .) ≥ εν(.) x ∈ C
i.e. Pn0(x,A) ≥ εν(A) for all x ∈ C and all measurable A ⊂ X

Intuitively, the previous definition states that whatever the starting point x–whence the
adjective small, the iterated kernels Pn0(x, .) cover a common measure ν(.). Note that the value
of n0 is the number of steps needed to reach ν – and can be equal to one.

Theorem 3. Consider a Markov chain with invariant probability distribution π(.). Suppose that
X is small (i.e., the entire state space is small). Then the chain is uniformly ergodic, and in fact

‖Pn(x, .)− π(.)‖TV ≤ (1− ε)bn/n0c (3)

for all x ∈ X , where brc is the greatest integer not exceeding r and the norm is the total variation.

The following theorem provides a sufficient condition for Q to be small with respect to Pπ.

Theorem 4. If Q if convex and the gradient of the potential energy ∇U is bounded on Q, then
Q is small for Pπ.

Proof. We assume without any loss of generality that 0 ∈ Q.
Let q(1), q(2) ∈ Q. One way to get a trajectory going from the point q(1) to a point very close

to q(2), is to select a very high momentum pα = 1
α (q(2) − q(1)) and a short time tα = α with

α > 0. When α → 0, the potential energy term U of the Hamiltonian becomes less and less
relevant, thus the trajectory converges to a straight line and limα→0 Φqtα(q(1), pα) = q(2).

This intuition is formalized using the scaled variables{
q̃(t) = q(αt)

p̃(t) = αp(αt).
(4)

Inria



HMC with boundary reflections 11

The equation of motion becomes:

dq̃

dt
(t) = p̃(t) (5)

dp̃

dt
(t) = α2∇qU(q̃(t)). (6)

which defines a flow φ(α, t, q, p). It should be noted that φ(−α, t, q, p) = φ(α, t, q, p) for every
α, t, q, p and that φ is correctly defined for α = 0. In this case, it is easy to see that:

φ(0, t, q, p) = q + pt. (7)

As π is the restriction of a positive smooth function, φ is defined for every (α, t, q, p) ∈ [−1, 1]×
R+ × Rn × Rn.

Furthermore, α2∇qU is smooth. Hence, using the differentiability of the solutions of dif-
ferential equations on parameters and initial conditions (see [32]), we see that φ is C2 on
]− 1, 1[×Q× R+ × Rn.

Since Q is open, there exists ρ > 0 such that B(0, 2ρ) ⊂ Q. Let ν be the measure on Q which
is the Lebesgue measure on B(0, ρ/2) and zero outside the ball B(0, ρ/2).

Our aim is to show that there exists ε > 0 such that for every q ∈ Q, Pπ(q, .) ≥ εν(.). Note
that we would only need that Pn0

π (q, .) ≥ εν(.) for some n0, but since Q is convex we will be able
to take n0 = 1.

The density of the probability measure associated with momenta is exp(−1/2‖p‖2), and
taking into account the rescaling of the momenta, we define the probability density

γ(p) = α exp(−1

2
‖ 1

α
p‖2). (8)

Q is bounded, hence there exists ε > 0 such that for every (q, p) ∈ {(q, p)|q ∈ Q, p ∈ B(−q, ρ)},

γ(p) > ε

Let
A = {(α, t, q, p) : |α| ≤ 1/2, t ∈ [1/2, 3/2], q ∈ Q̄, p ∈ B(−q, ρ)}.

A is compact, hence the first and second order derivatives of φ are bounded on A. Thus there
exists Z > 0 such that for every (α, t, q, p) ∈ A,

‖φq(α, t, q, p)− φq(0, 1, q, p)‖ ≤ (α+ |t− 1|)Z (9)

and
‖dpφq(α, t, q, p)− dvφq(0, 1, q, p)‖ ≤ (α+ |t− 1|)Z. (10)

Using equation 7, the two above inequalities are equivalent to

‖φq(α, t, q, p)− (q + p)‖ ≤ (α+ |t− 1|)Z (11)

and
‖dpφq(α, t, q, p)− IdRn‖ ≤ (α+ |t− 1|)Z (12)

The determinant is continuous, so there exists 0 < β < 1 such that ‖dpφq(α, t, q, p)− IdRn‖ < β
implies

1/2 < |dpφ(α, t, q, p)| < 2. (13)
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Finally, using Lemma 3 together with the fact that ∇U is bounded, we deduce that there exists
α0 > 0 such that for every 0 < α ≤ α0 and every q ∈ Q and p ∈ B(−q, ρ), the trajectory
φq(α, t, q, p) for t ≤ 1 stays in Q. It follows that φ and Φ coincide, for there is no reflection.

Let α = min( ρ
4Z ,

1
2Z ,

β
2Z , α0) > 0. Let any t ∈ [1− β

2Z , 1] and q be in Q. By lemma 4 below,
the map

f : p→ φq(α, t, q, p)

is a C1 diffeomorphism from B(−q, ρ) to V = φq(α, t, q, B(−q, ρ)) and by Lemma 5 (applied to
f translated by −q), B(0, ρ/2) ⊂ V . Furthermore, equation 13 implies that for every q′ ∈ V

|df−1(q′)| > 1/2. (14)

Hence, the push forward measure ξ of ν by f is non zero on B(0, ρ/2), and has a density

ξ(q′) = ν(f−1(q′))|df−1(q′)| ≥ ε/2 (15)

on B(0, ρ/2). Hence, under the condition that the travel time t is in [1 − β
2Z , 1], we get the

following transition probability:

P (q, .|t ∈ [1− β

2Z
, 1]) ≥ ε

2
ν(.)

