
HAL Id: hal-01919820
https://hal.science/hal-01919820v1

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving performances of log mining for anomaly
prediction through NLP-based log parsing

Nicolas Aussel, Yohan Petetin, Sophie Chabridon

To cite this version:
Nicolas Aussel, Yohan Petetin, Sophie Chabridon. Improving performances of log mining for anomaly
prediction through NLP-based log parsing. MASCOTS 2018: 26th International Symposium on the
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep 2018, Milwau-
kee, United States. pp.237 - 243, �10.1109/MASCOTS.2018.00031�. �hal-01919820�

https://hal.science/hal-01919820v1
https://hal.archives-ouvertes.fr


Improving Performances of Log Mining
for Anomaly Prediction

through NLP-based Log Parsing
Nicolas Aussel∗†, Yohan Petetin†, Sophie Chabridon†

∗Zodiac Inflight Innovations, Wessling, Germany
†SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, France

Abstract—Failure prediction of industrial systems is a promis-
ing application domain for data mining approaches and should
naturally rely on log messages which are a prime source of
data as they are generated by many systems. However, before
extracting relevant information of such log messages, another
critical step is to parse the logs, that is to say to transform a raw
unstructured text from the log messages into a suitable input for
data mining. These two problems (log parsing then log mining)
are often studied separately while they are directly related in
the context of failure prediction ; moreover, few performance
benchmarks are publicly available. In this paper, we focus on the
impact of log parsing techniques via natural language processing
on the performances of log mining on two datasets. The first one
is a log of an industrial aeronautical system comprising over
4, 500, 000 messages collected over one year of operation ; the
second one is a public benchmark set from an HDFS cluster. On
the latter, we show that it is possible to raise the F-score from
96% to 99.2% while using simpler and more robust log parsing
techniques that require less parameter tuning provided that they
are correctly combined with log mining techniques.

I. INTRODUCTION

The usage of logging systems is one of the most widespread
solution for monitoring complex systems and applications.
One such example would be the syslog of Linux machines.
Such logging systems offer both a high level of flexibility for
developers and a high level of expressiveness for users making
them very useful to understand potential anomalies. However
the high volume of log messages generated by complex
systems makes it difficult for human operators to effectively
monitor every event. This often leads to a reliance on high
level signalling of the gravity of log messages such as ”infor-
mation”,”warning” and ”error”. This system has the obvious
weakness of being only accurate for events and situations that
were accounted for at the time of the implementation of the
logging system. In a situation of interaction between multiple
subsystems developed independently, the signalling might not
be representative of the state of the entire system. That is
an ”error” message from a subsystem could be the result of
a normal operation of the system, for example a subsystem
reporting a loss of connectivity when the network services
are being reset at the system level. Conversely, a ”normal”
message from a subsystem could indicate an anomaly in the
system, for example, a subsystem reporting communication
taking place when the network services are shutdown at the
system level. As a result of this limitation and of the high

volume of log messages, in practice, many logging systems are
often limited in their use as tools for postmortem diagnostics.

In order to enable better usage of logs, many data mining
techniques have been adapted to automate log analysis. This
process can be split in two main steps: i) how to transform the
raw unstructured text from the log messages into a suitable
input for data mining; this is called log parsing; ii) how to
automatically exploit this structured information with data
mining techniques; this is called log mining. Log mining
has been the subject of many publications [1], [2], [3], log
parsing as well [4], [5]. However, until recently there was no
benchmark of publicly available datasets and implementations
to systematically evaluate the performances of the log parsing
methods. As a result, the interactions between log mining
and log parsing have been only partially explored. Moreover,
as logs are automated messages, even raw messages display
repetitive patterns. Consequently, the first parsing approach
adopted has often been rule-based and aimed at distinguishing
between constant parts and variable parts to categorize log
messages. However, the log messages are made of sentences
or partial sentences understandable by a human operator and as
such it is also possible to take into consideration their semantic
aspect in order to parse them and categorize them. Thus it
would make sense to investigate the use of Natural Language
Processing (NLP) which is surprisingly scarcely studied [10],
[11] and absent from state-of-the-art surveys such as [6].