For the random walk, t is sampled uniformly in [0, 1], hence

P (q, .) ≥ ε

2

β

2Z
ν(.)

which concludes the proof.

Remark 5. The previous proof uses n0 = 1. We believe it should be possible to extend the proof
to non convex Q by taking n0 > 1, and some extra regularity assumptions on Q.

2.3.1 Lemmas used in the proof

Lemma 3. Let Q be an open convex subset in Rn that contains the ball B(0, 2ρ), let x be a point
in Q and let v be in B(0, ρ) − x. Let f : Rn → Rn be a continuous and bounded map. Suppose
that (x(t), v(t)) ∈ R2n is the solution of the Cauchy problem

x(0) = x

v(0) = v

x′(t) = v(t)

v′(t) = af(t)

where a is a real number. If |a| ≤ ρ
‖f‖∞ then for all t ∈ [0, 1], x(t) is in the convex hull of x and

of the ball B(0, 2ρ) and therefore in Q.

Proof. Suppose |a| ≤ ρ
‖f‖∞ . By the mean value theorem, v(t) = v + w(t) where ‖w(t)‖ ≤

|a|‖f‖∞t ≤ ρt for t ≥ 0. The derivative of function y(t) = x(t) − vt is w(t), therefore by the
mean value theorem, y(t) = y(0) + tz(t) where ‖z(t)‖ ≤ ρt/2. Therefore for all t ∈ [0, 1],

x(t) = y(t) + vt

= (1− t)x+ t((v + x) + z(t))

is in the convex hull of x and of the ball B(0, 2ρ).

Inria
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Lemma 4. Let B be an open ball in Rn and let ϕ : B → Rn be a differentiable map. If for each
x in B, ‖dϕ(x)− Id‖ < 1, then ϕ is a diffeomorphism.

Proof. The only thing to prove is that ϕ is one to one. Let x 6= y be two points in B. Consider
the map f : t ∈ [0, ‖y − x‖]→ ϕ(x+ tu) · u where u = y−x

‖y−x‖ . Using Schwarz inequality and the
assumption we obtain

f ′(t) = dϕ(x+ tu)(u) · u
= Id(u) · u+ (dϕ(x+ tu)− Id)(u) · u
≥ 1− ‖dϕ(x+ tu)− Id‖‖u‖‖u‖
> 0.

It follows that f(‖y − x‖) > f(0). Now f(0) = ϕ(x) · u and f(‖y − x‖) = ϕ(y) · u, hence
ϕ(x) 6= ϕ(y).

Lemma 5. Let B = B(0, r) be a closed ball in Rn of center 0 and radius r > 0 and let ϕ : B → Rn
be a one to one continuous map. If for all x in B, d(x, ϕ(x)) ≤ r/4 then ϕ(B) contains the ball
B(0, r/2).

Proof. By Jordan-Brouwer Theorem, the complement in Rn of the image Σ of the sphere S = ∂B
has exactly two connected components C1 and C2, one which is bounded, say C1, and one which

is not. By assumption the open ball
◦
B(O, r/2) doesn’t intersect Σ, hence is included in C1 or

C2.

The image E = ϕ(
◦
B) of the interior of the ball B is included in Ci, one of the two connected

components of Rn \Σ. On the one hand, by Jordan-Brouwer invariance of the domain theorem,
E is open. On the other hand, E = ϕ(B) ∩ Ci and since ϕ(B) is compact, Ci \ E is open. Now
Ci is connected, hence E or Ci \ E is empty. Therefore E = Ci.

Since ϕ(B) is compact, E is bounded, and therefore E = Ci = C1. Moreover, by assumption,
ϕ(0) ∈ Bo(0, r/2) ∩ E which implies that Bo(0, r/2) ⊂ E.

3 Application: computing the volume of a polytope

In this section, we specialize our generic algorithm (Algorithm 1) so as to use it as a building
block of the polytope volume calculation from [12]. The corresponding pseudo-code is provided
in the supplemental section 6.

3.1 Volume algorithm

Consider a polytope defined by linear inequalities Ax ≤ b. The algorithm used in [12] computes
the volume of such a polytope with target relative error ε. The principle is a multi-phase
Monte Carlo computation, which splits the calculation into m steps. Let {f0, . . . , fm−1} be m
isotropic Gaussian distributions i.e. fi(x) = exp(−‖x‖2/(2σ2

i )) with σi = 1/
√

2ai, or equivalently
fi(x) = exp(−ai‖x‖2), such that the first one is highly concentrated around a point deep inside
the convex, and the last one is an almost flat distribution. The volume calculation reduces to
computing the telescoping product

Vol(K) =

∫
K

f0(x)dx

∫
K
f1(x)dx∫

K
f0(x)dx

. . .

∫
K
dx∫

K
fm−1(x)dx

≡
∫
K

f0(x)dx
∏

i=1,...,m

Ri (16)
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Each of these ratio are estimated using Monte-Carlo integration with respect to the density

πi(x) =
fi(x)∫

K
fi(y)dy

1K(x) (17)

via importance sampling. The method then uses as core block an algorithm sampling the previous
distribution, usually using HAR. In our case, HMC with reflections will be used instead. For
X1, ..., Xk consecutive points given by the random walk, the Monte-Carlo estimation Rki is given
by:

R
(k)
i =

1

k

k∑
j=1

fi(Xj)

fi−1(Xj)
. (18)

Instead of using a fixed number of points for the Monte-Carlo integration, a stopping criterion
is introduced by [12]. Let ε′ = ε/

√
m; this is the relative ratio error allocated for each ratio

Ri estimation. Consider a sliding window of size W (= 4n2 + 500) (n is the dimension). When
W consecutive estimated ratios R(k−W+1)

i , ..., R
(k)
i are within ε′/2, the convergence for Ri is

declared.

3.2 HMC algorithm
This specialization has two advantages: first, trajectories have analytic expressions – see also
[33]; second, the intersection between a trajectory and n hyperplanes has a simple analytical
expression.

Analytical trajectories. As recalled in section 3.1, importance sampling is used to estimate
the ratios Ri. Hence, we build an HMC method to sample from πi(x) from Eq. (17).

Let U(q) = log(exp(−ai||q||2)) = −ai||q||2 and H(q, p) = U(q) + 1/2‖p‖2. Note that the
normalization constant 1∫

K
fi(y)dy

was discarded because it does not change the trajectory (its
gradient is 0). Rewriting the dynamical system associated to this Hamiltonian yields the following
differential equations:

d2qj
dt2

(t) = −2aiqj(t) for j ≤ n. (19)

Each coordinate is independent and has a solution of the form

qj(t) = Cj cos(wt+ φj) (20)

With Cj , w, φj ∈ R. The parameter Φj satisfies the following 2 equations:{
cos(φj) =

qj(0)
Cj

sin(φj) =
−pj(0)
ωCj

(21)

Thus we deduce: 
ω =

√
2ai

Cj =
√
qj(0)2 + pj(0)2/w2

φj = arctan
(
− pj(0)
qj(0)ω

)
+ 1{qj(0)<0}π

(22)

It should be noted that these equations are the same for any choice of coordinates as long as
the basis is orthonormal. This allows us to choose a basis suited to the computations we want
to do.

Inria



HMC with boundary reflections 15

Collision with convex boundary. To restrict the sampling algorithm to the convex K,
trajectories should reflect on the boundary ofK. The convexK is defined by a set of hyperplanes.
Hence, we need to compute the intersection time of a trajectory with each hyperplane and take
the smallest time. Thankfully, there is an analytical expression. The hyperplanes are defined by
a matrix A and a vector b, and hyperplane i is defined by the equation

(Ax)i = bi. (23)

To compute the collision time with an hyperplane H, we make the following remark: let nH be
the normal of the hyperplane. We can complete nH to an orthonormal basis. In this basis, the
collision time depends only on what happens for the coordinate on nH . Consider qnH (t) =<
q(t), nh > and pnH (t) =< p(t), nH > the coordinates along the normal of the hyperplane.
Let ωnH ,CnH and φnH be the parameters of the trajectory along direction nH . Finding the
intersection times is equivalent to solving the equation for t:

CnH cos(ωnH t+ φnH ) = bi (24)

We deduce that if |CnH | < bi, there is no solution, and else, the following times are solution:{
t1 = (arccos(bi/CnH )− φnH ) /ωnH .

t2 = (− arccos(bi/CnH )− φnH ) /ωnH .
(25)

One solution corresponds to the entry into K, while the other corresponds to the exit out of K.
We select the exit trajectory via a dot product between the velocity at t1 and t2 and the outward
normal nH . In the sequel, the corresponding value is denoted tc for time of collision.

3.3 Travel time choice with respect to ai

The algorithm described in Fig.1 can be slightly generalised by choosing a travel time L uniformly
in [0, Lmax] instead of [0, 1]. We propose here a strategy to chose Lmax with respect to the
parameter ai of the Gaussian we are trying to sample (σ = 1/

√
2ai).

We distinguish two main cases here. First, if ai is large, then the probability measure is
concentrated in a neighbourhood of 0, and the trajectories will seldom hit the boundaries and
the strategy is largely unaffected by the convex. Second, if ai is close to 0, the distribution is
close the uniform distribution of the convex.

Case 1. If ai is large, we consider qj(t) be a solution of the dynamical system 19 and we
introduce space-time rescaling for the trajectory:

q̄j(t) =
√
aiqj(t/

√
ai).

It satisfies eq. 19 with ai = 1:
d2q̄j
dt2

(t) = q̄j(t)

with initial condition
dq̄j
dt

(0) =
dqj
dt

(0) ∼ N(0, 1). (26)

It follows that in the absence of convex boundaries, the rescaled process q̄ is sampling the
distribution associated to ai = 1, i.e. the standard normal distribution. Therefore, any sensible
value for Lmax(1) taken for ai = 1 should be scaled as Lmax(ai) = Lmax(1)/

√
ai.
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Case 2. When ai goes to 0, the previous strategy leads Laimax →∞. We argue that in this case,
the trajectories converges to billiard trajectories with reflections on the boundary and that the
optimal Lmax should be therefore close to the optimal Lmax for ai = 0. However, this optimal
value has not been studied to the best of our knowledge.