The goal of this article is to study the influence of a
selection of log parsing techniques from the field of NLP on
the efficiency of a fixed log mining process aimed at providing
log-based failure prediction of an aeronautical system. The
results are evaluated on an industrial dataset collected on live
systems and, in the end, the best log parsing method found
is evaluated on a new benchmark dataset and compared to
existing solutions found in [6]. We find that our solution
achieve substantial performance increase on the benchmark
dataset while also being more robust and easier to parametrize
than state-of-the-art solutions.

The paper is organized as follows. First, we study existing
works in log parsing and log mining in section II. Next,
we detail the log parsing techniques that we implemented in
section III. We explain the log mining process that we use
in section IV. We present our results and interpret them in
section V. Finally, VI concludes the paper.



II. RELATED WORK

There are many studies pertaining to both log mining and
log parsing. Some of the recent works include [1], [2], [3].
In [1], the authors first parse the constant and variable parts
of the logs messages using either the source code of the
logging application or the messages themselves then filter the
messages on frequency and perform anomaly detection with
using Principal Component Analysis (PCA), treating outliers
as anomalies.

In [2], the authors filter out the variable parts of log
messages using manually defined rules and cluster the rest
with a similarity measure based on a custom weighted edit
distance. They model the sequence between messages in a
Finite State Automaton and perform anomaly detection by
identifying sequences where impossible transitions are made.

In [3], the authors first distinguish between state messages
and event messages before engineering features from the
results of statistical tests run on each distribution separately.
Finally, the anomaly detection is performed by analysing
outliers.

[4] describes a log parsing method that is still widely used
to this day based on multiple passes over the logs to determine
the most frequent words and the messages in which they occur.

[7] relies on Multiple Instance Learning (MIL) to predict
hard drive failures. Daily aggregates are used to simplify the
model. Even though this appears promising for reducing the
amount of data, it is not applicable to all kind of data and
requires a preliminary domain analysis.

[5] describes another state-of-the-art log parsing algorithm,
IPLoM. It is of a particular interest for this study since it
has been found in [6] to be the most effective log parsing
algorithm available for the HDFS benchmark dataset which
shares several characteristics with the industrial dataset that
this study is based on and in particular its size and the
distributed nature of the system being studied. IPLoM works
by performing several steps of hierarchical partitioning of the
log messages before splitting them in constant and variable
parts.

The study [6] reviews many of the recent work on log
mining and log parsing and points out that very little is
available in terms of benchmark be it from the perspective of
the datasets or of the implementation of the log parsers. This
leads to difficulties in performance evaluation for researchers
designing new methods and difficulties in applying log mining
methods for potential users. This study also highlights the
fact that the existing log parsing solutions are not distributed
and tend to be very costly to run on large datasets in terms
of execution time. Subsequent studies from the same authors
in [8] and [9] propose two new log parsing algorithms POP and
Drain. POP is based on recursive partitioning and optimized
for low time complexity and Drain is an online algorithm
which uses fixed depth parse tree. Though they both perform
extremely well for log parsing with performances nearly
optimal, once evaluated on a log mining task benchmark, their
performances are similar to those of IPLoM. Finally, it is worth

noting that the proposed methods are all rule-based and none
of them are based on Natural Language Processing.

The article [10] presents an approach based on the NLP
method of word embedding for log parsing, sharing our
observation that off-the-shelf NLP techniques could potentially
yield significant improvement over traditional rule-based log
parsing. The authors then use three different classifiers for log
mining, Random Forest, Naive Bayes and Neural Network,
evaluated on one of the public benchmark datasets from [6]
that we also use in the present article reaching up to 90%
accuracy with the Random Forest technique.

In [11], the authors propose a parsing algorithm that uses
detailed semantic analysis and custom dictionaries defined
through statistical analysis of their text corpus, taken from
logs of several servers at their disposal. Evaluation is then
conducted on the same servers rendering comparisons with
benchmark performances difficult.