Values used in experiments. Wwe chose the following Lmax:{
Lmax(ai) = 1/

√
ai if ai > 1

= 1 if ai ≤ 1
(27)

3.4 HMC implementation based on interval arithmetic

3.4.1 Robustness issues

The algorithm as stated before is prone to numerical rounding errors. As a particular case, one
may consider the situation where rounding errors would be such that the point computed on the
HMC trajectory would be outside the convex. More generally, all geometric constructions and
geometric predicates on them potentially raise robustness issues – see list in section 3.4.3.

As discussed in Introduction, we guarantee robustness using the Exact Geometric Computa-
tion paradigm. More specifically, recall that efficient arithmetic operations usually combine two
ingredients: first, an interval representation of the numbers, as non overlapping intervals yield
exact predicates; second, an arbitrary precision representation of the interval bounds, as preci-
sion can be increased so as to yield exact predicates and constructions of controlled accuracy. In
the sequel, we use the iRRAM library which provides these two ingredients [34].

For the sake of clarity, all functions for which the iRRAM library plays a key role are highlighted
in blue.

3.4.2 iRRAM and used features

We represent points as d-dimensional points whose coordinates are of the iRRAM number type.
In iRRAM, a real number is represented by two types of data: firstly a symbolic representation
memorizing the way it was defined (type of function and pointers to the operands), and secondly
a numeric approximation using an interval with rational endpoints guaranteed to enclose the
exact real value. The accuracy of the latter interval can be increased if needed, by recomputing
it using recursively increased precision of the operands intervals that defines it. Therefore, for
a real number t, the iRRAM encoding qiRRAM(t) of the position q(t) of the HMC trajectory is
numerically represented by a d-dimensional box certified to contain the exact real position.

The iRRAM number type enjoys two specific operations which are key in our implementation:

• operator x < y: predicate answering the < comparison operator. If the interval representa-
tions of x and y overlap, these intervals are automatically refined, a feature called precision
refinement thereafter.

• Near_inf_double(iRRAM x) : returns the nearest double < the iRRAM number x.

3.4.3 Robust operations

Our robust implementation calls for the following operations (i) Computing the trajectory pa-
rameters – Eq. (22), (ii) Finding the exit intersection time – Eq. (25), (iii) Finding the smallest
exit intersection time amongst all hyperplanes, and (iv) Evolving the trajectory. In the sequel,
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HMC with boundary reflections 17

we detail these operations, and refer the reader to the SI section 6; in particular, Algorithm 2
refines Algorithm 1 based on these robust primitives.

Trajectory parameters. Following Eq. (22), we construct the numbers Cj , w and φj as
iRRAM number types. See Algorithm 3.

Exit intersection time tc with one hyperplane. Intersecting the trajectory with a hyper-
plane yields two solutions (Eq. 25) respectively exiting and entering the convex. The collision
time tc corresponds to the former. Assuming that the normal vector to the hyperplane is oriented
outwards, the value tc is such that < p(tc), nH >> 0. The evaluation of this predicate triggers a
precision refinement if needed.

Smallest exit intersection time. Since the boundary of K involves several hyperplanes,
the nearest one, which corresponds to the smallest exit time, must be determined. To do so,
we first construct the intersection time tci with respect to each hyperplane. Then we compute
tc = mini tci .

This calculation is tantamount to sorting the individual intersection times, which in turn
requires the comparison operator <. iRRAM provides such an operator, which triggers precision
refinement if needed. See Algorithm 4.

Remark 6. We note that in case the trajectory would hit a face of dimension < d − 1, an
equality between exit times occurs. The absence of separation bound in iRRAM does not allow
us to handle such cases, and an infinite refinement loop is entered. However, for each starting
point, the measure of velocities leading to such sets is null. Practically, such a case was never
faced–as expected.

The Is_strictly_in_convex(q) predicate. To constrain the trajectory within the convex,
we resort to a predicate telling whether a given position q belongs to the interior Ko of K. This
predicate, denoted Is_strictly_in_convex(iRRAM_point_d p), checks < op, n > < bi holds for
every hyperplane, and triggers the iRRAM refinement if needed so. (Nb: < ·, · > stands for the
dot product of two vectors.)

Performing one HMC step. Equipped with the previous operations, our robust implemen-
tation – Algorithm 2, hinges on two operations:

• Calling the predicate Is_strictly_in_convex(q(t<c )). Recall that in iRRAM, a d-dimensional
point is represented as a box. This is in particular the case for the collision points with the
hyperplanes, and for the final point returned. To ensure that all such points are strictly
within the convex, we call the aforementioned Is_strictly_in_convex() .

• Computing the nearest inferior double t<c = Near_inf_double(tc). The intersection point
between the trajectory and a hyperplane is defined analytically – Eq. (25). The iRRAM
representation of the collision time is an interval certified to contain the exact solution, and
the corresponding d-dimensional point qiRRAM(t<c ) is represented as a box. We note that
the box qiRRAM(t<c ) intersects the interior Ko of the convex K. Indeed:

– the exact collision point q(tc) lies on its defining hyperplane i.e. q(tc) ∈ Hi

– by definition of t<c , the exact embedding q(t<c ) satisfies q(t<c ) ∈ Ko

– the iRRAM box qiRRAM(t<c ) corresponding to t<c intersects Ko since

qiRRAM(t<c ) 3 q(t<c ) ∈ Ko
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3.5 Cube: HMC mixing time is O(log n)

We make a small digression in the case of the cube. It turns out that in this special case,
the mixing time of the HMC random walk is O(log n) with n the dimension, and the average
complexity per step (the average number of calls to the oracle per step) is linear with the
dimension. We assume without any loss of generality that the cube is [0, 1]n. Rigorously:

Theorem 5. Let P (n)
k the distribution after k steps in dimension n and gn an isotropic Gaussian

of parameter ai restricted to [0, 1]n. Then there exists 0 < ρ < 1 such that for every ε > 0, every
n > 1 and every x ∈ Rn, we have for k ≥ (log n− log ε)/(log 1/ρ):

‖P (n)
k (x, .)− gn‖TV ≤ ε. (28)

where the norm is the total variation. Furthermore, the average number of reflections per step is
O(n).

Proof. We consider the canonical basis of Rn. As shown before in Eq. (20), the trajectory
coordinates associated to the Gaussian are all independent from each other. Furthermore, when
a reflection with a boundary occurs, it means that one of the coordinates reached 0 or 1. The
reflection simply switches the sign of the momentum for this coordinate, leaving other coordinates
unchanged. Finally, the initial momentum vector is sampled according to p(0) ∼ N (0, In),
therefore each coordinate of p(0) is sampled from an independent Gaussian N (0, 1) in R.
Hence we conclude that each coordinate has the behavior of a 1-dimensional HMC random walk
sampling a 1-dimensional Gaussian, all independent from each other.

Let us consider the 1-dimensional random walk for a given Gaussian. We write Pk(x, .) the
distribution after k steps starting from x ∈ [0, 1], and g the probability density associated with
the restriction of the Gaussian to [0, 1]. Using theorem 3 combined with theorem 4 for the 1-D
Gaussian restricted to [0, 1], we deduce that there exists 0 < ρ < 1 such that for all x ∈ [0, 1],

‖Pk(x, .)− g‖TV ≤ ρk.

Observe that writing P (n)
k the distribution after k steps in dimension n and gn the Gaussian

restricted to [0, 1]n, we have

{
P

(n)
k (x, y) = Pk(x1, y1)P

(n−1)
k ((x2, ..., xn), (y2, ..., yn)),

gn(x) = g(x1)gn−1((x2, ..., xn))
(29)
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HMC with boundary reflections 19

The total variation distance can be written as

‖P (n)
k (x, .)− gn‖TV =

1

2

∫
[0,1]n

∣∣∣P (n)(x, y)− gn(y)
∣∣∣ dy

=
1

2

∫
[0,1]×[0,1]n−1

∣∣∣Pk(x, y1)P
(n−1)
k (x, y2)− g(y1)gn−1(y2)

∣∣∣ dy1dy2

=
1

2

∫
[0,1]×[0,1]n−1

∣∣∣(Pk(x, y1)− g(y1) + g(y1))P
(n−1)
k (x, y2)− g(y1)gn−1(y2)

∣∣∣ dy1dy2

≤ 1

2

∫
[0,1]×[0,1]n−1

∣∣∣(Pk(x, y1)− g(y1))P
(n−1)
k (x, y2)

∣∣∣ dy1dy2

+
1

2

∫
[0,1]×[0,1]n−1

∣∣∣g(y1)P
(n−1)
k (x, y2)− g(y1)gn−1(y2)

∣∣∣ dy1dy2

≤ 1

2

∫
[0,1]

|Pk(x, y1)− g(y1)| dy1

+
1

2

∫
[0,1]n−1

∣∣∣P (n−1)
k (x, y2)− gn−1(y2)

∣∣∣ dy2

We deduce
‖P (n)

k (x, .)− gn‖TV ≤ n‖Pk(x, .)− g‖TV ≤ nρk (30)

Hence for a fixed ε, if k satisfies nρk ≤ ε, then for every x, ‖P (n)
k (x, .) − gn‖TV ≤ ε. Thus we

take k ≥ (log n− log ε)/(log 1/ρ), and the mixing time is O(log n).

In addition, as each coordinate is from each other, the total number of reflections is the sum of
reflections per coordinate. Hence, the number of reflections is proportional to the dimension.

Using the previous strategy for the choice of the maximum travel time, we formulate the
following conjectures:

Conjecture on the mixing time. There exists a constant C such that for every isotropic
Gaussian associated to ai, such that for every ε > 0, every n > 1 and every x ∈ Rn, we have for
k ≥ C(log n− log ε)

‖P (n)
k (x, .)− gn‖TV ≤ ε

where the norm is the total variation. Furthermore, the average number of reflections per step
is O(n).

Conjecture on the complexity. The algorithm from [13, 14] generates one point from
a warm start with complexity O∗(n2σ) complexity (O∗ means ignoring log terms). With O(n)
phases – each with a constant number of points, one gets an overall complexity of O∗(n3).