[12] describes a log parser called Spell for Streaming Parser
for Event Logs using LCS. It is based, as its name implies,
on the Longest Common Subsequence (LCS) algorithm run in
a streaming fashion to identify constant and variables part of
log messages and classify them into message types. It does
not however contain an evaluation on log mining metrics but
only on log parsing. In [13], the Spell log parser is used in
combination with a Long Short-Term Memory (LSTM) deep
neural network to evaluate the full pipeline on two public
datasets, including the HDFS benchmark that we also use, and
reaching up to 96% F-measure on it. It is worth noting that the
deep learning approach used is considerably more complex to
implement and parametrize than our proposed solution.

III. LOG PARSING

Log parsing is understood here as the combination of
methods used to transform the unstructured character strings
that compose the log messages in a structured form suitable for
failure prediction. Since the character strings form sentences
or partial sentences understandable by a human operator, we
take a special interest in methods from the field of Natural
Language Processing (NLP) which aim specifically at extract-
ing structure from documents written in natural languages by
opposition to formal languages. The goal of this section is to
present several easy to implement log parsing methods that
can be used to engineer the features necessary for log mining.

A. Tokenization

The first method that we apply is a tokenizer. Its role is
to process a text and break it into individual words in order
to enable comparisons between sentences. In our case, we
split the words based on whitespaces and punctuation marks
and convert the characters to lower case. As an example,
the sentence ”Temperature too high: the CPU is overheating”
would get broken down into the words ”temperature”, ”too”,
”high”, ”the”, ”cpu”, ”is”, ”overheating”. It is worth noting
that this tokenizer has difficulties especially with contracted
English forms such as ”don’t” or ”it’s” in which case other
solutions based on regular expressions can be used. However



such forms are absent from our logs so these solutions were
not considered.

B. Semantic techniques

The next methods we can apply on the individual words
are stemming, synonym replacement and stopwords removal.
Those methods are not strictly necessary to perform failure
prediction as they simply aim to clean up the input text to
reduce noise by looking into the meaning of the words con-
sidered. We study their impact on the prediction performances
in section V. Stemming is the process of removing inflected
forms at the end of words to find out the stem of the word.
We use it to conflate similar words such as ”failure” and ”fail”
which are semantically close and convey a similar sense under
the same stem ”fail”. This allows us to reduce the vocabulary
and increase the similarity between sentences whose meanings
are close. In our case, we apply a standard stemmer, the
English snowball stemmer from the nltk package [14].

With the synonym replacement method, we replace words
by their most common lemma corresponding to their most
common meaning based on the standard wordnet module of
the nltk package. This allows us to conflate words with similar
meaning but different stems that cannot be caught by the
stemming method. An example of that would be the words
”present” and ”detected” that are quite common in the log
messages, the synonym replacement method can conflate them
to the same representation, reducing further the vocabulary.

Stopwords removal is the process of removing stopwords.
Stopwords are words that are frequent but have a low relevance
for the classification, one such example is the article ”the”.
If kept, the stopwords will induce noise in the classification
model as two unrelated sentences could have many such words
in common. In our case, we use the standard list of English
stopwords found in Apache Spark MLLib library [15] from
which we remove the words ”no”, ”not”, ”nor”, ”on”, ”off”
and ”any” (i.e. we will leave them in the logs) which are
meaningful in the failure messages we are looking for. A
tokenizer and stopwords removal on the previous sentence
”Temperature too high: the CPU is overheating” would result
in ”temperature”, ”high”, ”cpu”, ”overheating”.

C. Vectorization

The next step in adapting the logs to prediction algorithms
is to determine how to transform the sentences from a list of
words into a vectorized representation. The first method that
we try is the bag-of-words model. In this model, a sentence
is represented as a vector of dimension equal to the total
vocabulary size of the corpus. Each dimension corresponds
to a given word and the value of the vector is equal to the
number of times the given word appears in the sentence. This
representation is easy to generate and the resulting model is
easy to manipulate from a machine learning perspective but it
loses the information contained in the ordering of the words in
the sentence. For example, the sentences ”Error: no network
connection” and ”Network connection: no error” would have

the same representation in this model despite having different
meanings.