With our random walk, the number of steps is O∗(1) to generate one point, with each step
costing O∗(n) calls to oracle. This leads in our case to a total complexity of O∗(n2).

4 Experiments

4.1 Implementation and code availability

Implementation. The implementation of our algorithm for the particular case of a convex
polytope Q = K is provided in the Structural Bioinformatics Library (SBL, http://sbl.inria.
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fr), a state-of-the-art environment targeting molecular simulation at large [35]. The correspond-
ing package, Hamiltonian_Monte_Carlo is ascribed to the Core / Geometry-Topology component
of the library. The user manual of the package, as well as a jupyter notebook illustrating the
main functionalities, can be accessed from https://sbl.inria.fr/doc/Hamiltonian_Monte_
Carlo-user-manual.html.

Robustness. As explained in section 3.4.2, the main number type used to ensure robustness
is the iRRAM number type. However, for the particular case of a polytope, we also need to check
that the starting point belongs to the interior of K. (For a starting point on the boundary, one
would have to check that the initial velocity is such that the trajectory enters the interior of the
convex.) Since iRRAM does not have separation bounds to decide equality to zero, to perform
this initial check, we instantiate the predicate Is_strictly_in_convex using the number type
CGAL::Lazy_exact_nt<CGAL::Quotient<CGAL::MP_Float».

We stress in passing that from dimension 10 onward, repeated runs using doubles systemati-
cally yield a significant fraction of point outside the convex, leading to crashes.

Volume calculations. As described in section 3, we also embed our random walk in the
framework of [12]. We reuse the MATLAB code provided by [12] and adapt it so as to call our
HMC random walk instead of the usual HAR random walk.

4.2 Illustrations of the HMC random walk

Our first illustration features samples generated by HMC for the cube [−1, 1]3 and the standard
simplex

∑
xi ≤ 1 in dimension three. Varying σ rapidly yields concentrated samples (Fig. 3).

Our second illustration shows the ability of the algorithm to escape corners. As opposed to
Hit-And-Run, HMC indeed escapes corners much faster, yielding an an almost uniform distribu-
tion after 10 steps even when the dimension increases (Fig. 4).
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Figure 3 HMC for the cube [−1, 1]3 and the standard simplex in dimension 3: role
of σ. First column: σ = 1; second column: σ = 0.01. In all cases, n = 10, 000 samples.

4.3 Analysis
4.3.1 Volume computation

The goal of this experiment is twofold: first estimate the complexity (i.e. the number of calls to
the oracle) with respect to the dimension. Then study the influence of the choice of the maximum
travel time for HMC. The MATLAB implementation of the volume computation algorithm from
[12] introduced the stop criterion of Eq. (18). Intuitively, the sliding window size W should
be at least as large as the mixing time of the chosen random walk. In the case of HAR, the
mixing time increases with the dimension, hence the value of W chosen by [12] depends on the
dimension: W = 500 + 4n2. However, in the HMC case, we hope for a smaller mixing time and
especially a smaller growth rate with respect to the dimension. Therefore, the growth rate of W
used in [12] might be too large and impede the convergence speed for HMC. For that reason, we
modified the MATLAB code to allow for different W .

Statistics. We collect the following statistics:

• the relative error | V −Vol(K) | /Vol(K) with V the estimated volume as a function of the
dimension.

• Number of sampled points for a single volume computation.

• Complexity, i.e. the number of calls to the oracle. For HAR, this is equal to the number
of sampled points. For HMC, it takes the number of reflections into account.
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Figure 4 HMC for the cube [−1, 1]n: ability to escape corners, and comparison to Hit-
and-run. For n > 3, the plot displays projections of the first two coordinates. Simulations were
started from a corner (q(0)

i = 0.9). Samples generated after 10 steps of HAR or HMC, repeated
500 times – whence 500 samples. A nearly flat isotropic Gaussian distribution (σ =

√
500) was

used to approach the uniform distribution.

H
A
R

H
M
C

dim. = 5 dim. = 10 dim. = 50

• for HMC, the average number of calls to the oracle per point sampled.

Parameters used.

• Window size. Our experiments cover the following cases:

– dimension independent: W = 10, 30.

– dimension dependent: W = 30 + 4
√
n, 30 + 4n, 30 + 4n1.5, 30 + 4n2.

• Maximum travel time for HMC. Our experiments cover travel times between tmin the radius
of the inscribed ball of the convex and tmax the diameter of the convex.

• Target error ε = 0.1 – see Section 3.1 and [12]. Note that to comply a targeted error ε, we
will show that the of the window size is crucial.

Experiments. The overall goal of the experiments is to determine an empirical growth rate
of the complexity with respect to the dimension for the algorithm with HMC and compare with
HAR. Ideally, one would try every parameters for a set of dimensions, then study the optimum
parameters for each dimension, deduce the scaling of these parameters with the dimension.
However this requires a very large number of simulations. Hence we settle for two experiments
with one parameter fixed for each of them:

• (Experiment 1) we fix the maximum travel time at a reasonable value (as we will see in
(Experiment 2) ). Then we plot the error and complexity for dimensions 10...50 with
different stopping criterion W . Then we select suitable values for W and use them to
estimate the complexity growth rate with the dimension.
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• (Experiment 2) we fix the stopping criterion (W ) and vary the maximum travel time for
several dimensions.