The next model we try is the bi-gram model. In this model,
instead of considering individual words, we consider pairs of
consecutive words. This reduces the ambiguity generated by
the loss of ordering. In the previous example, the vocabulary of
the sentences would be respectively ”Error no”, ”no network”,
”network connection” and ”network connection”, ”connection
no”, ”no error”. This would capture the fact that both sentences
are about network connection but have different conclusions.
The drawback of this approach is that it increases the size
of the vocabulary: given n different words, we can generate
n2 different bi-grams so, theoretically, a sentence should be
represented in the bi-gram space by a vector of dimension n2.
Not all possible bi-grams are encountered which reduces this
effect. In the example sentences, starting from a vocabulary
of 4 words, we only get 5 different bi-grams.

We also study the tri-gram model where tuples of three con-
secutive words are considered. Given the limitations induced
by the volume of logs and the increase in dimensionality of
the n-gram model, we do not study n-grams for n > 3.

D. Model compression

The final step before we run the classification is the hashing
trick method. This method reduces the size of the models
in memory by applying a hashing function to the words and
replacing the words with their computed hash. It considerably
reduces the memory footprint of the models enabling faster
and more complex computations at the expense of possible
hash collisions and a reduction in the interpretability of the
resulting models. In our case, we use the default hashingTF
implementation of Apache Spark MLLib library.

E. Classification

The final step is the classification itself. The goal is to auto-
matically categorize the log messages encoded in the previous
steps so that failure prediction can be made based on the
message categories. Two unsupervised clustering algorithms
have been considered for this step, bisecting k-means [16] and
Latent Dirichlet Allocation [17].

Bisecting k-means is a variant of the k-means clustering
algorithm. It starts with a unique cluster that regroups all
samples and then iteratively splits the clusters starting with
the one with the highest within set sum of squared errors. In
our case, k = 50 was found to be the optimal value after a
grid search step.

Latent Dirichlet Allocation (LDA) is a topic modelling
approach which attempts to generate topics associated with
frequently co-occurring words and assign to every sentence a
set of weights corresponding to the topic distribution inside
the sentence. In our case, we set the number of topics to 50,
as with the bisecting k-means and the number of iterations to
define the topics to 100.

The final outcome of all the previous steps are features
whose format depends on the classification technique used
in the last step. In the case of bisecting k-means, the text



associated to each message is replaced by a single value
corresponding to its cluster label. An intuitive way to explain
how it works is that the messages classified in the same cluster
are very similar and are thus supposed to be about the same
topic such as ”Temperature test” or ”Network failure”, it is
worth noting that topics are in this representation mutually
exclusive. In the case of LDA, the log message is replaced
by a vector of topic distribution. In that case, we extend the
previous model with the possibility to be related to multiple
topics. Hence if we have a ”Network” topic and a ”Failure”
topic, we would find network failures by selecting messages
with a topic distribution vector with a high value in both of
these topics.

IV. LOG MINING

A. Modelling

In order to evaluate the efficiency of the log parsing, we
target a well-known failure that appears in our log system.
The industrial dataset used is a record of one year of logs
from an aeronautical system currently in use. It contains over
4.5 million log messages including 302 messages pertaining
to the failure that must be predicted. We manually label
every instance of that failure. The failure messages appear in
burst because of retry mechanisms and the propagation of the
consequences of the failure to several subsequent tests. The
repeated failures have no practical interest since they always
happen in fixed sequences and do not reveal actual new events.
Thus we filter them out and only keep the failure label of the
first message in each sequence. After this filtering, we end up
with 188 messages labelled as failures out of over 4.5 million
log messages for an imbalance ratio of over 23.000 : 1 in
favour of the non-failure cases. We model the log messages
as a time series. The features we associate with each message
depend on the classification step that was used. If a bisecting
k-means was performed, we associate to each message the
sequence of cluster labels of the 20 previous messages. If
a LDA was performed, we associate to each message the
sequence of topic distribution vectors of the 20 previous
messages. If less than 20 previous messages are available, we
do not consider the current message for prediction.