4.3.2 Models

There are many available polytopes to study. We make the choice to select a few representatives
ones in terms of difficulties we want to handle and then present a detailed analysis. First, we
choose the cube, as it has good theoretical properties while being a difficult case for the HAR.
Second, we choose the simplex, as it has sharp angles and is a widely used convex shape. For
the comparison with HAR, we take the isotropic simplex since it is already rounded. However
for the travel time experiment, we take the standard simplex for the simplicity of it’s geometric
features such as the diameters of the circumscribed and inscribed spheres.

4.3.3 Running times

Volume calculations presented thereafter were performed on a laptop computer. In dimension
50, each individual calculation computation time is of the order of 10 seconds, so that running
times are not further analyzed.

4.4 Tests on volume calculations

4.4.1 Complexity analysis – stopping criterion

We ran the volume computation 50 times for each dimension using different values for W . From
section.3.5, we recall that the mixing time of the HMC random walk is known in the case of
the cube and is O(log(n)). Our intuition for the value of W defining the stop criterion is that
it is linked to the mixing time of the random walk. Hence we expect that using W = cst for
HMC on the cube would lead to a very slow growth of the error with the dimension. Since the
maximum dimension is 50 and log(50) ≈ 1.7, we do not expect to see the effect of the log with
our dimension range. In addition, we expect super logarithmic values of W to yield a relative
error decrease when the dimension increases.

Since the algorithm is targeting a relative error ε, we wish to identify values of W yielding
a constant relative error whatever the dimension. With that in mind, for HMC, we expect to
eliminate values of W for which the error would decrease with the dimension. On the contrary,
for HAR, we expect to eliminate values of W for which the error increases with the dimension,
since W might not grow as fast as the mixing time. We test both the cube (Fig. 5) – a model
for which HMC is well understood, and the isotropic simplex (Fig.6).

To study the complexity i.e. the number of calls to the oracle, we perform a linear regression
on the complexity curves (Figs. 5, 6, bottom plots). Remarkably, all correlation coefficients
obtained were superior to 0.997. The complexity growth rates are summarized in Fig.7.

As expected, the error explodes for HAR when W is too small, so that plausible values for
W are W = 30 + 4n1.5 and W = 30 + 4n2. For the cube, the complexities are O∗(n2.08) and
O∗(n2.45) respectively. If the original choice of W with n2 is correct [12], we see a O(n0.55)
improvement over the theoretical complexity of O∗(n3).

For HMC, the error clearly decreases for W = 30 + 4n1.5 and W = 30 + 4n2, but we cannot
firmly discard any other W since no clear increase or decrease is apparent. For the cube, we
expected that the error would decrease for any super logarithmic value ofW . We conjecture that
we cannot see the decrease in relative error because of a too small dimension range. Another
possibility would be a too aggressive cooling schedule as in [12], but we believe this unlikely.
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The experimental complexity for the cube using W = cst is O(n1.27), while the theoretical
complexity is O∗(n2), representing an improvement of O(n0.73), slightly larger than for HAR.
For the simplex, the results are overall similar.

Figure 5 Cube: relative errors (top) and complexities i.e. number of calls to the ora-
cle(bottom) for volume computation – HAR (left) vs HMC (right) with the maximum
travel time fixed at 1 for HMC. All quantities are averaged over 50 runs.
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Figure 6 Iso simplex: relative errors (top) and complexities i.e. number of calls to
the oracle (bottom) for volume computation – HAR (left) vs HMC (right) with the
maximum travel time fixed at 1 for HMC.All quantities are averaged over 50 runs
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Figure 7 Scaling of the complexity with the dimension, computed using the same
data as Fig.5 and Fig.6. Plausible complexities are highlighted in yellow. Exponents for the
complexity growth rates were obtained with a linear regression on the complexity curves of Figs.
5, 6 – see main text.

Window size complexity
HMC HAR

Cube Iso Simplex Cube Iso Simplex
W = 10 O(n1.27) O(n1.33) O(n0.60) O(n0.1)
W = 30 O(n1.25) O(n1.36) O(n0.64) O(n0.64)

W = 30 + 4n0.5 O(n1.39) O(n1.54) O(n0.86) O(n0.90)
W = 30 + 4n1 O(n1.77) O(n1.95) O(n1.54) O(n1.51)
W = 30 + 4n1.5 O(n2.17) O(n2.36) O(n2.08) O(n2.11)
W = 30 + 4n2 O(n2.54) O(n2.71) O(n2.46) O(n2.50)
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5 Conclusion

Sampling a target distribution is a central problem in science and engineering. A core difficulty is
to deal with high dimensional spaces, and strategies based on random walks proved instrumental
both to gain theoretical understanding and develop effective methods. In this context, this paper
makes three contributions.

First, we develop novel insights regarding Hamiltonian Monte Carlo (HMC) based strategies
with reflections on boundaries. These strategies leverage the properties of billiard trajectories
which escape corners easily contrarily to Hit and Run. Moreover, our intuition is that the
effectiveness of the HMC strategies lies in reflections, which are instrumental to decorrelate
points and therefore decrease the mixing time. We provide a detailed proof of detailed balance
for HMC with reflections (which was not used before even for HMC without reflections) and the
well connectedness of the random walk, leading to a convergence bound.