B. Classification

The technique that we will use to transform the features
we engineered into predictions is the Random Forest (RF)
technique [18]. It is one of the state-of-the-art techniques
for classification. It requires little parametrisation and is very
efficient even in the case of extreme class imbalance and in
the presence of noise. Roughly speaking, RF is an ensemble
technique based on a decision tree classifier. A decision tree
works by splitting the data set into smaller subsets based on
measured attributes until either the subsets are each composed
of only one class or the maximum depth of the tree has
been reached. RF improves on this technique by combining
several decision trees each trained on bootstrapped samples
with different attributes. New predictions are then made based
on a vote among the different decision trees. In this study, we

TABLE IV
PERFORMANCE COMPARISON AGAINST STATE-OF-THE-ART APPROACHES

ON THE HDFS BENCHMARK DATASET

Precision Recall F-score
SLCT 0.593 0.649 0.620
LogSig 0.963 0.634 0.765
IPLoM 0.975 0.665 0.791
Drain 0.975 0.665 0.791
POP 0.975 0.665 0.791
Best log parsing

combination >0.999 0.985 0.992

set the number of decision trees at 20 with a maximum depth
of 8, constructed using the Gini impurity metric. Two other
methods were considered, Gradient Boosted Trees [18] and
Support Vector Machine [19]. Their performances however
did not match RF on any configuration. This matches the
observation from [10].

V. RESULTS AND INTERPRETATION

The results on the operational dataset are reported in the
tables I, II and III. The comparison with the existing method
on the benchmark dataset is presented in Table IV. The
parameters used are the one described in the previous sections,
optimized through grid-search on the industrial dataset unless
noted otherwise. All of the following results were validated
through 3-fold cross-validation.

A. Metrics

We have chosen to report the standard performance metrics,
precision, recall and F-score to evaluate our results. Precision
and recall are also used in the benchmark performance evalua-
tion in [6] and F-score is a hybrid metrics that will enable the
comparison of techniques that trade-off between precision and
recall. Defining the failure messages that we manually labelled
as positives and the non-failure ones as negatives, we have:

precision =
true positive

true positive+ false positive
(1)

recall =
true positive

true positive+ false negative
(2)

F − score =
2× precision× recall

precision+ recall
(3)

B. Industrial dataset

On Table I, the first observation that we can make is that
no matter what log parsing techniques are used, the precision
remains quite high with its lowest value achieved with the
combination LDA, bi-gram, stemming and synonyms replace-
ment at 75.8% and the next lowest at 85.7%. This is likely due
to the high precision and resilience to noise of the RF learning
algorithm. However, significant improvements can still be
achieved as two combinations achieve 0 false positive for a
reported precision over 99.5%, those combinations are LDA,
tri-gram, stemming and synonym replacement and LDA, bag-
of-words, stemming and synonym replacement and stopwords
removal.



TABLE I
LOG MINING PRECISION WITH DIFFERENT LOG PARSING SCHEMES ON THE INDUSTRIAL DATASET

Bisecting k-means LDA
Bag-of-words Bi-gram Tri-gram Bag-of-words Bi-gram Tri-gram

Nothing Nothing 0.865 0.930 0.971 0.962 0.978 0.988
Stopwords

removal 0.955 0.941 0.954 0.989 0.979 0.953
Stemming and

synonym replacement
Nothing 0.927 0.883 0.945 0.857 0.758 >0.995

Stopwords
removal 0.944 0.980 0.967 >0.995 0.974 0.906

TABLE II
LOG MINING RECALL WITH DIFFERENT LOG PARSING SCHEMES ON THE INDUSTRIAL DATASET

Bisecting k-means LDA
Bag-of-words Bi-gram Tri-gram Bag-of-words Bi-gram Tri-gram

Nothing Nothing 0.454 0.670 0.723 0.666 0.899 0.436
Stopwords

removal 0.782 0.643 0.674 0.471 0.512 0.671
Stemming and

synonym replacement
Nothing 0.604 0.320 0.723 0.586 0.499 0.459

Stopwords
removal 0.552 0.589 0.642 0.552 0.832 0.486

TABLE III
LOG MINING F-SCORE WITH DIFFERENT LOG PARSING SCHEMES ON THE INDUSTRIAL DATASET

Bisecting k-means LDA
Bag-of-words Bi-gram Tri-gram Bag-of-words Bi-gram Tri-gram

Nothing Nothing 0.595 0.779 0.829 0.787 0.937 0.605
Stopwords

removal 0.860 0.764 0.790 0.638 0.672 0.788
Stemming and

synonym replacement
Nothing 0.731 0.470 0.819 0.696 0.602 0.628

Stopwords
removal 0.697 0.736 0.772 0.710 0.897 0.633

Concerning recall in Table II, the differences between the
different combinations are more significant and the motivation
for using the different models is more obvious. The most
simple combination, bag-of-words and bisecting k-means only
achieves 45.4% recall with only one other combination sig-
nificantly lower, bisecting k-means, bi-gram, stemming and
synonym replacement at 32.0% and a few combinations at
comparable recall. The highest recall is achieved with LDA
and bi-gram at 89.9%.

Finally regarding the overall performances summarized with
the F-score in Table III, the improvement brought by the
log parsing techniques is even more obvious with every
combinations besides the previously mentioned bisecting k-
means, bi-gram, stemming and synonym replacement having
a higher score than the basic bisecting k-means, bag-of-words.
That is to say the top left combination bisecting k-means, bag-
of-words can be considered a basic log parser with little to no
NLP applied to it and, beside one specific combination, every
NLP technique improves on it. The highest score of 0.937 is
achieved by the combination which also had the highest recall
LDA, bi-gram followed by LDA, bi-gram, stopwords removal
and stemming and synonym replacement at 0.897.

Overall, it can be noted that the interactions between the
different models and techniques are complex as none of them
can be highlighted as systematically increasing or decreasing
the metrics used. It is only when the models and methods

are combined with each other that their usefulness becomes
apparent. This is not surprising considering that these NLP
methods are also in use in the field of speech processing and,
similarly, the optimal combination of these techniques is still
highly dependent on the dataset used with parameters as varied
as the target language, the vocabulary size, the number of
available audio samples and on target task. The key point is
that the best combination we found with regard to F-score
is quite robust, displaying the best recall over every other
combination and one of the best precision. To ensure further
that its performances are not coincidental, beyond the cross-
validation, we will proceed to test it on the public benchmark
with the same parameters we used for the industrial dataset.

C. Public dataset

The last step presented in Table IV is the comparison of the
best combination, LDA, bi-gram, with existing results from
the studies [6], [8] and [9] on a public benchmark dataset
from an HDFS cluster. The HDFS dataset was chosen among
the available benchmark sets in [6] as the largest dataset
and also the closest one to the industrial dataset we used.
The parameters used for the algorithms were kept at the
same value as with the industrial dataset. The comparison
shows clearly that the natural language processing inspired
approach improves recall significantly while maintaining a



high precision leading to a very significant increase of the
F-score from 0.791 to 0.992.

This could be seen as surprising because the traditional rule-
based log parsing methods put focus on producing a structure
that perfectly transposes the information in the log messages
with performances such that significant improvements seemed
unlikely. Our interpretation is that building a perfectly un-
ambiguous parsing is actually not a desirable outcome when
dealing with log messages because of the logs inherent am-
biguity. The messages are implemented by a human operator
to be read and understood by another human operator with
natural language that is inherently ambiguous and flexible.
This flexibility enables a human reader to understand when
several messages, though they might be worded differently,
refer to a similar issue. For example, when dealing with
network problems, it is common that the actual log message
vary depending on the subsystem that attempted to connect.
It is obvious for someone reading the log messages that they
are related but an unambiguous rule-based approach will not
detect it because it operates under the assumption that one
spelling is equivalent to one lemma. Through the use of natural
language processing and clustering techniques in our approach,
we introduce ambiguity and flexibility by foregoing the word
order and voluntarily confusing semantically similar messages
imitating in that sense the approach of a human operator and
leading to better results.