Second, in the particular case of polyhedral domains we present a robust implementation
based on multi-precision arithmetic. This ingredient is mandatory to guarantee exact predicates
and robust constructions, following the traditional terminology in robust geometric computations.

Third, we use our HMC random walk for polytope volume calculations, using it as an alter-
native to the celebrated Hit-and-run (HAR) random walk used in the practical volume algorithm
by Cousins and Vempala. The tests, conducted up to dimension 50, show that the HMC random
walk outperforms the HAR random walk.

Our work clearly leaves stimulating questions open, two of which are of prominent importance.
The first one is the choice of the optimal travel time required to sample a convex uniformly, which
would ideally be determined at runtime for each convex. The second one is the analysis of the
incidence of reflections on the mixing time, so as to quantify the speed at which reflections
decorrelate successive points.

Acknowledgments. We are grateful to B. Cousins and S. Vempala [12] for providing a high
quality MATLAB code.
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6 Supporting information: pseudo-code
In the following, we provide the pseudo-code for the high level description of the HMC algorithm
(Fig. 1).

Algorithm 1 Hamiltonian Monte Carlo step with real RAM arithmetic model
1: HMC_step(q)
2: Choose a travel time L ∼ Unif(0, Lmax).
3: choose p ∼ N (0, In)
4: Set dist = L
5: while dist > 0 do
6: (intersection, tc)← Intersect_hyper_planes(q, p) // find intersection with hyperplanes
7: if intersection = False OR dist < tc then
8: (q, p) = Update_positions_momenta(q, p, dist) // update traj. with distance dist
9: Set dist = 0

10: else
11: (q, p) = Update_positions_momenta(q, p, tc)
12: Reflext_normal(p(tc),nc)
13: Set dist = dist− tc

Algorithm 2 Hamiltonian Monte Carlo step with iRRAM number type
1: HMC_step(q)
2: Choose a travel time L ∼ Unif(0, Lmax).
3: choose p ∼ N (0, In) iRRAM REAL
4: Set dist = L
5: while dist > 0 do
6: (intersection, tc)← Intersect_hyper_planes(q, p) with tc an iRRAM REAL.
7: t<c = Near_inf_double(tc)
8: if intersection = False OR dist < t<c then
9: (q, p) = Update_positions_momenta(q, p, dist) // update trajectory with distance dist

10: else
11: (q, p) = Update_positions_momenta(q, p, t<c )
12: Reflext_normal(p(t<c ),nc)
13: Set dist = dist− t<c
14: Is_strictly_in_convex(q)
15: Return q
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Algorithm 3 Find trajectory parameters for a given direction.
1: Compute_traj_params(qdir, pdir)
2: Set ω =

√
2a

3: Compute C =
√
q2
dir + p2

dir/w
2

4: Compute φ = arctan(− pdir
qdirω

)
5: if pdir < 0 and φ < 0 then
6: φ = φ+ π
7: if pdir > 0 and φ > 0 then
8: φ = φ− π
9: Return [ω,C, φ]

Algorithm 4 Intersecting the trajectory with hyperplanes bounding the polytope
1: Intersect_hyper_planes(q, p)
2: Set intersection = False
3: for each hyperplane H of equation (Ax)i = bi do
4: Compute the outward pointing normal nH to the hplane
5: Compute the dot products qnH =< q, nH > and pnH =< p, nH >
6: [ω,C,Φ] = Compute_traj_params(qnH , pnH )
7: if C > bi then
8: t1 = (arccos(bi/C)− φ) /ω
9: if t1 < 0 then
10: t1 = t1 + 2π/ω
11: t2 = (− arccos(b/C)− φ) /ω
12: if t2 < 0 then
13: t2 = t2 + 2π/ω
14: t = min(t1, t2)
15: if intersection = False then
16: Set tc = t
17: Set tc = nH
18: Set intersection = True
19: else
20: if t < tc then
21: Set tc = t
22: Set nc = nH
23: Return (intersection, tc)

Algorithm 5 Reflecting the normal
1: Reflext_normal(p, n)
2: n′ = n/ ‖n‖ // unit normal
3: Return p− 2 < p, n′ > n′

Algorithm 6 Update trajectory with distance t
1: Update_positions_momenta(q, p, t)
2: for i from 1 to n do
3: [ω,C,Φ] = Compute_traj_params (qi,pi)
4: Set qi = C cos(ωt+ φ)
5: Set pi = −ωC sin(ωt+ φ)
6: Return (q, p)
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7 Supporting information: results

To complement the analysis of section 4.4.1, we provide in the following plots with the variance
of the statistics of interest (Figs. 8, 9, 10).

Figure 8 Error analysis: variance as a function of the dimension. Model: isotropic
simplex. (Left) HAR (Right) HMC For the same window size, the variance of the error is
lower for HMC.

Figure 9 Number of generated points: variance. Model: isotropic simplex. (Left)
HAR (Right) HMC The log scale hints at a polynomial number of points as a function of the
dimension.
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Figure 10 (Left) Number of oracle calls for HMC (Right) Ratio between the number
of oracle calls and the number of points generated Plots for the isotropic simplex.
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