VI. CONCLUSION

In this paper we propose a general scheme for the failure
prediction problem in the context of industrial systems. Our
approach is based on log mining, which is a promising
approach to achieve failure prediction as many systems al-
ready implement detailed logs and on log parsing which is a
critical preliminary step. We focus on simple natural language
processing techniques or combination thereof and on the inter-
action between log parsing and log mining and their effect on
the performances of failure prediction. To that end, we provide
a detailed performance analysis on both an industrial dataset
of a system currently in use and on a large publicly available
benchmark dataset in order to compare the performances of
our approach with state-of-the-art algorithms. On the industrial
dataset, we achieve 97.8% precision and 89.9% recall using
LDA and bi-gram. On the HDFS dataset, the same method
improves the precision and recall from respectively 97.5% and
66.5% to over 99.9% and 98.5% and the F-score improves
over the study [13] from 96% to 99.2% with a more simple
and robust pipeline. We finally offer an interpretation of the
improvement yielded by natural language processing based
methods over traditional rule-based methods. We considered
the possibility to use more complex NLP techniques such
as word embedding but, given the excellent performances of
the simpler methods, any possible performance increase over
them would most likely not be measurable and deemed that
obtaining the same performances with simpler methods is a
stronger result. Several more advanced NLP techniques such
as word embedding, topic segmentation or a more elaborate

synonym replacement process would be worth investigating in
the future however the most pressing issue would be to gather
a more complex benchmark dataset in order to evaluate said
techniques.

REFERENCES

[1] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009, pp. 117–132.

[2] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining, ser.
ICDM ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
149–158. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2009.60

[3] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 26–26.

[4] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in IP Operations & Management, 2003.(IPOM 2003). 3rd IEEE
Workshop on. IEEE, 2003, pp. 119–126.

[5] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24, no. 11, pp.
1921–1936, 2012.

[6] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on
log parsing and its use in log mining,” in Dependable Systems and
Networks (DSN), 2016 46th Annual IEEE/IFIP International Conference
on. IEEE, 2016, pp. 654–661.

[7] R. Sipos, D. Fradkin, F. Mörchen, and Z. Wang, “Log-based predictive
maintenance,” in The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, August,
2014, pp. 1867–1876.

[8] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated
log parsing for large-scale log data analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. PP, no. 99, pp. 1–1, 2017.

[9] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services (ICWS), June 2017, pp. 33–40.

[10] C. Bertero, M. Roy, C. Sauvanaud, and G. Trédan, “Experience re-
port: Log mining using natural language processing and application
to anomaly detection,” in 28th International Symposium on Software
Reliability Engineering (ISSRE 2017), 2017, p. 10p.

[11] M. Kubacki and J. Sosnowski, “Holistic processing and exploring event
logs,” in Software Engineering for Resilient Systems, A. Romanovsky
and E. A. Troubitsyna, Eds. Cham: Springer International Publishing,
2017, pp. 184–200.

[12] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
Proceedings - 16th IEEE International Conference on Data Mining,
ICDM 2016. United States: Institute of Electrical and Electronics
Engineers Inc., 1 2017, pp. 859–864.

[13] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’17. New
York, NY, USA: ACM, 2017, pp. 1285–1298. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134015

[14] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in Pro-
ceedings of the ACL-02 Workshop on Effective tools and methodologies
for teaching natural language processing and computational linguistics-
Volume 1. Association for Computational Linguistics, 2002, pp. 63–70.

[15] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[16] M. Steinbach, G. Karypis, V. Kumar et al., “A comparison of document
clustering techniques,” in KDD workshop on text mining, vol. 400, no. 1.
Boston, 2000, pp. 525–526.

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.



[18] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests: A
unified framework for classification, regression, density estimation,
manifold learning and semi-supervised learning,” Foundations and
Trends in Computer Graphics and Vision, vol. 7, no. 23, pp. 81–227,

2012. [Online]. Available: http://dx.doi.org/10.1561/0600000035
[19] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.


